Electronic Supplementary Material (ESI) for Organic & Biomolecular Chemistry. This journal is © The Royal Society of Chemistry 2023

Synthesis of 2-(2-Nitrophenyl)indoline-3-acetic Acid Derivatives via Base-Catalyzed Cyclization of *N*-(2-Nitrobenzyl)-2-aminocinnamic Acid Derivatives

Ju Hyeon Park,¹ Jinjae Park¹ and Cheol-Hong Cheon^{1,*}

¹ Department of Chemistry, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul 02841, Republic of Korea

Table of Contents

1. General Information	S2
2. Preparation of <i>N</i> -Benzyl-2-aminocinnamic Acid Derivatives 1 or 3	S3
3. Synthesis of Indoline-3-Acetic Acid Derivatives 2 (Table 1)	S17
4. Determination of Stereochemistry of Indoline-3-acetic Acid Derivatives	S20
5. Synthesis of 2-(2-Nitrophenyl)Indoline-3-acetic Acid Derivatives 4 (Table 3)	S22
6. Synthetic Utilities (Scheme 2)	S30
7. Reference	S36
8. Spectroscopic Data	S37

1. General Information

All reactions were carried out in an oven-dried glassware under an argon atmosphere unless otherwise noted. Except as otherwise indicated, all reactions were magnetically stirred and monitored by analytical thin layer chromatography (TLC) using precoated silica gel glass plates (0.25 mm) with F254 indicator. Visualization was accomplished by UV light (254 nm). Flash column chromatography was performed using silica gel 60 (230 - 400 mesh). Yields refer to chromatographically and spectroscopically pure compounds, unless otherwise noted. ¹H NMR and ¹³C NMR spectra were recorded on 500 MHz and 125 MHz spectrometers, respectively. Residual NMR solvents {either CDCl₃ (δ_{H} : 7.26 ppm, δ_{C} : 77.16 ppm) or MeOD (δ_{H} : 3.31 ppm, δ_{C} : 49.00 ppm) or DMSO (δ_{H} : 2.50 ppm, δ_{C} : 39.52 ppm} were used as internal standards for ¹H NMR and ¹³C NMR spectra, respectively. The proton spectra are reported as follows δ (multiplicity, coupling constant *J*, number of protons). Multiplicities are indicated by s (singlet), d (doublet), t (triplet), q (quartet), p (quintet), h (septet), m (multiplet) and br (broad). High resolution mass spectra (HRMS) were recorded on quadrupole time-of-flight mass spectrometer (QTOF-MS) using electrospray ionization (ESI) as an ionization method.

2. Preparation of N-Benzyl-2-aminocinnamic Acid Derivatives 1 or 3

2-1. Preparation of N-Boc-N-Benzyl-2-Aminocinnamic Acid Derivatives 1 or 3

2-Aminocinnamic acid derivative **5** (1.0 mmol) was added to a 50 mL two-neck round bottom flask equipped with a reflux condenser and dissolved in EtOH (10.0 mL). Di-*tert*-butyl-dicarbonate (Boc₂O, 0.65 g, 3.0 mmol) was added dropwise to the above mixture at room temperature. The reaction mixture was allowed to reflux with an oil bath and monitored by TLC. After the complete consumption of **5**, the reaction mixture was cooled to room temperature, quenched with H_2O , and extracted with ethyl acetate. The combined organic layers were washed with brine, dried over MgSO₄, and concentrated under reduced pressure to provide a crude product of **6**, which was directly used in the next step without further isolation.

The resulting **6** was added to a 50 mL one-neck round bottom flask and dissolved in dimethylformamide (DMF, 10.0 mL). To the above mixture was added NaH (60% dispersion in mineral oil, 0.049 g, 1.2 mmol) at 0 °C and the resulting mixture was stirred at the same temperature. After 30 min, a benzyl bromide derivative (1.2 mmol) was added to the reaction mixture. The resulting mixture was stirred at room temperature and monitored by TLC. After the complete consumption of **6**, the reaction mixture was carefully quenched with H_2O and extracted with ethyl acetate. The combined organic layers were washed with brine, dried over MgSO₄, and concentrated under reduced pressure. The residue was purified by column chromatography on silica gel using a mixture of ethyl acetate and hexanes as the eluent to provide the desired product **1** or **3**.

(E)-Ethyl 3-(2-(benzyl(tert-butoxycarbonyl)amino)phenyl)acrylate (1a)

A white solid; 0.38 g (99%);

¹H NMR (500 MHz, MeOD) δ 7.64 (d, J = 6.1 Hz, 1H), 7.44 (d, J = 16.0 Hz, 1H), 7.36 (t, J = 5.3 Hz, 1H), 7.30 (d, J = 4.9 Hz, 1H), 7.21 (br, 3H), 7.17-7.15 (m, 2H), 7.12 (s, 1H), 6.30 (d, J = 16.0 Hz, 1H), 4.89 (d, J = 14.2 Hz, 1H) 4.86 (d, J = 14.2 Hz, 1H) 4.22-4.17 (m, 2H), 1.31 (t, J = 7.2 Hz, 12H).
¹³C NMR (125 MHz, MeOD) δ 168.1, 156.2, 142.4, 141.8, 138.4, 133.9, 132.0, 130.0, 129.6, 129.4, 128.8, 128.7, 127.7, 120.1, 81.8, 61.5, 54.9, 28.4, 14.6.

HRMS (ESI): *m/z*; [M+Na]⁺ Calcd for C₂₃H₂₇NO₄Na 404.18323; Found: 404.1833.

(E)-Ethyl 3-(2-((4-bromobenzyl)(tert-butoxycarbonyl)amino)phenyl)acrylate (1b)

A white solid; 0.39 g (85%);

¹**H NMR** (500 MHz, MeOD) δ 7.67 (d, *J* = 7.0 Hz, 1H), 7.41-7.31 (m, 5H), 7.16 (s, 1H), 7.10 (dt, *J* = 8.4, 2.4 Hz, 2H), 6.31 (d, *J* = 16.0 Hz, 1H), 4.93 (d, *J* = 14.5 Hz, 1H), 4.57 (d, *J* = 14.5 Hz, 1H), 4.24-4.18 (m, 2H), 1.32 (t, *J* = 7.2 Hz, 12H).

¹³C NMR (125 MHz, MeOD) δ 168.1, 156.2, 142.4, 141.6, 137.8, 134.0, 132.6, 132.2, 132.0, 129.7, 129.0, 127.8, 122.6, 120.3, 82.0, 61.6, 54.3, 28.5, 14.6,

HRMS (ESI): *m/z*; [M+Na]⁺ Calcd for C₂₃H₂₆BrNO₄Na 482.09374; Found: 482.0942.

(E)-Ethyl 3-(2-((tert-butoxycarbonyl)(4-cyanobenzyl)amino)phenyl)acrylate (1c)

A white solid; 0.33 g (81%);

¹H NMR (500 MHz, MeOD) δ 7.68 (d, J = 7.5 Hz, 1H), 7.62 (d, J = 7.0 Hz, 2H), 7.43 (t, J = 56.9 Hz, 1H), 7.38 (d, J = 8.2 Hz, 3H), 7.33 (br, 1H), 7.19 (br, 1H), 6.32 (d, J = 16.0 Hz, 1H), 5.02 (d, J = 13.6 Hz, 1H) 4.69 (d, J = 13.6 Hz, 1H) 4.24-4.19 (m, 2H), 1.32 (t, J = 7.2 Hz, 12H).
¹³C NMR (125 MHz, MeOD) δ 168.0, 156.2, 144.2, 142.4, 141.4, 133.9, 133.4, 132.3, 130.9, 129.6,

129.1, 127.9, 120.5, 119.5, 112.5, 82.3, 61.7, 54.6, 28.4, 14.6.

HRMS (ESI): *m/z*; [M+Na]⁺ Calcd for C₂₄H₂₆N₂O₄Na 429.17848; Found: 429.1783.

(E)-Methyl 4-(((tert-butoxycarbonyl)(2-(3-ethoxy-3-oxoprop-1-en-

11)phenyl)amino)methyl)benzoate (1d)

A white solid; 0.39 g (89%);

¹**H NMR** (500 MHz, MeOD) δ 7.89 (d, *J* = 6.9 Hz, 2H), 7.65 (d, *J* = 6.4 Hz, 1H), 7.40-7.32 (m, 3H), 7.30 (d, *J* = 8.2 Hz, 2H), 7.18 (br, 1H), 6.27 (d, *J* = 16.0 Hz, 1H), 5.02 (d, *J* = 14.0 Hz, 1H), 4.67 (d, *J* = 14.0 Hz, 1H), 4.20 (q, *J* = 7.2 Hz, 2H), 3.87 (s, 3H) 1.31 (t, *J* = 7.2 Hz, 12H).

¹³C NMR (125 MHz, MeOD) δ 168.1, 168.0, 156.2, 144.0, 142.4, 141.6, 134.0, 132.2, 130.7, 130.6, 130.2, 129.6, 129.0, 127.8, 120.3, 82.1, 61.6, 54.6, 52.6, 28.4, 14.6.

HRMS (ESI): *m/z*; [M+Na]⁺ Calcd for C₂₅H₂₉NO₆Na 462.18871; Found: 462.1883.

(E)-Ethyl 3-(2-((4-acetylbenzyl)(tert-butoxycarbonyl)amino)phenyl)acrylate (1e)

A white solid; 0.29 g (69%);

¹H NMR (500 MHz, MeOD) δ 7.88 (d, J = 7.0 Hz, 2H), 7.66 (d, J = 7.3 Hz, 1H), 7.42-7.36 (m, 3H), 7.33 (d, J = 8.2 Hz, 2H), 7.19 (br, 1H), 6.28 (d, J = 16.0 Hz, 1H), 5.03 (d, J = 14.5 Hz, 1H) 4.69 (d, J = 14.5 Hz, 1H) 4.20 (q, J = 7.2 Hz, 2H), 2.56 (s, 3H), 1.32 (t, J = 7.2 Hz, 12H).
¹³C NMR (125 MHz, MeOD) δ 199.9, 168.0, 156.2, 144.1, 142.4, 141.6, 137.6, 134.0, 132.3, 130.3,

129.71, 129.66, 129.0, 127.9, 120.3, 82.2, 61.6, 54.6, 28.4, 26.7, 14.6.

HRMS (ESI): *m/z*; [M+Na]⁺ Calcd for C₂₅H₂₉NO₅Na 446.19379; Found: 446.1939.

(E)-Ethyl 3-(2-((tert-butoxycarbonyl)(4-nitrobenzyl)amino)phenyl)acrylate (1f)

A white solid; 0.30 g (70%);

¹**H NMR** (500 MHz, MeOD) δ 8.11 (d, *J* = 7.6 Hz, 2H), 7.67 (d, *J* = 7.6 Hz, 1H), 7.44 (d, *J* = 8.7 Hz, 3H), 7.37-7.33 (m, 2H), 7.22 (br, 1H), 6.29 (d, *J* = 16.0 Hz, 1H), 5.07 (d, *J* = 14.0 Hz, 1H), 4.72 (d, *J* = 14.0 Hz, 1H), 4.20 (q, *J* = 7.2 Hz, 2H), 1.32 (s, 9H), 1.29 (t, *J* = 7.2 Hz, 12H).

