High-performance broadband phototransistor array of PdSe₂/SOI Schottky junction

Yexin Chen^{1,4}, Qinghai Zhu^{1,4}, Jiabao Sun², Yijun Sun², Nobutaka Hanagata³, and Mingsheng Xu¹ (🖂)

¹ College of Integrated Circuits, State Key Laboratory of Silicon and Advanced Semiconductor Materials, Zhejiang University, Hangzhou 310027, China

² College of Information Science & Electronic Engineering, Zhejiang University, 38 Zheda Road, Hangzhou 310027, China

³ Research Center for Functional Materials and Nanotechnology Innovation Station, National Institute for Materials Science, 1-2-1 Sengen, Tsukuba, Ibaraki 305-0047, Japan

⁴ Yexin Chen and Qinghai Zhu contributed equally to this work. Address correspondence to Mingsheng Xu, <u>msxu@zju.edu.cn</u>

Fig. S1 Optical image of the fabricated PdSe₂/Si phototransistor.

Fig. S2 UPS spectra of PdSe₂ film. The calculation formula of Fermi energy level of PdSe₂ is as

follows: $E_F = 21.22 \ eV - 15.98 \ eV = 5.24 \ eV$.

Fig. S3 Noise spectral density versus frequency for PdSe₂/Si phototransistor at gate voltages of 0 V and 5 V.

Fig. S4 Time-dependent photocurrent of $PdSe_2/Si$ phototransistor under 1550 nm illumination at V_G = 0 V and V_{DS} = 0 V.

Fig. S5 Photoresponse characteristics of PdSe₂/Si phototransistor to pulsed light irradiation at frequencies of (a) 1 kHz, (b) 5 kHz, (c) 10 kHz and (d) 15 kHz under 808 nm illumination. (e) Rising and falling edges for estimating the rise time (τ_r) and the fall time (τ_f) of PdSe₂/Si phototransistor at pulsed light frequency of 5 kHz under 808 nm illumination ($V_G = 0$ V and $V_{DS} = 0$ V). (f) Frequency response characteristic of PdSe₂/Si phototransistor.