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Fig. S1a illustrates the distribution of datapoints of voltage efficiency, coulomb efficiency and 
capacity vs current density in pairplots to evaluate the relationship between these variables. Fig 
S1b coefficients of Pearson correlation heat map for the investigated variables. Accordingly, while 
current density is inversely related to voltage efficiency with the highest absolute value equal to -
0.36 , it is directly proportional to both coulomb efficiency and capacity with coefficients of 0.31 
and 0.29 respectively. In other words, with the increase in current density the voltage efficiency 
will decay whereas coulomb efficiency and capacity are enhanced. Therefore, current density is 
considered to have higher linear relationship with the efficiency parameters and hence is chosen 
as the main feature affecting the battery performance.
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Fig. S1. Pairplots and coefficient of Pearson correlation for variables of  current density, EE, VE, 
CE and capacity (a) pairplots of 4 variables including current density, VE, CE and capacity (b) 
coefficients of Pearson correlation heat map for the mentioned variables. Because of relatively 
higher linearity of current density with efficiency variables, current density was selected as the 

main feature.



Fig. S2. Transferability of ML models for (a,d) voltage efficiency (b,e) coulomb efficiency and 
(c,f) capacity. The absolute error in ML model’s prediction is plotted as a function of the actual 
efficiency value of the battery. As the train size increases, the values of absolute error decrease 

for each efficiency parameters which proves the transferability of our model



Fig. S3. Transferability of an ML model. The coefficient of determination R2 for test data set is 
plotted against the number of training data for three models. The accuracy of model increases 

with increase in size of train set that implies on reliability of our model.

The SHAP force plots for performance parameters are plotted within fig. S4a-c with their 
corresponding average values provided in fig. S5. Based on the values, it is obvious that generally 
increase in electrolyte and catalyst concentration will result in performance enhancement on 
batteries. Furthermore, as we go further in cycles the voltage efficiency decreases while capacity 
and coulomb efficiency slightly increase. It is also notable that while current density is conversely 
proportional to all the performance parameters, it has the highest impact on voltage efficiency 
compared to other performance parameters. Other features such as electrode size and type either 
have minor contribution on the performance parameters or are qualitative parameters.
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Fig. S4. SHAP Force Plots for (a) voltage efficiency (b) coulomb efficiency and (c) capacity 

Feature name Voltage Efficiency Coulomb Efficiency Capacity
Flow rate -0.006056 0.012550 -0.012712

Electrode type 0.017893 0.000182 0.004519
Electrode size 0.002184 0.002788 -0.006652

Membrane -0.028035 0.040592 -0.004009
Cr3+ -0.018175 0.027569 0.011856
Fe2+ 0.001861 0.014300 0.002775
H1+ 0.195122 0.114809 0.013372
Bi3+ 0.066031 0.031968 0.005162
In3+ 0.018304 0.013299 0.003505

Current Density -0.393186 -0.061147 -0.007983
Cycle Number -0.035180 0.016836 0.004965

Fig. S5. SHAP values of features for each model, red color indicates increase the efficiency with 
increase in feature value while blue color indicates decrease in performance with increase in 

feature value. increase in electrolyte and catalyst concentration will mainly result in efficiency 
performance.



Fig. S6. depicts feature importance rank for all the utilized features. Firstly, cycle number primarily 
affects all the performance parameters particularly the coulomb efficiency. In addition, current 
density is the main feature influencing the voltage efficiency. For capacity, electrode size has the 
highest rank among the other variables.

The influence of each electrode type is demonstrated in fig. S7. While TCC can be considered as 
an electrode that simultanously enhances all the performance variables, TiN-3D GF has negative 
influence on all the performance parameters, leading to lesser efficiency. The rest of the electrode 
types do not possess universal influence on battery performance and their function must be 
separately investigated for each performance parameter.

Fig. S7. Feature influence on the performance parameters. The model recommends utilization of 
TCC for the battery while discourages TiN-3D GF electrode to be utilized in the system.

Machine Learning

The equation of the (i) linear regression (LR) model to a data set (n features and m samples) is

𝑌 =  𝛽0 + 𝑋𝛽 (1)

In the context of a linear regression model, we have a rectangular input matrix X, comprising m 
rows and n columns, representing the feature data for each sample. The features Xi1, Xi2, Xi3, Xi4, 
…, Xi11 correspond to electrode size, electrode type, flow rate, etc., for the i'th sample. The 
corresponding output vector Y contains the performance efficiency data, with Yi representing the 
performance efficiency for the i'th sample.



