Supplementary Information

Aerobic Cross-Dehydrogenative Coupling of Toluenes and *o*-Phenylenediamines by Flavin Photocatalysis for Facile Synthesis of Benzimidazoles

Yuta Shiogai, Marina Oka, Hiroki Iida*

Department of Chemistry, Graduate School of Natural Science and Technology, Shimane University, 1060 Nishikawatsu, Matsue, 690-8504, Japan

E-mail address: iida@riko.shimane-u.ac.jp

1.	General	S2
2.	Materials	S2
3.	Experimental Procedures	S2
4.	Optimization of Reaction Conditions	S10
5.	ESI-MS Analysis of Reaction Mixture	S11
6.	¹ H and ¹³ C{ ¹ H} NMR Spectra of Novel Compounds	S13
7.	¹ H NMR Spectra of Known Compounds	S23
8.	References	S26

1. General

The IR spectra were recorded on a JASCO FT/IR-660plus spectrophotometer (JASCO, Tokyo, Japan). The NMR spectra were measured using JEOL JNM-L400 and JNM ECX-500 spectrometers (JEOL, Akishima, Japan) operating at 400 and 500 MHz, respectively, for ¹H and 100 and 126 MHz, respectively, for ¹³C using tetramethylsilane (TMS) or a solvent residual peak as the internal standard. The electrospray ionization mass (ESI-MS) spectra were recorded on a Bruker microTOFII mass spectrometer (Bruker, Billerica, MA) using the positive or negative mode ESI-TOF method for acetonitrile solutions and sodium formate as the reference. The GC measurements were performed on a Shimadzu GC-2014 gas chromatograph (Shimadzu, Kyoto, Japan) equipped with a flame ionization detector (FID) using a Supelco Equity-5 (30 m x 0.25 mm) column.

2. Materials

Riboflavin	tetraacetate	(4a), ^{S1}	1,3	-dimethylallo	oxazine	(5a), ^{S2}			
7-trifluoromethy	l-1,3-dimethylallo	xazine				(5b), ^{S2}			
5-ethyl-10-(2-hy	droxylethyl)-7,8-d	imethylisoal	lloxaziniu	m trif	ate	(6•TfO), ^{S3}			
5-ethyl-1,3,7,8-to	etramethylalloxazi	nium	triflate	(7•	TfO), ^{S3}	and			
1,10-ethylene-3,	7,8-trimethylisoall	oxazinium	triflate	(8•TfO), ^{S3}	were	synthesized			
according to the previously reported methods. 1-Methyl-4-phenoxybenzene (1c) and									
4-methyl-N-phenylbenzene-1,2-diamine (2f) were synthesized according to the previously									
reported methods. ^{S4,5} Other starting materials were purchased from Sigma-Aldrich (St.									
Louis, USA), FUJIFILM Wako Pure Chemical Corporation (Osaka, Japan), Nacalai tesque									
(Kyoto, Japan), and Tokyo Kasei (TCI, Tokyo, Japan) and were used as received.									

3. Experimental Procedures

Typical procedure for synthesis of 3aa. A mixture of 4-methoxytoluene (**1a**, 122 mg, 1.0 mmol), **4a** (13.6 mg, 0.025 mmol), MeOH (12.5 mL), and H₂O (12.5 mL) was irradiated using blue LED lamps (11 W) while stirring under air (1 atm, balloon) at 25 °C for 6 h. A solution of 2-aminodiphenylamine (**2a**, 92.1 mg, 0.50 mmol) in MeOH (25 mL) was then

added into the reaction mixture, and the mixture was stirred under irradiation at 60 °C for 15 h. After the solvent was removed by evaporation, the residue was purified by column chromatography (SiO₂, hexane/ethyl acetate = 4/1, v/v) to give **3aa** (120 mg, 80%) as a white solid. These results are summarized in Scheme 3.

