Electronic Supplementary Material (ESI) for Organic & Biomolecular Chemistry. This journal is © The Royal Society of Chemistry 2023

SUPPORTING INFORMATION

pseudo-Multicomponent 1,3-dipolar cycloaddition involving a metal-free generation of unactivated azomethine ylides

Asmaa Belabbes, María Gracia Retamosa, Francisco Foubelo, Ana Sirvent, Carmen Nájera, Miguel Yus, and José M. Sansano.

TABLE OF CONTENTS

1.	NMR SPECTRA	S1
2.	DFT CALCULATIONS	S33

1. NMR SPECTRA

¹H NMR of **2ab**

¹³C{H} NMR of **2ab**

¹H NMR of **2ac**

7,45 7,75 7,75 7,75 7,75 7,75 7,75 7,75	5.03 5.00 4.75	3.55 3.55 3.55 3.55 3.55 3.55 3.55	2.48
	\vee \vee		Y

¹H NMR of 2ad

755 755 755 755 755 755 755 755 755 755	5.02 5.00 4.73 4.72	3.55	2.47	2.14
	$\forall \Psi$	SH	Y	1

¹³C{H} NMR of **2ad**

¹H NMR of **2ba**

2.28 2.28 2.28 2.28 2.28 2.28 2.28 2.28 2.28 2.28 2.28 2.28 2.28 2.28 2.28 2.28 2.28 2.28 2.24

¹³C{H} NMR of **2ba**


```
<sup>13</sup>C{H} NMR of 2ca
```


¹H NMR of 2ea


```
<sup>13</sup>C{H} NMR of 2ea
```


7.41 7.40 7.40	6.35 6.35 6.34 6.27 6.27 6.27 6.27 6.27 6.27 6.27	4.94 4.56 4.56 4.56 4.56 4.56	3.50 3.48 3.41 3.31	2.94	2.43	2.17
¥		Y Y	SIL		Y Y	

¹H NMR of 2ha

120 110 100 90 ppm -1 140 130

¹H NMR of 2ia

¹H NMR of 2ae

¹³C{H} NMR of **2af**

¹H NMR of 2ag

¹³C{H} NMR of **2ag**

¹³C{H} NMR of **3aa**

¹³C{H} NMR of **3ba**

¹³C{H} NMR of **3da**

¹³C{H} NMR of 3ga

¹³C{H} NMR of **4aa**

¹H NMR of **4ab**

¹³C{H} NMR of **4ab**

¹³C{H} NMR of 4ba

¹H NMR of **4bc**

 $^{13}\text{C}\text{H}$ NMR of 4bc

¹H NMR of 4da

¹³C{H} NMR of **4da**

¹³C{H} NMR of **4db**

¹H NMR of **5ba**

¹³C{H} NMR of **5ba**

¹H NMR of 5da

¹H NMR of **6db**

¹H NMR of **7ba**

¹H NMR of 7da

NOESY of 7da

2. DFT CALCULATIONS

DFT calculations for optimization of saddle points were performed in terms of ONIOM method implemented in Gaussian16 suite of programs. Atoms in high layer were represented in ball&stick. Transparent ball&stick atoms represent the ones included in the low layer. In the high-level layer, the electron correlation was taken into account by using the hybrid functional B3LYP3. In order to consider nonbonding interactions and dispersion forces, single-point calculations of the optimized ONIOM structures were carried out employing the Truhlard functional M06. All stationary points were characterized by harmonic analysis. Reactants, intermediates and cycloadducts have positive definite Hessian matrices.

Favoured TS (347.14 kcal·mol⁻¹) for 7ba

	X	Y	Z
C(1)	-2.287	0.133	-0.695
C(2)	-2.712	0.814	0.611
C(3)	-1.399	1.131	1.371
C(4)	-0.269	0.665	0.442
N(5)	-0.879	-0.225	-0.537
C(6)	-3.375	2.172	0.448
N(7)	-2.608	3.137	1.053
C(8)	-1.478	2.623	1.640
C(9)	-0.889	-1.636	-0.152
C(10)	-2.158	-2.205	-0.779
C(11)	-3.010	-1.170	-0.908
C(12)	-2.523	-3.943	-0.460
C(13)	-3.828	-4.129	-0.734
C(14)	-4.834	-2.579	-1.252
C(15)	-4.314	-1.333	-1.183
C(16)	-1.950	-5.174	-0.639
N(17)	-2.842	-6.093	-0.774
C(18)	-3.910	-5.447	-1.096
C(19)	-2.970	4.544	1.102
O(20)	-0.672	3.269	2.266
O(21)	-4.416	2.375	-0.127
C(22)	0.502	1.788	-0.244
C(23)	-0.086	2.650	-1.091
C(24)	0.605	3.640	-1.674
C(25)	1.916	3.799	-1.426
C(26)	2.527	2.947	-0.580

