Electronic Supplementary Material (ESI) for Organic & Biomolecular Chemistry. This journal is © The Royal Society of Chemistry 2023

Supporting Information

Visible light-induced direct alkylation of the purine C_8 -H bond with ethers

Changtong Lu,^a Gary Histand^b and Dongen Lin*^a

^aKey Laboratory of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510641, China. ^bThe International School of Advanced Materials, School of Materials Science and Engineering, South China University of Technology, Guangzhou 510641, China.

E-mail: denlin@scut.edu.cn

Table of Contents

I . General information
${ m I\hspace{-0.1em}I}$. General procedure for the visible light-induced direct alkylation of purinesS2
${ m III}$. Optimization of the reaction conditionsS2
${ m IV}$. GC-MS of radical trapping experimentS3
${ m V}$. GC-MS of the crude product 4bS4
VI. Light on-off experiment
VII. Fluorescence quenching studyS5
VIII. X-ray crystallographic analysis for product 3cS7
${ m I\!X}$. Characterization data for the synthesized productsS13
${f X}$. NMR spectra for all the compoundsS21
XI. References

I . General information

All reagents are purchased from the commercial suppliers for direct use without further purification. All purchased reagents are of analytical reagent grade unless otherwise noted. Purines with substitutions on C2 or C6 were obtained synthetically from 6-chloropurine and 2,6-dichloropurine using the method of Huang.¹ N7 and N9 substituted purines were synthesized from 9*H* purines according to the method of Kelley² and Çelik³. The reaction is monitored by thin-layer chromatography (TLC) using silica gel GF254 plates to observe the reaction process. Column chromatography is generally performed on silica gel (300-400 mesh) purchased from Qingdao Ocean Chemical Co. Ltd. The ¹H, ¹³C and ¹⁹F NMR spectra were obtained using Bruker DRX-400 or Bruker Ascend 500 spectrometers, with CDCl₃ or DMSO-*d*₆ as the solvent and TMS or a residual nondeuterated solvent peak as the internal standard. All chemical shifts (δ) are in ppm and the coupling constants (*J*) are in Hz. High resolution mass spectrometry (HRMS) data were recorded on an IF-TOF spectrometer. Melting points were measured using an INESA melting point WRS-2 instrument. The gas chromatography mass spectra were analyzed using the SHIMADZU model GCMS-QP5000 spectrometer. The fluorescence spectra were determined on a Hitachi Fluorescence Spectrophotometer F-7000.

${\rm I\hspace{-1.5mm}I}$. General Procedure for the Visible Light-Induced Direct Alkylation of Purines

To a dried reaction tube (10 mL, borosilicate glass) equipped with a magnetic stir bar was added purine derivatives (0.15 mmol), ethers (3 mmol), Eosin Y (4 mol%), TBHP (1.5 equiv, 0.225 mmol, aq.65% in water), HBF₄ (2.0 equiv, 0.3 mmol, aq.50% in water). The reaction was stirred at room temperature and blue LEDs (450–460 nm, 20 W, SD produced by Xuzhou Ai Jia Electronic Technology Co. Ltd.) were placed 3 cm from the reaction vessel for 8 hours. After it is complete, the reaction solution is concentrated under reduced pressure and then purified by flash column chromatography on silica gel or preparative TLC on GF254 (petroleum ether/ethyl acetate or dichloromethane/methanol) to afford the 8-alkylpurines.

III. Optimization of the reaction conditions

Table S1 Optimization of the reaction conditions^a

		+ photocatalyst, solvent, rt, 8	oxidant, additive h, blue LEDs	N O N Bn	
onter.	photocatalyst	oxidant ^b	additive	aalmant	riald0/c
entry	(mol%)	(equiv)	(equiv)	solvent	yleid 76°
1	Eosin Y (4)	TBHP (1.5)	-	THF	5%
2	Eosin Y (4)	TBHP (1.5)	TFA (2)	THF	8%
3	Eosin Y (4)	TBHP (1.5)	MSA (2)	THF	45%
4	Eosin Y (4)	TBHP (1.5)	HAc (2)	THF	9%
5	Eosin Y (4)	TBHP (1.5)	Na ₂ CO ₃ (2)	THF	N.D.
6	Eosin Y (4)	TBHP (1.5)	DABCO (2)	THF	N.D.
7	Eosin Y (4)	TBHP (1.5)	HBF ₄ (2)	DCM	23%
8	Eosin Y (4)	TBHP (1.5)	$\mathrm{HBF}_{4}\left(2 ight)$	MeCN	10%

9	Eosin Y (4)	TBHP (1.5)	$\mathrm{HBF}_{4}\left(2 ight)$	EtOAc	64%
10	Eosin Y (4)	TBHP (1.5)	$\mathrm{HBF}_{4}\left(2\right)$	Acetone	86%
11	Eosin Y (4)	TBHP (1.5)	$\mathrm{HBF}_{4}\left(2 ight)$	H_2O	18%
12	Eosin Y (4)	TBHP (1.5)	$\mathrm{HBF}_{4}\left(2 ight)$	DMF	N.D.
13 ^d	Eosin Y (4)	TBHP (1.5)	$\mathrm{HBF}_{4}\left(2\right)$	THF	N.D.
14 ^e	Eosin Y (4)	TBHP (1.5)	$\mathrm{HBF}_{4}\left(2 ight)$	THF	49%
15 ^f	Eosin Y (4)	TBHP (1.5)	$\mathrm{HBF}_{4}\left(2 ight)$	THF	75%
16 ^g	Eosin Y (4)	TBHP (1.5)	HBF ₄ (2)	THF	91%

^aReaction conditions: **1a** (0.15 mmol), **2a** (3 mmol), photocatalyst (4 mol%) in solvent (2.0 mL) in air at room temperature while irradiated by 20 W blue LEDs for 8 h. N.D. = not determined. ^bTBHP (65% aq. solution), DTBP (98%). ^cDetermined by GC using dodecane as an internal standard. ^dIn the dark. ^eIrradiated by 20 W green LEDs. ^fIrradiated by 5 W blue LEDs. ^gUnder an Ar atmosphere.

Fig. 1 GC-MS of the adduct of THF with TEMPO

$V\,.\,\mbox{GC-MS}$ of the crude product 4b

To investigate by-products in the case of free -NH purines, the crude product **4b** was analyzed by GC-MS. From the GC-MS result in Fig. 2, in addition to the expected products and sometimes unreacted starting material, there are small amounts of other side products which we think are the C8 and N9 dialkylated purines. The amount of side products is small when compared to the expected products, so no isolation was carried out.

Fig. 2 GC-MS of the crude product 4b

VI. Light on-off experiment

To investigate the effect of visible light on the reaction, a light on-off experiment with 9-benzyl-6-chloro-9*H*purine (**1a**) and tetrahydrofuran (**2a**) was performed. In this reaction, the light source changed irradiation or darkness condition every 2 hours. The reaction was followed by GC-MS. After the first 2 hours of blue LED exposure, 45% of the expected product was obtained. However, the yield was not improved after 2 hours with the blue LEDs removed. Then the light was turned on again and after 2 hours the yield increased to 70%. No further conversion was detected when the light was turned off. The yield increased by another 14% when the light was turned on again for 2 hours. Subsequently, the yield remained constant after the light was turned off. The light on-off experiment demonstrates that visible light is an essential component of the reaction. Moreover, it also shows that the reaction is not a free radical chain reaction, but more likely proceeds through a photo-redox pathway.

Fig. 3 Light on/off experiment

VII. Fluorescence quenching study

The fluorescence emission intensities were recorded on a Hitachi Fluorescence Spectrophotometer F-7000. The excitation wavelength was fixed at 528 nm, and the emission wavelength was measured at 558 nm (emission maximum). The solution of Eosin Y (1 μ M in acetone) and various concentrations of quenchers were irradiated in a light path quartz fluorescence cuvette. Fluorescence quenching was indeed observed for Eosin Y at various concentrations of TBHP. As the TBHP concentration increases, the fluorescence intensity of the Eosin Y gradually decreases. The linear Stern-Volmer plots suggest a possible transfer of electrons between TBHP and the Eosin Y excited state.

Fig. 4 Fluorescence quenching of Eosin Y with various concentrations of TBHP

Fig. 5 Stern-Volmer plot for quenching of Eosin Y fluorescence with TBHP

VIII. X-ray Crystallographic analysis for product 3c

Crystal data have been deposited to CCDC, number 2211872.

Fig. 6 The single crystal structure of 3c (the ellipsoid contour probability level is 50%)

Crystal sample preparation: In a 1.5 mL chromatography vial, the purified sample **3c** was dissolved in dichloromethane (0.5 mL). Cyclohexane (1.0 mL) was slowly added dropwise to the vial. The solvent was allowed to evaporate naturally, and crystals were formed. The single crystals formed were analyzed by single crystal X-ray diffraction.