Spectroscopic data of benzimidazoles

Spectroscopic data of 2-(4-methoxyphenyl)-1-phenyl-1*H*-benz[*d*]imidazole (**3aa**):^{S6} Column chromatography (SiO₂, hexane/ethyl acetate=4/1, v/v) afforded the desired product (120 mg, 80%) as a white solid. ¹H NMR (500 MHz, CDCl₃, 25 °C, δ): 7.86 (d, *J* = 8.1 Hz, 1H), 7.52-7.42 (m, 5H), 7.33-7.28 (m, 3H), 7.24-7.18 (m, 2H), 6.81 (dt, *J* = 8.9, 2.5 Hz, 2H), 3.78 (s, 3H). ¹³C{¹H} NMR (126 MHz, CDCl₃, 25 °C, δ): 160.6, 152.5, 143.1, 137.30 137.26, 131.0, 129.9, 128.6, 127.5, 123.1, 122.9, 122.4, 119.6, 113.8, 110.4, 55.3.

Spectroscopic data of 2-(2-methoxyphenyl)-1-phenyl-1*H*-benz[*d*]imidazole (**3ba**): Column chromatography (SiO₂, hexane/ethyl acetate=9/1 to 3/1, v/v) afforded the desired product (58.9 mg, 60%) as a white solid. Mp: 153.1-154.4 °C. IR (KBr, cm⁻¹): 3049, 2834, 1260, 1032. ¹H NMR (500 MHz, CDCl₃, 25 °C, δ): 7.89 (d, *J* = 8.0 Hz, 1H), 7.66 (dd, *J* = 7.6, 1.7 Hz, 1H), 7.39-7.21 (m, 9H), 7.03 (td, *J* = 7.5, 0.9 Hz, 1H), 6.72 (d, *J* = 8.1 Hz, 1H), 3.31 (s, 3H). ¹³C{¹H} NMR (126 MHz, CDCl₃, 25 °C, δ): 157.0, 151.4, 143.3, 137.4, 136.1, 132.3, 131.5, 129.1, 127.7, 126.0, 123.2, 122.6, 120.8, 120.1, 120.0, 110.9, 110.4, 54.8. HRMS (ESI-TOF) m/z: [M+H]⁺ calcd for C₂₀H₁₇N₂O, 301.1335; found, 301.1339.

Spectroscopic data of 2-(4-phenoxyphenyl)-1-phenyl-1*H*-benz[*d*]imidazole (**3ca**): Column chromatography (SiO₂, hexane/ethyl acetate=9/1 to 4:1, v/v) afforded the desired product (85.3 mg, 72%) as a white solid. Mp: 148.2-150.3 °C. IR (KBr, cm⁻¹): 3060, 3015, 1241. ¹H NMR (500 MHz, CDCl₃, 25 °C, δ): 7.87 (d, *J* = 8.0 Hz, 1H), 7.55-7.43 (m, 5H), 7.36-7.29 (m, 5H), 7.26-7.20 (m, 2H), 7.13 (t, *J* = 7.4 Hz, 1H), 7.02 (dd, *J* = 8.7, 1.1 Hz, 2H), 6.90 (dt, *J* = 8.8, 2.4 Hz, 2H). ¹³C{¹H} NMR (126 MHz, CDCl₃, 25 °C, δ): 158.8, 156.2, 152.1, 143.1, 137.4, 137.1, 131.1, 130.03, 129.99, 128.7, 127.6, 124.6, 124.1, 123.3, 123.1, 119.8, 118.0, 110.5. HRMS (ESI-TOF) m/z: [M+H]⁺ calcd for C₂₅H₁₉N₂O, 363.1492; found, 363.1500.

Spectroscopic data of 2-(4-(*tert*-butyl)phenyl)-1-phenyl-1*H*-benz[*d*]imidazole (**3da**):^{S7} Column chromatography (SiO₂, hexane/ethyl acetate=9/1 to 4:1, v/v) afforded the desired product (38.8 mg, 36%) as a white solid. ¹H NMR (500 MHz, CDCl₃, 25 °C, δ): 7.88 (d, *J* = 8.0 Hz, 1H), 7.53-7.47 (m, 5H), 7.34-7.29 (m, 5H), 7.24-7.20 (m, 2H), 1.29 (s, 9H). ¹³C{¹H} NMR (126 MHz, CDCl₃, 25 °C, δ): 152.8, 152.6, 143.2, 137.5, 137.3, 130.0 129.2, 128.7, 127.7, 127.1, 125.4, 123.2, 123.0, 119.8, 110.5, 34.9, 31.3.