C(27)	1.815	1.960	-0.004
C(28)	-2.702	-7.369	-0.635
C(29)	-3.719	-8.256	-0.762
C(30)	-3.594	-9.586	-0.619
C(31)	-2.411	-10.125	-0.306
C(32)	-1.382	-9.292	-0.120
C(33)	-1.542	-7.967	-0.271
O(34)	-4.880	-5.866	-1.698
O(35)	-0.740	-5.293	-0.702
C(36)	3.839	3.101	-0.323
C(37)	4.539	4.090	-0.900
C(38)	3.929	4.936	-1.742
C(39)	2.621	4.790	-2.002
H(40)	-2.423	0.791	-1.583
H(41)	-3.379	0.172	1.232
H(42)	-1.376	0.595	2.349
H(43)	0.470	0.085	1.046
H(44)	0.052	-2.138	-0.477
H(45)	-0.977	-1.748	0.955
H(46)	-1.806	-2.351	-1.843
H(47)	-2.285	-3.993	0.648
H(48)	-4.361	-4.376	0.242
H(49)	-5.197	-2.723	-2.292
H(50)	-5.898	-2.565	-0.930
H(51)	-4.945	-0.438	-1.319
H(52)	-2.065	5.192	1.085
H(53)	-3.587	4.838	0.224
H(54)	-3.546	4.753	2.032
H(55)	-1.158	2.567	-1.320
H(56)	0.073	4.324	-2.359
H(57)	2.323	1.271	0.692
H(58)	-4.756	-7.966	-0.972
H(59)	-4.470	-10.247	-0.740
H(60)	-2.297	-11.213	-0.174
H(61)	-0.403	-9.708	0.177
H(62)	-0.619	-7.419	-0.041
H(63)	4.365	2.419	0.367
H(64)	5.614	4.208	-0.683
H(65)	4.501	5.750	-2.217
H(66)	2.138	5.498	-2.698
Lp(67)	-0.597	-0.162	-1.064
Lp(68)	-0.772	3.857	2.330
Lp(69)	-0.199	2.978	2.495

Lp(70)	-4.618	2.938	-0.152
Lp(71)	-4.697	1.903	-0.369
Lp(72)	-4.878	-6.431	-1.882
Lp(73)	-5.325	-5.480	-1.811
Lp(74)	-0.512	-5.829	-0.817
Lp(75)	-0.409	-4.798	-0.633

Unfavoured TS (356.56 kcal·mol⁻¹) for 7ba

	X	Y	Z
C(1)	-1.761	-0.234	0.066
C(2)	-3.260	-0.409	-0.138
C(3)	-3.654	0.998	-0.711
C(4)	-2.398	1.903	-0.600
N(5)	-1.690	1.165	0.422
C(6)	-3.672	-1.367	-1.240
N(7)	-4.243	-0.667	-2.277
C(8)	-4.239	0.693	-2.075
C(9)	-0.309	1.365	0.806
C(10)	-0.024	0.056	1.559
C(11)	-0.900	-0.875	1.108
C(12)	1.185	-0.482	1.855
C(13)	1.280	-1.780	2.205
C(14)	0.192	-2.602	2.226
C(15)	-0.815	-2.177	1.427
C(16)	2.200	0.140	2.533
N(17)	3.009	-0.716	3.054
C(18)	2.328	-1.808	3.088
C(19)	-4.715	-1.291	-3.502
O(20)	-4.623	1.511	-2.875
O(21)	-3.501	-2.562	-1.227
C(22)	-1.531	2.190	-1.818
C(23)	-0.862	3.356	-1.880
C(24)	-0.080	3.666	-2.925
C(25)	0.059	2.810	-3.951
C(26)	-0.598	1.635	-3.912