Identification code	Зc
Empirical formula	$C_{16}H_{14}Cl_2N_4O$
Formula weight	349.21
Temperature/K	179.99(10)
Crystal system	monoclinic
Space group	P2 ₁ /c
a/Å	4.7826(9)
b/Å	16.631(3)
c/Å	19.594(2)
α/°	90
β/°	90.09(1)
γ/°	90
Volume/Å ³	1558.5(4)
Z	4
$\rho_{calc}g/cm^3$	1.488
µ/mm⁻¹	3.830
F(000)	720.0
Crystal size/mm ³	0.15 × 0.11 × 0.09

Table S2 Crystal data and structure refinement for 3c.

Radiation	Cu Kα (λ = 1.54184)		
20 range for data collection/°	6.972 to 148.236		
Index ranges	$-4 \le h \le 5, -20 \le k \le 19, -21 \le l \le 24$		
Reflections collected	5890		
Independent reflections	3034 [R _{int} = 0.0540, R _{sigma} = 0.0610]		
Data/restraints/parameters	3034/0/218		
Goodness-of-fit on F ²	1.029		
Final R indexes [I>=2σ (I)]	R ₁ = 0.0796, wR ₂ = 0.2037		
Final R indexes [all data]	R ₁ = 0.0853, wR ₂ = 0.2175		
Largest diff. peak/hole / e Å ⁻³	0.78/-0.86		

Crystal structure determination of 3c

Crystal Data for C₁₆H₁₄Cl₂N₄O (*M* =349.21 g/mol): monoclinic, space group P2₁/c (no. 14), *a* = 4.7826(9) Å, *b* = 16.631(3) Å, *c* = 19.594(2) Å, *b* = 90.09(1) °, *V* = 1558.5(4) Å³, *Z* = 4, *T* = 179.99(10) K, μ (Cu K α) = 3.830 mm⁻¹, *Dcalc* = 1.488 g/cm³, 5890 reflections measured (6.972° $\leq 2\Theta \leq 148.236°$), 3034 unique (*R*_{int} = 0.0540, R_{sigma} = 0.0610) which were used in all calculations. The final *R*₁ was 0.0796 (I > 2 σ (I)) and *wR*₂ was 0.2175 (all data).

Atom	x	у	Z	U(eq)
Cl1	11957.6(15)	1757.5(4)	2777.9(4)	39.4(3)
Cl2	5097.5(19)	2194.1(5)	4818.6(4)	46.0(3)
05	3927(4)	5773.3(13)	3299.6(12)	37.0(5)
N1	8719(5)	3001.3(15)	2810.2(12)	29.1(5)
N2	8453(5)	2095.8(14)	3760.4(12)	32.5(5)
N3	5594(4)	4135.6(14)	2934.2(11)	24.9(5)
N4	3667(5)	3836.5(15)	3961.2(11)	28.6(5)
C1	9412(6)	2361.1(17)	3162.3(15)	30.5(6)
C2	6516(6)	2549.2(18)	4062.5(14)	30.6(6)
C3	5571(6)	3256.9(17)	3777.0(13)	27.3(6)
C4	6796(5)	3434.6(16)	3141.9(13)	25.5(5)
C5	3742(5)	4353.0(16)	3451.7(13)	25.4(5)
C6	2043(6)	5105.8(17)	3403.6(14)	30.5(6)
C7	328(7)	5290(2)	4043.3(17)	39.4(7)
C8	1928(11)	5961(3)	4376(2)	43.4(15)
С9	3213(8)	6395(2)	3767(2)	48.7(9)
C10	6177(5)	4543.3(17)	2281.3(13)	26.7(6)
C11	3898(5)	4425.2(17)	1760.4(13)	25.5(6)
C12	2706(6)	5098.0(18)	1458.0(14)	31.0(6)
C13	668(7)	5012(2)	961.9(14)	37.2(7)
C14	-160(7)	4253(2)	763.8(14)	40.2(7)

Table S3 Fractional Atomic Coordinates (×10⁴) and Equivalent Isotropic Displacement Parameters (Å²×10³) for 3c. U_{eq} is defined as 1/3 of of the trace of the orthogonalised U_{IJ} tensor.

			b	
Atom	x	У	Z	U(eq)
C15	1030(7)	3581(2)	1063.0(16)	38.4(7)
C16	3052(6)	3664.9(18)	1558.8(15)	32.3(6)
C17	530(60)	6223(15)	4101(15)	57(10)

Table S3 Fractional Atomic Coordinates (×10⁴) and Equivalent Isotropic Displacement Parameters (Å²×10³) for 3c. U_{eq} is defined as 1/3 of of the trace of the orthogonalised U_{IJ} tensor.

Table S4 Anisotropic Displacement Parameters ($Å^2 \times 10^3$) for 3c. The Anisotropic displacement factor exponent takes the form: $-2\pi^2[h^2a^{*2}U_{11}+2hka^*b^*U_{12}+...]$.

Atom	U ₁₁	U ₂₂	U ₃₃	U ₂₃	U ₁₃	U ₁₂
Cl1	45.1(5)	28.3(5)	44.8(5)	-2.8(3)	-1.1(3)	8.0(3)
Cl2	74.0(6)	41.0(5)	22.9(4)	12.6(3)	2.5(3)	2.5(4)
05	48.1(11)	25.3(11)	37.4(12)	-1.2(9)	5.7(9)	0.2(8)
N1	36.4(11)	26.0(11)	24.9(11)	0.1(10)	-0.4(8)	-0.7(9)
N2	46.8(13)	24.4(12)	26.5(12)	1.4(10)	-7.8(10)	0.4(10)
N3	34.5(10)	22.0(11)	18.2(11)	1.2(8)	-1.9(8)	1.1(8)
N4	40.9(11)	28.9(12)	16.1(10)	0.1(9)	-2.4(8)	0.2(9)
C1	39.4(13)	24.8(14)	27.3(14)	-2.6(11)	-5.7(10)	0.4(10)
C2	46.9(14)	27.5(14)	17.3(12)	3.3(11)	-5.5(10)	-3.5(11)
C3	37.4(13)	26.7(14)	17.8(12)	0.2(10)	-2.7(9)	-3.8(10)
C4	36.0(12)	22.9(13)	17.7(12)	0.4(10)	-3.4(9)	-1.7(10)
C5	32.1(12)	25.6(13)	18.5(12)	-2.0(10)	-4.7(9)	-1.2(10)
C6	34.6(13)	28.6(14)	28.4(14)	-4.5(11)	-4.7(10)	4.3(10)
C7	42.6(14)	36.5(17)	39.0(16)	-5.8(14)	6.6(12)	6.5(12)
C8	57(3)	44(3)	29(2)	-11.1(19)	-1.3(18)	3(2)
C9	67(2)	32.7(17)	47(2)	-15.5(15)	3.3(16)	1.9(15)
C10	35.2(12)	25.4(13)	19.4(12)	4.4(10)	-0.1(9)	-3.0(10)
C11	34.7(12)	25.4(13)	16.2(11)	0.8(9)	3.4(9)	-1.7(9)
C12	42.5(14)	30.7(15)	19.8(12)	3.4(11)	-1.9(10)	-2.2(11)
C13	47.7(15)	44.3(19)	19.6(13)	10.7(13)	-4.1(11)	-4.8(13)
C14	49.7(16)	56(2)	14.7(12)	1.2(13)	-3.5(11)	-8.6(14)
C15	53.3(16)	39.6(18)	22.3(13)	-11.5(12)	4.8(11)	-16.7(13)
C16	43.8(14)	29.1(15)	24.2(13)	-0.9(11)	5.0(11)	-2.8(11)
C17	76(17)	40(13)	54(17)	-22(11)	30(14)	10(11)

Table S5 Bond Lengths for 3c.

Table S5 Bond Lengths for 3c.

Atom Atom		Length/Å	Atom	Atom	Length/Å
Cl1	C1	1.748(3)	C3	C4	1.407(4)
CI2	C2	1.733(3)	C5	C6	1.496(4)
05	C6	1.444(4)	C6	C7	1.529(4)
05	C9	1.423(4)	C7	C8	1.502(5)
N1	C1	1.311(4)	C7	C17	1.56(2)
N1	C4	1.337(4)	C8	C9	1.524(6)
N2	C1	1.334(4)	C9	C17	1.47(2)
N2	C2	1.333(4)	C10	C11	1.506(4)
N3	C4	1.362(3)	C11	C12	1.389(4)
N3	C5	1.394(3)	C11	C16	1.385(4)
N3	C10	1.475(3)	C12	C13	1.384(4)
N4	C3	1.374(4)	C13	C14	1.378(5)
N4	C5	1.318(4)	C14	C15	1.384(5)
C2	C3	1.379(4)	C15	C16	1.378(4)

Table S6 Bond Angles for 3c.