¹³C NMR (125 MHz, MeOD) δ 168.0, 156.1, 148.8, 146.1, 142.3, 141.4, 133.9, 132.4, 131.0, 129.6, 129.1, 127.9, 124.6, 120.5, 82.3, 61.7, 54.3, 28.4, 14.6.

HRMS (ESI): *m/z*; [M+Na]⁺ Calcd for C₂₃H₂₆N₂O₆Na 449.16831; Found: 449.1685.

A white solid; 0.42 g (99%);

¹**H NMR** (500 MHz, MeOD) δ 8.13 (d, *J* = 7.2 Hz, 2H), 7.67 (d, *J* = 7.5 Hz, 1H), 7.49-7.45 (m, 3H), 7.34 (d, *J* = 16.0 Hz, 2H), 7.24 (br, 1H), 6.26 (d, *J* = 16.0 Hz, 1H), 5.15 (d, *J* = 12.8 Hz, 1H) 4.69 (d, *J* = 12.8 Hz, 1H) 4.18-4.11 (m, 2H), 1.32 (s, 9H), 1.28 (t, *J* = 7.2 Hz, 12H).

¹³C NMR (125 MHz, MeOD) δ 167.9, 156.1, 149.7, 142.2, 141.3, 140.8, 136.3, 133.9, 132.4, 130.7, 129.5, 129.2, 127.9, 124.8, 123.6, 120.4, 82.3, 61.7, 54.3, 28.4, 26.7, 14.5.

HRMS (ESI): *m/z*; [M+Na]⁺ Calcd for C₂₃H₂₆N₂O₆Na 449.16831; Found: 449.1682.

(E)-Ethyl 3-(2-((tert-butoxycarbonyl)(2-nitrobenzyl)amino)phenyl)acrylate (3a)

A white solid; 0.42 g (99%);

¹**H NMR** (500 MHz, MeOD) δ 7.86 (d, *J* = 8.1 Hz, 1H), 7.66 (dd, *J* = 7.8, 1.2 Hz, 1H), 7.60 (t, *J* = 7.2 Hz, 1H), 7.48-7.44 (m, 2H), 7.40 (t, *J* = 7.3 Hz, 1H), 7.33 (t, *J* = 7.3 Hz, 1H), 7.18 (br, 1H), 6.32 (d, *J* = 15.9 Hz, 1H), 5.21 (d, *J* = 14.0 Hz, 1H), 5.12 (d, *J* = 14.0 Hz, 1H), 4.24 (q, *J* = 7.2 Hz, 2H), 1.33 (t, *J* = 7.2 Hz, 12H).

¹³C NMR (125 MHz, MeOD) δ 168.1, 156.1, 150.6, 142.2, 141.2, 134.2, 134.0, 132.95, 132.86, 132.3, 130.0, 129.5, 129.2, 128.0, 125.6, 120.7, 82.5, 61.7, 50.9, 28.4, 14.6.

HRMS (ESI): *m*/*z*; [M+Na]⁺ Calcd for C₂₃H₂₆N₂O₆Na 449.16831; Found: 449.1688.

(E)-Methyl 3-(2-((tert-butoxycarbonyl)(2-nitrobenzyl)amino)phenyl)acrylate (3e)

A white solid; 0.35 g (85%);

¹**H NMR** (500 MHz, MeOD) δ 7.86 (d, *J* = 7.9 Hz, 1H), 7.67 (dd, *J* = 7.8, 1.2 Hz, 1H), 7.61 (t, *J* = 7.2 Hz, 1H), 7.49-7.44 (m, 2H), 7.39 (t, *J* = 7.2 Hz, 1H), 7.33 (t, *J* = 7.2 Hz, 1H), 7.16 (br, 1H), 6.35 (d, *J* = 16.0 Hz, 1H), 5.15 (d, *J* = 3.8 Hz, 2H), 3.77 (s, 3H), 1.33 (s, 9H).

¹³C NMR (125 MHz, MeOD) δ 168.5, 156.2, 150.6, 142.2, 141.4, 134.2, 133.9, 133.0, 132.8, 132.3, 129.9, 129.6, 129.2, 128.1, 125.6, 120.3, 82.3, 52.2, 51.0, 28.4.

HRMS (ESI): *m/z*; [M+Na]⁺ Calcd for C₂₂H₂₄N₂O₆Na 435.15266; Found: 435.1530.

(E)-Isopropyl 3-(2-((tert-butoxycarbonyl)(2-nitrobenzyl)amino)phenyl)acrylate (3f)

A white solid; 0.26 g (60%);

¹**H NMR** (500 MHz, MeOD) δ 7.85 (d, *J* = 7.8 Hz, 1H), 7.64 (dd, *J* = 7.8, 1.1 Hz, 1H), 7.59 (t, *J* = 7.3 Hz, 1H), 7.48-7.43 (m, 2H), 7.39 (t, *J* = 7.3 Hz, 1H), 7.32 (t, *J* = 7.3 Hz, 1H), 7.19 (br, 1H), 6.29 (d, *J* = 16.0 Hz, 1H), 5.22 (d, *J* = 13.0 Hz, 1H), 5.11 (d, *J* = 13.0 Hz, 1H), 5.09 (h, *J* = 6.3 Hz, 1H), 1.33 (s, 9H), 1.30 (d, *J* = 6.3 Hz, 6H).

¹³C NMR (125 MHz, MeOD) δ 167.5, 156.0, 150.5, 142.1, 141.0, 134.2, 134.0, 133.0, 132.7, 132.2, 129.9, 129.3, 129.1, 128.0, 125.6, 121.2, 82.4, 69.2, 50.9, 28.7, 28.4, 22.2.

HRMS (ESI): *m*/*z*; [M+Na]⁺ Calcd for C₂₄H₂₈N₂O₆Na 463.18396; Found: 463.1842.

(E)-tert-Butyl 3-(2-((tert-butoxycarbonyl)(2-nitrobenzyl)amino)phenyl)acrylate (3g)

A white solid; 0.44 g (96%);

¹**H NMR** (500 MHz, MeOD) δ 7.87 (d, *J* = 7.6 Hz, 1H), 7.63 (dd, *J* = 7.8, 1.2 Hz, 1H), 7.48 (t, *J* = 8.4 Hz, 1H), 7.39-7.36 (m, 2H), 7.32 (t, *J* = 7.3 Hz, 1H), 7.19 (br, 1H), 5.22 (d, *J* = 14.8 Hz, 1H), 5.12 (d, *J* = 14.8 Hz, 1H), 1.52 (s, 9H), 1.33 (s, 9H).

¹³C NMR (125 MHz, MeOD) δ 167.3, 156.1, 150.6, 142.1, 140.3, 134.2, 134.1, 133.0, 132.8, 132.0, 129.9, 129.2, 129.1, 127.9, 125.6, 122.5, 82.3, 81.8, 51.0, 28.6, 28.4.

HRMS (ESI): *m/z*; [M+Na]⁺ Calcd for C₂₅H₃₀N₂O₆Na 477.19961; Found: 477.1984.

(E)-tert-Butyl (2-(2-cyanovinyl)phenyl)(2-nitrobenzyl)carbamate (3h)

A white solid; 0.27 g (70%);

¹**H NMR** (500 MHz, MeOD) δ 7.87 (d, *J* = 7.9 Hz, 1H), 7.64 (dd, *J* = 7.8, 1.4 Hz, 1H), 7.81 (d, *J* = 7.8 Hz, 1H), 7.51 (t, *J* = 8.1 Hz, 2H), 7.44 (td, *J* = 7.5, 1.2 Hz, 1H), 7.34 (t, *J* = 7.5 Hz, 1H), 7.20 (s, 1H), 7.18 (d, *J* = 16.6 Hz, 1H), 6.07 (d, *J* = 16.6, 1H), 5.22 (d, *J* = 14.6 Hz, 1H), 5.11 (d, *J* = 14.6 Hz, 1H), 1.39 (s, 9H).

¹³C NMR (125 MHz, MeOD) δ 156.0, 150.9, 147.3, 141.7, 134.2, 133.6, 133.1, 133.0, 132.6, 130.3, 129.6, 129.3, 127.4, 125.6, 119.0, 99.1, 82.9, 54.8, 28.4.

HRMS (ESI): *m*/*z*; [M+Na]⁺ Calcd for C₂₁H₂₁N₃O₄Na 402.14243; Found: 402.1419.

(E)-tert-Butyl (2-(3-(benzylamino)-3-oxoprop-1-en-1-yl)phenyl)(2-nitrobenzyl)carbamate (3i)

A white solid; 0.44 g (90%);

¹**H NMR** (500 MHz, MeOD) δ 7.83 (d, *J* = 7.0 Hz, 1H), 7.63 (br, 2H), 7.61 (t, *J* = 7.5 Hz, 1H), 7.55 (d, *J* = 15.6 Hz, 1H), 7.42 (t, *J* = 6.7 Hz, 1H), 7.35 (d, *J* = 1.8 Hz, 1H), 7.33 (s, 3H), 7.28-7.25 (m, 3H), 7.06 (br, 1H), 6.51 (d, *J* = 15.6 Hz, 1H), 5.30 (d, *J* = 16.0 Hz, 1H), 5.00 (d, *J* = 16.0 Hz, 1H), 4.48 (s, 2H), 1.32 (br, 9H).

¹³C NMR (125 MHz, MeOD) δ 167.7, 156.3, 150.5, 142.1, 139.9, 137.6, 137.4, 134.5, 134.3, 133.3, 132.3, 132.3, 131.4, 129.7, 129.6, 129.0, 128.7, 128.6, 128.3, 128.0, 125.5, 123.9, 82.3, 50.9, 44.3, 28.4.
HRMS (ESI): *m/z*; [M+Na]⁺ Calcd for C₂₈H₂₉N₃O₅Na 510.19994; Found: 510.2005.

(E)-tert-Butyl (2-(3-(diethylamino)-3-oxoprop-1-en-1-yl)phenyl)(2-nitrobenzyl)carbamate (3j)

A white solid; 0.45 g (99%);

¹**H NMR** (500 MHz, MeOD) δ 7.86 (d, *J* = 5.8 Hz, 1H), 7.71 (d, *J* = 4.0 Hz, 1H), 7.65 (t, *J* = 7.0 Hz, 2H), 7.58 (d, *J* = 15.4 Hz, 1H), 7.47 (t, *J* = 7.9 Hz, 1H), 7.30 (br, 2H), 7.045(br, 1H), 6.91 (d, *J* = 15.4 Hz, 1H), 5.32 (d, *J* = 14.6 Hz, 1H), 4.95 (d, *J* = 14.6 Hz, 1H), 3.57 (q, *J* = 7.2 Hz, 2H), 3.51(q, *J* = 7.2 Hz, 2H), 1.34 (br, 9H), 1.28 (t, *J* = 7.2 Hz, 3H), 1.21 (t, *J* = 7.2 Hz, 3H).

