Electronic Supplementary Material (ESI) for Organic & Biomolecular Chemistry. This journal is © The Royal Society of Chemistry 2023

Supporting Information

For

Halogen cation-promoted and solvent-regulated electrophilic cyclization for the regioselective synthesis of 3-haloquinolines and 3-halospirocyclohexadienones

Jianming Li, Chengxiao Liu, Zihan Zhao, Xin Wang, Dianpeng Chen,* Kaiyuan Yue, Sihan Chen,

Ming Jin* and Yingying Shan*

E-mail: chendp@zju.edu.cn; 2782962790@qq.com; shanyying@zju.edu.cn

Table of contents

General information	P2
General procedure for the reaction	Р3
The detection of iodine cation	P4
The spectroscopic data of compounds	Р5
The ¹ H and ¹³ C NMR spectra of compounds	P22

1. General information

All reactions were carried out in oven-dried glassware sealed with rubber septa under nitrogen condition. All solvents were distilled under nitrogen atmosphere prior to use. Purification of products was conducted by flash chromatography on silica gel (200-300 mesh). NMR spectra were measured on a Bruker magnetic resonance spectrometer (¹H at 500 MHz, ¹³C at 126 MHz). Chemical shifts are reported in ppm using tetramethylsilane as internal standard (s = singlet, d = doublet, t = triplet, q = quartet, dd = doublet of doublets, m = multiplet). MS data were obtained on an Agilent 5975C inert 350 EI mass spectrometer (GC-MS). HRMS data were obtained on a VG ZAB-HS mass spectrometer, Brucker Apex IV FTMS spectrometer. Absorption spectra were obtained on a HITACHI U-2910 spectrometer. Fluorescence spectrometer. X-Ray single-crystal diffraction data were collected on an Agilent Technologies Gemini single-crystal diffractometer. Compounds described in the literature were characterized by the comparison of ¹H and/or ¹³C NMR spectra to the previously reported data.

2. General procedure for the reaction

General Procedure A: Synthesis of 3-haloquinolines 2

Under nitrogen atmosphere, a solution of alkynyl imine 1 (0.2 mmol), halogen (0.3 mol), AgNO₃ (0.3 mmol) and solvent Et_2O : Cyclohexane (v/v = 1:1, 2 mL) were added to a test tube. The mixture was stirred at room temperature for 5-10 min, then diluted with the saturated solution of sodium thiosulfate (10 mL) and extracted with EtOAc (3×5 mL). The combined organic layer was dried over Na₂SO₄, and concentrated in vacuo. The resulting crude product was purified by column chromatography to afford the pure product **2**.

General Procedure B: Synthesis of 3-halospirocyclohexadienones 3

Under nitrogen atmosphere, a solution of alkynyl imine 1 (0.2 mmol), halogen (0.3 mol), AgNO₃ (0.3 mmol) and solvent Et_2O : Cyclohexane (v/v = 1:1, 2 mL) were added to a test tube. The mixture was stirred at room temperature for 5-10 min, then diluted with the saturated solution of sodium thiosulfate (10 mL) and extracted with EtOAc (3×5 mL). The combined organic layer was dried over Na₂SO₄, and concentrated in vacuo. The resulting crude product was purified by column chromatography to afford the pure product **3**.

3. The detection of iodine cation

4. Characterization data

3-iodo-6-methoxy-2,4-diphenylquinoline (2a)

Following the General Procedure A, and target product was purified by flash chromatography (PE/EA = 8/1) to give **2a** 66 mg (76% yield) as a pale yellow solid (Mp 137-138 °C);

¹H NMR (500 MHz, CDCl₃) δ 7.99 (d, *J* = 9.0 Hz, 1H), 7.56 (dd, *J* = 8.0, 1.0 Hz, 2H), 7.52–7.34 (m, 6H), 7.30 (dd, *J* = 9.0, 3.0 Hz, 1H), 7.25–7.20 (m, 2H), 6.56 (d, *J* = 3.0 Hz, 1H), 3.62 (s, 3H);

¹³C NMR (126 MHz, CDCl₃) δ 159.5, 158.3, 153.2, 143.8, 143.1, 142.4, 130.9, 129.4, 129.1, 128.8, 128.5, 128.4, 128.0, 122.5, 104.9, 99.1, 55.4;

HRMS (EI-TOF) calcd for C₂₂H₁₆INO 437.0277, found 437.0273.

3-iodo-6-methyl-2,4-diphenylquinoline (2b)

Following the General Procedure A, and target product was purified by flash chromatography (PE/EA = 10/1) to give **2b** 61 mg (72% yield) as a yellow solid (Mp 83-84 °C);

¹H NMR (500 MHz, CDCl₃) δ 8.06 (d, *J* = 9.0 Hz, 1H), 7.64 (d, *J* = 7.0 Hz, 2H), 7.59–7.52 (m, 4H), 7.50–7.43 (m, 3H), 7.28 (d, *J* = 7.0 Hz, 2H), 7.14 (s, 1H), 2.40 (s, 3H);

¹³C NMR (126 MHz, CDCl₃) δ 161.0, 154.0, 145.5, 143.8, 142.4, 137.4, 132.4, 129.4, 129.2, 129.1, 128.7, 128.5, 128.4, 128.0, 127.4, 125.6, 98.6, 21.8;

HRMS (EI-TOF) calcd for $C_{22}H_{16}IN$ 421.0327, found 421.0325.