Spectroscopic data of 2-(4-methoxy-2-methylphenyl)-1-phenyl-1*H*-benz[*d*]imidazole (**3ga**): Column chromatography (SiO₂, hexane/ethyl acetate= 4:1, v/v) afforded the desired product (69.4 mg, 67%) as a white solid. Mp: 144.2-145.8 °C. IR (KBr, cm⁻¹): 3053, 2954, 1242, 1046. ¹H NMR (500 MHz, CDCl₃, 25 °C, δ): 7.88 (d, J = 7.9 Hz, 1H), 7.39-7.24 (m, 6H), 7.21-7.18 (m, 3H), 6.69 (d, J = 2.6 Hz, 1H), 6.66 (dd, J = 8.4, 2.6 Hz, 1H), 3.76 (s, 3H), 2.17 (s, 3H). ¹³C{¹H} NMR (126 MHz, CDCl₃, 25 °C, δ): 160.4, 153.1, 143.2, 139.6, 136.6, 135.8, 132.3, 129.5, 127.9, 126.7, 123.1, 122.8, 122.7, 120.0, 115.7, 111.1, 110.5, 55.2, 20.4. HRMS (ESI-TOF) m/z: [M+H]⁺ calcd for C₂₁H₁₉N₂O, 315.1492; found, 315.1498.

Spectroscopic data of 2-(4-methoxy-3-methylphenyl)-1-phenyl-1*H*-benz[*d*]imidazole (**3ha**): Column chromatography (SiO₂, hexane/ethyl acetate= 4:1, v/v) afforded the desired product (75.2 mg, 73%) as a pale pink solid. Mp: 136.6-138.9 °C. IR (KBr, cm⁻¹) 3052, 2987, 1250, 1031. ¹H NMR (500 MHz, CDCl₃, 25 °C, δ): 7.86 (d, *J* = 8.0 Hz, 1H), 7.53-7.47 (m, 4H), 7.34-7.30 (m, 3H), 7.25-7.19 (m, 3H), 6.68 (d, *J* = 8.4 Hz, 1H), 3.80 (s, 3H), 2.15 (s, 3H). ¹³C{¹H} NMR (126 MHz, CDCl₃, 25 °C, δ): 158.9, 152.7, 143.1, 137.44, 137.37, 132.0, 129.9, 128.6, 128.3, 127.7, 126.9, 123.0, 122.9, 121.9, 119.6, 110.4, 109.4, 55.4, 16.2. HRMS (ESI-TOF) m/z: [M+H]⁺ calcd for C₂₁H₁₉N₂O, 315.1492; found, 315.1498.

Spectroscopic data of 2-(4-(2-hydroxy)ethoxyphenyl)-1-phenyl-1*H*-benz[*d*]imidazole (**3ia**): Column chromatography (SiO₂, hexane/ethyl acetate= 4:1 to 1:1, v/v) afforded the desired product (65.3 mg, 66%) as a white solid. Mp: 179.4-181.9 °C. IR (KBr, cm⁻¹): 3292, 2947, 2858, 1254, 1055. ¹H NMR (500 MHz, CDCl₃, 25 °C, δ): 7.86 (d, *J* = 8.0 Hz, 1H), 7.52-7.43 (m, 5H), 7.34-7.28 (m, 3H), 7.26-7.20 (m, 2H), 6.79 (dt, *J* = 9.0, 2.5 Hz, 2H), 4.02 (t, *J* = 4.6 Hz, 2H), 3.94 (t, *J* = 4.6 Hz, 2H), 2.99 (br, s, 1H). ¹³C{¹H} NMR (126 MHz, CDCl₃, 25 °C, δ): 158.8, 151.4, 142.0, 136.3, 136.2, 130.1, 129.0, 127.7, 126.6, 122.2, 122.1, 121.7, 118.6, 113.5, 109.5, 68.4, 60.3. HRMS (ESI-TOF) m/z: $[M+H]^+$ calcd for $C_{21}H_{19}N_2O_2$, 331.1455; found, 331.1441.