¹³C NMR (125 MHz, MeOD) δ 167.3, 156.3, 150.4, 142.0, 139.2, 134.3, 133.4, 132.3, 131.4, 129.7, 129.6, 129.1, 128.5, 125.5, 120.9, 82.3, 50.9, 43.6, 42.4, 28.7, 28.4, 15.4, 13.4.

HRMS (ESI): *m/z*; [M+Na]⁺ Calcd for C₂₅H₃₁N₃O₅Na 476.21559; Found: 476.2159.

(E)-Ethyl 3-(2-((tert-butoxycarbonyl)(2-nitrobenzyl)amino)-5-methylphenyl)acrylate (3k)

A light brown solid; 0.35 g (80%);

¹H NMR (500 MHz, MeOD) δ 7.84 (d, J = 7.8 Hz, 1H), 7.59 (t, J = 7.2 Hz, 1H), 7.45-7.41 (m, 3H), 7.19 (d, J = 7.8 Hz, 1H), 7.04 (br, 1H), 6.30 (d, J = 16.0 Hz, 1H), 5.13 (br, 1H), 5.10 (br, 1H), 4.24-4.19 (m, 2H), 2.33 (s, 3H), 1.33 (t, J = 7.2 Hz, 12H).

¹³C NMR (125 MHz, MeOD) δ 168.1, 156.3, 150.7, 142.0, 141.1, 139.7, 139.3, 137.0, 134.2, 133.0, 132.9, 129.9, 129.2, 128.3, 125.6, 120.4, 82.4, 61.7, 50.9, 28.4, 21.0, 14.6.

HRMS (ESI): *m/z*; [M+Na]⁺ Calcd for C₂₄H₂₈N₂O₆Na 463.18396; Found: 463.1833.

(E)-Ethyl 3-(5-bromo-2-((tert-butoxycarbonyl)(2-nitrobenzyl)amino)phenyl)acrylate (31)

A light brown solid; 0.30 g (60%);

¹**H NMR** (500 MHz, MeOD) δ 7.85 (d, J = 8.1 Hz, 1H), 7.78 (d, J = 2.3 Hz, 1H), 7.61 (td, J = 7.6, 1.1 Hz, 1H), 7.52 (dd, J = 8.4, 2.1 Hz, 2H), 7.47 (td, J = 8.2, 1.2 Hz, 1H), 7.36 (d, J = 16.0 Hz, 1H), 7.12 (d, J = 8.1 Hz, 1H), 6.32 (d, J = 16.0 Hz, 1H), 5.19 (br, 1H), 5.07 (br, 1H), 5.09 (h, J = 6.3 Hz, 1H), 4.23 (d, J = 6.3 Hz, 2H), 1.35 (s, 9H), 1.32 (t, J = 7.2 Hz, 3H).

¹³C NMR (125 MHz, MeOD) δ 167.6, 155.7, 150.6, 141.2, 139.7, 136.3, 135.0, 134.3, 132.9, 132.7, 131.3, 130.8, 130.1, 125.7, 122.6, 122.1, 82.7, 61.8, 50.8, 28.4, 14.6.

HRMS (ESI): *m*/*z*; [M+Na]⁺ Calcd for C₂₂H₂₅BrN₂O₆Na 527.07882; Found: 527.0782.

(E)-Ethyl 3-(2-((5-bromo-2-nitrobenzyl)(tert-butoxycarbonyl)amino)phenyl)acrylate (3m)

Compound **3m** could not be obtained under the benzylation conditions. Instead, **3m** underwent the cyclization to afford the corresponding indoline-3-acetate **4m**. Thus, the spectroscopic data of **3m** could not be obtained.

(E)-Ethyl 3-(2-((tert-butoxycarbonyl)(5-methyl-2-nitrobenzyl)amino)phenyl)acrylate (3n)

A white solid; 0.43 g (97%);

¹H NMR (500 MHz, MeOD) δ 7.77 (d, J = 7.5 Hz, 1H), 7.65 (d, J = 7.6 Hz, 1H), 7.51 (d, J = 16.0 Hz, 1H), 7.41 (t, J = 7.2 Hz, 1H), 7.35 (br, 1H), 7.32 (t, J = 7.3 Hz, 1H), 7.25 (d, J = 8.4 Hz, 1H), 7.20 (br, 1H), 6.32 (d, J = 16.0 Hz, 1H), 5.26 (d, J = 15.4 Hz, 1H), 5.08 (d, J = 15.4 Hz, 1H), 4.24-4.19 (m, 2H), 2.36 (s, 3H), 1.33 (br, 9H), 1.32 (t, J = 7.2 Hz, 3H).

¹³C NMR (125 MHz, MeOD) δ 168.1, 156.1, 148.3, 145.8, 142.3, 141.4, 134.0, 133.3, 133.1, 132.3, 130.3, 129.3, 129.1, 127.9, 125.9, 120.5, 82.5, 61.7, 51.0, 28.4, 21.4, 14.6.

HRMS (ESI): *m/z*; [M+Na]⁺ Calcd for C₂₄H₂₈N₂O₆Na 463.18396; Found: 463.1845.

(E)-Ethyl 3-(2-((tert-butoxycarbonyl)(5-methoxy-2-nitrobenzyl)amino)phenyl)acrylate (30)

A white solid; 0.31 g (69%);

¹**H NMR** (500 MHz, MeOD) δ 7.95 (d, *J* = 8.2 Hz, 1H), 7.66 (d, *J* = 7.8, 0.92 Hz, 1H), 7.51 (d, *J* = 16.0 Hz, 1H), 7.42 (t, *J* = 7.3 Hz, 1H), 7.33 (t, *J* = 7.5 Hz, 1H), 7.23 (br, 1H), 7.07 (br, 1H), 6.95 (dd, *J* = 9.0, 2.4 Hz, 1H), 6.33 (d, *J* = 15.8 Hz, 1H), 5.27 (d, *J* = 14.5 Hz, 1H), 5.15 (d, *J* = 14.5 Hz, 1H), 4.25-4.20 (m, 2H), 3.85 (s, 3H), 1.50 (br, 9H), 1.33 (t, *J* = 7.2 Hz, 3H).

¹³C NMR (125 MHz, MeOD) δ 168.1, 164.8, 156.2, 143.2, 142.3, 141.3, 136.2, 133.9, 132.3, 129.3, 129.1, 128.6, 127.9, 120.7, 117.4, 114.7, 82.6, 61.7, 56.5, 28.6, 28.4, 14.6.

HRMS (ESI): *m/z*; [M+Na]⁺ Calcd for C₂₄H₂₈N₂O₇Na 479.17887; Found: 479.1785.

2-2. Preparation of N-Sulfonyl-N-(2-Nitrobenzyl)-2-Aminocinnamic Acid

Ethyl 2-aminocinnamate (5, 0.19 g, 1.0 mmol) was placed in a one-neck round bottom flask and dissolved in dichloromethane (DCM, 10.0 mL). To the solution were added sulfonyl chloride (1.5 mmol) and pyridine (0.080 mL, 2.0 mmol) at room temperature, and the reaction mixture was monitored by TLC. After the complete consumption of 5, the reaction mixture was quenched with H₂O, and extracted with DCM. The combined organic layers were washed with brine, dried over MgSO₄, and concentrated under reduced pressure to provide a crude product of 6, which was directly used in the next step without further isolation.

The resulting **6** was added to a 50 mL one-neck round bottom flask and dissolved in dimethylformamide (DMF, 10.0 mL). To the above mixture was added NaH (60% dispersion in mineral oil, 0.049 g, 1.2 mmol) at 0 °C and the resulting mixture was stirred at the same temperature. After 30 min, 2-nitrobenzyl bromide (0.26 g, 1.2 mmol) was added to the reaction mixture. The reaction mixture was stirred at room temperature and monitored by TLC. After the complete consumption of **6**, the reaction mixture was carefully quenched with H_2O and extracted with ethyl acetate. The combined organic layers were washed with brine, dried over MgSO₄, and concentrated under reduced pressure. The residue was purified by column chromatography on silica gel using a mixture of ethyl acetate and hexanes as the eluent to provide the desired product **3**.

(E)-Ethyl 3-(2-(4-nitro-N-(2-nitrobenzyl)phenylsulfonamido)phenyl)acrylate (3b)

A white solid; 0.26 g (70%);

¹**H NMR** (500 MHz, MeOD) δ 8.44 (dt, *J* = 8.8, 2.6 Hz, 2H), 7.98 (d, *J* = 9.0, 2.1 Hz, 2H), 7.80 (dd, *J* = 8.1, 1.1 Hz, 1H), 7.63 (td, *J* = 7.0, 1.8 Hz, 2H), 7.58 (td, *J* = 7.3, 1.2 Hz, 1H), 7.47 (td, *J* = 8.1, 1.5 Hz, 1H), 7.39 (d, *J* = 16.0 Hz, 1H), 7.37 (dd, *J* = 7.6, 1.4 Hz, 1H), 7.36 (td, *J* = 7.3, 1.7 Hz, 1H), 6.96 (dd, *J* = 7.6, 1.4 Hz, 1H), 6.13 (d, *J* = 16.0 Hz, 1H), 5.45 (br, 1H), 5.01 (br, 1H), 4.21(q, *J* = 7.2 Hz, 2H), 1.34 (t, *J* = 7.2 Hz, 3H).

¹³C NMR (125 MHz, MeOD) δ 167.8, 152.0, 150.8, 145.1, 140.7, 138.4, 136.7, 134.31, 134.28, 132.2, 131.6, 130.9, 130.8, 130.6, 130.5, 128.4, 125.69, 125.67, 121.2, 61.8, 53.1, 14.6.

HRMS (ESI): *m/z*; [M+Na]⁺ Calcd for C₂₄H₂₁N₃O₈SNa 534.09416; Found: 534.0946.

(E)-Ethyl 3-(2-(4-methyl-N-(2-nitrobenzyl)phenylsulfonamido)phenyl)acrylate (3c)

A white solid; 0.41 g (86%);

¹H NMR (500 MHz, CDCl₃) δ 7.93 (dd, *J* = 7.8, 0.9 Hz, 1H), 7.76 (dd, *J* = 8.2, 1.2 Hz, 1H), 7.61-7.55(m, 4H), 7.51 (dd, *J* = 7.8, 1.7 Hz, 1H), 7.38 (td, *J* = 8.2, 1.4 Hz, 1H), 7.31-7.28 (m, 3H), 7.27 (td, *J* = 7.5, 1.7 Hz, 1H), 6.88 (dd, *J* = 7.8, 1.2 Hz, 1H), 6.10 (d, *J* = 16.0 Hz, 1H), 5.16 (br, 2H), 4.26 (q, *J* = 7.2 Hz, 2H), 2.44 (s, 3H), 1.36 (t, *J* = 7.2 Hz, 3H).

