Electronic Supplementary Information

Heterogeneous Iron Catalyst for C(1)-H Functionalization of 2-Naphthols with Primary Aromatic Alcohols

Subir Biswas, ${ }^{\text {a }}$ Dipankar Barman, ${ }^{\text {b }}$ Gautam Gogoi, ${ }^{\text {a }}$ Nazimul Hoque, ${ }^{\text {a }}$ Arpita Devi, ${ }^{\text {a }}$ Siddhartha K. Purkayastha, ${ }^{\text {c }}$ Ankur Kanti Guha, ${ }^{\text {c }}$ Jayanta K. Nath ${ }^{\text {d }}$, Kusum K. Bania*a
${ }^{a}$ Department of Chemical Sciences, Tezpur University, Assam 784028, India.
${ }^{b}$ Department of Chemistry, Indian Institute of Technology Guwahati, Assam 781039, India.
${ }^{c}$ Cotton University, Panbazar, Guwahati, Assam 781001, India.
${ }^{d}$ Department of Chemistry, S.B. Deorah College, Ulubari, Guwahati, Assam, 781007

Corresponding Authors *E-mail: kusum@tezu.ernet.in
ORCID: 0000-0001-6535-3913

Table of Contents		
SL. No	Title	Page No
1	Physical Measurements	S3-S4
2	Synthesis of iron oxide supported on potassium exchanged zeolite-Y ($\mathrm{Fe}_{2} \mathrm{O}_{3}$-KY)	S5
3	Characterization of $\mathrm{Fe}_{2} \mathrm{O}_{3}$-KY	S5
	3.1 XRD analysis, Fig. S1	S5-S6
	3.2 XPS analysis, Fig. S2	S6-S7
	3.3 EDX analysis of $\mathrm{Fe}_{2} \mathrm{O}_{3}$-KY, Fig. S3	S8
	3.4 SEM images of $\mathrm{Fe}_{2} \mathrm{O}_{3}$-KY, Fig. S4	S9
	3.5 TEM images of $\mathrm{Fe}_{2} \mathrm{O}_{3}$-KY, Fig. S5	S10
	3.6 DRS Spectra of $\mathrm{Fe}_{2} \mathrm{O}_{3}$-KY, Fig. S6	S11
4	X-ray crystallography	S12-S13
	Crystallographic data and refinement parameters for the compound 3h, 3v, 3b and 3z, Table S1	S13
5	General procedure for benzylation of 2-naphthols.	S14
6	Characterization of the Compounds	S15-S46
	* NMR Analysis (3a-3z)	S15-S20
	* NMR Spectra of compounds	S21-S46

Electronic Supplementary Information

7	Table S2: Comparison of catalytic activities of different catalysts for C(1) benzylation of 2-naphthols with primary alcohols	S47
8	Density functional theory (DFT) Calculation, Fig. S7, Fig. S8	S48-S57
9	Catalytic Recyclability Study, Fig. S9, Fig. S10	S58-59
10	References	S-60

Electronic Supplementary Information

1. Physical measurements

All the characterizations and analysis were done by using the following analytical approaches to complete physical measurements. X-ray diffraction (XRD) of the sample was carried out in a Philips PANalytical Empyrean instrument, enabling low-angle measurement from $0-60^{\circ}$ with a minimum step size (20) of 0.0001 , and BRUKER AXS, D8 FOCUS instrument in the 2θ value range of $5-80^{\circ}$. The X-ray photoelectron spectroscopy (XPS) analyses were measured with KRATOS (ESCA AXIS 165) spectrometer using $\mathrm{Mg} \mathrm{K} \alpha(1253.6 \mathrm{eV})$ radiation as a source. The oven-dried samples (finely ground) were dusted on a graphite sheet (double stick) and mounted over the regular sample holder, before being transferred to an analysis chamber. The material was degassed overnight in a vacuum oven before recording the XPS. The binding energy values were corrected with reference to C 1s peak at 284.8 eV . The peaks were deconvoluted using Origin software (OriginPro 8.5). Energy dispersive X-ray (EDX) analysis were performed with JEOL, model No: 7582 (Oxford make), resolution: 137 eV at 5.9 KeV ; Minimum weight $\%=.01 \%$, sample size: 10 mm dia, 1 mm thick(max), dry and moisture free and Scanning electron microscopic (SEM) images were recorded with JEOL, JAPAN (Model: JSM 6390LV) with resolution: 3nm, magnification: 3,00,000X, applied voltage: 30 kV (max.). The transmission electron microscopic (TEM) images were recorded on a JEOL (JEM-2010) instrument equipped with a CCD camera (slow-scan) with a 200 kV accelerating voltage. A UV-visible diffuse reflectance spectrum (UVDRS) analysis was performed in a DR apparatus equipped with an assimilating sphere having 60 mm inner diameter, (Hitachi U-3400 spectrophotometer). Thin Layer Chromatographic (TLC) plate (TLC Silica gel $60 \mathrm{~F}_{254}$) was used for monitoring the progress of the reaction. The reactions were monitored through TLC by comparing the retention factor (Rf) of the reactant molecule with the reaction mixture. The isolated $\%$ yields are calculated after isolation of desired product using

Electronic Supplementary Information

the following equation: $\%$ yield $=[$ mole of isolated product $/$ mole of limiting reactant $] \times 100 .{ }^{1} \mathrm{H}$ NMR spectra are recorded on 400,500 and 600 MHz spectrometers. ${ }^{13} \mathrm{C}$ NMR spectra were recorded on 101, 126 and $151 \mathrm{MHz} .{ }^{1} \mathrm{H}$, and ${ }^{13} \mathrm{C}$ nuclear magnetic resonance (NMR) analyses were done by DRX-400 Varian, Bruker AVANCE III HD $600 \mathrm{MHz}, 500 \mathrm{MHz}$ and 400 MHz spectrometers. Chemical shifts (δ) are reported in ppm downfield from tetramethylsilane; spinspin coupling constants (J) are expressed in hertz (Hz), and other data are reported as follows: s (singlet), d (doublet), t (triplet), m (multiplet) q (quartet), br s (broad singlet), dd (doublet of doublet). Mass spectra (MS) were recorded in Thermo Scientific Q-Exactive, Accela 1250 pump. Perkin Elmer 20 CHN analyser was used for elemental analysis (wt\% C, H) in the synthesized compounds.

Electronic Supplementary Information

2. Synthesis of iron oxide supported on potassium exchanged zeolite-Y ($\mathrm{Fe}_{2} \mathrm{O}_{3}-\mathrm{KY}$)

For synthesis of iron oxide supported on potassium exchanged zeolite- $\mathrm{Y}\left(\mathrm{Fe}_{2} \mathrm{O}_{3}-\mathrm{KY}\right), 2 \mathrm{~g}$ of zeolite-HY (procured from Sigma-Aldrich.) was mixed in a round bottom flask in an aqueous solution and then 50 mL of 0.1 M potassium chloride (KCl) (purchased from SRL chemicals) was added to it. The suspension was stirred for 48 hours under refluxing condition at $60^{\circ} \mathrm{C}$. To the potassium exchanged zeolite- $\mathrm{Y}(\mathrm{KY}), 50 \mathrm{~mL}$ of 0.1 M of sodium hydroxide (NaOH) solution and 0.01 M (0.135 g in 50 mL water) of iron (III) chloride (bought from Sigma-Aldrich) solution was added dropwise. It was then stirred for another 24 hours under refluxing condition at $60^{\circ} \mathrm{C}$. The resultant light yellowish solid material was collected by simple filtration method using Whatman 41 filter paper and washed several times with warm water. The light yellowish solid was washed several times with water until it gave negative silver nitrate $\left(\mathrm{AgNO}_{3}\right)$ (procured from Sigma Aldrich) test. The chloride free solid material was further calcination at $40{ }^{\circ} \mathrm{C}$ for 5 hours to get the zeolite-KY supported iron oxide nanocatalyst $\left(\mathrm{Fe}_{2} \mathrm{O}_{3}-\mathrm{KY}\right)$. The material was vacuum dried prior to its characterization.

3. Characterization of $\mathrm{Fe}_{2} \mathrm{O}_{3}-\mathrm{KY}$

3.1 XRD analysis

In X-ray diffraction (XRD) pattern of $\mathrm{Fe}_{2} \mathrm{O}_{3}$ - KY a significant difference was observed in the intensities of the (440) and (533) planes at 2θ values of 18.7° and 20.4° (Fig. S1, black line) in comparison to neat zeolite-Y (Fig. S1, red line). ${ }^{1}$ Comparison of the XRD patterns also indicated for the presence of weak signals for α-form of iron(III) oxide $\left(\alpha-\mathrm{Fe}_{2} \mathrm{O}_{3}\right)$ at 2θ value of 33.2° (104) 35.6° (110) without affecting the other signal of neat zeolite-Y. These results provided an evident for the formation of $\alpha-\mathrm{Fe}_{2} \mathrm{O}_{3}$ nanoparticles on the surface of zeolite-Y, Fig. S1. ${ }^{2}$

Electronic Supplementary Information

Fig. S1 a) XRD pattern of neat zeolite-Y (red), and $\mathrm{Fe}_{2} \mathrm{O}_{3}-\mathrm{KY}$ (black).