Atom	Atom	Atom	Angle/°	Atom	Atom	Atom	Angle/°
C9	05	C6	108.6(2)	N4	C5	N3	113.5(2)
C1	N1	C4	110.8(2)	N4	C5	C6	125.3(2)
C2	N2	C1	116.2(2)	05	C6	C5	108.3(2)
C4	N3	C5	105.8(2)	05	C6	C7	107.2(2)
C4	N3	C10	124.9(2)	C5	C6	C7	114.0(3)
C5	N3	C10	129.2(2)	C6	C7	C17	103.0(8)
C5	N4	C3	103.9(2)	C8	C7	C6	103.4(3)
N1	C1	Cl1	114.6(2)	C7	C8	C9	102.6(3)
N1	C1	N2	130.1(3)	05	C9	C8	104.8(3)
N2	C1	Cl1	115.3(2)	05	C9	C17	110.8(9)
N2	C2	Cl2	117.3(2)	N3	C10	C11	113.0(2)
N2	C2	C3	122.0(3)	C12	C11	C10	118.8(2)
C3	C2	Cl2	120.6(2)	C16	C11	C10	121.6(3)
N4	C3	C2	135.2(3)	C16	C11	C12	119.6(3)
N4	C3	C4	111.2(2)	C13	C12	C11	120.4(3)
C2	C3	C4	113.7(3)	C14	C13	C12	119.7(3)
N1	C4	N3	127.3(2)	C13	C14	C15	120.1(3)
N1	C4	C3	127.1(3)	C16	C15	C14	120.4(3)
N3	C4	C3	105.6(2)	C15	C16	C11	119.9(3)

Table S6 Bond Angles for 3c.

Atom Atom Atom		Angle/°	Atom	Atom	Atom	Angle/°	
N3	C5	C6	121.1(2)	C9	C17	C7	102.4(13)

Table S7 Torsion Angles for 3c.

A B C D	Angle/°	ABCD	Angle/°
Cl2 C2 C3 N4	3.1(5)	C4 N3 C5 C6	179.4(2)
Cl2 C2 C3 C4	-175.9(2)	C4 N3 C10 C11	103.2(3)
O5 C6 C7 C8	-15.3(4)	C5 N3 C4 N1	-179.8(3)
O5 C6 C7 C17	22.4(15)	C5 N3 C4 C3	0.7(3)
O5 C9 C17 C7	24(2)	C5 N3 C10 C11	-75.4(3)
N2 C2 C3 N4	-179.6(3)	C5 N4 C3 C2	-179.3(3)
N2 C2 C3 C4	1.3(4)	C5 N4 C3 C4	-0.2(3)
N3 C5 C6 O5	-55.4(3)	C5 C6 C7 C8	104.6(4)
N3 C5 C6 C7	-174.7(2)	C5 C6 C7 C17	142.3(15)
N3 C10 C11 C12	126.1(3)	C6 O5 C9 C8	28.2(4)
N3 C10 C11 C16	-56.5(3)	C6 O5 C9 C17	-10.9(17)
N4 C3 C4 N1	-179.8(2)	C6 C7 C8 C9	31.0(4)
N4 C3 C4 N3	-0.4(3)	C6 C7 C17 C9	-28(2)
N4 C5 C6 O5	125.0(3)	C7 C8 C9 O5	-37.0(4)
N4 C5 C6 C7	5.7(4)	C9 O5 C6 C5	-131.7(3)
C1 N1 C4 N3	179.8(2)	C9 O5 C6 C7	-8.2(3)
C1 N1 C4 C3	-0.8(4)	C10 N3 C4 N1	1.3(4)
C1 N2 C2 Cl2	176.7(2)	C10 N3 C4 C3	-178.1(2)
C1 N2 C2 C3	-0.6(4)	C10 N3 C5 N4	177.9(2)
C2 N2 C1 Cl1	179.8(2)	C10 N3 C5 C6	-1.8(4)
C2 N2 C1 N1	-1.2(4)	C10 C11 C12 C13	178.0(2)
C2 C3 C4 N1	-0.5(4)	C10 C11 C16 C15	-177.7(2)
C2 C3 C4 N3	178.9(2)	C11 C12 C13 C14	-0.6(4)
C3 N4 C5 N3	0.7(3)	C12 C11 C16 C15	-0.3(4)
C3 N4 C5 C6	-179.7(2)	C12 C13 C14 C15	0.4(4)
C4 N1 C1 Cl1	-179.18(18)	C13 C14 C15 C16	-0.2(4)
C4 N1 C1 N2	1.8(4)	C14 C15 C16 C11	0.1(4)
C4 N3 C5 N4	-0.9(3)	C16 C11 C12 C13	0.5(4)

Table S8 Hydrogen Atom Coordinates (Å×10⁴) and Isotropic Displacement Parameters (Å²×10³) for 3c.

y

x

U(eq)

Atom	x	у	Z	U(eq)
H6	780.29	5065.17	3011.16	37
H7AA	-1551.63	5459.17	3925.26	47
H7AB	221.87	4824.01	4340.14	47
H7BC	1122.75	5030.25	4441.93	47
H7BD	-1596.6	5116.86	3989.67	47
H8A	3360.67	5753.88	4678.99	52
H8B	694.22	6312.83	4630.86	52
H9AA	1880.02	6764.35	3564.79	58
H9AB	4862.76	6693.71	3903.75	58
H9BC	3091.15	6903.05	3525.72	58
H9BD	4665.74	6442.52	4110.21	58
H10A	7921.97	4340	2097.19	32
H10B	6409.59	5114.22	2364.89	32
H12	3280.87	5609.3	1589.46	37
H13	-139.31	5463.6	763.32	45
H14	-1519.72	4192.68	428.5	48
H15	461.51	3070.49	928.52	46
H16	3847.86	3211.66	1757.77	39
H17A	-1008.79	6483.28	3864.4	68
H17B	537.96	6395.41	4573.71	68

Table S8 Hydrogen Atom Coordinates (Å×10⁴) and Isotropic Displacement Parameters (Å²×10³) for 3c.

Table S9 Atomic Occupancy for 3c.

H7AA0.822(16)H7AB0.822(16)H7BC0.178(16)H7BD0.178(16)C80.822(16)H8A0.822(16)H8B0.822(16)H9AA0.822(16)H9AB0.822(16)H9BC0.178(16)H9BD0.178(16)C170.178(16)H17A0.178(16)H17B0.178(16)	Atom	Occupancy	Atom	Occupancy	Atom	Occupancy
H7BD0.178(16)C80.822(16)H8A0.822(16)H8B0.822(16)H9AA0.822(16)H9AB0.822(16)H9BC0.178(16)H9BD0.178(16)C170.178(16)H17A0.178(16)H17B0.178(16)	H7AA	0.822(16)	H7AB	0.822(16)	H7BC	0.178(16)
H8B0.822(16)H9AA0.822(16)H9AB0.822(16)H9BC0.178(16)H9BD0.178(16)C170.178(16)H17A0.178(16)H17B0.178(16)	H7BD	0.178(16)	C8	0.822(16)	H8A	0.822(16)
H9BC0.178(16)H9BD0.178(16)C170.178(16)H17A0.178(16)H17B0.178(16)	H8B	0.822(16)	H9AA	0.822(16)	H9AB	0.822(16)
H17A 0.178(16) H17B 0.178(16)	H9BC	0.178(16)	H9BD	0.178(16)	C17	0.178(16)
	H17A	0.178(16)	H17B	0.178(16)		

IX. Characterization data for the synthesized products

9-benzyl-6-chloro-8-(tetrahydrofuran-2-yl)-9H-purine (3a)

Yellow oily liquid (43.4 mg); 92% yield (eluent: petroleum ether/ethyl acetate = 5:1); ¹H NMR (400 MHz, Chloroform-*d*) δ 8.74 (s, 1H), 7.33–7.27 (m, 3H), 7.25–7.18 (m, 2H), 5.76 (d, *J* = 15.5 Hz, 1H), 5.60 (d, *J* = 15.4 Hz, 1H), 5.05 (dd, *J* = 7.5, 5.9 Hz, 1H), 3.97–3.87 (m, 2H), 2.80–2.70 (m, 1H), 2.30–2.20 (m, 1H), 2.14–1.98 (m, 2H); ¹³C NMR (101 MHz, Chloroform-*d*) δ 157.02, 153.82, 151.87, 150.29, 135.55, 130.37, 128.93, 128.22, 127.33, 73.92, 69.13, 46.77, 29.13, 25.80; HRMS (ESI) calcd for C₁₆H₁₆N₄OCl, [M + H]⁺: 315.1013, found: 315.1012.