¹³C NMR (125 MHz, CDCl₃) δ 166.2, 149.0, 144.4, 139.7, 138.2, 135.7, 135.1, 133.4, 132.5, 131.2, 130.7, 130.0, 129.9, 129.3, 128.9, 128.1, 127.3, 124.6, 120.5, 60.6, 52.0, 21.7, 14.5.

HRMS (ESI): *m/z*; [M+Na]⁺ Calcd for C₂₅H₂₄N₂O₆SNa 503.12473; Found: 503.1247.

(E)-Ethyl 3-(2-(N-(2-nitrobenzyl)methylsulfonamido)phenyl)acrylate (3d)

A white solid; 0.37 g (91%);

¹H NMR (500 MHz, MeOD) δ 7.77 (dd, J = 8.2, 1.2 Hz, 1H), 7.75 (d, J = 16.0 Hz, 1H), 7.64 (dd, J = 7.8, 1.4 Hz, 1H), 7.61 (dd, J = 7.8, 1.4 Hz, 1H), 7.55 (td, J = 7.5, 1.2 Hz, 1H), 7.54 (dd, J = 8.1, 1.2 Hz, 1H), 7.49 (td, J = 7.3, 1.5 Hz, 1H), 7.44 (td, J = 8.1, 1.5 Hz, 1H), 7.39 (td, J = 7.9, 0.76 Hz, 1H), 6.19 (d, J = 16.0 Hz, 1H), 5.20 (br, 2H), 4.24 (q, J = 7.2 Hz, 2H), 3.15 (s, 3H), 1.35 (t, J = 7.2 Hz, 3H),
¹³C NMR (125 MHz, MeOD) δ 168.0, 150.8, 141.7, 139.6, 137.1, 134.4, 134.2, 132.5, 131.3, 130.5,

130.43, 130.40, 128.3, 125.5, 120.9, 61.7, 52.6, 38.4, 14.6.

HRMS (ESI): *m/z*; [M+Na]⁺ Calcd for C₁₉H₂₀N₂O₆SNa 427.09343; Found: 427.0941.

3. Synthesis of Indoline-3-acetic Acid Derivatives 2 (Table 1)

To a solution of **1** 0.40 mmol) in dimethylformamide (DMF, 4.0 mL) was added 1,8diazabicyclo(5.4.0)undec-7-ene (DBU, 0.060 g, 0.40 mmol). The reaction mixture was stirred at 100 °C with an oil bath and monitored by TLC. After the complete consumption of the staring material **1**, the reaction mixture was cooled to room temperature, quenched with H_2O , and extracted with ethyl acetate. The combined organic layers were washed with brine, dried over MgSO₄ and concentrated under reduced pressure. The residue was purified by column chromatography on silica gel using a mixture of ethyl acetate and hexanes as the eluent to provide the desired indoline product **2**. The diastereomeric ratio of the resulting indoline-3-acetate **2** depends on the choice of a substituent on the benzyl moiety at the *para*position.

tert-Butyl 2-(4-Cyanophenyl)-3-(2-ethoxy-2-oxoethyl)indoline-1-carboxylate (2c)

A white solid; 0.13 g (81%); *cis: trans* = 5:1.

¹**H NMR** (500 MHz, CDCl₃) δ 7.93 (br, 1H), 7.58* (d, *J* = 8.2 Hz, 0.4H), 7.54 (d, *J* = 8.5 Hz, 2H), 7.34* (d, *J* = 7.6 Hz, 0.4H), 7.30 (t, *J* = 7.5 Hz, 1H+0.4H), 7.16 (d, *J* = 8.2 Hz, 2H), 7.12* (d, *J* = 7.5 Hz, 0.2H), 7.06-6.99 (m, 2H + 0.2H), 5.63 (d, *J* = 9.6 Hz, 1H), 5.14* (br, 0.2H), 4.30 (td, *J* = 10.5, 4.4 Hz, 1H), 4.22* (q, *J* = 7.2 Hz, 0.4H), 4.11-4.02 (m, 2H), 3.47* (t, *J* = 5.8 Hz, 0.2H), 2.72-2.68 (m, 1H + 0.4H), 1.97 (dd, *J* = 17.5, 10.8 Hz, 1H), 1.28 (t, *J* = 7.2 Hz, 9H + 1.8H), 1.21 (t, *J* = 7.2 Hz, 3H+0.6H).

¹³C NMR (125 MHz, CDCl₃) δ 172.0, 171.6, 151.8, 144.8, 143.0, 132.6, 132.2, 131.0, 128.9, 128.8, 128.0, 126.4, 123.5, 123.4, 123.1, 118.9, 118.7, 115.0, 114.6, 111.8, 111.3, 81.5, 66.2, 61.0, 60.9, 41.1, 40.7, 34.5, 28.2, 14.34, 14.26.

HRMS (ESI): *m*/*z*; [M+Na]⁺ Calcd for C₂₄H₂₆N₂O₄Na 429.17848; Found: 429.1785.

tert -Butyl 3-(2-ethoxy-2-oxoethyl)-2-(4-(methoxycarbonyl)phenyl)indoline-1-carboxylate (2d)

A white solid; 0.17 g (50%); *cis: trans* = 5:1.

¹H NMR (500 MHz, CDCl₃) δ 7.95 (d, J = 8.2 Hz, 1H + 0.4H), 7.91 (d, J = 8.5 Hz, 2H + 0.2H), 7.29 (t, J = 7.6 Hz, 1H + 0.4H), 7.13* (d, J = 7.6 Hz, 0.2H) 7.10 (d, J = 7.9 Hz, 2H), 7.05-7.00 (m, 2H + 0.4H), 5.62 (d, J = 9.5 Hz, 1H), 5.13* (br, 0.2H), 4.30 (td, J = 10.4, 4.7 Hz, 1H), 4.21* (q, J = 7.0 Hz, 0.4H), 4.09-4.03 (m, 2H), 3.89 (s, 3H + 0.6H), 3.51 (t, J = 5.9 Hz, 0.2H), 2.71-2.63 (m, 1H + 0.4H), 2.00 (dd, J = 17.5, 10.5 Hz, 1H), 1.27 (t, J = 7.0 Hz, 9H + 1.8H), 1.19 (t, J = 7.2 Hz, 3H + 0.6H).
¹³C NMR (125 MHz, CDCl₃) δ 172.2, 171.6, 166.9, 152.0, 144.6, 143.3, 131.5, 130.1, 129.7, 128.8,

128.6, 127.3, 125.5, 124.8, 123.5, 123.1, 122.9, 114.9, 114.6, 81.3, 66.4, 60.95, 60.86, 52.2, 41.3, 40.8, 34.6, 29.8, 28.2, 14.2.

HRMS (ESI): *m/z*; [M+Na]⁺ Calcd for C₂₅H₂₉NO₆Na 462.18871; Found: 462.1885.

tert -Butyl 3-(2-Ethoxy-2-oxoethyl)-2-(4-(methoxycarbonyl)phenyl)indoline-1-carboxylate (2e)

2e

A white solid; 0.17 g (70%); *cis: trans* = 5:1.

¹**H NMR** (500 MHz, CDCl₃) δ 7.94 (br, 1H), 7.88 *(dt, J = 8.4, 1.8 Hz, 0.4H), 7.83 (d, J = 8.5 Hz, 2H + 0.2H), 7.29 (t, J = 7.5 Hz, 1H + 0.4H) 7.13 (d, J = 8.1 Hz, 2H + 0.2H), 7.05-6.99 (m, 2H + 0.4H), 5.63 (d, J = 9.6 Hz, 1H), 5.15* (br, 0.2H), 4.31 (td, J = 10.2, 4.7 Hz, 1H), 4.22* (q, J = 7.0 Hz, 0.4H), 4.09-4.05 (m, 2H), 3.51* (t, J = 5.9 Hz, 0.2H), 2.72-2.63 (m, 1H + 0.4H), 2.56 (s, 3H + 0.6H), 2.01 (dd, J = 17.5, 10.4 Hz, 1H), 1.28 (t, J = 7.2 Hz, 9H + 1.8H), 1.19 (t, J = 7.2 Hz, 3H + 0.6H).

¹³C NMR (125 MHz, CDCl₃) δ 197.8, 197.7, 172.2, 171.6, 152.0, 144.7, 143.3, 136.7, 136.4, 131.5, 128.9, 128.6, 128.5, 127.5, 125.7, 123.5, 123.2, 123.0, 115.0, 114.6, 81.3, 66.4, 61.0, 60.9, 41.3, 40.8, 34.6, 29.8, 28.3, 26.7, 14.4, 14.3.

HRMS (ESI): *m/z*; [M+Na]⁺ Calcd for C₂₅H₂₉NO₅Na 446.19379; Found: 446.1941.

tert -Butyl 3-(2-Ethoxy-2-oxoethyl)-2-(4-nitrophenyl)indoline-1-carboxylate (2f)

A light yellow solid; 0.16 g (91%); cis: trans = 7:1.

¹**H NMR** (500 MHz, CDCl₃) δ 8.15* (d, *J* = 8.8 Hz, 0.30H), 8.11 (d, *J* = 8.8 Hz, 2H), 7.94 (br, 1H), 7.41* (d, *J* = 8.5 Hz, 0.30H), 7.31 (t, *J* = 7.8 Hz, 1H + 0.30H) 7.22 (d, *J* = 8.5 Hz, 2H), 7.13* (d, *J* = 7.5 Hz, 0.15H), 7.07-7.01 (m, 2H + 0.15H), 5.70 (d, *J* = 9.6 Hz, 1H), 5.22* (br, 0.15H), 4.33 (td, *J* = 10.7, 4.6 Hz, 1H), 4.23* (q, *J* = 7.2 Hz, 0.30H), 4.12-4.03 (m, 2H), 3.50 (t, *J* = 6.4 Hz, 0.15H), 2.74-2.69 (m, 1H + 0.30H), 1.97 (dd, *J* = 17.5, 10.8 Hz, 1H), 1.31 (t, *J* = 7.2 Hz, 9H + 1.35H), 1.20 (t, *J* = 7.2 Hz, 3H+0.45H).

¹³C NMR (125 MHz, CDCl₃) δ 172.0, 171.6, 151.8, 147.7, 146.8, 143.0, 131.1, 129.0, 128.9, 128.2, 126.5, 124.1, 123.7, 123.6, 123.5, 123.2, 115.1, 114.7, 81.7, 66.0, 61.1, 61.0, 41.2, 40.8, 34.5, 29.8, 28.3, 14.4 14.2.

HRMS (ESI): *m/z*; [M+Na]⁺ Calcd for C₂₃H₂₆N₂O₆Na 449.16831; Found: 449.1682.