3.2 XPS analysis

All the elements viz $\mathrm{Fe}, \mathrm{Al}, \mathrm{Si}$, and O present in the synthesised material, $\mathrm{Fe}_{2} \mathrm{O}_{3}-\mathrm{KY}$ was further confirmed from the XPS analysis, Fig. S2. The appearance of two prominent peaks at 711.2 eV and 724.9 eV corresponding to $\mathrm{Fe} 2 \mathrm{p}_{3 / 2}$ and $\mathrm{Fe} 2 \mathrm{p}_{1 / 2}$, respectively clearly signified the presence of Fe (III) species in the synthesized $\mathrm{Fe}_{2} \mathrm{O}_{3}-\mathrm{KY}$ material (Fig. S2a). ${ }^{3}$ A peak separation of more than 7 eV from $\mathrm{Fe} 2 \mathrm{p}_{3 / 2}$ level and satellite peak $(719.0 \mathrm{eV})$ further confirmed the presence of Fe (III) species in the material. ${ }^{3}$ The binding energy values of $529.9,530.9$, and 531.8 eV in XPS spectrum of O 1 s characteristic of $\mathrm{Fe}-\mathrm{O}, \mathrm{Al}-\mathrm{O}$, and $\mathrm{Si}-\mathrm{O}$ bonds in the material, respectively (Fig . S2b). ${ }^{4}$ The XPS spectra of Al 2p and Si 2p showed peaks for aluminosilicates at 74.4 eV and 103.0 eV , respectively (Fig S2b-c). ${ }^{5}$ All of the above XPS peaks were fitted with respect to the C 1 s peak having binding energy of $284.4 \mathrm{eV}(\mathrm{C}-\mathrm{C}), 286.5 \mathrm{eV}(\mathrm{C}-\mathrm{O})$ and $289.0 \mathrm{eV}(\mathrm{C}=\mathrm{O})$, Fig. S2e.

Electronic Supplementary Information

Fig. S2 The XPS spectra of (a) Fe 2 p , (b) O 1s, (c) Si 2 p , (d) Al 2 p and e) C 1 s in $\mathrm{Fe}_{2} \mathrm{O}_{3}-\mathrm{KY}$ catalyst.

Electronic Supplementary Information

3.3 EDX spectra of $\mathrm{Fe}_{2} \mathrm{O}_{3}$-KY

Fig. S3 a) SEM image of $\mathrm{Fe}_{2} \mathrm{O}_{3}$ - KY considered for EDS elemental mapping of (b) Al , (c) Si , (d) Fe , (e) K and (f) EDX spectra showing the presence of all the elements in $\mathrm{Fe}_{2} \mathrm{O}_{3}-\mathrm{KY}$ material. The elemental amounts are given in weight \% ($\mathrm{wt} \%$) and atomic\% (At\%).

Electronic Supplementary Information

3.4 SEM images of $\mathrm{Fe}_{2} \mathrm{O}_{3}-\mathrm{KY}$

Fig. S4 SEM images of $\mathrm{Fe}_{2} \mathrm{O}_{3}$-KY in different magnifications

Electronic Supplementary Information

3.5 TEM images of $\mathrm{Fe}_{2} \mathrm{O}_{3}$-KY

Fig. $\mathrm{S5}$ (a-b) TEM images of $\mathrm{Fe}_{2} \mathrm{O}_{3}$-KY showing the fine dispersion of $\mathrm{Fe}_{2} \mathrm{O}_{3}$ NPs on potassium exchanged zeolite-Y, f) particle size distribution of $\mathrm{Fe}_{2} \mathrm{O}_{3}-\mathrm{KY}$ from TEM images.

Electronic Supplementary Information

3.6 DRS Spectra of $\mathrm{Fe}_{2} \mathrm{O}_{3}$-KY

Fig. S6 UV-vis diffused reflectance spectrum of $\mathrm{Fe}_{2} \mathrm{O}_{3}-\mathrm{KY}$.

Electronic Supplementary Information

4 X-ray crystallography

X-ray diffraction data were collected on a Bruker SMART Apex II CCD diffractometer using Mo $\mathrm{K} \alpha(\lambda=0.71073 \AA)$ radiation ${ }^{6}$ and X-ray diffraction data for all crystals were collected using Bruker SMART software. This software is also used for indexing and determination of the unit cell parameters. Cell structures were solved by direct method and refined by full-matrix least squares against F2 of all data, using SHELXTL software. All the non-H-atoms were refined by full-matrix least squares in anisotropic, all H -atoms in isotropic approximation, against F 2 of all reflections. Some hydrogen atoms attached to these atoms were treated as 'riding' in calculated positions. The crystallographic tables for the compound $\mathbf{3 b}, \mathbf{3 h}, \mathbf{3 v}$ and $\mathbf{3 z}$ are given in the table S1, which includes the crystal parameters and the refinement factor. The molecular structures were drawn at MERCURY. ${ }^{7}$

The CIF files containing complete information of the studied structures of compound $\mathbf{3 b}$, $\mathbf{3 h}, \mathbf{3 v}$ and $\mathbf{3 z}$ were deposited with CCDC, deposition number 2217708, 2217706, 2217707, and 2220406, respectively which are freely available upon request from the Director, CCDC, 12 Union Road, Cambridge CB21EZ, UK (Fax: +44-1223-336033; email:deposit@ccdc.cam.ac.uk) or from the following website: www.ccdc.cam.ac.uk/data_request/cif

The compound 3b crystallizes in orthorhombic $\mathrm{P} 2{ }_{1} 2_{1} 2_{1}$ space group and their asymmetric unit contain the whole molecule whereas compound $\mathbf{3 h}$ and $\mathbf{3 v}$ crystallize in monoclinic $\mathrm{P} 21 / \mathrm{c}$ space group. The asymmetric of compound $\mathbf{3 z}$ contains two molecules and crystallizes in triclinic P-1 space group.

Electronic Supplementary Information

Table S1: Crystallographic data and refinement parameters for the compound $\mathbf{3 h}, \mathbf{3 v}, \mathbf{3 b}$ and $\mathbf{3 z}$:

Compound name	Compound 3b	Compound 3h	Compound 3v	Compound 3 z
chemical formula	$\mathrm{C}_{18} \mathrm{H}_{16} \mathrm{O}_{2}$	$\mathrm{C}_{18} \mathrm{H}_{16} \mathrm{O}_{3}$	$\mathrm{C}_{18} \mathrm{H}_{15} \mathrm{BrO}_{2}$	$\mathrm{C}_{20} \mathrm{H}_{18} \mathrm{O}_{4}$
CCDC deposition number	2217708	2217706	2217707	2220406
formula mass	264.31	280.31	343.20	322.34
crystal system	Orthorhombic	Monoclinic	Monoclinic	Triclinic
space group	P $212_{1} 2_{1}$	P21/c	P21/c	P-1
a/Å	5.695(3)	8.3525(7)	15.974(7)	10.610(2)
b/Å	15.637(8)	11.4569(9)	5.729(3)	12.799(3)
c/Å	15.874(8)	14.7293(11)	18.827(11)	14.258(3)
$\alpha /{ }^{\circ}$	90.00	90.00	90.00	63.537(5)
$\beta /{ }^{\circ}$	90.00	90.936(2)	119.690(11)	72.847(5)
$\gamma /{ }^{\circ}$	90.00	90.00	90.00	80.933(5)
V/Å3	1413.6(13)	1409.31(19)	1496.8(13)	1655.5(6)
T/K	293(2)	296(2)	296(2)	296(2)
Density ($\mathrm{g} \mathrm{cm}^{-3}$)	1.242	1.321	1.523	1.293
Z	4	4	4	4
radiation type	Mo K α	Mo K α	Mo K α	Mo K α
absorption coefficient, $\mu / \mathrm{mm}-1$	0.080	0.089	2.748	0.090
Total no. of reflections measured	4164	3584	3960	7833
Reflections, $I>2 \sigma(I)$	1239	2636	1847	4026
Complete to 20 (\%)	98.2	99.6	99.3	98.7
Ranges (h, k, l)	$\begin{aligned} -7 & \leq \mathrm{h} \leq 7 \\ -21 & \leq \mathrm{k} \leq 21 \\ -21 & \leq 1 \leq 22 \end{aligned}$	$\begin{aligned} & -11 \leq \mathrm{h} \leq 11 \\ & -15 \leq \mathrm{k} \leq 15 \\ & -19 \leq 1 \leq 19 \end{aligned}$	$\begin{aligned} -21 & \leq \mathrm{h} \leq 21 \\ -7 & \leq \mathrm{k} \leq 7 \\ -25 & \leq 1 \leq 25 \end{aligned}$	$\begin{aligned} & -13 \leq \mathrm{h} \leq 13 \\ & -16 \leq \mathrm{k} \leq 16 \\ & -18 \leq 1 \leq 18 \end{aligned}$
Data/ Restraints/Parameters	4164/1/235	3584/0/193	3960/0/192	7833/2/439
R indices [$I>2 \sigma(I)$]	0.0851	0.0446	0.0600	0.0570
R indices (all data)	0.2664	0.0659	0.1547	0.1257
wR(F2) (all data)	0.2597	0.0968	0.1955	0.1992
Goodness-of-fit	0.916	1.048	1.014	1.030