Spectroscopic data of 2-(4-(allyloxy)phenyl)-1-phenyl-1*H*-benz[*d*]imidazole (**3ja**): Column chromatography (SiO₂, hexane/ethyl acetate= 4:1, v/v) afforded the desired product (103 mg, 63%) as a colorless oil. IR (neat, cm⁻¹): 3063, 2985, 1650, 1178, 1074, 1015. ¹H NMR (500 MHz, CDCl₃, 25 °C, δ): 7.86 (d, *J* = 8.0 Hz, 1H), 7.52-7.43 (m, 5H), 7.33-7.29 (m, 3H), 7.25-7.19 (m, 2H), 6.82 (dt, *J* = 9.0, 2.5 Hz, 2H), 6.02 (ddt, *J* = 17.3, 10.4, 5.2 Hz, 1H), 5.39 (ddd, *J* = 17.3, 3.1, 1.6 Hz, 1H), 5.27 (ddd, *J* = 10.6, 2.7, 1.3 Hz, 1H), 4.52 (t, *J* = 1.5 Hz, 1H), 4.51 (t, *J* = 1.5 Hz, 1H). ¹³C{¹H} NMR (126 MHz, CDCl₃, 25 °C, δ): 159.7, 152.5, 143.1, 137.32, 137.28, 132.9, 131.0, 130.0, 128.6, 127.6, 123.1, 123.0, 122.6, 119.7, 118.0, 114.6, 110.4, 68.9. HRMS (ESI-TOF) m/z: [M+H]⁺ calcd for C₂₂H₁₉N₂O, 327.1492; found, 327.1508.

Spectroscopic data of 2-(4-methoxyphenyl)-1-methyl-1*H*-benz[*d*]imidazole (**3ab**):^{S8} Column chromatography (SiO₂, hexane/ethyl acetate=3/1, v/v) afforded the desired product (90.3 mg, 76%) as a white solid. ¹H NMR (500 MHz, CDCl₃, 25 °C, δ): 7.82-7.79 (m, 1H), 7.69 (dt, *J* = 8.5, 2.5 Hz, 2H), 7.35-7.26 (m, 3H), 7.02 (dt, *J* = 8.5, 2.5 Hz, 2H), 3.85 (s, 3H), 3.80 (s, 3H). ¹³C{¹H} NMR (126 MHz, CDCl₃, 25 °C, δ): 160.8, 153.8, 143.0, 136.6, 130.9, 122.6, 122.5, 122.3, 119.6, 114.2, 109.6, 55.4, 31.7.

Spectroscopic data of 1-methyl-2-(4-phenoxyphenyl)-1*H*-benz[*d*]imidazole (**3cb**): Column chromatography (SiO₂, hexane/ethyl acetate= 4:1, v/v) afforded the desired product (66.9 mg, 66%) as a white solid. Mp: 129.8-131.2 °C. IR (KBr, cm⁻¹): 3041, 2946, 1237. ¹H NMR (500 MHz, CDCl₃, 25 °C, δ): 7.83-7.80 (m, 1H), 7.74 (dt, *J* = 8.7, 2.5 Hz, 2H), 7.41-7.36 (m, 3H), 7.34-7.28 (m, 2H), 7.17 (t, *J* = 7.4 Hz, 1H), 7.13 (dt, J = 8.7, 2.5 Hz, 2H), 7.10 (m, 2H), 3.87 (s, 3H). ¹³C{¹H} NMR (126 MHz, CDCl₃, 25 °C, δ): 159.1, 156.4, 153.5, 143.1, 136.7, 131.2, 130.1, 125.0, 124.2, 122.8, 122.6, 119.9, 119.7, 118.5, 109.7, 31.8. HRMS (ESI-TOF) m/z: [M+H]⁺ calcd for C₂₀H₁₇N₂O, 301.1335; found, 301.1338.

Spectroscopic data of 1-(2-hydroxyethyl)-2-(4-methoxyphenyl)-1*H*-benz[*d*]imidazole (**3ac**): Column chromatography (SiO₂, hexane/ethyl acetate= 2:1, v/v) afforded the desired product (57.6 mg, 65%) as a white solid. Mp: 134.5-135.7 °C. IR (KBr, cm⁻¹): 3160, 2935, 2837, 1255, 1026. ¹H NMR (500 MHz, CDCl₃, 25 °C, δ): 7.66 (dt, *J* = 8.9, 2.5 Hz, 2H), 7.33 (d, *J* = 7.8 Hz, 1H), 7.20 (d, *J* = 8.0 Hz, 1H), 7.08 (td, *J* = 7.6, 1.1 Hz, 1H), 7.01 (td, *J* = 7.6, 1.0 Hz, 1H), 6.77 (dt, *J* = 8.9, 2.6 Hz, 2H), 4.23 (t, *J* = 5.3 Hz, 2H), 4.10 (t, *J* = 5.3 Hz, 2H), 3.80 (s, 3H). ¹³C{¹H} NMR (126 MHz, CDCl₃, 25 °C, δ): 160.6, 154.1, 142.2, 135.1, 131.5, 122.6, 122.5, 121.9, 118.9, 113.9, 110.0, 60.5, 55.3, 47.1. HRMS (ESI-TOF) m/z: [M+H]⁺ calcd for C₁₆H₁₇N₂O₂, 269.1285; found, 269.1287.