4. Determination of Stereochemistry of Indoline-3-acetic Acid Derivatives

The cis/trans ratios of indoline-3-acetic acid derivatives **2** or **4** were determined by the comparison of ¹H NMR spectrum of the synthesized compounds with one reported in the literature.¹ The proton at the C2-position of *cis*- and *trans*-ethyl *N*-methoxycarbonyl-2-phenylindoline-3-acetate displayed unique features. The chemical shift of the proton at the C2-position of the *cis*-isomer was at 5.63 ppm (d, J = 10.0 Hz, 1H), while one of the proton at the same position of the *trans*-isomer was at 5.22 ppm (s, 1H).

Similar trends were observed in the newly synthesized indoline-3-acetic acid derivatives **2** or **4**. As depicted below, indoline **2c** also exhibited a characteristic peaks in its ¹H NMR spectrum. *cis*-**2c** has peaks at 5.61 ppm (d, 1H) and 4.27 ppm (ddd, 1H), while *trans*-**2c** has 5.14 ppm (br (s), 1H) and 3.47 ppm (d, 1H). Based on these characteristic peaks of *cis*- and *trans*-isomers of **2c** from its ¹H NMR spectrum, we were able to determine the *cis:trans* ratio of **2c** as 5:1.

Figure S 1. ¹H NMR Spectrum of 2c.

Accordingly, the stereochemistry of the resulting 2-(2-nitropheyl)indoline-3-acetic acid derivatives 4 generated the cyclization reaction of *N*-(2-nitrobenzyl)-2-aminocinnamic acid derivatives 3 using ¹H NMR spectra. As shown in the below spectrum, there were peaks from the *cis*-isomer (*cis*-4a) and no

peaks was observed from *trans*-isomer (trans-4a).Furthermore, we concluded that only the *cis*-isomer of indoline-3-acetic acid derivatives **4** was obtained from the cyclization of of *N*-(2-nitrobenzyl)-2-aminocinnamic acid derivatives **3**.

Figure S 2. 1H NMR Spectrum of 4a

5. Synthesis of 2-(2-Nitrophenyl)indoline-3-acetic Acid Derivatives 4 (Table 3)

To a solution of **3** (0.40 mmol) in dimethylformamide (DMF, 4.0 mL) was added 1,8-diazabicyclo (5.4.0)undec-7-ene (DBU, 0.0060 g, 0.040 mmol). The reaction mixture was stirred at 60 °C with an oil bath and monitored by TLC. After the complete consumption of the staring material **3**, the reaction mixture was cooled to room temperature, quenched with H_2O , and extracted with ethyl acetate. The combined organic layers were washed with brine, dried over MgSO₄ and concentrated under reduced pressure. The residue was purified by column chromatography on silica gel using a mixture of ethyl acetate and hexanes as the eluent to provide the desired indoline product **4**.

tert-Butyl 3-(2-Ethoxy-2-oxoethyl)-2-(2-nitrophenyl)indoline-1-carboxylate (4a)

A light yellow solid; 0.16 g (97%); *cis: trans* = 1:0.

¹**H NMR** (500 MHz, CDCl₃) δ 7.98 (d, *J* = 7.8, 1H), 7.52 (td, *J* = 7.5, 1.2 Hz, 1H), 7.45 (td, *J* = 8.2, 1.4 Hz, 1H), 7.30 (t, *J* = 8.4 Hz, 2H) 7.13 (d, *J* = 7.6 Hz, 1H), 7.04 (td, *J* = 7.5, 0.9 Hz, 1H), 6.05 (d, *J* = 10.2 Hz, 1H), 4.59 (td, *J* = 9.6, 4.9 Hz, 1H), 4.18-4.11 (m, 2H), 2.42 (dd, *J* = 16.3, 4.9 Hz, 1H), 2.24 (dd, *J* = 16.3, 9.3 Hz, 1H), 1.25(t, *J* = 7.2 Hz, 3H), 1.19(br, 9H).

¹³C NMR (125 MHz, CDCl₃) δ 171.9, 151.6, 149.1, 142.8, 136.3, 133.6, 132.4, 128.62, 128.6, 128.1, 124.5, 124.4, 123.4, 114.5, 81.5, 61.4, 61.0, 40.6, 36.9, 28.0, 14.3.

HRMS (ESI): *m/z*; [M+Na]⁺ Calcd for C₂₃H₂₆N₂O₆Na 449.16831; Found: 449.1685.

Ethyl 2-(2-(2-nitrophenyl)-1-thionitrosoindolin-3-yl)acetate (4b)

A light yellow solid; 0.14 g (68%);

¹**H NMR** (500 MHz, CDCl₃) δ 8.30 (d, J = 8.8 Hz, 2H), 8.08 (d, J = 8.1 Hz, 1H), 7.92 (d, J = 8.8 Hz, 2H), 7.82 (d, J = 8.2 Hz, 1H), 7.60 (td, J = 8.1, 1.1 Hz, 1H), 7.54 (dd, J = 7.9, 1.4 Hz, 1H), 7.52 (td, J = 8.4, 1.4 Hz, 1H), 7.37 (t, J = 7.6 Hz, 1H), 7.15 (t, J = 7.0 Hz, 1H), 7.06 (d, J = 7.5Hz, 1H), 6.21 (d, J = 10.4 Hz, 1H), 4.25 (q, J = 9.2 Hz, 1H), 4.06-4.01 (m, 2H), 2.23 (dd, J = 16.6, 5.8 Hz, 1H), 2.16 (dd, J = 16.6, 8.5 Hz, 1H), 1.17 (t, J = 7.0 Hz, 3H).

¹³C NMR (125 MHz, CDCl₃) δ 171.2, 150.8, 148.0, 142.5, 140.9, 134.1, 134.0, 133.6, 129.9, 129.4, 129.2, 128.7, 126.0, 125.3, 125.1, 124.6, 115.7, 63.4, 61.2, 41.5, 36.4, 14.2.

HRMS (ESI): *m/z*; [M+Na]⁺ Calcd for C₂₄H₂₁N₃O₈SNa 534.09416; Found: 534.0950.

Ethyl 2-(2-(2-nitrophenyl)-1-tosylindolin-3-yl)acetate (4c)

A light yellow solid; 0.18 g (95%);

¹**H NMR** (500 MHz, CDCl₃) δ 8.07 (d, *J* = 8.2 Hz, 1H), 7.82 (d, *J* = 7.9 Hz, 1H), 7.64 (d, *J* = 7.6 Hz, 1H), 7.60-7.57 (m, 3H), 7.48 (td, *J* = 8.4, 1.5 Hz, 1H), 7.33 (t, *J* = 7.5 Hz, 1H), 7.23 (d, *J* = 7.9 Hz, 2H), 7.09 (td, *J* = 7.5, 0.9 Hz, 1H), 7.02 (d, *J* = 7.6 Hz, 1H), 6.10 (d, *J* = 10.4 Hz, 1H), 4.25 (td, *J* = 9.2, 5.3 Hz, 1H), 4.07-4.00 (m, 2H), 2.38 (m, 3H), 2.21 (dd, *J* = 16.3, 5.0 Hz, 1H), 2.10 (dd, *J* = 16.3, 9.0 Hz, 1H), 1.17 (t, *J* = 7.2 Hz, 3H).

¹³C NMR (125 MHz, CDCl₃) δ 171.5, 148.0, 144.8, 141.8, 135.0, 133.86, 133.84, 133.73, 133.68, 130.3, 130.0, 129.0, 128.9, 127.5, 125.2, 124.9, 116.0, 63.4, 61.0, 41.4, 36.9, 21.7, 14.2.
HRMS (ESI): *m/z*; [M+Na]⁺ Calcd for C₂₅H₂₄N₂O₆SNa 503.12473; Found: 503.1238.

Ethyl 2-(1-(methylsulfonyl)-2-(2-nitrophenyl)indolin-3-yl)acetate (4d)

A light yellow solid; 0.12 g (77%);

¹**H NMR** (500 MHz, CDCl₃) δ 8.06 (d, J = 8.1 Hz, 1H), 7.68 (d, J = 7.8 Hz, 1H), 7.61 (t, J = 7.8 Hz, 1H), 7.57 (t, J = 7.9 Hz, 1H), 7.48 (td, J = 8.4, 1.2 Hz, 1H), 7.33 (t, J = 7.5 Hz, 1H), 7.20 (d, J = 7.5 Hz, 1H), 7.14 (t, J = 7.5 Hz, 1H), 6.13 (d, J = 10.4 Hz, 1H), 4.73 (td, J = 9.6, 5.3 Hz, 1H), 4.11-4.05 (m, 2H), 2.86 (S, 3H), 2.30 (dd, J = 16.5, 5.0 Hz, 1H), 2.19 (dd, J = 16.5, 9.2 Hz, 1H), 1.22 (t, J = 7.0 Hz, 3H). ¹³**C NMR** (125 MHz, CDCl₃) δ 171.4, 147.9, 141.4, 134.8, 133.8, 133.1, 129.9, 129.2, 129.1, 125.3,

125.2, 125.0, 114.5, 64.2, 61.1, 41.6, 37.3, 35.5, 14.2.

HRMS (ESI): m/z; $[M+Na]^+$ Calcd for $C_{19}H_{20}N_2O_6SNa$ 427.09343; Found: 427.0935.

tert -Butyl 3-(2-methoxy-2-oxoethyl)-2-(2-nitrophenyl)-1H-indoline-1-carboxylate (4e)

A light yellow solid; 0.14 g (87%);

¹**H NMR** (500 MHz, CDCl₃) δ 7.98 (d, *J* = 7.9 Hz, 1H), 7.92 (br, 1H), 7.52 (td, *J* = 7.5, 1.2 Hz, 1H), 7.45 (td, *J* = 8.2, 1.4 Hz, 1H), 7.30 (t, *J* = 8.7 Hz, 2H), 7.11 (d, *J* = 7.5 Hz, 1H), 7.04 (td, *J* = 7.5, 1.1 Hz, 1H),

6.05 (d, *J* = 10.4 Hz, 1H), 4.58 (td, *J* = 9.6, 5.2 Hz, 1H), 3.68 (s, 3H), 2.41 (dd, *J* = 16.2, 5.0 Hz, 1H), 2.27 (dd, *J* = 16.4, 9.0 Hz, 1H), 1.19 (br, 9H).

¹³C NMR (125 MHz, CDCl₃) δ 172.3, 151.6, 149.1, 142.8, 136.2, 133.6, 132.2, 128.7, 128.6, 128.1, 124.5, 124.4, 123.4, 114.5, 81.6, 61.4, 52.1, 40.7, 36.6, 28.0.