Electronic Supplementary Information

5 General procedure for benzylation of 2-naphthols

The reaction was performed with various other substituted primary alcohols with different substituted naphthols, after optimizing the various reaction parameters i.e. solvent, catalyst amount, time and temperature. The reaction was performed in a 50 mL round bottom flash with appropriate amount of naphthols $(1 \mathrm{mmol})$ and benzyl alcohols $(1 \mathrm{mmol})$ immersed in oil bath at $110{ }^{\circ} \mathrm{C}$ under refluxing condition using 15 mg of $\mathrm{F}_{2} \mathrm{O}_{3}-\mathrm{KYcatalyst}$ and 1 mL of dichloroethane (DCE) as solvent for 6 hours. The progress of the reaction was monitored by TLC. After completion of the reaction, the reaction mixture was diluted with ethyl acetate $\left(\mathrm{CH}_{3} \mathrm{COOC}_{2} \mathrm{H}_{5}\right)$ and filtered. The heterogeneous catalyst was recovered and washed with ethanol and warm water several times for further use. The solvent was evaporated under reduced pressure, and the residue obtained was purified and isolated by column chromatography (hexane/ethyl acetate) on silica gel to get the desired benzylated product. Different isolated products are characterized by ${ }^{1} \mathrm{H},{ }^{13} \mathrm{C}$ NMR. All the naphthol derivatives and alcohol derivatives are purchased from Merck and Sigma Aldrich, solvents used were of HPLC grade and were brought from E-Merck.

Electronic Supplementary Information

6 Characterization of the compound

* NMR Analysis of synthesized compounds

Compound 3a: 1-benzylnaphthalen-2-ol
${ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.90(\mathrm{~d}, \mathrm{~J}=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.78(\mathrm{~d}, \mathrm{~J}=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.69(\mathrm{~d}, \mathrm{~J}=8.8$ $\mathrm{Hz}, 1 \mathrm{H}), 7.42(\mathrm{t}, \mathrm{J}=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.32(\mathrm{t}, \mathrm{J}=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.26-7.12(\mathrm{~m}, 5 \mathrm{H}), 7.09(\mathrm{~d}, \mathrm{~J}=8.8 \mathrm{~Hz}$, 1 H), $5.02(\mathrm{~s}, 1 \mathrm{H}), 4.44(\mathrm{~s}, 2 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR (101 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 151.3,140.1,133.8,129.6,128.7,128.7,128.6$ 128.3, 126.8, 126.2, 123.4, 118.3, 118.0, 30.8.

HRMS (ESI) m / z calcd for $\mathrm{C}_{17} \mathrm{H}_{14} \mathrm{O}: 234.1045$, found 234.1048.
The spectroscopic data were in accordance with literature. ${ }^{8}$
Compound 3b: 1-(4-methoxybenzyl)naphthalen-2-ol
The spectroscopic data were in consistant with literature. ${ }^{8}$
${ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.82(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.68(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.58(\mathrm{~d}, J=8.8$ $\mathrm{Hz}, 1 \mathrm{H}), 7.33(\mathrm{dd}, J=8.4,6.8,1.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.22(\mathrm{t}, J=7.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.00(\mathrm{dd}, J=17.0,8.8 \mathrm{~Hz}$, $3 \mathrm{H}), 6.71-6.65(\mathrm{~m}, 2 \mathrm{H}), 5.21(\mathrm{~s}, 1 \mathrm{H}), 4.28(\mathrm{~s}, 2 \mathrm{H}), 3.63(\mathrm{~s}, 3 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 158.0,151.3,133.7,132.1,129.5,129.2,128.6,126.7,123.4$, 118.6, 118.0, 114.1, 55.4, 29.9.

Compound 3c: 1-(4-methylbenzyl)naphthalen-2-ol
The spectroscopic data were in accordance with the literature. ${ }^{8}$
${ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.92(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.79(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.70(\mathrm{~d}, J=8.8$ $\mathrm{Hz}, 1 \mathrm{H}), 7.43(\mathrm{t}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.32(\mathrm{t}, J=7.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.10(\mathrm{dd}, J=8.4,4.7 \mathrm{~Hz}, 3 \mathrm{H}), 7.05(\mathrm{~d}$, $J=7.9 \mathrm{~Hz}, 2 \mathrm{H}), 4.98(\mathrm{~s}, 1 \mathrm{H}), 4.41(\mathrm{~s}, 2 \mathrm{H}), 2.28(\mathrm{~s}, 3 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 151.4,136.9,135.8,133.8,129.6,129.5,128.7,128.6,128.2$, 123.5, 123.3, 118.5, 118.07 30.4, 21.1.

Compound 3d: 1-(4-isopropylbenzyl)naphthalen-2-ol
${ }^{1} \mathrm{H} \operatorname{NMR}\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.92(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.77(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.68(\mathrm{~d}, J=8.8$ $\mathrm{Hz}, 1 \mathrm{H}), 7.42(\mathrm{t}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.31(\mathrm{t}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.13(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.09(\mathrm{dd}, J=$ $7.5,5.9 \mathrm{~Hz}, 3 \mathrm{H}), 5.37(\mathrm{~s} 1 \mathrm{H}), 4.41(\mathrm{~s}, 2 \mathrm{H}), 2.87-2.79(\mathrm{~m}, 1 \mathrm{H}), 1.19(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 6 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 151.5,146.8,137.3,133.8,129.6,128.6,128.5,128.2,126.7$, 123.5, 123.2, 118.5, 118.1, 33.8, 30.4, 24.1.

Anal. calcd. For $\mathrm{C}_{20} \mathrm{H}_{20} \mathrm{O}: \mathrm{C}, 86.92 ; \mathrm{H}, 7.29$; found C, $87.11 ; \mathrm{H}, 7.36$.

Electronic Supplementary Information

Compound 3e: 1-(2-hydroxybenzyl)naphthalen-2-ol
${ }^{1} \mathrm{H}^{\mathrm{NMR}}\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.24(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.76(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.62(\mathrm{~d}, J=8.8$ $\mathrm{Hz}, 1 \mathrm{H}), 7.53(\mathrm{t}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.42(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.34(\mathrm{t}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.11-7.04$ (m, 2H), $6.87-6.77$ (m, 2H), 4.39 (s, 2H).
${ }^{13} \mathrm{C}$ NMR ($151 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 153.3,150.5,133.5,131.1,129.9,128.9,127.9,126.8,126.3$, 123.4, 121.3, 118.3, 118.1, 115.9, 25.4.

HRMS (ESI) m / z calcd for $\mathrm{C}_{17} \mathrm{H}_{15} \mathrm{O}_{2}[\mathrm{M}+\mathrm{H}]^{+}: 251.1067$, found 251.1075.
Compound 3f: 1-(thiophen-2-ylmethyl)naphthalen-2-ol
${ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.96(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.77(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.68(\mathrm{~d}, J=8.8$ $\mathrm{Hz}, 1 \mathrm{H}), 7.46(\mathrm{t}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.33(\mathrm{t}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.14-7.03(\mathrm{~m}, 2 \mathrm{H}), 6.87-6.82(\mathrm{~m}$, $1 \mathrm{H}), 6.77(\mathrm{~d}, J=2.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.25(\mathrm{~s}, 1 \mathrm{H}), 4.58(\mathrm{~s}, 2 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 151.1,143.5,133.3,129.6,128.9,128.7,126.9,124.9,123.8$, 123.5, 123.2, 118.4, 118.0, 25.5.