Spectroscopic data of 1-(4-chlorophenyl)-2-(4-methoxyphenyl)-1*H*-benz[*d*]imidazole (3ad):^{S9} Column chromatography (SiO₂, hexane/ethyl acetate=4/1, v/v) afforded the desired

product (72.9 mg, 66%) as a white solid. ¹H NMR (500 MHz, CDCl₃, 25 °C, δ): 7.86 (d, J = 8.0 Hz, 1H), 7.51-7.46 (m, 4H), 7.35-7.31 (m, 1H), 7.28-7.22 (m, 3H), 7.20 (d, J = 8.1 Hz, 1H), 6.85 (dt, J = 8.8, 2.5 Hz, 2H), 3.82 (s, 3H). ¹³C{¹H} NMR (126 MHz, CDCl₃, 25 °C, δ): 160.8, 152.4, 143.2, 137.0, 135.8, 134.4, 131.0, 130.3, 128.8, 123.3, 123.2, 122.1, 119.8, 114.0, 110.2, 55.4.

Spectroscopic data of 2-(4-methoxyphenyl)-1*H*-benz[*d*]imidazole (**3ae**):^{S10} Column chromatography (SiO₂, hexane/ethyl acetate=3/1, v/v) afforded the desired product (76.7 mg, 77%) as a white solid. ¹H NMR (500 MHz, DMSO-d₆, 25 °C, δ): 12.7 (br s, 1H), 8.13 (dt, *J* = 8.9, 2.5 Hz, 2H), 7.62 (d, *J* = 6.0 Hz, 1H), 7.50 (d, *J* = 5.5 Hz, 1H), 7.17 (d, *J* = 4.3 Hz, 2H), 7.11 (dt, *J* = 8.9, 2.5 Hz, 2H), 3.84 (s, 3H). ¹³C{¹H} NMR (126 MHz, CDCl₃, 25 °C, δ): 160.6, 151.4, 143.9, 135.0, 128.0, 122.7, 122.1, 121.5, 118.5, 114.4, 110.0, 55.3.

Spectroscopic data of 2-(4-methoxyphenyl)-5-methyl-1-phenyl-1*H*-benz[*d*]imidazole (**3af**): Column chromatography (SiO₂, hexane/ethyl acetate=4/1, v/v) afforded the desired product (80.8 mg, 78%) as a white solid. Mp: 141.6-143.2 °C. IR (KBr, cm⁻¹): 3006, 2839, 1254, 1028. ¹H NMR (500 MHz, CDCl₃, 25 °C, δ): 7.64 (s, 1H), 7.50-7.40 (m, 5H), 7.28 (dt, J = 7.0, 1.6 Hz, 2H), 7.09 (d, *J* = 8.3 Hz, 1H), 7.04 (dd, *J* = 8.2, 1.1 Hz, 1H), 6.80 (dt, *J* = 8.9, 2.5 Hz, 2H), 3.78 (s, 3H), 2.50 (s, 3H). ¹³C{¹H} NMR (126 MHz, CDCl₃, 25 °C, δ): 160.5, 152.4, 143.4, 137.4, 135.5, 132.6, 130.9, 129.9, 128.4, 127.5, 124.5, 122.6, 119.4, 113.8, 109.9, 55.3, 21.7. HRMS (ESI-TOF) m/z: [M+H]⁺ calcd for C₂₁H₁₉N₂O, 315.1500; found, 315.1492.