6-chloro-9-ethyl-8-(tetrahydrofuran-2-yl)-9H-purine (3b)

Pale yellow solid (34.2 mg); 90% yield (eluent: petroleum ether/ethyl acetate = 5:1); mp: 86.3–86.7°C; ¹H NMR (400 MHz, Chloroform-*d*) δ 8.68 (s, 1H), 5.25–5.17 (m, 1H), 4.50–4.40 (m, 2H), 3.94 (h, *J* = 8.2 Hz, 2H), 2.88–2.79 (m, 1H), 2.43–2.33 (m, 1H), 2.22– 2.13 (m, 1H), 2.12–2.05 (m, 1H), 1.48 (t, *J* = 7.2 Hz, 3H); ¹³C NMR (101 MHz, Chloroform*d*) δ 156.61, 153.32, 151.45, 150.04, 130.57, 73.70, 69.14, 39.12, 29.34, 25.97, 15.18;

HRMS (ESI) calcd for $C_{11}H_{14}N_4OCI$, $[M + H]^+$: 253.0856, found: 253.0864.

9-benzyl-2,6-dichloro-8-(tetrahydrofuran-2-yl)-9H-purine (3c)

White solid (48.2 mg); 92% yield (eluent: petroleum ether/ethyl acetate = 5:1); mp: 118.2–119.1°C; ¹H NMR (400 MHz, Chloroform-*d*) δ 7.32–7.25 (m, 3H), 7.22–7.18 (m, 2H), 5.69 (d, *J* = 15.4 Hz, 1H), 5.54 (d, *J* = 15.4 Hz, 1H), 4.98 (dd, *J* = 7.5, 5.9 Hz, 1H), 3.94–3.84 (m, 2H), 2.76–2.63 (m, 1H), 2.25–2.16 (m, 1H), 2.11–1.95 (m, 2H); ¹³C NMR (101 MHz, Chloroform-*d*) δ 157.88, 155.11, 152.66, 150.90, 135.05, 129.43, 128.99, 128.38, 127.45, 73.80, 69.19, 46.95, 29.02, 25.76; HRMS (ESI) calcd for C₁₆H₁₅N₄OCl₂, [M + H]⁺: 349.0623, found: 349.0616.

2,6-dichloro-9-ethyl-8-(tetrahydrofuran-2-yl)-9H-purine (3d)

Pale yellow solid (39.2 mg); 91% yield (eluent: petroleum ether/ethyl acetate = 5:1); mp: 106.9–107.1°C; ¹H NMR (400 MHz, Chloroform-*d*) δ 5.17 (dd, *J* = 7.5, 6.0 Hz, 1H), 4.47–4.36 (m, 2H), 3.98–3.88 (m, 2H), 2.86–2.77 (m, 1H), 2.42–2.33 (m, 1H), 2.22–2.13 (m, 1H), 2.10–2.02 (m, 1H), 1.47 (t, *J* = 7.2 Hz, 3H); ¹³C NMR (101 MHz, Chloroform-*d*) δ 157.47, 154.69, 152.31, 150.72, 129.68, 73.64, 69.21, 39.34,

29.28, 25.93, 15.15; HRMS (ESI) calcd for $C_{11}H_{13}N_4OCl_2$, $[M + H]^+$: 287.0466, found: 287.0469.

9-benzyl-2-bromo-6-chloro-8-(tetrahydrofuran-2-yl)-9H-purine (3e)

White solid (50.3 mg); 85% yield (eluent: petroleum ether/ethyl acetate = 7:1); mp: 137.9–138.6°C; ¹H NMR (500 MHz, Chloroform-*d*) δ 7.27–7.19 (m, 3H), 7.17–7.10 (m, 2H), 5.62 (dd, *J* = 15.4, 6.0 Hz, 1H), 5.47 (dd, *J* = 15.4, 3.3 Hz, 1H), 4.90 (dd, *J* = 7.5, 5.7 Hz, 1H), 3.82 (dt, *J* = 14.1, 7.4 Hz, 2H), 2.69–2.58 (m, 1H), 2.19–2.09 (m, 1H), 2.04–1.96 (m, 1H), 1.96–1.87 (m, 1H); ¹³C NMR (126 MHz, Chloroform-*d*) δ 157.65, 155.06, 150.62, 142.78, 135.07, 129.81, 128.98, 128.37, 127.46, 73.81, 69.17, 46.97, 29.03, 25.74; HRMS (ESI) calcd for C₁₆H₁₅N₄OClBr, [M + H]⁺: 393.0118,

found: 393.0120.

9-benzyl-6-methoxy-8-(tetrahydrofuran-2-yl)-9H-purine (3f)

White solid (41.4 mg); 89% yield (eluent: petroleum ether/ethyl acetate = 4:1); mp: 90.8–91.8°C; ¹H NMR (400 MHz, Chloroform-*d*) δ 8.56 (s, 1H), 7.31–7.26 (m, 3H), 7.24–7.16 (m, 2H), 5.74 (d, *J* = 15.6 Hz, 1H), 5.56 (d, *J* = 15.6 Hz, 1H), 5.01 (dd, *J* = 7.4, 5.8 Hz, 1H), 4.20 (s, 3H), 3.94–3.82 (m, 2H), 2.88–2.78 (m, 1H), 2.23–2.07 (m, 2H), 2.01–1.92 (m, 1H); ¹³C NMR (101 MHz, Chloroform-*d*) δ 160.76, 153.97, 153.58, 152.09, 136.18, 128.81, 127.92, 127.18, 119.99, 73.63, 68.85, 54.18, 46.30, 28.73, 25.88; HRMS (ESI) calcd for C₁₇H₁₉N₄O₂, [M + H]⁺: 311.1508, found: 311.1511.

9-ethyl-6-methoxy-8-(tetrahydrofuran-2-yl)-9H-purine (3g)

Pale yellow solid (33.5 mg); 90% yield (eluent: petroleum ether/ethyl acetate = 4:1); mp: 89.1–89.9°C; ¹H NMR (400 MHz, Chloroform-*d*) δ 8.49 (s, 1H), 5.16 (dd, *J* = 7.5, 5.9 Hz, 1H), 4.45–4.36 (m, 2H), 4.15 (s, 3H), 3.95–3.83 (m, 2H), 2.95–2.85 (m, 1H), 2.33–2.25 (m, 1H), 2.19–2.11 (m, 1H), 2.06–1.98 (m, 1H), 1.45 (t, *J* = 7.2 Hz, 3H); ¹³C NMR (101 MHz, Chloroform-*d*) δ 160.62, 153.40, 153.06, 151.66, 120.18, 73.34, 68.85, 54.06, 38.58, 28.89, 26.02, 15.34; HRMS (ESI) calcd for C₁₂H₁₇N₄O₂, [M + H]⁺: 249.1352, found:

249.1351.

isopropyl-2-(6-methoxy-8-(tetrahydrofuran-2-yl)-9H-purin-9-yl)acetate (3h)

Pale yellow solid (40.5 mg); 84% yield (eluent: petroleum ether/ethyl acetate = 3:1); mp: 98.2–98.6°C; ¹H NMR (400 MHz, Chloroform-*d*) δ 8.44 (s, 1H), 5.14–5.09 (m, 1H), 5.08 (s, 2H), 5.03–4.98 (m, 1H), 4.12 (s, 3H), 3.85–3.79 (m, 1H), 3.74–3.69 (m, 1H), 2.86– 2.77 (m, 1H), 2.32–2.24 (m, 1H), 2.04–1.91 (m, 2H), 1.19 (d, *J* = 6.3 Hz, 6H); ¹³C NMR (101 MHz, Chloroform-*d*) δ 167.07, 160.57, 153.85, 153.53, 151.90, 119.88, 74.43, 69.74, 68.82, 54.16, 44.62, 29.08, 25.61, 21.67; HRMS (ESI) calcd for C₁₅H₂₁N₄O₄, [M + H]⁺: 321.1563, found: 321.1566.

ethyl-2-(6-methoxy-8-(tetrahydrofuran-2-yl)-9H-purin-9-yl)acetate (3i)

White solid (38.1 mg); 83% yield (eluent: petroleum ether/ethyl acetate = 3:1); mp: 108.1–109.4°C; ¹H NMR (500 MHz, Chloroform-*d*) δ 8.47 (s, 1H), 5.15 (s, 3H), 4.23–4.17 (m, 2H), 4.15 (s, 3H), 3.88–3.83 (m, 1H), 3.78–3.72 (m, 1H), 2.90–2.82 (m, 1H), 2.34–2.27 (m, 1H), 2.06–1.95 (m, 2H), 1.24 (t, *J* = 7.2 Hz, 3H); ¹³C NMR (126 MHz, Chloroform-*d*) δ 167.59, 160.63, 153.87, 153.52, 151.96, 119.95, 74.44, 68.87, 61.86, 54.17, 44.43, 29.08, 25.64, 14.09; HRMS (ESI) calcd for C₁₄H₁₉N₄O₄, [M + H]⁺: 307.1406, found: 307.1413.