HRMS (ESI): *m/z*; [M+Na]⁺ Calcd for C₂₂H₂₂N₂O₆Na 435.15266; Found: 435.1529.

tert -Butyl 3-(2-isopropoxy-2-oxoethyl)-2-(2-nitrophenyl)-1H-indoline-1-carboxylate (4f)

A light yellow solid; 0.18 g (94%);

¹**H NMR** (500 MHz, CDCl₃) δ 7.96 (d, *J* = 8.1 Hz, 1H), 7.91 (br, 1H), 7.50 (td, *J* = 7.5, 1.1 Hz, 1H), 7.44 (td, *J* = 8.2, 1.4 Hz, 1H), 7.28 (t, *J* = 7.6 Hz, 2H), 7.12 (d, *J* = 7.5 Hz, 1H), 7.02 (td, *J* = 7.5, 0.9 Hz, 1H), 6.03 (d, *J* = 10.2 Hz, 1H), 5.05 (p, *J* = 6.3 Hz, 1H), 4.58 (td, *J* = 10.1, 4.4 Hz, 1H), 2.39 (dd, *J* = 16.2, 4.4 Hz, 1H), 2.17 (dd, *J* = 16.2, 9.6 Hz, 1H), 1.23 (d, *J* = 6.3 Hz, 15H).

¹³C NMR (125 MHz, CDCl₃) δ 171.4, 151.6, 149.0, 142.8, 136.4, 133.6, 132.48, 132.46, 128.5, 128.0, 124.4, 123.3, 114.4, 81.5, 68.5, 61.4, 40.6, 37.2, 28.0, 21.9, 21.8.

HRMS (ESI): *m/z*; [M+Na]⁺ Calcd for C₂₄H₂₆N₂O₆Na 463.18396; Found:. 463.1843.

tert -Butyl 3-(2-(tert-,butoxy)-2-oxoethyl)-2-(2-nitrophenyl)-1H-indoline-1-carboxylate (4g)

A light yellow solid; 0.16 g (88%);

¹**H NMR** (500 MHz, CDCl₃) δ 7.98 (d, *J* = 8.1 Hz, 1H), 7.92 (br, 1H), 7.51 (td, *J* = 7.6, 1.2 Hz, 1H), 7.44 (td, *J* = 7.9, 1.4 Hz, 1H), 7.29 (t, *J* = 8.0 Hz, 2H), 7.16 (d, *J* = 7.5 Hz, 1H), 7.03 (td, *J* = 7.5, 0.9 Hz, 1H), 6.02 (d, *J* = 10.4 Hz, 1H), 4.55 (td, *J* = 10.2, 4.1 Hz, 1H), 2.39 (dd, *J* = 16.2, 3.8 Hz, 1H), 2.07 (dd, *J* = 16.2, 10.1 Hz, 1H), 1.45 (s, 9H), 1.19 (br, 9H).

¹³C NMR (125 MHz, CDCl₃) δ 171.2, 151.6, 149.0, 142.8, 136.6, 133.6, 132.82, 132.80, 128.5, 128.1, 124.5, 124.4, 123.3, 114.4, 81.5, 81.2, 61.4, 40.6, 38.2, 28.2, 28.1.

HRMS (ESI): *m*/*z*; [M+Na]⁺ Calcd for C₂₅H₂₈N₂O₆Na 477.19961; Found: 477.1999.

tert -Butyl 3-(cyanomethyl)-2-(2-nitrophenyl)-1H-indoline-1-carboxylate (4h

A light yellow solid; 0.11 g (75%);

¹H NMR (500 MHz, CDCl₃) δ 8.02 (dd, J = 8.1, 1.1 Hz, 1H), 7.95 (br, 1H), 7.60 (td, J = 7.6, 1.2 Hz, 1H),
7.55 (d, J = 7.6 Hz, 1H), 7.52 (td, J = 8.2, 1.4 Hz, 1H), 7.42 (dd, J = 7.9, 1.4 Hz, 1H), 7.37 (t, J = 7.8 Hz,
1H), 7.13 (td, J = 7.5, 0.9 Hz, 1H), 5.93 (d, J = 10.5 Hz, 1H), 4.38 (td, J = 9.8, 4.9 Hz, 1H), 2.64 (dd, J = 16.9, 4.9 Hz, 1H), 2.27 (dd, J = 16.9, 8.7 Hz, 1H), 1.19 (br, 9H).

¹³C NMR (125 MHz, CDCl₃) δ 151.4, 149.3, 142.7, 134.6, 133.8, 129.6, 129.2, 128.6, 124.71, 124.66, 123.8, 118.1, 114.9, 81.9, 61.7, 40.5, 29.8, 28.0, 20.2.

HRMS (ESI): *m/z*; [M+Na]⁺ Calcd for C₂₁H₁₉N₃O₄Na 402.14243; Found: 402.1428.

tert -Butyl 3-(2-ethoxy-2-oxoethyl)-5-methyl-2-(2-nitrophenyl)-1H-indoline-1-carboxylate (4k)

A light yellow solid; 0.18 g (89%);

¹**H NMR** (500 MHz, CDCl₃) δ 7.97 (d, *J* = 8.1 Hz, 1H), 7.80 (br, 1H), 7.51 (td, *J* = 7.6, 1.1 Hz, 1H), 7.44 (td, *J* = 8.2, 1.4 Hz, 1H), 7.28 (d, *J* = 1.2 Hz, 1H), 7.09 (d, *J* = 8.1 Hz, 1H), 6.92 (s, 1H), 6.03 (d, *J* = 9.6 Hz, 1H), 4.56 (td, *J* = 9.6, 4.9 Hz, 1H), 4.20 (m, 2H), 2.40 (dd, *J* = 16.3, 5.0 Hz, 1H), 2.31 (s, 3H), 2.23 (dd, *J* = 16.3, 9.2 Hz, 1H), 1.26 (t, *J* = 7.2 Hz, 3H), 1.18 (br, 9H).

¹³C NMR (125 MHz, CDCl₃) δ 172.0, 151.6, 149.1, 140.5, 136.5, 133.6, 132.9, 132.4, 129.0, 128.5, 128.1, 125.1, 124.4, 114.2, 81.4, 61.5, 61.0, 40.7, 36.9, 28.1, 21.2, 14.3.

HRMS (ESI): *m/z*; [M+Na]⁺ Calcd for C₂₄H₂₆N₂O₆Na 463.18396; Found: 463.1843.

tert -Butyl 5-bromo-3-(2-ethoxy-2-oxoethyl)-2-(2-nitrophenyl)-1H-indoline-1-carboxylate (4l)

A light yellow solid; 0.19 g (96%);

¹**H NMR** (500 MHz, CDCl₃) δ 8.00 (d, *J* = 8.1 Hz, 1H), 7.82 (br, 1H), 7.56 (t, *J* = 7.3 Hz, 1H), 7.49 (t, *J* = 7.6 Hz, 1H), 7.40 (d, *J* = 7.9 Hz, 1H), 7.26 (d, *J* = 6.7 Hz, 2H), 6.05 (d, *J* = 9.6 Hz, 1H), 4.58 (td, *J* = 9.9, 4.4 Hz, 1H), 4.20 (m, 2H), 2.43 (dd, *J* = 16.5, 4.6 Hz, 1H), 2.23 (dd, *J* = 16.5, 9.3 Hz, 1H), 1.27 (t, *J* = 7.0 Hz, 3H), 1.19 (br, 9H).

¹³C NMR (125 MHz, CDCl₃) δ 172.0, 151.6, 149.1, 140.5, 136.5, 133.6, 132.9, 132.4, 129.0, 128.5, 128.1, 125.1, 124.4, 114.2, 81.4, 61.5, 61.0, 40.7, 36.9, 28.1, 21.2, 14.3.

HRMS (ESI): *m/z*; [M+Na]⁺ Calcd for C₂₃H₂₃BrN₂O₆Na 527.07882; Found: 527.0789.

tert -Butyl 2-(5-bromo-2-nitrophenyl)-3-(2-ethoxy-2-oxoethyl)-1H-indoline-1-carboxylate (4m)

A light yellow solid; 0.17 g (83%);

¹**H NMR** (500 MHz, CDCl₃) δ 7.90 (br, 1H), 7.88 (d, *J* = 8.7 Hz, 1H), 7.59 (dd, *J* = 8.7, 2.1 Hz, 1H), 7.43 (d, *J* = 2.0 Hz, 1H), 7.31 (t, *J* = 7.6 Hz, 1H), 7.15 (d, *J* = 7.5 Hz, 1H), 7.05 (td, *J* = 7.5, 0.9 Hz, 1H), 6.02 (d, *J* = 10.7 Hz, 1H), 4.59 (td, *J* = 9.6, 5.2 Hz, 1H), 4.16 (m, 2H), 2.36 (dd, *J* = 16.2, 5.2 Hz, 1H), 2.28 (dd, *J* = 16.2, 9.0 Hz, 1H), 1.24 (t, *J* = 7.2 Hz, 12H).

¹³C NMR (125 MHz, CDCl₃) δ 171.6, 151.5, 147.8, 142.4, 142.3, 138.4, 131.9, 131.1, 128.8, 128.7, 126.1, 124.5, 123.6, 114.8, 81.9, 61.5, 61.1, 40.6, 37.3, 28.1, 14.2.

HRMS (ESI): *m/z*; [M+Na]⁺ Calcd for C₂₃H₂₃BrN₂O₆Na 527.07882; Found: 527.0786.

tert -Butyl 3-(2-ethoxy-2-oxoethyl)-2-(5-methyl-2-nitrophenyl)-1H-indoline-1-carboxylate (4n)

A light yellow solid; 0.17 g (95%);

¹**H NMR** (500 MHz, CDCl₃) δ 7.93 (br, 1H), 7.91 (d, *J* = 8.4 Hz, 1H), 7.30 (t, *J* = 7.8 Hz, 1H), 7.22 (dd, *J* = 8.4, 1.2 Hz, 1H), 7.14 (d, *J* = 7.6 Hz, 1H), 7.04 (td, *J* = 7.5, 0.9 Hz, 2H), 6.06 (d, *J* = 10.7 Hz, 1H), 4.59 (td, *J* = 10.1, 4.7 Hz, 1H), 4.16 (m, 2H), 2.39 (dd, *J* = 16.2, 4.7 Hz, 1H), 2.31 (s, 3H), 2.23 (dd, *J* = 16.2, 9.5 Hz, 1H), 1.25 (t, *J* = 7.2 Hz, 3H), 1.19 (br, 9H).