The spectroscopic data were in consistant with literature. ${ }^{9}$
Compound 3g: 1-benzylnaphthalene-2,7-diol
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{MeOD}$) $\delta 7.49(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.43(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.08(\mathrm{dt}, J=$ $15.0,7.5 \mathrm{~Hz}, 4 \mathrm{H}), 7.02(\mathrm{~d}, J=1.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.97(\mathrm{t}, J=6.9 \mathrm{~Hz}, 1 \mathrm{H}), 6.87(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.72$ (dd, $J=8.7,2.2 \mathrm{~Hz}, 1 \mathrm{H}$), 4.23 (s, 2H).
${ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{MeOD}$) $\delta 156.7,154.2,142.8,136.9,131.0,129.4,129.1,128.8,126.4$, 125.4, 117.9, 115.8, 115.5, 106.4, 31.5.

HRMS (ESI) m / z calcd for $\mathrm{C}_{17} \mathrm{H}_{15} \mathrm{O}_{2}[\mathrm{M}+\mathrm{H}]^{+}: 251.1067$, found 251.1079.
Compound 3h: 1-(4-methoxybenzyl)naphthalene-2,7-diol
1H NMR ($400 \mathrm{MHz}, \mathrm{MeOD}$) $\delta 7.48(\mathrm{~d}, \mathrm{~J}=8.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.41(\mathrm{~d}, \mathrm{~J}=8.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.01(\mathrm{~d}, \mathrm{~J}=8.2$ $\mathrm{Hz}, 3 \mathrm{H}), 6.85(\mathrm{~d}, \mathrm{~J}=8.9 \mathrm{~Hz}, 1 \mathrm{H}), 6.71(\mathrm{dd}, \mathrm{J}=8.7,2.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.64(\mathrm{~d}, \mathrm{~J}=8.6 \mathrm{~Hz}, 2 \mathrm{H}), 4.15(\mathrm{~s}$, 2 H), 3.61 ($\mathrm{s}, 3 \mathrm{H}$).
${ }^{13} \mathrm{C}$ NMR ($\left.151 \mathrm{MHz}, \mathrm{MeOD}\right) \delta 159.0,156.6,154.1,136.8,134.7,130.9,130.2,128.7,125.3$, $118.2,115.7,115.5,114.5,106.4,55.5,30.6$.

Anal. calcd. for $\mathrm{C}_{18} \mathrm{H}_{16} \mathrm{O}_{3}$: C, 77.12; H, 5.75; found C, $77.23 ; \mathrm{H}, 5.83$.
Compound 3i: 1-(4-methylbenzyl)naphthalene-2,7-diol
${ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.68(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.61(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.17(\mathrm{~d}, J=1.6$ $\mathrm{Hz}, 1 \mathrm{H}), 7.06(\mathrm{q}, J=8.1 \mathrm{~Hz}, 4 \mathrm{H}), 6.93(\mathrm{dd}, J=13.0,5.6 \mathrm{~Hz}, 2 \mathrm{H}), 5.00(\mathrm{~d}, J=17.8 \mathrm{~Hz}, 2 \mathrm{H}), 4.31$ (s, 2H), 2.28 (s, 3H).

Electronic Supplementary Information

${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 154.5,152.1,136.8,135.8,135.3,130.7,129.5,128.5,128.2$, 125.0, 116.9, 115.6, 115.0, 106.0, 30.5, 21.1.

HRMS (ESI) m / z calcd for $\mathrm{C}_{18} \mathrm{H}_{17} \mathrm{O}_{2}[\mathrm{M}+\mathrm{H}]^{+}: 265.1223$, found 265.1236.
Compound 3j: 1-(4-isopropylbenzyl)naphthalene-2,7-diol
${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.68(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.61(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.17(\mathrm{~s}, 1 \mathrm{H}), 7.13$ $-7.07(\mathrm{~m}, 4 \mathrm{H}), 6.94(\mathrm{dd}, J=13.4,8.8 \mathrm{~Hz}, 2 \mathrm{H}), 5.21(\mathrm{~d}, J=163.1 \mathrm{~Hz}, 2 \mathrm{H}), 4.31(\mathrm{~s}, 2 \mathrm{H}), 2.84(\mathrm{dp}$, $J=13.5,6.7 \mathrm{~Hz}, 1 \mathrm{H}), 1.20(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 6 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR ($151 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 154.4,152.1,146.9,137.1,135.3,130.6,128.4,128.2,126.8$, 125.0, 116.9, 115.6, 115.0, 106.0, 33.8, 24.1.

Anal. calcd. for $\mathrm{C}_{20} \mathrm{H}_{20} \mathrm{O}_{2}$: C, 82.16; H, 6.90; found C, 82.35; H, 6.99.
Compound 3k: 1-(thiophen-2-ylmethyl)naphthalene-2,7-diol
${ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.64(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.57(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.21(\mathrm{~d}, J=1.8$ $\mathrm{Hz}, 1 \mathrm{H}), 7.05(\mathrm{~d}, J=5.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.91(\mathrm{dd}, J=12.9,5.6 \mathrm{~Hz}, 2 \mathrm{H}), 6.84-6.78(\mathrm{~m}, 1 \mathrm{H}), 6.72(\mathrm{~d}, J$ $=2.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.48(\mathrm{~d}, J=70.7 \mathrm{~Hz}, 2 \mathrm{H}), 4.45(\mathrm{~s}, 2 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 154.5,151.7,143.5,134.9,130.7,128.8,126.9,124.9,124.8$, 124.7, 123.7, 116.9, 115.6, 115.2, 105.8, 25.6.

Anal. calcd. for $\mathrm{C}_{15} \mathrm{H}_{12} \mathrm{O}_{2} \mathrm{~S}: \mathrm{C}, 70.29 ; \mathrm{H}, 4.72$; found $\mathrm{C}, 70.41 ; \mathrm{H}, 4.67$.
Compound 31: 1-(4-chlorobenzyl)naphthalene-2,7-diol
${ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.68(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.61(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.18(\mathrm{~d}, J=8.3$ $\mathrm{Hz}, 2 \mathrm{H}), 7.11(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 3 \mathrm{H}), 6.97-6.87(\mathrm{~m}, 2 \mathrm{H}), 5.11(\mathrm{~s}, 2 \mathrm{H}), 4.31(\mathrm{~s}, 2 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 154.6,151.9,138.8,135.2,131.8,130.7,129.7$, 128.7, 125.0, 116.5, 115.5, 115.1, 105.9, 30.3.

HRMS (ESI) m / z calcd for $\mathrm{C}_{17} \mathrm{H}_{14} \mathrm{ClO}_{2}[\mathrm{M}+\mathrm{H}]^{+}: 285.0677$, found 285.0684.
Compound 3m: 1-benzyl-7-methoxynaphthalen-2-ol
${ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.67-7.63(\mathrm{~m}, 1 \mathrm{H}), 7.58(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.22(\mathrm{~s}, 1 \mathrm{H}), 7.21-$ $7.11(\mathrm{~m}, 5 \mathrm{H}), 6.97(\mathrm{dd}, J=8.9,2.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.91(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.10(\mathrm{~d}, J=30.3 \mathrm{~Hz}, 1 \mathrm{H})$, 4.38 (s, 2H), $3.80-3.75$ (m, 3H).
${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 158.4,151.9,140.4,135.1,130.2,128.7,128.3,126.2,117.6$, 115.4, 102.8, 55.3, 31.1.

The spectroscopic data were in accordance with the literature. ${ }^{9}$
Compound 3n: 7-methoxy-1-(4-methoxybenzyl)naphthalen-2-ol
${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.67(\mathrm{~d}, J=8.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.60(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.25(\mathrm{~s}, 1 \mathrm{H}), 7.15$ $(\mathrm{d}, J=8.3 \mathrm{~Hz}, 2 \mathrm{H}), 6.98(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.94(\mathrm{~s}, 1 \mathrm{H}), 6.78(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 2 \mathrm{H}), 5.05(\mathrm{~s}, 1 \mathrm{H})$, 4.33 ($\mathrm{s}, 2 \mathrm{H}$), 3.82 ($\mathrm{s}, 3 \mathrm{H}$), 3.74 ($\mathrm{s}, 3 \mathrm{H}$).
${ }^{13} \mathrm{C}$ NMR ($151 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 158.5,151.9,135.1,132.1,130.2,129.3,128.2,125.0,117.8$, $115.5,115.4,114.4,114.2,102.7,55.4,55.3,30.2$.