C(27)	-1.376	1.344	-2.853
C(28)	4.218	-0.523	3.461
C(29)	5.008	-1.502	3.966
C(30)	6.269	-1.320	4.393
C(31)	6.844	-0.116	4.314
C(32)	6.128	0.878	3.779
C(33)	4.869	0.662	3.362
O(34)	2.492	-2.764	3.823
O(35)	2.230	1.352	2.630
C(36)	-0.463	0.769	-4.933
C(37)	0.316	1.067	-5.985
C(38)	0.969	2.237	-6.022
C(39)	0.840	3.105	-5.007
H(40)	-1.231	-0.431	-0.897
H(41)	-3.791	-0.641	0.813
H(42)	-4.489	1.411	-0.092
H(43)	-2.718	2.885	-0.170
H(44)	-0.199	2.280	1.432
H(45)	0.358	1.449	-0.083
H(46)	-0.381	0.220	2.617
H(47)	1.923	-2.355	1.463
H(49)	-0.186	-2.385	3.257
H(52)	-5.091	-2.322	-3.315
H(53)	-5.559	-0.719	-3.948
H(54)	-3.885	-1.340	-4.242
H(55)	-0.946	4.083	-1.055
H(56)	0.446	4.636	-2.923
H(57)	-1.891	0.374	-2.843
H(58)	4.696	-2.550	4.053
H(59)	6.851	-2.168	4.795
H(60)	7.881	0.044	4.650
H(61)	6.592	1.874	3.667
H(62)	4.433	1.561	2.908
H(63)	-0.989	-0.201	-4.928
H(64)	0.420	0.351	-6.817
H(65)	1.611	2.484	-6.884
H(66)	1.387	4.062	-5.057
Lp(67)	-2.013	1.233	0.926
Lp(68)	-4.836	1.312	-3.399
Lp(69)	-4.586	2.090	-2.722
Lp(70)	-3.681	-2.877	-1.704
Lp(71)	-3.236	-2.800	-0.744
Lp(72)	2.928	-2.740	4.227

Lp(73)	2.111	-3.225	3.770
Lp(74)	2.657	1.601	2.961
Lp(75)	1.798	1.664	2.356
H(77)	0.348	-3.699	2.234
H(78)	1.707	-0.241	0.876
H(79)	-1.435	-2.896	0.866

7ba (59.80 kcal·mol⁻¹)

	X	Y	Z
C(1)	-0.292	-1.387	1.493
C(2)	-1.489	-2.035	2.176
C(3)	-1.909	-0.913	3.187
C(4)	-0.810	0.179	3.130
N(5)	0.271	-0.599	2.562
C(6)	-2.723	-2.218	1.313
N(7)	-3.716	-1.366	1.737
C(8)	-3.327	-0.563	2.782
C(9)	1.486	-0.019	2.026
C(10)	2.095	-1.248	1.301
C(11)	0.898	-2.096	0.953
C(12)	2.908	-1.068	0.019
C(13)	3.240	-2.416	-0.663
C(14)	2.400	-3.626	-0.192
C(15)	1.014	-3.217	0.238
C(16)	2.226	-0.417	-1.184
N(17)	2.771	-0.791	-2.276
C(18)	2.986	-2.041	-2.126
C(19)	-5.016	-1.265	1.092
O(20)	-4.009	0.298	3.284
O(21)	-2.817	-2.978	0.380
C(22)	-1.055	1.476	2.369
C(23)	-0.478	2.610	2.808
C(24)	-0.647	3.779	2.172

C(25)	-1.405	3.851	1.065
C(26)	-1.992	2.730	0.604
C(27)	-1.809	1.568	1.258
C(28)	2.963	-0.063	-3.319
C(29)	3.532	-0.523	-4.457
C(30)	3.738	0.239	-5.543
C(31)	3.397	1.534	-5.535
C(32)	2.870	2.043	-4.415
C(33)	2.674	1.260	-3.342
O(34)	2.955	-2.900	-2.982
O(35)	1.248	0.293	-1.091
C(36)	-2.750	2.790	-0.506
C(37)	-2.925	3.952	-1.154
C(38)	-2.339	5.067	-0.694
C(39)	-1.582	5.014	0.412
H(40)	-0.639	-0.732	0.661
H(41)	-1.218	-2.984	2.691
H(42)	-1.969	-1.359	4.211
H(43)	-0.536	0.445	4.181
H(44)	2.147	0.373	2.832
H(45)	1.268	0.817	1.330
H(46)	2.705	-1.820	2.044
H(47)	3.829	-0.474	0.231
H(48)	4.328	-2.654	-0.576
H(49)	2.888	-4.108	0.688
H(50)	2.340	-4.407	-0.984
H(51)	0.138	-3.830	-0.019
H(52)	-5.329	-2.238	0.651
H(53)	-5.807	-0.976	1.820
H(54)	-4.975	-0.501	0.284
H(55)	0.159	2.591	3.708
H(56)	-0.148	4.677	2.574
H(57)	-2.292	0.668	0.854
H(58)	3.889	-1.557	-4.570
H(59)	4.205	-0.191	-6.445
H(60)	3.572	2.170	-6.418
H(61)	2.614	3.115	-4.376
H(62)	2.273	1.796	-2.468
H(63)	-3.243	1.887	-0.906
H(64)	-3.547	3.991	-2.063
H(65)	-2.480	6.023	-1.224
H(66)	-1.108	5.944	0.773
Lp(67)	0.444	-0.982	2.993