¹³C NMR (125 MHz, CDCl₃) δ 171.8, 163.6, 151.6, 142.6, 142.0, 139.3, 132.3, 128.5, 127.3, 124.3,

123.2, 114.3, 113.1, 112.8, 81.4, 61.6, 60.9, 55.8, 40.5, 36.8, 28.0, 14.1

HRMS (ESI): *m*/*z*; [M+Na]⁺ Calcd for C₂₄H₂₆N₂O₆Na 463.18396; Found: 463.1842.

tert -Butyl 3-(2-ethoxy-2-oxoethyl)-2-(5-methoxy-2-nitrophenyl)-1H-indoline-1-carboxylate (40)

A light yellow solid; 0.17 g (94%);

¹**H NMR** (500 MHz, CDCl₃) δ 8.08 (d, *J* = 9.2 Hz, 1H), 7.91 (br, 1H), 7.28 (t, *J* = 7.8 Hz, 1H), 7.12 (d, *J* = 7.5 Hz, 1H), 7.03 (td, *J* = 7.5, 0.9 Hz, 1H), 6.89 (dd, *J* = 9.2, 2.7 Hz, 2H), 6.71 (d, *J* = 2.7 Hz, 1H), 6.19 (d, *J* = 10.4 Hz, 1H), 4.60 (td, *J* = 9.9, 4.9 Hz, 1H), 4.16 (m, 2H), 3.73 (s, 3H), 2.41 (dd, *J* = 16.3, 4.9 Hz, 1H), 2.26 (dd, *J* = 16.3, 9.3 Hz, 1H), 1.25 (t, *J* = 7.2 Hz, 12H).

¹³C NMR (125 MHz, CDCl₃) δ 171.9, 163.7, 151.7, 142.8, 142.2, 139.5, 132.4, 128.6, 127.5, 124.5, 123.4, 114.5, 113.3, 112.9, 81.5, 61.7, 61.0, 55.9, 40.6, 36.9, 28.1, 14.3.

HRMS (ESI): *m/z*; [M+Na]⁺ Calcd for C₂₄H₂₆N₂O₇Na 479.17887; Found: 479.1783.

6. Synthetic Utilities (Scheme 2)

6-1. Telescope Synthesis of 4a on a Large-scale (Scheme 2a)

Ethyl 2-aminocinnamate (5, 1.9 g, 10.0 mmol) was added to a 250 mL two-neck round bottom flask equipped with a reflux condenser and dissolved in EtOH (100.0 mL). To the above mixture was added a solution of di-*tert*-butyl dicarbonate (Boc₂O, 6.9 mL, 30.0 mmol) dropwise at room temperature. The reaction mixture was allowed to reflux with an oil bath and monitored by TLC. After the complete consumption of **5**, the reaction mixture was cooled to room temperature, quenched with H_2O , and extracted with ethyl acetate. The combined organic layers were washed with brine, dried over MgSO₄, and concentrated under reduced pressure to provide a crude product of **6**, which was directly used in the next step without further isolation.

The resulting **6** was added to a 250 mL one-neck round bottom flask and dissolved in dimethylformamide (DMF, 100.0 mL) at 0 °C. To the above mixture was added a NaH (60% dispersion in mineral oil, 0.49 g, 12.0 mmol). After 30 min, the reaction mixture was cooled to room temperature. To the reaction mixture was added 2-nitrobenzyl bromide (2.6 g, 12.0 mmol) and the reaction mixture was stirred and monitored by TLC at room temperature. After the complete consumption of the starting material **6**, the resulting mixture of **3a** was directly subjected to base-catalyzed cyclization. To the above reaction mixture was added 1,8-diazabicyclo (5.4.0)undec-7-ene (DBU, 0.15 mL, 1.0 mmol). The reaction mixture was

stirred at 60 °C with an oil bath and monitored by TLC. After the complete consumption of **3a**, the reaction mixture was carefully quenched with H_2O and extracted with ethyl acetate. The combined organic layers were washed with brine, dried over MgSO₄ and concentrated under reduced pressure. The residue was purified by column chromatography on silica gel using a mixture of ethyl acetate and hexanes as the eluent to provide product **4a** as a light yellow solid in 66% yield (2.8 g) over three steps.

Spectroscopic data were in good agreement with ones reported in Table 1.

6-2. Divergent Approach for Synthesis of 4l from 4a (Scheme 2b)

In a one neck round bottom flask was placed **4a** (0.42 g, 1.0 mmol) and NBS (0.53 g, 3.0 mmol). The mixture was dissolved with dichloromethane (DCM, 10.0 mL), stirred at room temperature and monitored by TLC. After the complete consumption of **4a**, the reaction mixture was carefully quenched with H_2O , and extracted with dichloromethane. The combined organic layers were washed with brine, dried over MgSO₄ and concentrated under reduced pressure The residue was purified by column chromatography on silica gel using a 1:3 mixture of ethyl acetate and hexanes as the eluent to provide product **4l** as a light yellow solid (0.45 g, 90% yield).

Spectroscopic data were identical to ones reported in Table 3.

6-3. Total Synthesis of Dihydropaullone (8) (Scheme 2b)

In a one neck round bottom flask were placed indoline **4a** (0.42 g, 1.0 mmol) and Zn (0.33 g, 5.0 mmol). To the flask were added MeOH (10.0 mL) and AcOH (0.57 mL, 10.0 mmol) and the reaction mixture was heated to 60 °C with an oil bath. After 12 h, the reaction mixture was cooled to room temperature, quenched with H_2O , and extracted with ethyl acetate. The combined organic layers were washed with brine, dried over MgSO₄ and concentrated under reduced pressure to provide a crude product of **10**, which was directly used in the next step without further isolation.

The resulting **10** was added to a 25 mL one-neck round bottom flask and dissolved in tetrahydrofuran (THF, 10.0 mL) at 60 °C. 4N HCl (5ml, 20.0 mmol) was added to the above mixture and the resulting mixture was monitored by TLC at the same temperature. After the complete consumption of **10**, the reaction mixture was carefully quenched with H₂O and extracted with ethyl acetate. The combined organic layers were washed with brine, dried over MgSO₄, and concentrated under reduced pressure. The residue was purified by column chromatography on silica gel using a 1:3 mixture of ethyl acetate and hexanes as the eluent to provide the desired dihydropaullone (**8**) as a white solid in 81% yield (0.20 g). **1H NMR** (500 MHz, CDCl₃) δ 7.39 (s, 1H), 7.33 (d, *J* = 7.8 Hz, 1H), 7.29 (td, *J* = 7.6, 1.4 Hz, 1H), 7.18 (td, *J* = 7.6, 1.2 Hz, 1H), 7.11 (t, *J* = 7.6 Hz, 1H), 7.03 (d, *J* = 7.3 Hz, 1H), 6.97 (dd, *J* = 7.8, 0.92 Hz, 1H), 6.78 (td, *J* = 7.5, 0.92 Hz, 1H), 6.74 (d, *J* = 7.8 Hz, 1H), 5.07 (d, *J* = 9.3 Hz, 1H), 4.25 (td, *J* = 9.6, 1.2 Hz, 1H), 6.74 (d, *J* = 7.8 Hz, 1H), 5.07 (d, *J* = 9.3 Hz, 1H), 4.25 (td, *J* = 9.6, 1.2 Hz, 1H), 6.74 (d, *J* = 7.8 Hz, 1H), 5.07 (d, *J* = 9.3 Hz, 1H), 4.25 (td, *J* = 9.6, 1.2 Hz, 1H), 6.74 (d, *J* = 7.8 Hz, 1H), 5.07 (d, *J* = 9.3 Hz, 1H), 4.25 (td, *J* = 9.6, 1.2 Hz, 1H), 5.07 (d, *J* = 9.3 Hz, 1H), 4.25 (td, *J* = 9.6, 1.2 Hz, 1H), 5.07 (d, *J* = 9.3 Hz, 1H), 4.25 (td, *J* = 9.6, 1.2 Hz, 1H), 5.07 (d, *J* = 9.3 Hz, 1H), 4.25 (td, *J* = 9.6, 1.2 Hz, 1H), 5.07 (d, *J* = 9.3 Hz, 1H), 4.25 (td, *J* = 9.6, 1.2 Hz, 1H), 5.07 (d, *J* = 9.3 Hz, 1H), 4.25 (td, *J* = 9.6, 1.2 Hz, 1H), 5.07 (d, *J* = 9.3 Hz, 1H), 4.25 (td, *J* = 9.6, 1.2 Hz, 1H), 5.07 (d, *J* = 9.3 Hz, 1H), 5.07 (d, *J* = 9.6, 1.2 Hz, 1H), 5.07 (d, *J* = 9.3 Hz, 1H), 5.07 (d, *J* = 9.6, 1.2 Hz, 1H), 5.07 (d, *J* = 9.3 Hz, 1H), 5.07 (d, *J* = 9.6, 1.2 Hz, 1H), 5.07 (d, *J* = 9.3 Hz, 1H), 5.07 (d, *J* = 9.6, 1.2 Hz, 1H), 5.07 (d, *J* = 9.3 Hz, 1H), 5.07 (d, *J* = 9.6, 1.2 Hz, 1H), 5.07 (d, *J* = 9.3 Hz, 1H), 5.

5.3 Hz, 1H), 2.86 (dd, *J* = 12.4, 5.2 Hz, 1H), 2.47 (td, *J* = 12.4, 9.6 Hz, 1H).

¹³C NMR (125 MHz, CDCl₃) δ 173.9, 149.9, 137.1, 133.9, 129.3, 128.6, 127.93, 127.92, 125.8, 124.0, 123.0, 119.6, 109.3, 63.1, 48.6, 36.2.

HRMS (ESI): *m/z*; [M+Na]⁺ Calcd for C₁₆H₁₄N₂ONa 273.09983; Found: 273.0998.

6-4. Synthesis of Indole 7 from Indoline 4a (Scheme 2b)

To a solution of indoline **4a** (0.43 g, 1.0 mmol) in toluene (10.0 mL) was added 2,3-dichloro-5,6-dicyano-1,4-benzoquinone (DDQ, 0.45 g, 2.0 mmol). The reaction mixture was stirred at 120 °C with an oil bath and monitored by TLC. After the complete consumption of **4a**, the reaction mixture was cooled to room temperature, quenched with H_2O , and extracted with ethyl acetate. The combined organic layers were washed with brine, dried over MgSO₄ and concentrated under reduced pressure. The residue was purified by column chromatography on silica gel using a 1:3 mixture of ethyl acetate and hexanes as the eluent to provide the desired indole product **7** as yellow solid (0.35 g, 83% yield).

¹**H NMR** (500 MHz, CDCl₃) δ 8.28 (d, *J* = 8.2 Hz, 1H), 8.24 (d, *J* = 8.2 Hz, 1H), 7.73 (t, *J* = 7.5 Hz, 1H), 7.64 (t, *J* = 7.5 Hz, 1H), 7.59 (d, *J* = 7.8 Hz, 1H), 7.55 (d, *J* = 7.3 Hz, 1H), 7.40 (t, *J* = 7.3 Hz, 1H), 7.31 (t, *J* = 7.5 Hz, 1H), 4.07 (q, *J* = 7.2 Hz, 2H), 3.45 (d, *J* = 15.4 Hz, 1H), 3.34 (d, *J* = 15.4 Hz, 1H), 1.28 (s, 9H), 1.18(t, *J* = 7.2 Hz, 3H).

¹³C NMR (125 MHz, CDCl₃) δ 170.7, 149.7, 148.8, 136.3, 133.2, 133.1, 132.7, 129.6, 129.4, 129.2, 125.3, 124.8, 123.1, 119.1, 116.0, 114.0, 83.7, 61.2, 30.9, 27.7, 14.2.