Anal. calcd. for $\mathrm{C}_{19} \mathrm{H}_{18} \mathrm{O}_{3}$: C, 77.53; $\mathrm{H}, 6.16$; found $\mathrm{C}, 77.66 ; \mathrm{H}, 6.25$.
Compound 3o: 7-methoxy-1-(4-methylbenzyl)naphthalen-2-ol
${ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.67(\mathrm{~d}, J=8.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.60(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.18(\mathrm{~s}, 1 \mathrm{H}), 7.12$ (d, $J=7.9 \mathrm{~Hz}, 2 \mathrm{H}), 7.05(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 6.98(\mathrm{dd}, J=9.0,2.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.94(\mathrm{~d}, J=8.7 \mathrm{~Hz}$, $1 \mathrm{H}), 5.03(\mathrm{~s}, 1 \mathrm{H}), 4.35(\mathrm{~s}, 2 \mathrm{H}), 3.82(\mathrm{~s}, 3 \mathrm{H}), 2.28(\mathrm{~s}, 3 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 151.9,137.1,135.8,135.2,130.2,129.4,129.2,128.3,128.1$, 127.3, 117.8, 115.5, 102.8, 55.3, 30.7, 21.1.

Anal. calcd. for $\mathrm{C}_{19} \mathrm{H}_{18} \mathrm{O}_{2}$: C, 81.99; H, 6.52; found C, 82.14; H, 6.68.
Compound 3p: 1-(4-isopropylbenzyl)-7-methoxynaphthalen-2-ol
${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.67(\mathrm{~d}, J=8.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.60(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.20(\mathrm{~s}, 1 \mathrm{H}), 7.16$ (d, $J=7.9 \mathrm{~Hz}, 2 \mathrm{H}), 7.10(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 6.98(\mathrm{dd}, J=8.9,2.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.95(\mathrm{~d}, J=8.7 \mathrm{~Hz}$, $1 \mathrm{H}), 5.01(\mathrm{~s}, 1 \mathrm{H}), 4.36(\mathrm{~s}, 2 \mathrm{H}), 3.82(\mathrm{~s}, 3 \mathrm{H}), 2.87-2.80(\mathrm{~m}, 1 \mathrm{H}), 1.20(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 6 \mathrm{H})$.
${ }^{13}{ }^{1} \mathrm{CNMR}\left(151 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 158.50$ (s), 151.9, 146.8, 137.3, 135.1, 130.4, 130.2, 128.3, 128.0, $126.8,125.0,117.8,115.5,115.5,102.7,55.3,33.8,30.7,24.1$.

Anal. calcd. for $\mathrm{C}_{21} \mathrm{H}_{22} \mathrm{O}_{2}$: C, 82.32; H, 7.24; found C, 82.44; H, 7.18.
Compound 3q: 1-(2-hydroxybenzyl)-7-methoxynaphthalen-2-ol
${ }^{1}{ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.64(\mathrm{~d}, J=8.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.54-7.49(\mathrm{~m}, 2 \mathrm{H}), 7.44(\mathrm{~d}, J=7.5 \mathrm{~Hz}$, $1 \mathrm{H}), 7.07(\mathrm{dd}, J=14.6,7.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.00(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.92(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.86(\mathrm{t}, J$ $=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.82(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.33(\mathrm{~s}, 2 \mathrm{H}), 3.96(\mathrm{~s}, 3 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR ($151 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 158.5,153.6,150.8,134.9,131.1,130.4,128.6,128.0,126.1$, $125.3,121.0,117.2,116.1,115.6,115.3,102.9,55.5,26.1$.

Anal. calcd. for $\mathrm{C}_{18} \mathrm{H}_{16} \mathrm{O}_{3}$: C, 77.12; H, 5.75; found C, $77.29 ; \mathrm{H}, 5.83$.
Compound 3r: 7-methoxy-1-(thiophen-2-ylmethyl)naphthalen-2-ol
${ }^{1} \mathrm{H}$ NMR $\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.70(\mathrm{~d}, J=8.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.62(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.31(\mathrm{t}, J=7.7$ $\mathrm{Hz}, 2 \mathrm{H}), 7.03-7.00(\mathrm{~m}, 2 \mathrm{H}), 6.95(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.89(\mathrm{dd}, J=13.3,8.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.77(\mathrm{~s}$, 1 H), 4.58 ($\mathrm{s}, 2 \mathrm{H}$), 3.90 ($\mathrm{s}, 3 \mathrm{H}$).
${ }^{13} \mathrm{C}$ NMR ($151 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 151.7,143.9,134.7,130.2,128.5,127.0,126.9,125.7,124.8$, 123.5, 117.6, 115.6, 102.4, 55.3, 25.7.

Electronic Supplementary Information

Anal. calcd. for $\mathrm{C}_{16} \mathrm{H}_{14} \mathrm{O}_{2} \mathrm{~S}: \mathrm{C}, 71.09 ; \mathrm{H}, 5.22$; found $\mathrm{C}, 71.26 ; \mathrm{H}, 5.31$.
Compound 3s: 1-([1,1'-biphenyl]-4-ylmethyl)-7-methoxynaphthalen-2-ol
${ }^{1} \mathrm{H} \operatorname{NMR}\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.68(\mathrm{~d}, J=8.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.62(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.53(\mathrm{~d}, J=7.7$ $\mathrm{Hz}, 2 \mathrm{H}), 7.46(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 2 \mathrm{H}), 7.39(\mathrm{t}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.30(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 3 \mathrm{H}), 7.20(\mathrm{~s}, 1 \mathrm{H})$, $7.00(\mathrm{~d}, J=8.9 \mathrm{~Hz}, 1 \mathrm{H}), 6.96(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 1 \mathrm{H}), 5.11(\mathrm{~s}, 1 \mathrm{H}), 4.44(\mathrm{~s}, 2 \mathrm{H}), 3.82(\mathrm{~s}, 3 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 158.4,151.8,141.0,139.3,139.0,135.0,130.1,128.7,128.3$, 127.3, 127.0, 124.9, 117.4, 115.4, 102.6, 55.2, 30.7.

Anal. calcd. for $\mathrm{C}_{24} \mathrm{H}_{20} \mathrm{O}_{2}$: C, 84.68; H, 5.92; found C, $84.81 ; \mathrm{H}, 6.01$.
Compound 3t: 1-(4-chlorobenzyl)-7-methoxynaphthalen-2-ol
${ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.67(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.62(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.31(\mathrm{t}, J=5.9$ $\mathrm{Hz}, 1 \mathrm{H}), 7.17(\mathrm{~d}, J=9.4 \mathrm{~Hz}, 3 \mathrm{H}), 7.09(\mathrm{~s}, 1 \mathrm{H}), 6.99(\mathrm{dd}, J=8.8,2.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.95-6.92(\mathrm{~m}, 1 \mathrm{H})$, $5.00(\mathrm{~s}, 1 \mathrm{H}), 4.36(\mathrm{~s}, 2 \mathrm{H}), 3.81(\mathrm{~s}, 3 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 151.7,139.0,130.3,129.7,128.8,128.7,128.5,128.4,125.0$, 117.2, 115.6, 115.3, 102.6, 55.3, 30.4.

Anal. calcd. for $\mathrm{C}_{18} \mathrm{H}_{15} \mathrm{ClO}_{2}$: C, 72.36 ; $\mathrm{H}, 5.06$; found $\mathrm{C}, 72.51 ; \mathrm{H}, 5.22$.
Compound 3u: 1-benzyl-6-bromonaphthalen-2-ol
${ }^{1} \mathrm{H} \operatorname{NMR}\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.93(\mathrm{~s}, 1 \mathrm{H}), 7.76(\mathrm{~d}, J=9.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.61(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.48$ (d, $J=9.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.28-7.21(\mathrm{~m}, 3 \mathrm{H}), 7.17(\mathrm{~s}, 2 \mathrm{H}), 7.12(\mathrm{~d}, J=8.9 \mathrm{~Hz}, 1 \mathrm{H}), 5.06(\mathrm{~s}, 1 \mathrm{H}), 4.42$ ($\mathrm{s}, 2 \mathrm{H}$).
${ }^{13} \mathrm{C}$ NMR ($151 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 151.6,139.7,132.4,130.8,130.5,130.0,128.8,128.3,127.7$, 126.4, 125.4, 119.1, 118.7, 117.2, 30.8.

The spectroscopic data were in consistant with literature. ${ }^{9}$
Compound 3v: 6-bromo-1-(4-methoxybenzyl)naphthalen-2-ol
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.92(\mathrm{~s}, 1 \mathrm{H}), 7.77(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.59(\mathrm{~d}, J=8.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.48$ (d, $J=10.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.09(\mathrm{dd}, J=12.2,8.7 \mathrm{~Hz}, 3 \mathrm{H}), 6.78(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 5.11(\mathrm{~s}, 1 \mathrm{H}), 4.34$ (s, 2H), 3.74 (s, 3H).
${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 151.7,136.5,136.0,132.4,130.8,130.5,130.0,129.5,128.1$, 127.7, 125.4, 119.2, 118.9, 117.1, 30.4, 21.1.