9-ethyl-2,6-dimethoxy-8-(tetrahydrofuran-2-yl)-9H-purine (3j)

White solid (36.7 mg); 88% yield (eluent: petroleum ether/ethyl acetate = 3:1); mp: 72.0–72.6°C; ¹H NMR (400 MHz, Chloroform-*d*) δ 5.11 (dd, *J* = 7.4, 6.0 Hz, 1H), 4.37–4.25 (m, 2H), 4.13 (s, 3H), 4.01 (s, 3H), 3.93–3.82 (m, 2H), 2.94–2.83 (m, 1H), 2.30–2.11 (m, 2H), 2.05–1.96 (m, 1H), 1.43 (t, *J* = 7.2 Hz, 3H); ¹³C NMR (101 MHz, Chloroform-*d*) δ 161.61, 161.44, 155.04, 151.48, 115.85, 73.35, 68.72, 54.94, 54.10, 38.31, 28.71, 26.04, 15.15, HRMS (ESI) calcd for C₁₃H₁₉N₄O₃, [M +

H]⁺: 279.1457, found: 279.1462.

9-benzyl-6-(methylthio)-8-(tetrahydrofuran-2-yl)-9H-purine (3k)

White solid (39.1 mg); 80% yield (eluent: petroleum ether/ethyl acetate = 3:1); mp: 105.9–106.7°C; ¹H NMR (400 MHz, Chloroform-*d*) δ 8.69 (s, 1H), 7.27–7.19 (m, 3H), 7.17–7.11 (m, 2H), 5.68 (d, *J* = 15.6 Hz, 1H), 5.51 (d, *J* = 15.6 Hz, 1H), 4.96 (dd, *J* = 7.4, 6.0 Hz, 1H), 3.89–3.79 (m, 2H), 2.74–2.64 (m, 4H), 2.19–2.00 (m, 2H), 1.96–1.88 (m, 1H); ¹³C NMR (101 MHz, Chloroform-*d*) δ 160.75, 154.04, 151.94, 150.31, 136.15, 130.24, 128.80, 127.92, 127.16, 73.94, 68.92, 46.17, 29.03, 25.80, 11.85; HRMS (ESI) calcd for C₁₇H₁₈N₄OSNa, [M + Na]⁺: 349.1099, found: 349.1098.

9-ethyl-6-(methylthio)-8-(tetrahydrofuran-2-yl)-9H-purine (3I)

Pale yellow solid (32.1 mg); 81% yield (eluent: petroleum ether/ethyl acetate = 3:1); mp: 86.2–86.9°C; ¹H NMR (400 MHz, Chloroform-*d*) δ 8.71 (s, 1H), 5.20 (dd, *J* = 7.4, 6.2 Hz, 1H), 4.48–4.38 (m, 2H), 3.98–3.91 (m, 2H), 2.90–2.81 (m, 1H), 2.73 (s, 3H), 2.40– 2.31 (m, 1H), 2.23–2.16 (m, 1H), 2.12–2.03 (m, 1H), 1.48 (t, *J* = 7.2 Hz, 3H); ¹³C NMR (101 MHz, Chloroform-*d*) δ 160.55, 153.60, 151.56, 149.77, 130.50, 73.77, 68.96, 38.52, 29.29, 25.99, 15.33, 11.80; HRMS (ESI) calcd for C₁₂H₁₇N₄OS, [M + H]⁺: 265.1123, found:

265.1124.

6-chloro-7-ethyl-8-(tetrahydrofuran-2-yl)-7H-purine (3m)

Yellow oily liquid (28.7 mg); 76% yield (eluent: petroleum ether/ethyl acetate = 2:3); ¹H NMR (400 MHz, Chloroform-*d*) δ 8.82 (s, 1H), 5.24 (dd, *J* = 7.6, 5.3 Hz, 1H), 4.76–4.57 (m, 2H), 3.99–3.90 (m, 2H), 3.00–2.90 (m, 1H), 2.42–2.33 (m, 1H), 2.27–2.20 (m, 1H), 2.12–2.04 (m, 1H), 1.54 (t, *J* = 7.2 Hz, 3H); ¹³C NMR (101 MHz, Chloroform-*d*) δ 160.65,

160.03, 152.12, 142.15, 123.67, 72.98, 69.28, 41.00, 29.42, 25.92, 17.14; HRMS (ESI) calcd for $C_{11}H_{13}N_4OCINa$, [M + Na]⁺: 275.0676, found: 275.0681.

7-benzyl-6-chloro-8-(tetrahydrofuran-2-yl)-7H-purine (3n)

Yellow oily liquid (33.4 mg); 71% yield (eluent: petroleum ether/ethyl acetate = 2:3); ¹H NMR (400 MHz, Chloroform-*d*) δ 8.81 (s, 1H), 7.32–7.24 (m, 3H), 7.00–6.94 (m, 2H), 5.97 (d, *J* = 16.8 Hz, 1H), 5.85 (d, *J* = 16.8 Hz, 1H), 5.07 (dd, *J* = 7.5, 5.2 Hz, 1H), 3.90–3.84 (m, 2H), 2.88–2.79 (m, 1H), 2.26–2.11 (m, 2H), 2.02–1.95 (m, 1H); ¹³C NMR (101 MHz, Chloroform-*d*) δ 160.91, 160.56, 152.34, 142.46, 136.03, 129.06, 128.08, 125.84, 124.10, 73.20, 69.33, 48.58, 29.40, 25.81; HRMS (ESI) calcd for C₁₆H₁₆N₄OCl, [M + H]⁺:

315.1013, found: 315.1022.

2,6-dichloro-7-ethyl-8-(tetrahydrofuran-2-yl)-7H-purine (30)

Pale yellow solid (32.2 mg); 75% yield (eluent: petroleum ether/ethyl acetate = 3:1); mp: 66.3–67.4°C; ¹H NMR (400 MHz, Chloroform-*d*) δ 5.18 (dd, *J* = 7.6, 5.2 Hz, 1H), 4.67–4.49 (m, 2H), 3.92–3.82 (m, 2H), 2.84–2.75 (m, 1H), 2.36–2.27 (m, 1H), 2.18–1.98 (m, 2H), 1.48 (t, *J* = 7.2 Hz, 3H); ¹³C NMR (101 MHz, Chloroform-*d*)

 δ 162.19, 161.70, 152.44, 142.67, 122.79, 72.88, 69.32, 41.24, 29.41, 25.82, 17.04; HRMS (ESI) calcd for C₁₁H₁₃N₄OCl₂, [M + H]⁺: 287.0466, found: 287.0469.

7-benzyl-2,6-dichloro-8-(tetrahydrofuran-2-yl)-7H-purine (3p)

Yellow oily liquid (37.6 mg); 72% yield (eluent: petroleum ether/ethyl acetate = 4:1); ¹H NMR (400 MHz, Chloroform-*d*) δ 7.34–7.25 (m, 3H), 7.01–6.95 (m, 2H), 5.90 (q, *J* = 16.8 Hz, 2H), 5.10 (dd, *J* = 7.6, 5.2 Hz, 1H), 3.88 (td, *J* = 6.8, 1.5 Hz, 2H), 2.83–2.73 (m, 1H), 2.30–2.21 (m, 1H), 2.17–2.09 (m, 1H), 2.05–1.95 (m, 1H); ¹³C NMR (101 MHz, Chloroform-*d*) δ 162.55, 162.20, 152.85, 143.11, 135.67, 129.11, 128.19, 125.87, 123.27, 73.11, 69.43, 48.78, 29.51, 25.76; HRMS (ESI) calcd for

 $C_{16}H_{15}N_4OCI_2$, [M + H]⁺: 349.0623, found: 349.0625.

1,3,9-trimethyl-8-(tetrahydrofuran-2-yl)-3,9-dihydro-1H-purine-2,6-dione (3q)

White solid (29.3 mg); 74% yield (eluent: petroleum ether/ethyl acetate = 2:1); mp: 123.8–124.2°C; ¹H NMR (400 MHz, Chloroform-*d*) δ 5.01 (t, *J* = 6.9 Hz, 1H), 4.02 (s, 3H), 3.97–3.87 (m, 2H), 3.54 (s, 3H), 3.37 (s, 3H), 2.61–2.52 (m, 1H), 2.31–2.22 (m, 1H), 2.19–2.10 (m, 1H), 2.06–2.00 (m, 1H); ¹³C NMR (101 MHz, Chloroform-*d*) δ 155.47, 152.37, 151.69, 147.33, 108.33, 72.61, 68.90, 32.22, 29.69, 29.58, 27.85,

25.93; HRMS (ESI) calcd for $C_{12}H_{17}N_4O_3$, [M + H]⁺: 265.1301, found: 265.1306.