HRMS (ESI): *m/z*; [M+Na]⁺ Calcd for C₂₃H₂₄N₂O₆Na 447.15266; Found: 447.1524.

6-5. Synthesis of Indoloquinazolinone 9 from 7 (Scheme 2b)

In a one neck round bottom flask was placed indole 7 (0.42 g, 1.0 mmol) and Zn (0.33 g, 5.0 mmol). To the flask were added MeOH (10.0 mL) and AcOH (0.57 mL, 10.0 mmol) and the reaction mixture was heated to 60 °C with an oil bath. After 12 h, the reaction mixture was cooled to room temperature, quenched with H_2O , and extracted with ethyl acetate. The combined organic layers were washed with brine, dried over MgSO₄ and concentrated under reduced pressure. The residue was purified by column chromatography on silica gel using a 1:3 mixture of ethyl acetate and hexanes as the eluent to provide indologuinazolinone **9** as a white solid (0.32 g, 95% yield).

¹H NMR (500 MHz, DMSO) δ 11.41 (s, 1H), 8.62-8.58 (m, 1H), 8.05 (d, *J* = 7.3 Hz, 1H), 7.84-7.80 (m, 1H), 7.46 (td, *J* = 8.2, 1.1 Hz, 1H), 7.42-7.38 (m, 2H), 7.31 (d, *J* = 8.2 Hz, 1H), 7.27 (td, *J* = 8.2, 1.1 Hz, 1H), 4.29 (s, 2H), 4.13 (q, *J* = 7.0 Hz, 2H), 1.18 (t, *J* = 7.0 Hz, 3H).

¹³C NMR (125 MHz, DMSO) δ 170.5, 147.0, 134.7, 132.2, 130.5, 129.9, 129.1, 124.0, 123.7, 123.3, 122.9, 118.4, 115.5, 115.4, 114.1, 106.5, 60.6, 30.5, 14.1.

HRMS (ESI): *m/z*; [M+Na]⁺ Calcd for C₁₉H₁₆N₂O₃Na 343.1053; Found: 343.1058.
7. References

1. (a) I. Prediger, T. Weiss and O. Reiser, *Synthesis* 2008, 14, 2191–2198. (b) S. K. Pagire and O.

Reiser, Green. Chem. 2017, 19, 1721-1725.

8. Spectroscopic Data

- 8-1. NMR Spectra of (E)-Ethyl 3-(2-(Benzyl(tert-butoxycarbonyl)amino)phenyl)acrylate (1a)
- a) ¹H NMR Spectrum (500 MHz, MeOD)

8-2. NMR Spectra of (E)-Ethyl 3-(2-((4-Bromobenzyl)(tert-butoxycarbonyl)amino)phenyl)acrylate (1b)

8-3. NMR Spectra of (*E*)-Ethyl 3-(2-((*tert*-Butoxycarbonyl)(4-cyanobenzyl)amino)phenyl)acrylate (1c)

8-4. NMR Spectra of (*E*)-Methyl 4-(((*tert*-Butoxycarbonyl)(2-(3-ethoxy-3-oxoprop-1-en-1 1)phenyl)amino)methyl)benzoate (1d)

8-5. NMR Spectra of (E)-Ethyl 3-(2-((4-Acetylbenzyl)(tert-butoxycarbonyl)amino)phenyl)acrylate (1e)

8-6. NMR Spectra of (E)-Ethyl 3-(2-((tert-Butoxycarbonyl)(4-nitrobenzyl)amino)phenyl)acrylate (1f)

8-7. NMR Spectra of (E)-Ethyl 3-(2-((tert-Butoxycarbonyl)(3-nitrobenzyl)amino)phenyl)acrylate (1g)

S50

8-9. NMR Spectra of (E)-Ethyl 3-(2-((2-Nitrobenzyl)(thionitroso)amino)phenyl)acrylate (3b)

8-10. NMR Spectra of (*E*)-Ethyl 3-(2-(4-Methyl-N-(2-nitrobenzyl)phenylsulfonamido)phenyl)acrylate (3c)

a) ¹H NMR Spectrum (500 MHz, CDCl₃)

8-11. NMR Spectra of (*E*)-Ethyl 3-(2-(N-(2-Nitrobenzyl)methylsulfonamido)phenyl)acrylate (3d)

a) ¹H NMR Spectrum (500 MHz, CDCl₃)

8-13. NMR Spectra of (E)-Isopropyl 3-(2-((tert-Butoxycarbonyl)(2-nitrobenzyl)amino)phenyl)acrylate (3f)

8-14. NMR Spectra of (E)-tert-Butyl 3-(2-((tert-Butoxycarbonyl)(2-nitrobenzyl)amino)phenyl)acrylate (3g)

a) ¹H NMR Spectrum (500 MHz, MeOD)

8-15. NMR Spectra of (*E*)-*tert*-Butyl (2-(2-Cyanovinyl)phenyl)(2-nitrobenzyl)carbamate (3h)

8-17. NMR Spectra of (E)-tert-Butyl (2-(3-(Diethylamino)-3-oxoprop-1-en-1-yl)phenyl)(2-nitrobenzyl)carbamate (3j)

8-18. NMR Spectra of (E)-Ethyl 3-(2-((tert-Butoxycarbonyl)(2-nitrobenzyl)amino)-5-methylphenyl)acrylate (3k)

b) ¹³**C NMR Spectrum** (125 MHz, MeOD)

8-19. NMR Spectra of (E)-Ethyl 3-(5-Bromo-2-((tert-butoxycarbonyl)(2-nitrobenzyl)amino)phenyl)acrylate (31)

b) ¹³**C NMR Spectrum** (125 MHz, MeOD)

8-20. NMR Spectra of (*E*)-Ethyl 3-(2-((*tert*-Butoxycarbonyl)(5-methyl-2-nitrobenzyl)amino)phenyl)acrylate (3n)

a) ¹H NMR Spectrum (500 MHz, MeOD)

8-21. NMR Spectra of (E)-Ethyl 3-(2-((tert-Butoxycarbonyl)(5-methoxy-2-nitrobenzyl)amino)phenyl)acrylate (30)

a) ¹H NMR Spectrum (500 MHz, MeOD)

b) ¹³C NMR Spectrum (125 MHz, MeOD)

8-22. NMR Spectra of tert-Butyl 2-(4-Cyanophenyl)-3-(2-ethoxy-2-oxoethyl)indoline-1-carboxylate (2c)

8-23. NMR Spectra of *tert*-Butyl 3-(2-Ethoxy-2-oxoethyl)-2-(4-(methoxycarbonyl)phenyl)indoline-1-carboxylate (2d)

8-24. NMR Spectra of *tert*-Butyl 3-(2-Ethoxy-2-oxoethyl)-2-(4-(methoxycarbonyl)phenyl)indoline-1-carboxylate (2e)

a) ¹H NMR Spectrum (500 MHz, CDCl₃)

8-25. NMR Spectra of tert-Butyl 3-(2-Ethoxy-2-oxoethyl)-2-(4-nitrophenyl)indoline-1-carboxylate (2f)

8-26. NMR Spectra of *tert*-Butyl 3-(2-Ethoxy-2-oxoethyl)-2-(2-nitrophenyl)indoline-1-carboxylate (4a)

8-27. NMR Spectra of Ethyl 2-(2-(2-Nitrophenyl)-1-thionitrosoindolin-3-yl)acetate (4b)

8-28. NMR Spectra of Ethyl 2-(2-(2-Nnitrophenyl)-1-tosylindolin-3-yl)acetate (4c)

a) ¹H NMR Spectrum (500 MHz, CDCl₃)

8-29. NMR Spectra of Ethyl 2-(1-(Methylsulfonyl)-2-(2-nitrophenyl)indolin-3-yl)acetate (4d)

8-30. NMR Spectra of *tert*-Butyl 3-(2-Methoxy-2-oxoethyl)-2-(2-nitrophenyl)-1H-indoline-1-carboxylate (4e)

184 176 168 160 152 144 136 128 120 112 104 96 88 80 72 64 56 48 40 32 24 16 8 0 -8 Chemical Shift (ppm)

8-31. NMR Spectra of *tert*-Butyl 3-(2-Isopropoxy-2-oxoethyl)-2-(2-nitrophenyl)-1H-indoline-1-carboxylate (4f)

8-32. NMR Spectra of tert-Butyl 3-(2-(tert-Butoxy)-2-oxoethyl)-2-(2-nitrophenyl)-1H-indoline-1-carboxylate (4g)

8-33. NMR Spectra of *tert*-Butyl 3-(Cyanomethyl)-2-(2-nitrophenyl)-1H-indoline-1-carboxylate (4h)

8-34. NMR Spectra of *tert*-Butyl 3-(2-Ethoxy-2-oxoethyl)-5-methyl-2-(2-nitrophenyl)-1H-indoline-1-carboxylate (4k)

a) ¹H NMR Spectrum (500 MHz, CDCl₃)

8-35. NMR Spectra of tert-Butyl 5-Bromo-3-(2-ethoxy-2-oxoethyl)-2-(2-nitrophenyl)-1H-indoline-1-carboxylate (41)

a) ¹H NMR Spectrum (500 MHz, CDCl₃)

8-36. NMR Spectra of tert-Butyl 2-(5-Bromo-2-nitrophenyl)-3-(2-ethoxy-2-oxoethyl)-1H-indoline-1-carboxylate (4m)

a) ¹H NMR Spectrum (500 MHz, CDCl₃)

b) ¹³C NMR Spectrum (125 MHz, CDCl₃)

8-37. NMR Spectra of *tert*-Butyl 3-(2-Ethoxy-2-oxoethyl)-2-(5-methyl-2-nitrophenyl)-1H-indoline-1-carboxylate (4n)

a) ¹H NMR Spectrum (500 MHz, CDCl₃)

S110

8-38. NMR Spectra of tert-Butyl 3-(2-Ethoxy-2-oxoethyl)-2-(5-methoxy-2-nitrophenyl)-1H-indoline-1-carboxylate (40)

a) ¹H NMR Spectrum (500 MHz, CDCl₃)

S112

8-39. NMR Spectra of Dihydropaullone (8)

a) ¹H NMR Spectrum (500 MHz, CDCl₃)

b) ¹³C NMR Spectrum (125 MHz, CDCl₃)

8-40. NMR Spectra of tert-Butyl 3-(2-Ethoxy-2-oxoethyl)-2-(2-nitrophenyl)-1H-indole-1-carboxylate (7)

a) ¹H NMR Spectrum (500 MHz, CDCl₃)

8-41. NMR Spectra of Ethyl 2-(6-Oxo-5,6-dihydroindolo[1,2-c]quinazolin-12-yl)acetate (9)

a) ¹H NMR Spectrum (500 MHz, DMSO)

b) ¹³C NMR Spectrum (125 MHz, DMSO)