Anal. calcd. for $\mathrm{C}_{18} \mathrm{H}_{15} \mathrm{BrO}_{2} \mathrm{C}, 62.99 ; \mathrm{H}, 4.41$; found $\mathrm{C}, 63.19 ; \mathrm{H}, 4.53$.
Compound 3w: 6-bromo-1-(4-methylbenzyl)naphthalen-2-ol
${ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.93(\mathrm{~d}, J=1.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.77(\mathrm{~d}, J=9.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.60(\mathrm{~d}, J=8.9$ $\mathrm{Hz}, 1 \mathrm{H}), 7.48(\mathrm{dd}, J=9.2,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.12(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.09-6.99(\mathrm{~m}, 4 \mathrm{H}), 5.07(\mathrm{~s}, 1 \mathrm{H})$, 4.37 (s, 2H), 2.28 (s, 3H).

Electronic Supplementary Information

${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 158.3,151.7,132.4,131.7,130.9,130.6,130.0,129.2,127.7$, $125.4,119.14,119.07,117.1,114.3,55.4,30.0$.

Anal. calcd. for $\mathrm{C}_{18} \mathrm{H}_{15} \mathrm{BrO}: \mathrm{C}, 66.07 ; \mathrm{H}, 4.62$; found C, 66.17; H, 4.71.
Compound 3x: 6-bromo-1-(thiophen-2-ylmethyl)naphthalen-2-ol
${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.93(\mathrm{~s}, 1 \mathrm{H}), 7.83(\mathrm{~d}, J=9.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.60(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.52$ $(\mathrm{d}, J=9.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.13-7.08(\mathrm{~m}, 2 \mathrm{H}), 6.86(\mathrm{t}, J=4.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.75(\mathrm{~s}, 1 \mathrm{H}), 5.16(\mathrm{~s}, 1 \mathrm{H}), 4.56$ ($\mathrm{s}, 2 \mathrm{H}$).
${ }^{13} \mathrm{C}$ NMR ($151 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 151.3,142.9,131.9,130.8,130.6,130.1,128.0,127.0,125.1$, 125.0, 124.0, 119.1, 118.7, 117.3, 25.5.

Anal. calcd. for $\mathrm{C}_{15} \mathrm{H}_{11} \mathrm{BrOS}: \mathrm{C}, 56.44 ; \mathrm{H}, 3.47$; found C, 56.52 ; H, 3.45
Compound 3y: 1-([1,1'-biphenyl]-4-ylmethyl)naphthalene-2,7-diol
${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.70(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.64(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.53(\mathrm{~d}, J=7.6$ $\mathrm{Hz}, 2 \mathrm{H}), 7.47(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.40(\mathrm{t}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.31(\mathrm{t}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.27(\mathrm{~d}, J=$ $7.7 \mathrm{~Hz}, 4 \mathrm{H}), 6.96(\mathrm{~d}, J=5.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.00(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 2 \mathrm{H}), 4.40(\mathrm{~s}, 2 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR ($151 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 154.5,152.0,141.1,139.3,139.1,135.3,130.7,128.84,128.8$, 128.7, 128.6, 128.6, 127.5, 127.49, 127.19, 127.16, 127.1, 125.1, 116.8, 115.6, 115.1, 106.0, 30.6.

Anal. calcd. for $\mathrm{C}_{23} \mathrm{H}_{18} \mathrm{O}_{2}$: C, 84.64; H, 5.56; found: C, 84.73; H, 5.63.
Compound 3z: methyl 6-hydroxy-5-(4-methoxybenzyl)-2-naphthoate
${ }^{1} \mathrm{H}$ NMR ($\left.600 \mathrm{MHz}, \mathrm{MeOD}\right) \delta 8.48(\mathrm{~s}, 1 \mathrm{H}), 7.89(\mathrm{q}, J=8.9 \mathrm{~Hz}, 2 \mathrm{H}), 7.79(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 1 \mathrm{H})$, $7.27(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.11(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 2 \mathrm{H}), 6.75(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 2 \mathrm{H}), 4.36(\mathrm{~s}, 2 \mathrm{H}), 3.93(\mathrm{~s}$, $3 \mathrm{H}), 3.71$ ($\mathrm{s}, 3 \mathrm{H}$).
${ }^{13} \mathrm{C}$ NMR (151 MHz, MeOD) $\delta 169.0,159.2,156.3,137.7,134.4,132.6,130.6,130.2,129.2$, $126.2,124.9,124.7,120.4,119.8,114.6,55.6,52.5,30.4$.

HRMS (ESI) m / z calcd for $\mathrm{C}_{20} \mathrm{H}_{19} \mathrm{O}_{4}[\mathrm{M}+\mathrm{H}]^{+}: 323.1278$, found 323.1273.

Electronic Supplementary Information

* NMR Spectra of Compounds

Compound 3a: 1-benzylnaphthalen-2-ol

Electronic Supplementary Information

Compound 3b: 1-(4-methoxybenzyl)naphthalen-2-ol)

Electronic Supplementary Information

Compound 3c: 1-(4-methylbenzyl)naphthalen-2-ol

Electronic Supplementary Information

Compound 3d: 1-(4-isopropylbenzyl)naphthalen-2-ol

Electronic Supplementary Information

Compound 3e: 1-(2-hydroxybenzyl)naphthalen-2-ol

Electronic Supplementary Information

Compound 3f: 1-(thiophen-2-ylmethyl)naphthalen-2-ol

Electronic Supplementary Information

Compound 3g: 1-benzylnaphthalene-2,7-diol

Electronic Supplementary Information

Compound 3h: 1-(4-methoxybenzyl)naphthalene-2,7-diol

Electronic Supplementary Information

Compound 3i: 1-(4-methylbenzyl)naphthalene-2,7-diol

Electronic Supplementary Information

Compound 3j: 1-(4-isopropylbenzyl)naphthalene-2,7-diol

Electronic Supplementary Information

Compound 3k: 1-(thiophen-2-ylmethyl)naphthalene-2,7-diol

Electronic Supplementary Information

Compound 31: 1-(4-chlorobenzyl)naphthalene-2,7-diol

Electronic Supplementary Information

Compound 3m: 1-benzyl-7-methoxynaphthalen-2-ol

Electronic Supplementary Information

Compound 3n: 7-methoxy-1-(4-methoxybenzyl)naphthalen-2-ol

Electronic Supplementary Information

Compound 30: 7-methoxy-1-(4-methylbenzyl)naphthalen-2-ol

Electronic Supplementary Information

Compound 3p: 1-(4-isopropylbenzyl)-7-methoxynaphthalen-2-ol

Electronic Supplementary Information

Compound 3q: 1-(2-hydroxybenzyl)-7-methoxynaphthalen-2-ol

Electronic Supplementary Information

Compound 3r: 7-methoxy-1-(thiophen-2-ylmethyl)naphthalen-2-ol

Electronic Supplementary Information

Compound 3s: 1-([1,1'-biphenyl]-4-ylmethyl)-7-methoxynaphthalen-2-ol

Electronic Supplementary Information

Compound 3t: 1-(4-chlorobenzyl)-7-methoxynaphthalen-2-ol

Electronic Supplementary Information

Compound 3u: 1-benzyl-6-bromonaphthalen-2-ol

Electronic Supplementary Information

Compound 3v: 6-bromo-1-(4-methoxybenzyl)naphthalen-2-ol

Electronic Supplementary Information

Compound 3w: 6-bromo-1-(4-methylbenzyl)naphthalen-2-ol

Electronic Supplementary Information

Compound 3x: 6-bromo-1-(thiophen-2-ylmethyl)naphthalen-2-ol

Electronic Supplementary Information

Compound 3y: 1-([1,1'-biphenyl]-4-ylmethyl)naphthalene-2,7-diol

Electronic Supplementary Information

Compound 3z: methyl 6-hydroxy-5-(4-methoxybenzyl)-2-naphthoate

Electronic Supplementary Information

7 Table S2: Comparison of catalytic activities of different catalysts for C(1) benzylation of 2-naphthols with primary alcohols. ${ }^{[a]}$

Entry	Catalyst	Yield (\%)	
		$\mathbf{3}$	$\mathbf{4}$
1	-	-	-
2	HY	-	-
3	$\mathrm{Na}-\mathrm{Y}$	-	-
4	$\mathrm{~K}-\mathrm{Y}$	-	-
5	$\mathrm{Fe}_{2} \mathrm{O}_{3}$	-	-
6	$\mathrm{FeCl}_{3}(1 \mathrm{~mol} \%)$	35	47
7	$\left.\mathrm{Fe}_{(} \mathrm{NO}_{3}\right)_{3}(1 \mathrm{~mol} \%)$	31	38
8	$\mathrm{FeSO}_{4}(1 \mathrm{~mol} \%)$	26	30
9	$\mathrm{Fe}_{2} \mathrm{O}_{3}-\mathrm{NaY}^{2}$	20	-
10	$\mathrm{Fe}_{2} \mathrm{O}_{3}-\mathrm{HNT}^{2}$	16	-
11	$\mathrm{Fe}_{2} \mathrm{O}_{3}-\mathrm{Al}_{2} \mathrm{O}_{3}$	trace	-
12	$\mathrm{Fe}_{2} \mathrm{O}_{3}-\mathrm{SiO}_{2}$	trace	-

${ }^{a}$ Reaction Conditions: 2-naphthol (1 mmol), benzyl alcohol (1 mmol), DCE (1 mL), catalyst (15 $m g$). Isolated yields are obtained after column chromatography.