Lp(68)	-4.561	0.382	3.065
Lp(69)	-3.772	0.614	3.735
Lp(70)	-3.336	-2.992	0.080
Lp(71)	-2.340	-3.317	0.247
Lp(72)	2.825	-2.740	-3.542
Lp(73)	3.063	-3.464	-2.808
Lp(74)	0.995	0.499	-1.594
Lp(75)	1.039	0.403	-0.543

Diast-7ba (60.13 kcal·mol⁻¹)

	X	Y	Z
C(1)	-1.437	-0.337	0.065
C(2)	-2.953	-0.284	0.207
C(3)	-3.264	1.148	-0.352
C(4)	-1.899	1.849	-0.578
N(5)	-1.073	1.041	0.293
C(6)	-3.738	-1.203	-0.709
N(7)	-4.387	-0.460	-1.667
C(8)	-4.176	0.892	-1.534
C(9)	0.375	1.055	0.290
C(10)	0.657	-0.139	1.240
C(11)	-0.497	-1.072	0.956
C(12)	1.973	-0.894	1.055
C(13)	1.948	-2.331	1.608
C(14)	0.628	-2.792	2.253
C(15)	-0.539	-2.321	1.426
C(16)	3.108	-0.319	1.891
N(17)	3.333	-1.012	2.942
C(18)	3.092	-2.223	2.609
C(19)	-5.228	-1.035	-2.705
O(20)	-4.646	1.737	-2.257
O(21)	-3.778	-2.406	-0.621
C(22)	-1.317	1.976	-1.980
C(23)	-0.549	3.042	-2.273

C(24)	-0.008	3.209	-3.489
C(25)	-0.219	2.305	-4.460
C(26)	-0.981	1.227	-4.191
C(27)	-1.513	1.079	-2.964
C(28)	3.784	-0.592	4.071
C(29)	3.997	-1.409	5.129
C(30)	4.461	-0.983	6.315
C(31)	4.719	0.315	6.513
C(32)	4.481	1.166	5.509
C(33)	4.016	0.715	4.332
O(34)	3.690	-3.220	2.957
O(35)	3.705	0.662	1.501
C(36)	-1.197	0.314	-5.156
C(37)	-0.663	0.468	-6.377
C(38)	0.095	1.542	-6.642
C(39)	0.316	2.456	-5.685
H(40)	-1.160	-0.652	-0.968
H(41)	-3.280	-0.400	1.265
H(42)	-3.869	1.703	0.407
H(43)	-1.967	2.877	-0.143
H(44)	0.790	2.016	0.672
H(45)	0.782	0.858	-0.728
H(46)	0.546	0.197	2.300
H(47)	2.270	-0.904	-0.020
H(48)	2.239	-3.045	0.800
H(49)	0.516	-2.374	3.280
H(50)	0.620	-3.904	2.339
H(51)	-1.386	-2.989	1.212
H(52)	-4.972	-2.100	-2.903
H(53)	-6.297	-0.976	-2.400
H(54)	-5.096	-0.492	-3.668
H(55)	-0.348	3.805	-1.501
H(56)	0.614	4.101	-3.674
H(57)	-2.121	0.186	-2.769
H(58)	3.784	-2.488	5.103
H(59)	4.618	-1.698	7.141
H(60)	5.090	0.676	7.486
H(61)	4.654	2.246	5.663
H(62)	3.820	1.514	3.602
H(63)	-1.818	-0.579	-4.964
H(64)	-0.846	-0.285	-7.161
H(65)	0.536	1.671	-7.645
H(66)	0.943	3.331	-5.925

Lp(67)	-1.241	1.179	0.855
Lp(68)	-4.999	1.557	-2.707
Lp(69)	-4.509	2.310	-2.141
Lp(70)	-4.108	-2.707	-1.021
Lp(71)	-3.464	-2.664	-0.179
Lp(72)	4.156	-3.158	3.327
Lp(73)	3.502	-3.744	2.732
Lp(74)	4.168	0.861	1.824
Lp(75)	3.520	0.906	0.985