Spectroscopic data of 2-(4-methoxyphenyl)-5-trifluoromethyl-1*H*-benz[*d*]imidazole (**3ag**):^{S11} Column chromatography (SiO₂, hexane/ethyl acetate=1/5, v/v) afforded the desired product (70.3 mg, 74%) as a white solid. ¹H NMR (500 MHz, CDCl₃, 25 °C, δ): 8.10 (dt, *J* = 8.9, 2.4 Hz, 2H), 7.78 (s, 1H), 7.58 (d, *J* = 8.3 Hz, 1H), 7.43 (dd, *J* = 8.7, 1.5 Hz, 1H), 6.91 (dt, *J* = 8.9, 2.5 Hz, 2H), 3.80 (s, 3H). ¹³C{¹H} NMR (126 MHz, CDCl₃, 25 °C, δ): 161.8, 154.6, 128.7, 125.0 (q, *J* = 32 Hz), 124.9 (q, *J* = 273 Hz), 121.9, 119.7, 114.7, 55.5. HRMS (ESI-TOF) m/z: [M+H]⁺ calcd for C₁₅H₁₂F3N₂O, 293.0896; found, 293.0894.

Spectroscopic

data

of

1-(2-hydroxyethyl)-2-(4-methoxyphenyl)-5-trifluoromethyl-1*H*-benz[*d*]imidazole (**3ah**): Column chromatography (SiO₂, hexane/ethyl acetate=2/1, v/v) afforded the desired product (66.2 mg, 60%) as a white solid. Mp: 148.1-149.6 °C. IR (KBr, cm⁻¹): 3180, 3016, 2846, 1610, 1338, 1327, 1257, 1025. ¹H NMR (500 MHz, CDCl₃, 25 °C, δ): 7.75 (dt, *J* = 8.8, 2.5 Hz, 2H), 7.58 (s, 1H), 7.33 (dd, *J* = 8.5, 1.4 Hz, 1H), 7.28 (d, *J* = 8.5 Hz, 1H), 6.79 (dt, *J* = 9.0, 2.5 Hz, 2H), 4.31 (t, *J* = 4.7 Hz, 2H), 4.24 (t, *J* = 4.7 Hz, 2H), 3.85 (s, 3H). ¹³C{¹H} NMR (126 MHz, CDCl₃, 25 °C, δ): 161.0, 156.2, 141.3, 136.7, 131.9, 124.8 (q, *J* = 33 Hz) 124.7 (q, *J* = 278 Hz), 120.8, 119.6, 116.1, 113.9, 110.1, 60.5, 55.3, 47.4. HRMS (ESI-TOF) m/z: [M+H]⁺ calcd for C₁₇H₁₆F₃N₂O₂, 337.1158; found, 337.1158.

4. Optimization of Reaction Condition

The solvent effect on the flavin-catalyzed reaction of **1a** with **2a** was investigated as shown in Table S1.

Table S1. Solvent effect.

Reaction Conditions: a mixture of **1a** (0.05 M) and **4a** (2.5 mol%) in solvent was placed under irradiation with blue LED lamps (11 W) while stirring under air (1 atm, balloon) at 40 °C for 5 h. A solution of **2a** in MeOH (0.025 M) was then added into the reaction mixture, and the mixture was stirred under irradiation at 40 °C for 15 h. Yield was determined by GC using biphenyl as an internal standard.

5. ESI-MS Analysis of Reaction Mixture

Figure S1. ESI-TOF mass spectra of the reaction mixture.

Figure S2. ESI-TOF mass spectra of the reaction mixture.

Spectrum S1. ¹H NMR (CDCl₃, 500 MHz) spectrum of compound 3ba.

Spectrum S2. $^{13}\mathrm{C}\{^{1}\mathrm{H}\}$ NMR (CDCl₃, 126 MHz) spectrum of compound 3ba.

Spectrum S3. ¹H NMR (CDCl₃, 500 MHz) spectrum of compound 3ca.

Spectrum S4. $^{13}C\{^{1}H\}$ NMR (CDCl₃, 126 MHz) spectrum of compound 3ca.

Spectrum S5. ¹H NMR (CDCl₃, 500 MHz) spectrum of compound 3ga.

Spectrum S6. ${}^{13}C{}^{1}H$ NMR (CDCl₃, 126 MHz) spectrum of compound 3ga.

Spectrum S7. ¹H NMR (CDCl₃, 500 MHz) spectrum of compound **3ha**.