Electronic Supplementary Information

8 Computational Details

All the structures were fully optimized without any symmetry constraints at TPSSh/def2TZVP level of theory. ${ }^{10,11}$ Harmonic vibrational frequency calculations were performed at the same level of theory to understand the nature of the stationary states. All the intermediates were characterized by the presence of all real values of the Hessian matrix while the transition state was characterized by one imaginary value of the Hessian matrix. Since the transition state involved was proton transfer, the imaginary frequency corresponded to the movement of the proton between the two oxygen atoms. Solvent corrections were taken into account using polarizable continuum model (PCM) ${ }^{11}$ by performing single point calculations on the gas phase optimized geometries. Dichloromethane was used as the solvent. Zero point corrections were taken from gas phase calculations and solvent phase corrections were added to it. All calculations were performed using Gaussian 16 suite of program. ${ }^{12}$

Fig. S7 Reaction energetic ($\mathrm{kcal} / \mathrm{mol}$) for the interaction of benzyl alcohol with the supported iron oxide.

Fig. S8 The structures of the optimized geometries. Bond lengths are in \AA.

Electronic Supplementary Information

8.1 Coordinates of the optimized geometries.

A			
14	0.660479638	2.695658585	-0.426038694
8	-0.263675533	3.872880535	0.007788090
1	-1.141017666	3.877137158	0.000548761
8	0.009055000	1.250779000	0.209550000
8	0.725472760	2.591387818	-1.978606946
1	1.205983580	3.215388678	-2.367514399
8	2.091705088	2.901007578	0.168924927
1	2.827183338	2.634953893	-0.222493861
26	-1.507659000	0.822253000	1.034815000
8	-2.446933124	0.729278425	1.445919613
8	0.336286659	-0.209869413	-0.082562831
26	-0.821667204	-0.770365201	-1.158230996
8	-1.939167803	-0.876008631	-1.664956551
8	0.634087145	-1.612903145	-1.855281720
14	0.949671660	-2.841386051	-2.674567206
8	1.339016083	-2.439438885	-4.134452256
1	2.178998966	-2.316416592	-4.345125827
8	-0.425805000	-3.573629394	-2.679581305
1	-1.100750178	-3.537051544	-2.120249004
8	2.050990733	-3.745420591	-2.045995812
1	2.040319799	-4.623573806	-2.027787841
Int-1	0.928317000	0.913498000	-0.423194000
14	0.999348834	1.940242342	-1.741029205
8	0.236839130	3.258594225	-1.373232043
1	-0.581466176	3.162817880	-1.659218457
8	0.9		
1			

Electronic Supplementary Information

8	0.338332781	1.242949598	-2.964716702
1	0.755695894	1.528447276	-3.680316609
8	2.495732211	2.269595760	-2.037401635
1	2.901117397	3.013778166	-2.267221889
26	0.487149000	-0.851979000	-0.172460000
8	0.190025163	-1.917193648	0.664487926
8	-0.917676000	-0.177873000	0.308664000
26	-1.985073000	-1.229813000	-0.724719000
8	-1.815969775	-2.122801417	-1.626294588
8	-3.157251473	-0.171599924	0.110983235
14	-4.760394702	0.166297964	0.475815007
8	-5.133658792	1.545984961	-0.143936586
1	-5.845459506	1.374873516	-0.625216507
8	-4.910419911	0.211746834	2.028665856
1	-5.760299058	0.185199823	2.234231742
8	-5.655522975	-0.962972032	-0.125610574
1	-5.260070988	-1.676504024	-0.441730278
8	1.654131000	-1.898070000	-1.048313000
1	1.299102127	-1.805747497	-1.989167766
6	4.671428000	0.431046000	2.077421000
6	5.517641000	-0.257982000	1.203879000
6	4.977934000	-1.096274000	0.224199000
6	3.589290000	-1.251751000	0.119567000
6	2.734374000	-0.566278000	1.000385000
6	3.284682000	0.273411000	1.9765000000
1	5.089346000	1.083472000	2.840329000
1	6.596291000	-0.144545000	1.286506000
1	5.638946000	-1.627601000	-0.456950000
102			

Electronic Supplementary Information

1	1.607285000	-0.721074000	0.998782000
1	2.631313000	0.811980000	2.662406000
6	3.012076000	-2.144553000	-0.964234000
1	3.474381000	-1.930817000	-1.953439000
1	3.170528000	-3.219644000	-0.726586000
TS-1			
14	0.440551863	2.497315364	-0.651821082
8	-0.645318845	2.834687330	0.427421966
1	-1.499172433	2.844357225	0.252625678
8	0.926139000	0.913538000	-0.423959000
8	-0.140717106	2.649159426	-2.086493794
1	-0.386237572	3.377653963	-2.507536499
8	1.675075710	3.431777587	-0.457021332
1	1.767781232	3.726140768	-1.279129103
26	0.481638000	-0.848406000	-0.155017000
8	0.160070000	-2.408401000	0.688898000
8	-0.923231000	-0.167421000	0.316321000
26	-1.989725000	-1.230146000	-0.707021000
8	-1.670210251	-2.025245835	-1.542614415
8	-3.347440000	-0.325632000	0.021214000
14	-4.994094284	-0.408115376	0.337232610
8	-5.764277088	-0.411448032	-1.018569703
1	-5.609154077	-0.647717854	-1.847455883
8	-5.397233649	0.833072917	1.192957095
1	-6.215487707	1.067816128	1.392848275
8	-5.278166278	-1.723196274	1.126883264
1.648460000	-1.905358000	-1.018079000	
	-6.018425042	-2.133729564	0.904293092
8			

Electronic Supplementary Information

1	1.025323000	-3.377804000	-0.298790000
6	4.665448000	0.455965000	2.083277000
6	5.511663000	-0.242862000	1.217543000
6	4.971927000	-1.091960000	0.247245000
6	3.583260000	-1.248332000	0.144212000
6	2.728340000	-0.552861000	1.017144000
6	3.278687000	0.297495000	1.983961000
1	5.083381000	1.116938000	2.838797000
1	6.590314000	-0.128742000	1.299116000
1	5.632901000	-1.631133000	-0.427744000
1	1.601200000	-0.707354000	1.016862000
1	2.625368000	0.843730000	2.663806000
6	3.005897000	-2.153017000	-0.929600000
1	3.469574000	-1.951751000	-1.920772000
1	3.162384000	-3.225451000	-0.679013000

Int-2

14	0.705735205	2.124167367	-1.554863617
8	-0.286148170	3.177207046	-0.953180735
1	-1.083663772	2.955771038	-1.227989522
8	0.928317000	0.913498000	-0.423194000
8	0.126783429	1.501613417	-2.857864731
1	0.431627290	1.976882711	-3.527919533
8	2.081674506	2.805336488	-1.834637043
1	2.311085330	3.645035013	-1.949697958
26	0.487149000	-0.851979000	-0.172460000
8	0.313486032	-2.209533410	0.736307603
8	-0.917676000	-0.177873000	0.308664000

Electronic Supplementary Information

26	-1.985073000	-1.229813000	-0.724719000
8	-1.633542995	-2.155549929	-1.346844967
8	-3.340458000	-0.330420000	0.014361000
14	-4.984997595	-0.385003907	0.345805618
8	-5.647895336	0.915090709	-0.199423602
1	-6.293803768	0.622226476	-0.713818960
8	-5.170183154	-0.479660748	1.892629885
1	-5.995902258	-0.709408472	2.067731532
8	-5.591425344	-1.642349585	-0.353869529
1	-5.039612292	-2.226294260	-0.700211581
8	1.654131000	-1.898070000	-1.048313000
1	-0.245382529	-3.132485368	0.635537458
6	4.671428000	0.431046000	2.077421000
6	5.517641000	-0.257982000	1.203879000
6	4.977934000	-1.096274000	0.224199000
6	3.589290000	-1.251751000	0.119567000
6	2.734374000	-0.566278000	1.000385000
6	3.284682000	0.273411000	1.976500000
1	5.089346000	1.083472000	2.840329000
1	6.596291000	-0.144545000	1.286506000
1	5.638946000	-1.627601000	-0.456950000
1	1.607285000	-0.721074000	0.998782000
1	2.631313000	0.811980000	2.662406000
6	3.012076000	-2.144553000	-0.964234000
1	3.474381000	-1.930817000	-1.953439000
1	3.170528000	-3.219644000	-0.726586000