To perform linear regression, scikit-learn employs the concept of "ordinary least squares" (OLS). 
The LR model aims to minimize the sum of squared residuals (SSR) between the observed and 
predicted values in the given dataset. This is achieved by fitting the data with intercept vector β0, 
comprising identical elements, and coefficient vector β, where βj refers to the coefficient for the 
j'th feature.
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In the given equation, y represents the actual value matrix obtained from the dataset, while (β0 + 
Xβ) corresponds to the predicted value matrix. The symbol || ||2 represents the modulus of the 
square root of the sum of squared elements in the column matrix. Apart from the linear regression 
model, three other regression models based on ensemble methods are utilized for data prediction. 
Ensemble methods combine base machine learning (ML) models to create an optimized predictive 
model. Two such models are the random forest (RF) and extra trees (ET) models, which belong to 
the averaging method. These models involve multiple decision trees (estimators) that 
independently make predictions, which are then averaged to provide an overall prediction for the 
dataset. Each decision tree in the RF and ET models recursively splits the MD dataset into nodes 
or subgroups. The splitting process starts with a parent node, which is divided into two children 
nodes. This process continues until the nodes reach a leaf node, which does not have any children. 
The prediction for a specific sample is determined by traversing through all the trained decision 
trees until the corresponding leaf node is reached. The main differences between the RF and ET 
models are: 

a) The RF model uses bootstrap samples, which are sub-samples of the input data with 
replacement, whereas the ET model uses the entire input dataset.

 b) When splitting a node, the RF model selects the best feature, while the ET model uses a random 
feature from a random subset of features of size . 𝑛

To optimize the RF and ET models, several hyperparameters are tuned, including the number of 
estimators, maximum number of features, and maximum tree depth. Determining the appropriate 
values for these hyperparameters can save computational time, as further increasing these 
parameters may not significantly improve the model's accuracy. Additionally, setting a maximum 
tree depth can help prevent overfitting of the training dataset.



Fig. S8. RF and ET models function schematics (for illustration purposes only four branches are 
shown) predicting the battery efficiency. The data set contains 11 features. 

The last model, gradient boosting (GB) model is a boosting approach where estimators are built 
sequentially, taking into account the results of the previous estimator. In the case of the GB model, 
the estimators are decision trees. The training process of the GB model starts with calculating the 
average efficiency (yavg) from the training dataset. Pseudo-residuals are then computed by taking 
the difference between the efficiency in the training data and the average value. The first decision 
tree is trained using these pseudo-residuals. The pseudo-residual obtained from the leaf node of 
the decision tree (PRi1, where i represents the i'th sample and 1 denotes the first decision tree) is 
added to the average performance efficiency multiplied by a learning rate (α), resulting in the 
predicted efficiency from the first decision tree (ypi1 = yavg + α . PRi1). After calculating the 
efficiency using the first decision tree, new pseudo-residuals are computed by taking the difference 
between the efficiency in the training data and the efficiency predicted by the first decision tree. 
These new pseudo-residuals are generally smaller than the initial pseudo-residuals. The second 
decision tree is then trained using these new pseudo-residuals. The pseudo-residual obtained from 
the leaf node of this tree (PRi2) is added to the prediction from the first decision tree to obtain the 
prediction from the second decision tree (ypi2 = ypi1 + α . PRi2). This process continues to add 
decision trees sequentially, with each tree reducing the errors (pseudo-residuals) from the previous 
trees by incorporating a learning rate. The trained sequence of decision trees is then used to predict 
the efficiency for any new sample. The hyperparameters that are tuned in this process include the 
learning rate, number of estimators, maximum tree depth, and maximum number of features. It is 
important to mention that in naive gradient boosting, the learning rate is set to 1. The learning rate 
and the number of estimators are correlated. If the learning rate is less than 1, fewer corrections 
are made for each estimator, requiring more estimators. On the other hand, if the learning rate is 
greater than 1, more corrections are made per estimator, reducing the need for a large number of 
estimators.



To avoid the overfitting and assess the division of the dataset into training and testing samples, we 
examine the learning curve, which plots the prediction accuracy against the number of training 
samples. Figure S9 displays the learning curve and indicates that the mean cross-validated R2 
score, calculated through 10 cross-validation splits, reaches a plateau after 225 training samples. 
This finding suggests that the train-test split can be set at 75%.