1-methyl-2-(tetrahydrofuran-2-yl)-1H-benzo[d]imidazole (3r)

White solid (25.5 mg); 84% yield (eluent: petroleum ether/ethyl acetate = 3:2); mp: 103.5–104.4°C; ¹H NMR (400 MHz, Chloroform-*d*) δ 7.77 (dd, *J* = 6.4, 1.9 Hz, 1H), 7.34–7.23 (m, 3H), 5.19 (dd, *J* = 7.4, 6.3 Hz, 1H), 3.97–3.92 (m, 2H), 3.84 (s, 3H), 2.85–2.76 (m, 1H), 2.39–2.31 (m, 1H), 2.24–2.15 (m, 1H), 2.11–2.01 (m, 1H); ¹³C NMR (101 MHz, 10.211–2.01 (m, 1H); ¹³C NMR (101 MHz), 10.2110, 10.2110, 10.2110, 10.2110, 10.2110, 10.2110,

Chloroform-*d*) δ 153.60, 141.96, 136.49, 122.69, 121.96, 119.84, 109.18, 73.58, 68.72, 30.21, 29.33, 26.07; HRMS (ESI) calcd for C₁₂H₁₅N₂O, [M + H]⁺: 203.1184, found: 203.1190.

6-chloro-8-(tetrahydrofuran-2-yl)-9H-purine (4a)

Yellow oily liquid (20.8 mg); 62% yield (eluent: dichloromethane/methanol = 30:1); ¹H NMR (400 MHz, Chloroform-*d*) δ 13.63 (s, 1H), 8.81 (s, 1H), 5.32 (dd, *J* = 7.9, 5.9 Hz, 1H), 4.14–4.03 (m, 2H), 2.66–2.56 (m, 1H), 2.43–2.33 (m, 1H), 2.15–2.06 (m, 1H), 2.02–1.97 (m, 1H); ¹³C NMR (101 MHz, Chloroform-*d*) δ 160.36, 152.64, 150.86, 150.09, 132.66, 75.43, 69.55, 32.13, 25.85; HRMS (ESI) calcd for C₉H₁₀N₄OCl, [M + H]⁺: 225.0543, found:

225.0544.

2,6-dichloro-8-(tetrahydrofuran-2-yl)-9H-purine (4b)

Pale yellow solid (27.1 mg); 70% yield (eluent: petroleum ether/ethyl acetate = 3:1); mp: 134.7–135.1°C; ¹H NMR (400 MHz, Chloroform-*d*) δ 11.99 (s, 1H), 5.28 (dd, *J* = 7.8, 6.0 Hz, 1H), 4.06–3.96 (m, 2H), 2.58–2.50 (m, 1H), 2.45–2.35 (m, 1H), 2.12–2.00 (m, 2H); ¹³C NMR (101 MHz, Chloroform-*d*) δ 160.10, 153.99, 152.25, 150.29, 131.01, 75.02, 69.64, 31.83, 25.82; HRMS (ESI) calcd for C₉H₈N₄OCl₂Na, [M

+ Na]⁺: 280.9973, found: 280.9978.

6-chloro-2-fluoro-8-(tetrahydrofuran-2-yl)-9H-purine (4c)

Pale yellow solid (25.1 mg); 69% yield (eluent: petroleum ether/ethyl acetate = 3:1); mp: 138.0–138.6°C; ¹H NMR (400 MHz, Chloroform-*d*) δ 12.50 (s, 1H), 5.25 (t, *J* = 7.1 Hz, 1H), 4.05–3.86 (m, 2H), 2.56–2.45 (m, 1H), 2.39–2.28 (m, 1H), 2.09–1.95 (m, 2H); ¹³C NMR (126 MHz, Chloroform-*d*) δ 160.20, 156.80 (d, ¹*J*_{C-F} = 219.2 Hz), 154.46 (d, ³*J*_{C-F} = 15.8 Hz), 151.11 (d, ³*J*_{C-F} = 17.2 Hz), 130.57, 75.04, 69.60, 31.95, 25.78; ¹⁹F

NMR (376 MHz, Chloroform-*d*) δ -50.57; HRMS (ESI) calcd for C₉H₈N₄OFClNa, [M + Na]⁺: 265.0268, found: 265.0266.

6-methoxy-8-(tetrahydrofuran-2-yl)-9H-purine (4d)

Pale yellow solid (22.1 mg); 67% yield (eluent: dichloromethane/methanol = 30:1); mp: 152.0–153.1°C; ¹H NMR (400 MHz, Chloroform-*d*) δ 14.14 (s, 1H), 8.57 (s, 1H), 5.23 (dd, *J* = 7.7, 5.8 Hz, 1H), 4.14 (s, 3H), 4.07–3.96 (m, 2H), 2.51–2.32 (m, 2H), 2.05–1.90 (m, 2H); ¹³C NMR (101 MHz, Chloroform-*d*) δ 160.48, 156.66, 152.97, 150.93, 121.89, 75.47, 69.16, 54.10, 31.79, 25.72; HRMS (ESI) calcd for C₁₀H₁₂N₄O₂Na, [M + Na]⁺: 243.0858,

found: 243.0865.

6-(methylthio)-8-(tetrahydrofuran-2-yl)-9H-purine (4e)

Pale yellow solid (23.4 mg); 66% yield (eluent: petroleum ether/ethyl acetate = 3:2); mp: 192.7–193.1°C; ¹H NMR (400 MHz, Chloroform-*d*) δ 14.17 (s, 1H), 8.76 (s, 1H), 5.28 (dd, *J* = 7.8, 5.9 Hz, 1H), 4.13–4.00 (m, 2H), 2.71 (s, 3H), 2.57–2.48 (m, 1H), 2.38–2.29 (m, 1H), 2.09–1.92 (m, 2H); ¹³C NMR (101 MHz, Chloroform-*d*) δ 160.53, 157.57, 150.60, 148.97, 132.21, 75.56, 69.33, 32.26, 25.80, 11.82; HRMS (ESI) calcd for C₁₀H₁₂N₄ONaS,

[M + Na]⁺: 259.0630, found: 259.0630.

1,3-dimethyl-8-(tetrahydrofuran-2-yl)-3,9-dihydro-1H-purine-2,6-dione (4f)

White solid (22.9 mg); 61% yield (eluent: dichloromethane/methanol = 30:1); mp: 239.2–239.5°C; ¹H NMR (400 MHz, Chloroform-*d*) δ 11.73 (s, 1H), 5.11 (dd, *J* = 7.7, 5.7 Hz, 1H), 4.13–4.11 (m, 1H), 3.98–3.91 (m, 1H), 3.59 (s, 3H), 3.45 (s, 3H), 2.50–2.36 (m, 1H), 2.26–2.18 (m, 1H), 2.07–1.96 (m, 2H); ¹³C NMR (101 MHz, Chloroform-*d*) δ 155.71, 155.49, 151.78, 149.26, 106.72, 74.94, 69.39, 32.21, 30.24, 28.39,

25.76; HRMS (ESI) calcd for $C_{11}H_{15}N_4O_3$, [M + H]⁺: 251.1144, found: 251.1147.

8-(tetrahydrofuran-2-yl)-9H-purin-6-amine (4g)

Pale yellow solid (12.6 mg); 41% yield (eluent: dichloromethane/methanol = 25:1); mp: 278.8–280.4°C; ¹H NMR (400 MHz, DMSO- d_6) δ 8.10 (s, 1H), 7.07 (s, 2H), 5.02 (t, *J* = 6.9 Hz, 1H), 4.00–3.94 (m, 1H), 3.86–3.80 (m, 1H), 2.34–2.25 (m, 1H), 2.21–2.12 (m, 1H), 2.02–1.91 (m, 2H); ¹³C NMR (101 MHz, DMSO- d_6) δ 152.62, 75.00, 68.70, 31.63, 25.95; HRMS (ESI) calcd for C₉H₁₂N₅O, [M + H]⁺: 206.1042, found: 206.1044.