TS-2
$14 \quad 0.818680967 \quad 1.657970755 \quad-1.506527436$

Electronic Supplementary Information

8	-0.173202408	2.711010434	-0.904844554
1	-0.970718010	2.489574426	-1.179653341
8	1.041262762	0.447301388	-0.374857819
8	0.239729191	1.035416805	-2.809528550
1	0.544573052	1.510686099	-3.479583352
8	2.194620268	2.339139876	-1.786300862
1	2.424031091	3.178838401	-1.901361777
26	0.600094762	-1.318175612	-0.124123819
8	-0.579058381	-2.441979780	0.161737363
8	-0.804730238	-0.644069612	0.357000181
26	-1.872127238	-1.696009612	-0.676382819
8	-1.520597233	-2.621746541	-1.298508786
8	-3.426819013	-1.129093637	-0.002769225
14	-4.879706648	-1.967851331	0.051530552
8	-6.009905929	-1.045160021	-0.494587254
1	-6.383159794	-1.521823449	-1.127867030
8	-5.166689862	-2.355137256	1.535972929
1	-5.802445120	-2.955678980	1.556504194
8	-4.746787548	-3.249541477	-0.830411036
1	-3.951789627	-3.464935614	-1.125411911
8	1.767076762	-2.364266612	-0.999976819
1	-0.409814285	-3.530080607	0.105943026
6	5.632296516	-1.431549671	2.394975965
6	6.199628338	-2.016618910	1.259308654
6	5.384788805	-2.403401834	0.191495219
6	3.998538178	-2.210734522	0.259624626
6	3.422522890	-1.629100535	1.402648355
6	4.247635011	-1.242363370	2.465823485
10			

Electronic Supplementary Information

1	6.264459086	-1.130176954	3.226774455
1	7.274667220	-2.173501385	1.205827015
1	5.829811208	-2.854322429	-0.692719056
1	2.297043865	-1.522889294	1.530359437
1	3.812214958	-0.787719292	3.355274326
6	3.125021762	-2.610749612	-0.915897819
1	3.587326762	-2.397013612	-1.905102819
1	3.283473762	-3.685840612	-0.678249819
Int-3			
14	0.818680967	1.657970755	-1.506527436
8	-0.173202408	2.711010434	-0.904844554
1	-0.970718010	2.489574426	-1.179653341
8	1.041262762	0.447301388	-0.374857819
8	0.239729191	1.035416805	-2.809528550
1	0.544573052	1.510686099	-3.479583352
8	2.194620268	2.339139876	-1.786300862
1	2.424031091	3.178838401	-1.901361777
26	0.600094762	-1.318175612	-0.124123819
8	-2.360004039	-2.491526138	0.286454258
8	-0.804730238	-0.644069612	0.357000181
26	-1.872127238	-1.696009612	-0.676382819
8	-1.520597233	-2.621746541	-1.298508786
8	-3.426819013	-1.129093637	-0.002769225
14	-4.879706648	-1.967851331	0.051530552
8	-6.009905929	-1.045160021	-0.494587254
1	-6.383159794	-1.521823449	-1.127867030
8	-5.166689862	-2.355137256	1.535972929
1	-5.802445120	-2.955678980	1.556504194

Electronic Supplementary Information

8	-4.746787548	-3.249541477	-0.830411036
1	-3.951789627	-3.464935614	-1.125411911
8	1.767076762	-2.364266612	-0.999976819
1	-2.393731107	-3.414939212	0.377997369
6	5.632296516	-1.431549671	2.394975965
6	6.199628338	-2.016618910	1.259308654
6	5.384788805	-2.403401834	0.191495219
6	3.998538178	-2.210734522	0.259624626
6	3.422522890	-1.629100535	1.402648355
6	4.247635011	-1.242363370	2.465823485
1	6.264459086	-1.130176954	3.226774455
1	7.274667220	-2.173501385	1.205827015
1	5.829811208	-2.854322429	-0.692719056
1	2.297043865	-1.522889294	1.530359437
1	3.812214958	-0.787719292	3.355274326
6	3.125021762	-2.610749612	-0.915897819
1	3.587326762	-2.397013612	-1.905102819
1	3.283473762	-3.685840612	-0.678249819

9. Catalytic Recyclability Study

Fig. S9 Showing \% yield of 3a in each consecutive run of $\mathrm{Fe}_{2} \mathrm{O}_{3}-\mathrm{KY}$.

Electronic Supplementary Information

Fig. S10 a) XRD pattern of fresh (red line) and reused (green line) catalyst after $8^{\text {th }}$ cycle, b) Raman spectra of fresh (black line) and reused (blue line) catalyst after $8^{\text {th }}$ cycle, c-d) TEM images of reused $\mathrm{Fe}_{2} \mathrm{O}_{3}-\mathrm{KY}$ catalyst.

Electronic Supplementary Information

10. References

1 M. Y. Choo, J. C. Juan, L. E. Oi, T. C. Ling, E. P. Ng, A. R. Noorsaadah, G. Centi and K. T. Lee, Catal. Sci. Technol., 2019, 9, 772-782.
2 a) M. Qayoom, K. A. Shah, A. H. Pandit, A. Firdous and G. N. Dar, J. Electroceramics., 2020, 45, 7-14; b) F. Wang, X. F. Qin, Y. F. Meng, Z. L. Guo, L. X. Yang, Y. F. Ming, Mater. Sci. Semicond. Process., 2013, 16, 802-806.

3 M. C. Biesinger, B. P. Payne, A. P. Grosvenor, L. W. M. Lau, A. R. Gerson and R. S. C. Smart, Appl. Surf. Sci., 2011, 257, 2717-2730.
4 S. Biswas, M. J. Baruah, G. Gogoi, N. Hoque, S. Lee, Y. B. Park, L. Saikia and K. K. Bania, Microporous and Mesoporous Mater., 2022, 336, 111893.

5 H. Nohira, W. Tsai, W. Besling, E. Young, J. Pétry, T. Conard, W. Vandervorst, S. De Gendt, M. Heyns, J. Maes and M.Tuominen, J. Non-Cryst. Solids, 2002, 303, 83-87.

6 SAINT Plus (v 6.14); Bruker AXS Inc.: Madison, WI, 2008.
7 C. F. Macrae, I. Sovago, S. J. Cottrell, P. T. Galek, P. McCabe, E. Pidcock, M. Platings, G. P. Shields, J. S. Stevens, M. Towler and P. A. Wood, J. Appl. Cryst., 2020, 53, 226-235.
8 N. K. Paul, L. Dietrich and A. Jha, Synth. Commun., 2007, 37, 877-888.
9 P. Dutta, C. D. Pegu, M. L. Deb and P. K. Baruah, Tetrahedron Lett., 2015, 56, 4115-4118.
10 J. M. Tao, J. P. Perdew, V. N. Staroverov and G. E. Scuseria, Phys. Rev. Lett., 2003, 91, 146401.
11 V. N. Staroverov, G. E. Scuseria, J. Tao and J. P. Perdew, J. Chem. Phys., 2003, 119, 12129.
12 M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, G. A. Petersson, H. Nakatsuji, X. Li, M. Caricato, A. V. Marenich, J. Bloino, B. G. Janesko, R. Gomperts, B. Mennucci, H. P. Hratchian, J. V. Ortiz, A. F. Izmaylov, J. L. Sonnenberg, D. Williams-Young, F. Ding, F. Lipparini, F. Egidi, J. Goings, B. Peng, A. Petrone, T. Henderson, D. Ranasinghe, V. G. Zakrzewski, J. Gao, N. Rega, G. Zheng, W. Liang, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, K. Throssell, J. A. Montgomery, Jr., J. E. Peralta, F. Ogliaro, M. J. Bearpark, J. J. Heyd, E. N. Brothers, K. N. Kudin, V. N. Staroverov, T. A. Keith, R. Kobayashi, J. Normand, K. Raghavachari, A. P. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, J. M. Millam, M. Klene, C. Adamo, R. Cammi, J. W. Ochterski, R. L. Martin, K. Morokuma, O. Farkas, J. B. Foresman and D. J. Fox, Gaussian, Inc., Wallingford CT, 2016.