Spectrum S8. $^{13}\mathrm{C}\{^{1}\mathrm{H}\}$ NMR (CDCl₃, 126 MHz) spectrum of compound 3ha.

Spectrum S9. ¹H NMR (CDCl₃, 500 MHz) spectrum of compound 3ia.

Spectrum S10. ¹³C{¹H} NMR (CDCl₃, 126 MHz) spectrum of compound 3ia.

Spectrum S11. ¹H NMR (CDCl₃, 500 MHz) spectrum of compound 3ja.

Spectrum S12. ${}^{13}C{}^{1}H$ NMR (CDCl₃, 126 MHz) spectrum of compound 3ja.

Spectrum S13. ¹H NMR (CDCl₃, 500 MHz) spectrum of compound 3cb.

Spectrum S14. $^{13}C\{^{1}H\}$ NMR (CDCl₃, 126 MHz) spectrum of compound 3cb.

Spectrum S15. 1 H NMR (CDCl₃, 500 MHz) spectrum of compound 3ac.

Spectrum S16. $^{13}C\{^{1}H\}$ NMR (CDCl₃, 126 MHz) spectrum of compound 3ac.

Spectrum S17. ¹H NMR (CDCl₃, 500 MHz) spectrum of compound 3af.

Spectrum S18. ${}^{13}C{}^{1}H$ NMR (CDCl₃, 126 MHz) spectrum of compound 3af.

Spectrum S19. ¹H NMR (CDCl₃, 500 MHz) spectrum of compound 3ah.

Spectrum S20. $^{13}\mathrm{C}\{^{1}\mathrm{H}\}$ NMR (CDCl₃, 126 MHz) spectrum of compound 3ah.

7. ¹H NMR Spectra of Known Compounds

Spectrum S21. ¹H NMR (CDCl₃, 500 MHz) spectrum of compound 3aa.

Spectrum S22. ¹H NMR (CDCl₃, 500 MHz) spectrum of compound 3da.

Spectrum S23. ¹H NMR (CDCl₃, 500 MHz) spectrum of compound 3ab.

Spectrum S24. ¹H NMR (CDCl₃, 500 MHz) spectrum of compound 3ad.

Spectrum S25. ¹H NMR (DMSO-d₆, 500 MHz) spectrum of compound 3ae.

Spectrum S26. ¹H NMR (CDCl₃, 500 MHz) spectrum of compound 3ag.

8. References

- (S1) A. Takeda, H. Okai, K. Watabe and H. Iida, J. Org. Chem., 2022, 87, 10372-10376.
- (S2) P. Ménová, H. Dvořáková, V. Eigner, J. Ludvík and R. Cibulka, Adv. Synth. Catal. 2013, 355, 3451-3462.
- (S3) T. Sakai, T. Kumoi, T. Ishikawa, T. Nitta and H. Iida, Org, Biomol. Chem., 2018, 16, 3999-4007.
- (S4) S. Yang, C. Wu, M. Ruan, Y. Yang, Y. Zhao, J. Niu, W. Yang and J. Xu, *Tetrahedron Lett.*, 2012, 53, 4288-4292.
- (S5) a) S.-L. Qi, Y. Li, J.-F. Li, T. Zhang, Y.-X. Luan and M. Ye, Org. Lett., 2021, 23, 4034-4039. b) W.-S. Li, N. Zhang and L. M. Sayre, *Tetrahedron*, 2001, 57, 4507-4522.
- (S6) J. Jayabharathi, V. Thanikachalam and K. Jayamoorthy, *Photochem. Photobiol. Sci*, 2013, 12, 1761-1773.
- (S7) K. M. H. Nguyen and M. Largeron, Chem. Eur. J., 2015, 21, 12606-12610.
- (S8) X. Jin, Y. Liu, Q. Lu, D. Yang, J. Sun, S. Qin, J. Zhang, J. Shen, C. Chu and R. Liu, Org. Biomol. Chem., 2013, 11, 3776-3780.
- (S9) P. Roy and A. Pramanik, *Tetrahedron Lett.*, 2013, 54, 5243-5245.
- (S10) O. Ravi, A. Shaikh, A. Upare, K. K. Singarapu and S. R. Bathela, J. Org. Chem., 2017, 82, 4422-4428.
- (S11) B. M. Savall and J. R. Fontimayor, Tetrahedron Lett., 2008, 49, 6667-6669.