Supplementary Information

N-Acyl-, as well as *N*-phosphonoylmethyl- and *N*-phoshinoylmethyl- α -aminophosphonates; A new tandem Kabachnik–Fields protocol

Petra Regina Varga,^a Konstantin Karaghiosoff,^b Éva Viktória Sári,^a András Simon,^c László Hegedűs,^a László Drahos^d and György Keglevich*^a

^aDepartment of Organic Chemistry and Technology, Budapest University of Technology and Economics, 1521 Budapest, Hungary ^bDepartment Chemie, Ludvig-Maximilians-Universitat München, D-81377 München, Butenandtstr. 5-

13, Germany

^cResearch Centre for Natural Sciences, MS Proteomics Research Group, 1117 Budapest, Hungary ^dMS Proteomics Research Group, Research Centre for Natural Sciences, 1117, Budapest, Hungary

Contents

1	.) ³¹ P-, ¹³ C and ¹ H NMR spectra of the products (3a , 3b , 4a , 4b , 5a-f , 6 and 8)	3
	Diethyl (N-benzylacetamido)-benzylphosphonate (3a)	3
	Diethyl (N-benzylbenzamido)-benzylphosphonate (3b)	6
	Diethyl acetamido-benzylphosphonate (4a)	7
	Diethyl propioamido-benzylphosphonate (4b)	10
	Diethyl diethylphosphonoylmethylbenzyl-amino-benzylphosphonate (5a)	13
	Diethyl diethylphosphonoylmethyl-benzyl-amino-4-chlorobenzylphosphonate (5b)	16
	Diethyl diethylphosphonoylmethyl-benzyl-amino-4-methylbenzylphosphonate (5c)	19
	Diethyl diphenylphosphinoylmethyl-benzyl-amino-benzylphosphonate (5d)	22
	Diethyl bis(4-methylphenyl)phosphinoylmethyl-benzyl-amino-benzylphosphonate (5e)	25
	Diethyl bis(3,5-dimethylphenyl)phosphinoylmethyl-benzyl-amino-benzylphosphonate (5f)	28
	Bis(diethylphosphonoyl-phenylmethyl)amine (6)	31
	Bis(diethylphosphonoylmethyl)-(diethylphosphonoylbenzyl)amine (8)	34
2	.1) Experimental parameters and identification of the starting materials (1a-c)	37
2	.2) ³¹ P NMR of starting materials (1a, 1b and 1c)	38
	Diethyl $lpha$ -benzylamino-benzylphosphonate (1a)	38
	Diethyl α -benzylamino-4-chlorobenzylphosphonate (1b)	39
	Diethyl $lpha$ -benzylamino-4-methylbenzylphosphonate (1c)	40
3	.) ¹³ C and ¹ H NMR data of compounds 5a, 5b, 5c and 5d obtained by a 2D NMR study	41
4	.) ¹ H and ¹³ C NMR spectra on the equilibrium of the rotamers of 3b	45
	Segment of the ¹ H NMR spectrum on the equilibrium of the rotamers of 3b	45
	Segment of the ¹³ C NMR spectrum on the equilibrium of the rotamers of 3b	46
	Segment of the HSQC NMR spectrum on the equilibrium of the rotamers of 3b	47
	Segment of the HMBC NMR spectrum on the equilibrium of the rotamers of 3b	48
	¹³ C and ¹ H NMR data for the two rotamers:	49

3b-A (72%)	49
¹³ C and ¹ H NMR data for the two rotamers:	50
Зb-В (28%)	50

1.) ³¹P-, ¹³C and ¹H NMR spectra of the products (3a, 3b, 4a, 4b, 5a-f, 6 and 8)

Diethyl (N-benzylacetamido)-benzylphosphonate (3a)

Diethyl acetamido-benzylphosphonate (4a)

S10

Diethyl diethylphosphonoylmethyl-.benzyl-amino-benzylphosphonate (5a)

Diethyl diethylphosphonoylmethyl-benzyl-amino-4-chlorobenzylphosphonate (5b)

Diethyl diethylphosphonoylmethyl-benzyl-amino-4-methylbenzylphosphonate (5c)

Diethyl diphenylphosphinoylmethyl-benzyl-amino-benzylphosphonate (5d)

Diethyl bis(4-methylphenyl)phosphinoylmethyl-benzyl-amino-benzylphosphonate (5e)

Diethyl bis(3,5-dimethylphenyl)phosphinoylmethyl-benzyl-amino-benzylphosphonate (5f)

S31

Bis(diethylphosphonoylmethyl)-(diethylphosphonoylbenzyl)amine (8)

2.1) Experimental parameters and identification of the starting materials (1a-c)

Product	T (°C)	t (min)	Yield (%)	δ_P (CDCl ₃) (ppm)	δ_{P}^{lit} (ppm)	[M+H]
1a	100	45	85	23.5	23.7 ^A	334
1b	100	40	95	22.9	22.9 ^A	368
1c	100	90	87	23.7	23.7 ^B	348

A P. R. Varga, E. Dinnyési, S. Tóth, G. Szakács and G. Keglevich, Drug Des. Discov., 2022, in press.

B N. Z. Kiss, A. Kaszás, L. Drahos, Z. Mucsi and G. Keglevich, *Tetrahedron Lett.*, 2012, 53, 207.

2.2) ³¹P NMR of starting materials (1a, 1b and 1c)

Diethyl α -benzylamino-benzylphosphonate (1a)

3.) ¹³C and ¹H NMR data of compounds **5a**, **5b**, **5c** and **5d** obtained by a 2D NMR study

5a

5b

5c

4.) ¹H and ¹³C NMR spectra on the equilibrium of the rotamers of **3b**

Segment of the ¹H NMR spectrum on the equilibrium of the rotamers of **3b**

Segment of the $^{\rm 13}{\rm C}$ NMR spectrum on the equilibrium of the rotamers of 3b

Segment of the HSQC NMR spectrum on the equilibrium of the rotamers of **3b**

Segment of the HMBC NMR spectrum on the equilibrium of the rotamers of **3b**

¹³C and ¹H NMR data for the two rotamers:

3b-A (72%)

¹³C and ¹H NMR data for the two rotamers:

3b-B (28%)