Figure S9. The learning curve for the model, displaying the relationship between the mean cross-
validated R2 score (MCRS) and the training score. The MCRS is determined by calculating the 
R2 score across 10 cross-validation splits of the dataset, while the training score is the R2 score 
obtained using the training samples. Based on the observations, the number of train size was 

selected to be 75%.

The hyperparameter optimization for each model is evaluated based on the Mean Cross-validated 
Root Squared Error (MCRS) across ten cross-validation splits. For the Random Forest (RF) and 
Extra Trees (ET) models, we observed that the accuracy saturates when the maximum depth of the 
trees reaches 8, as depicted in Figure S10. Typically, setting no restrictions on tree growth can lead 
to overfitting. However, in our case, efforts to limit tree growth resulted in a decrease in MCRS. 
Based on our findings, we determined that a maximum tree depth of 13 for RF and 10 for ET 
achieves the highest accuracy. Moreover, we identified the optimal number of estimators and 
maximum number of features for both RF and ET models. For RF, the values determined were 
800 estimators and 5 maximum features. Similarly, for the ET model, the optimal values were 
found to be 100 estimators and 5 maximum features. We observed that reducing the maximum 
number of features had a substantial negative impact on model accuracy. Next, we assessed the 



Gradient Boosting (GB) model. We found that to achieve good accuracy, a low learning rate is 
required as the number of estimators increases, as shown in Figure S11. Based on our analysis, the 
optimal learning rate and number of estimators were determined to be 0.1 and 600, respectively, 
for achieving the best accuracy in our work. Additionally, we found that a maximum tree depth of 
2 yields the best results. It is worth noting that reducing the maximum number of features resulted 
in a significant decrease in the model's accuracy, highlighting the importance of maintaining a 
value of 5 for optimal performance.

Fig. S10. The values of mean cross-validated R2 score with regard to trees maximum depth of 
random forest model. Maximum depth was selected to be 13 for RF and 10 for ET based on the 

accuracy metrics.



Fig. S11. The change in mean cross-validated R2 score with regard to the number of estimators at 
learning rate of 0.1, maximum tree depth of 2 and maximum number of features of 5 utilizing the 

gradient boosting model. Number of estimators was chosen to be 600 for this model.

Active Learning

The exploration and exploitation strategy is employed to dynamically guide the discovery of 
favorable combinations, based on predictions and uncertainties. Exploration prioritizes 
combinations with higher uncertainty, driven by curiosity, while exploitation favors combinations 
with higher predicted performance efficiency, driven by perceived usefulness. Ultimately, the top 
five selected candidate materials' energy efficiency values are determined using the adopted 
methodology in every iteration step.

To generate a comprehensive benchmark dataset, we compiled over 300 data points on battery 
performance efficiency from existing literature. Subsequently, we conducted 10 iterations and 
generated 300 new datasets, encompassing 30 battery combinations with optimized efficiency, 
using the aforementioned framework.

Uncertainty proves to be a valuable metric when searching for battery compositions. It gauges the 
"distance" between an unexplored composition and the known dataset. A larger "distance" 
indicates higher uncertainty assigned to that specific composition. The exploration and 



exploitation strategy is a fundamental concept in active learning [1, 2], representing a trade-off 
mechanism that facilitates incremental progress towards a defined objective within an unfamiliar 
setting. This strategy operates based on an objective function that guides decision-making. In this 
work, we use the rank of performance multiplied 0.9 and the rank of uncertainty multiplied with 
0.1 as the determination strategy. Specifically, when striving for optimal efficiency, the objective 
is to identify compositions with the highest achievable efficiency, which can be mathematically 
expressed as an optimization problem:

𝑓𝑖𝑛𝑑 𝑖𝑛𝑝𝑢𝑡 𝑥 ∈ 𝐻
𝑡𝑜 𝑡ℎ𝑒 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛 𝑓:𝐻→𝑅
𝑠𝑢𝑐ℎ 𝑡ℎ𝑎𝑡 𝑥 = arg 𝑚𝑖𝑛𝑥 ∈ 𝐻{𝑓(𝑥)}

where H represent the space of compositions, f is the function that connects a composition with its 
corresponding properties and efficiency. R encompasses the range of all possible efficiency values. 
The selection of a composition, denoted as x, is influenced by both the average and uncertainty 
associated with efficiency values. Exploration prioritizes compositions with higher uncertainty, 
while exploitation favors compositions with higher predicted efficiency.
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