N-benzyl-8-(tetrahydrofuran-2-yl)-9H-purin-6-amine (4h)

White solid (14.6 mg); 33% yield (eluent: dichloromethane/methanol = 30:1); mp: 166.5–167.3°C; ¹H NMR (500 MHz, DMSO- d_6) δ 12.93 (s, 1H), 8.18 (s, 1H), 7.50–7.24 (m, 5H), 7.21 (t, J = 7.3 Hz, 1H), 5.04 (s, 1H), 4.72 (s, 2H), 4.00–3.93 (m, 1H), 3.87–3.80 (m, 1H), 2.33–2.15 (m, 2H), 2.01–1.91 (m, 2H); 13C NMR (126 MHz, DMSO- d_6) δ 154.42, 152.78, 152.62, 150.94, 140.82, 128.58, 127.67, 126.96, 119.15, 75.00, 68.66, 43.36, 31.49, 26.00; HRMS (ESI) calcd for C₁₆H₁₈N₅O, [M + H]⁺: 296.1511, found: 296.1514.

2-(tetrahydrofuran-2-yl)-1H-benzo[d]imidazole (4i)

White solid (20.3 mg); 72% yield (eluent: dichloromethane/methanol = 20:1); mp: 208.6–209.1°C; ¹H NMR (400 MHz, Chloroform-*d*) δ 7.59 (s, 2H), 7.28–7.20 (m, 2H), 5.27 (dd, *J* = 7.7, 5.9 Hz, 1H), 4.08–3.94 (m, 2H), 2.55–2.46 (m, 1H), 2.41–2.32 (m, 1H), 2.09–

1.94 (m, 2H); ¹³C NMR (101 MHz, Chloroform-*d*) δ 156.09, 122.41, 75.36, 69.17, 31.97, 25.82; HRMS (ESI) calcd for C₁₁H₁₃N₂O, [M + H]⁺: 189.1028, found: 189.1032.

9-benzyl-6-chloro-8-(tetrahydro-2H-pyran-2-yl)-9H-purine (5a)

White solid (34.4 mg); 70% yield (eluent: petroleum ether/ethyl acetate = 3:1); mp: 102.7–103.4°C; ¹H NMR (400 MHz, Chloroform-*d*) δ 8.71 (s, 1H), 7.30–7.26 (m, 3H), 7.21–7.15 (m, 2H), 5.73 (d, *J* = 15.3 Hz, 1H), 5.54 (d, *J* = 15.3 Hz, 1H), 4.53 (dd, *J* = 7.6, 5.5 Hz, 1H), 4.07–4.04 (m, 1H), 3.59–3.48 (m, 1H), 2.00–1.92 (m, 2H), 1.70–1.61 (m, 2H), 1.61–1.53 (m, 2H); ¹³C NMR (101 MHz, Chloroform-*d*) δ 156.41, 153.66, 151.93, 150.40, 135.71, 130.43, 128.92, 128.26, 127.52, 73.83, 68.92, 47.14, 28.88, 25.49, 22.60; HRMS (ESI) calcd for C₁₇H₁₇N₄OCINa, [M + Na]⁺: 351.0989, found: 351.0993.

9-benzyl-6-chloro-8-(1,4-dioxan-2-yl)-9H-purine (5b)

White solid (40.6 mg); 82% yield (eluent: petroleum ether/ethyl acetate = 6:1); mp: 141.3–141.6°C; ¹H NMR (400 MHz, Chloroform-*d*) δ 8.76 (s, 1H), 7.36–7.27 (m, 3H), 7.24–7.16 (m, 2H), 5.77 (d, *J* = 15.3 Hz, 1H), 5.51 (d, *J* = 15.3 Hz, 1H), 4.71 (dd, *J* = 9.6, 3.0 Hz, 1H), 4.15–4.10 (m, 1H), 4.05–3.99 (m, 1H), 3.95–3.90 (m, 1H), 3.87–3.80 (m, 1H), 3.80–3.75 (m, 1H), 3.75–3.68 (m, 1H); ¹³C NMR (101 MHz, Chloroform-*d*) δ 153.30, 152.83, 152.20, 150.81, 135.27, 130.36, 129.04, 128.48, 127.46, 70.97, 68.04, 66.90, 66.23, 47.06; HRMS (ESI) calcd for C₁₆H₁₅N₄O₂NaCl, [M + Na]⁺: 353.0781,

found: 353.0785.

9-benzyl-6-chloro-8-(5-methyltetrahydrofuran-2-yl)-9H-purine (5c)

Yellow oily liquid (31.9 mg); 64% yield (eluent: petroleum ether/ethyl acetate = 15:1); a mixture of two diastereomers (dr = 55:45); ¹H NMR (500 MHz, Chloroform-*d*) δ 8.74 (d, *J* = 1.7 Hz, 1H), 7.33 – 7.26 (m, 3H), 7.26 – 7.20 (m, 2H), 5.80 – 5.72 (m, 1H), 5.68 – 5.58 (m, 1H), 5.16 (t, *J* = 6.9 Hz, 1H), 5.00 (dd, *J* = 7.7, 5.8 Hz, 1H), 4.23 – 4.16 (m, 0.45H), 4.14 – 4.06 (m, 0.55H), 2.89 – 2.77 (m, 1H), 2.34 – 2.10 (m, 2H), 1.72 – 1.55 (m, 1H), 1.27 (d, *J* = 6.1 Hz, 1.6H), 1.24 (d, *J* = 6.1 Hz, 1.4H); ¹³C NMR (126 MHz, Chloroform-*d*) δ 157.43, 157.13, 153.85, 151.83, 151.81, 150.26,

150.20, 135.61, 135.59, 130.38, 128.88, 128.84, 128.17, 128.13, 127.35, 127.34, 77.72, 76.34, 74.14, 73.35, 46.80, 46.74, 33.38, 32.82, 29.34, 29.25, 21.01, 20.66; HRMS (ESI) calcd for $C_{17}H_{17}N_4OCINa$, $[M + Na]^+$: 351.0989, found: 351.0991.

9-benzyl-6-chloro-8-(2-methyltetrahydrofuran-2-yl)-9H-purine (5c')

Yellow oily liquid (7.0 mg); 17% yield (eluent: petroleum ether/ethyl acetate = 15:1); ¹H NMR (500 MHz, Chloroform-*d*) δ 8.72 (s, 1H), 7.30 – 7.25 (m, 3H), 7.17 – 7.10 (m, 2H), 5.86 – 5.77 (m, 2H), 3.93 – 3.86 (m, 1H), 3.51 – 3.43 (m, 1H), 3.19 – 3.12 (m, 1H), 2.09 – 1.95 (m, 2H), 1.87 – 1.79 (m, 1H), 1.52 (s, 3H); ¹³C NMR (126 MHz, Chloroform-*d*) δ 161.04, 154.33, 151.67, 149.85, 136.59, 130.34, 128.61, 127.71, 126.88, 83.01, 68.94, 48.00, 38.48, 27.45, 25.48; HRMS (ESI) calcd for C₁₇H₁₇N₄OCINa, [M + Na]⁺: 351.0989, found: 351.0992.

9-benzyl-6-chloro-8-(1-ethoxyethyl)-9H-purine (5d)

Yellow oily liquid (33.7 mg); 71% yield (eluent: petroleum ether/ethyl acetate = 4:1); ¹H NMR (400 MHz, Chloroform-*d*) δ 8.73 (s, 1H), 7.32–7.25 (m, 3H), 7.16–7.10 (m, 2H), 5.78–5.62 (m, 2H), 4.88 (q, *J* = 6.9 Hz, 1H), 3.53–3.41 (m, 1H), 3.40–3.31 (m, 1H), 1.53 (d, *J* = 6.6 Hz, 3H), 1.09 (t, *J* = 6.9 Hz, 3H); ¹³C NMR (101 MHz, Chloroform-*d*) δ 157.82, 153.89, 151.95, 150.20, 135.57, 130.42, 128.86, 128.08, 126.79, 72.62, 64.83, 46.87, 19.06, 15.07; HRMS (ESI) calcd for C₁₆H₁₇N₄ONaCl, [M + Na]⁺: 339.0989, found: 339.0992.

9-benzyl-6-chloro-8-((2-methoxyethoxy)methyl)-9H-purine (5e)

Yellow oily liquid (26.5 mg); 53% yield (eluent: petroleum ether/ethyl acetate = 10:1); ¹H NMR (500 MHz, Chloroform-*d*) δ 8.76 (s, 1H), 7.31–7.27 (m, 3H), 7.26–7.23 (m, 2H), 5.63 (s, 2H), 4.75 (s, 2H), 3.67–3.61 (m, 2H), 3.51–3.46 (m, 2H), 3.34 (s, 3H); ¹³C NMR (126 MHz, Chloroform-*d*) δ 153.72, 153.55, 152.17, 150.51, 135.19, 130.45, 128.95, 128.35, 127.56, 71.48, 70.29, 66.39, 59.00, 46.69; HRMS (ESI) calcd for C₁₆H₁₈N₄O₂Cl, [M + H]⁺: 333.1118, found: 333.1119.

9-benzyl-6-chloro-8-(1,2-dimethoxyethyl)-9H-purine (5e')

White solid (9.5 mg); 19% yield (eluent: petroleum ether/ethyl acetate = 10:1); mp: 82.9– 84.2°C; ¹H NMR (400 MHz, Chloroform-*d*) δ 8.73 (s, 1H), 7.29–7.23 (m, 3H), 7.18–7.11 (m, 2H), 5.72–5.59 (m, 2H), 4.82 (dd, *J* = 6.4, 4.8 Hz, 1H), 3.79–3.66 (m, 2H), 3.26 (s, 3H), 3.15 (s, 3H); ¹³C NMR (101 MHz, Chloroform-*d*) δ 155.22, 153.73, 152.05, 150.44, 135.74, 130.65, 128.82, 128.12, 127.07, 77.47, 73.29, 59.30, 57.79, 47.09; HRMS (ESI) calcd for C₁₆H₁₈N₄O₂Cl, [M + H]⁺: 333.1118, found: 333.1124.

9-benzyl-6-chloro-8-(methoxymethyl)-9H-purine (5e")

Yellow oily liquid (6.1 mg); 14% yield (eluent: petroleum ether/ethyl acetate = 10:1); ¹H NMR (400 MHz, Chloroform-*d*) δ 8.79 (s, 1H), 7.37–7.30 (m, 3H), 7.29–7.24 (m, 2H), 5.62 (s, 2H), 4.67 (s, 2H), 3.40 (s, 3H); ¹³C NMR (101 MHz, Chloroform-*d*) δ 153.66, 153.52, 152.18, 150.54, 135.05, 130.48, 129.00, 128.44, 127.54, 67.63, 58.82, 46.77; HRMS (ESI) calcd for C₁₄H₁₄N₄OCl, [M + H]⁺: 289.0856, found: 289.0854.

9-benzyl-8-(1-butoxybutyl)-6-chloro-9H-purine (5f)

Yellow oily liquid (17.9 mg); 32% yield (eluent: petroleum ether/ethyl acetate = 10:1); ¹H NMR (400 MHz, Chloroform-*d*) δ 8.73 (s, 1H), 7.31–7.26 (m, 3H), 7.12–7.06 (m, 2H), 5.70 (d, *J* = 3.5 Hz, 2H), 4.74 (dd, *J* = 8.5, 6.1 Hz, 1H), 3.28 (q, *J* = 6.2 Hz, 2H), 1.86–1.77 (m, 1H), 1.43–1.35 (m, 2H), 1.29–1.22 (m, 4H), 0.84 (t, *J* = 7.3 Hz, 3H), 0.79 (t, *J* = 7.3 Hz, 3H); ¹³C NMR (101 MHz, Chloroform-*d*) δ 157.79, 154.00, 151.90, 150.11, 135.74, 130.54, 128.81, 128.01, 126.64, 77.55, 69.90, 46.87, 35.87, 31.55, 19.21, 18.95, 13.80, 13.55; HRMS (ESI) calcd for C₂₀H₂₅N₄OCINa, [M + Na]⁺: 395.1615, found: 395.1608.

\boldsymbol{X} . NMR Spectra for all the compounds

3a [¹H NMR (400 MHz, CDCl₃), ¹³C{¹H} NMR (101 MHz, CDCl₃)]

5.70 5.56 5.51 5.51 4.98 4.97 4.95

7.29 7.26 7.26 7.19 7.19 7.19

3.93 3.91 3.87 3.87 3.87 3.87 3.87 3.87 3.87 3.85

3d [¹H NMR (400 MHz, CDCl₃), ¹³C{¹H} NMR (101 MHz, CDCl₃)]

0

CI

3e [¹H NMR (500 MHz, CDCl₃), ¹³C{¹H} NMR (126 MHz, CDCl₃)]

3f [¹H NMR (400 MHz, CDCl₃), ¹³C{¹H} NMR (101 MHz, CDCl₃)]

3g [¹H NMR (400 MHz, CDCl₃), ¹³C{¹H} NMR (101 MHz, CDCl₃)]

3h [¹H NMR (400 MHz, CDCl₃), ¹³C{¹H} NMR (101 MHz, CDCl₃)]

3i [¹H NMR (500 MHz, CDCl₃), ¹³C{¹H} NMR (126 MHz, CDCl₃)]

3j [¹H NMR (400 MHz, CDCl₃), ¹³C{¹H} NMR (101 MHz, CDCl₃)]

3k [¹H NMR (400 MHz, CDCl₃), ¹³C{¹H} NMR (101 MHz, CDCl₃)]

3I [¹H NMR (400 MHz, CDCl₃), ¹³C{¹H} NMR (101 MHz, CDCl₃)]

3p [¹H NMR (400 MHz, CDCl₃), ¹³C{¹H} NMR (101 MHz, CDCl₃)]

180 155 150 145 140 135 130 125 120 115 110 105 100 95 90 85 80 75 70 65 60 55 50 45 40 35 30 25 20 1 F1 (ppm)

3r [¹H NMR (400 MHz, CDCl₃), ¹³C{¹H} NMR (101 MHz, CDCl₃)]

- S39 -

4b [¹H NMR (400 MHz, CDCl₃), ¹³C{¹H} NMR (101 MHz, CDCl₃)]

4c [¹H NMR (400 MHz, CDCl₃), ¹³C{¹H} NMR (126 MHz, CDCl₃), ¹⁹F NMR (376 MHz, CDCl₃)]

10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 f1 (ppm)

4d [¹H NMR (400 MHz, CDCl₃), ¹³C{¹H} NMR (101 MHz, CDCl₃)]

— 14.17 — 8.76
 114.5
 14.0
 13.5
 13.0
 12.5
 12.0
 11.5
 11.0
 10.5
 10.0
 9.5
 9.0
 8.5
 8.0
 7.5
 7.0
 6.5
 6.0
 5.5
 5.0
 4.5
 4.0
 3.5
 3.0
 2.5

 f1
 (ppm)
 f1
 (ppm)
 f1
 (ppm)
 f1
 (ppm)
 f1
 (ppm)
 f1
 f1
 (ppm)
 f1
 (ppm)
 f1
 (ppm)
 f1
 f1</ 2.99€ 1.03∄ 1.00∄ 2.04 2.0 1.5 1.0 0.5 0.0 -- 160.53 -- 157.57 -- 150.60 -- 148.97 _____132.21 — 11.82 --- 75.56 -- 69.33 — 32.26 — 25.80

4e [¹H NMR (400 MHz, CDCl₃), ¹³C{¹H} NMR (101 MHz, CDCl₃)]

80 f1 (ppm)

 $\frac{1}{70}$

60

50

40

30

20

10

0

-1

90

170

160

150

140

120

130

110

100

4f [¹H NMR (400 MHz, CDCl₃), ¹³C{¹H} NMR (101 MHz, CDCl₃)]

4g [¹H NMR (400 MHz, DMSO-*d*₆), ¹³C{¹H} NMR (101 MHz, DMSO-*d*₆)]

4h [¹H NMR (500 MHz, DMSO- d_6), ¹³C{¹H} NMR (126 MHz, DMSO- d_6)]

4i [¹H NMR (400 MHz, CDCl₃), ¹³C{¹H} NMR (101 MHz, CDCl₃)]

-7.59 7.27 7.26 7.26 7.25 7.25 7.25 7.25 7.25 5.29 5.28 5.26 5.26

5a [¹H NMR (400 MHz, CDCl₃), ¹³C{¹H} NMR (101 MHz, CDCl₃)]

60 155 150 145 140 135 130 125 120 115 110 105 100 95 90 85 80 75 70 65 60 55 50 45 40 35 30 25 f1 (ppm)

- S51 -

5c' [¹H NMR (500 MHz, CDCl₃), ¹³C{¹H} NMR (126 MHz, CDCl₃)]

95 90 f1 (ppm)

le5 180 155 150 145 140 135 130 125 120 115 110 105 100 95 90 85 80 75 70 65 60 55 50 45 40 35 30 25 20 15 f1 (ppm)

5e" [¹H NMR (400 MHz, CDCl₃), ¹³C{¹H} NMR (101 MHz, CDCl₃)]

5f [¹H NMR (400 MHz, CDCl₃), ¹³C{¹H} NMR (101 MHz, CDCl₃)]

XI. References

1. L. K. Huang, Y. C. Cherng, Y.-R. Cheng, J.-P. Jang, Y.-L. Chao and Y.-J. Cherng, Tetrahedron, 2007, 63, 5323-5327.

2. J. L. Kelley, R. G. Davis, E. W. McLean, R. C. Glen, F. E. Soroko and B. R. Cooper, *J. Med. Chem.*, 1995, **38**, 3884-3888.

3. G. Dilek Celik, A. Disli, Y. Oner and L. Acik, Chem. Pharm. Bull., 2012, 60, 578-582.