3-iodo-4-(4-methoxyphenyl)-6-methyl-2-phenylquinoline (2c)

Following the General Procedure A, and target product was purified by flash chromatography (PE/EA = 8/1) to give **2c** 64 mg (71% yield) as a yellow solid (Mp 96-97 °C);

¹H NMR (500 MHz, CDCl₃) δ 8.04 (d, *J* = 9.0 Hz, 1H), 7.66–7.59 (m, 2H), 7.52 (dd, *J* = 9.0, 2.0 Hz, 1H), 7.49–7.38 (m, 3H), 7.20 (t, *J* = 7.0 Hz, 3H), 7.06 (d, *J* = 9.0 Hz, 2H), 3.88 (s, 3H), 2.39 (s, 3H);

¹³C NMR (126 MHz, CDCl₃) δ 161.0, 159.6, 153.9, 145.6, 144.0, 137.3, 134.7, 132.4, 130.5, 129.4, 129.2, 128.5, 128.0, 127.8, 125.7, 114.1, 99.6, 55.4, 21.9;

HRMS (EI-TOF) calcd for $C_{23}H_{18}INO$ 451.0433, found 451.0431.

3-bromo-4-(4-chlorophenyl)-2-(4-methoxyphenyl)-8-methylquinoline (2d)

Following the General Procedure A, and target product was purified by flash chromatography (PE/EA = 8/1) to give 2d 65 mg (74% yield) as a yellow solid (Mp 67-68 °C);

¹H NMR (500 MHz, CDCl₃) δ 7.77 (d, *J* = 8.0 Hz, 2H), 7.56 (d, *J* = 6.0 Hz, 1H), 7.46 (d, *J* = 8.0 Hz, 2H), 7.32 (q, *J* = 9.0 Hz, 2H), 7.26–7.21 (m, 2H), 7.07 (d, *J* = 9.0 Hz, 2H), 3.91 (s, 3H), 2.81 (s, 3H);

¹³C NMR (126 MHz, CDCl₃) δ 159.6, 155.9, 149.8, 145.5, 139.8, 137.7, 134.7, 131.4, 130.8, 130.6, 129.9, 128.4, 128.0, 127.2, 124.6, 118.5, 113.9, 55.3, 18.1;

HRMS (EI-TOF) calcd for $C_{23}H_{17}BrClNO$ 437.0182, found 437.0185.

4-(4-chlorophenyl)-3-iodo-2-(4-methoxyphenyl)-8-methylquinoline (2e)

Following the General Procedure A, and target product was purified by flash chromatography (PE/EA = 8/1) to give 2e 77 mg (79% yield) as a yellow solid (Mp 82-83 °C);

¹H NMR (500 MHz, CDCl₃) δ 7.60 (d, *J* = 8.0 Hz, 2H), 7.51–7.45 (m, 1H), 7.37 (d, *J* = 8.0 Hz, 2H), 7.21 (d, *J* = 4.0 Hz, 2H), 7.10 (d, *J* = 9.0 Hz, 2H), 6.99 (d, *J* = 9.0 Hz, 2H), 3.83 (s, 3H), 2.71 (s, 3H);

¹³C NMR (126 MHz, CDCl₃) δ 158.5, 157.8, 153.8, 145.0, 141.3, 136.5, 134.0, 133.5, 130.3, 129.4, 129.1, 126.9, 126.8, 126.0, 124.0, 112.9, 97.5, 54.3, 17.0;

HRMS (EI-TOF) calcd for C₂₃H₁₇ClINO 485.0043, found 485.0041.

2,4-bis(4-chlorophenyl)-3-iodo-8-methylquinoline (2f)

Following the General Procedure A, and target product was purified by flash chromatography (PE/EA = 10/1) to give **2f** 64 mg (65% yield) as a yellow solid (Mp 85-86 °C);

¹H NMR (500 MHz, CDCl₃) δ 7.68 (d, *J* = 8.0 Hz, 2H), 7.59 (d, *J* = 7.0 Hz, 1H), 7.53 (d, *J* = 8.0 Hz, 2H), 7.46 (d, *J* = 8.0 Hz, 2H), 7.34–7.28 (m, 1H), 7.21 (d, *J* = 8.0 Hz, 3H), 2.80 (s, 3H);

¹³C NMR (126 MHz, CDCl₃) δ 158.9, 153.7, 146.0, 142.1, 140.9, 137.8, 134.7, 134.6, 131.3, 130.6, 130.4, 129.0, 128.0, 127.4, 127.3, 124.5, 97.6, 18.0;

HRMS (EI-TOF) calcd for C₂₂H₁₄Cl₂IN 488.9548, found 488.9546.

3-iodo-4-phenyl-2-(thiophen-2-yl)quinoline (2g)

Following the General Procedure A, and target product was purified by flash chromatography (PE/EA = 10/1) to give **2g** 58 mg (70% yield) as an amorphous solid;

¹H NMR (500 MHz, CDCl₃) δ 8.16 (d, J = 8.0 Hz, 1H), 7.89 (d, J = 3.0 Hz, 1H), 7.71 (dd, J = 11.0, 4.0 Hz, 1H), 7.59–7.53 (m, 3H), 7.51 (d, J = 5.0 Hz, 1H), 7.36 (dd, J = 13.0, 7.0 Hz, 2H), 7.30–7.26 (m, 2H), 7.15 (dd, J = 5.0, 4.0 Hz, 1H);

¹³C NMR (126 MHz, CDCl₃) δ 155.5, 154.5, 146.8, 145.2, 142.5, 130.3, 130.1, 129.2, 129.1, 128.7, 128.5, 128.1, 127.4, 127.3, 126.9, 126.8, 97.3;

HRMS (EI-TOF) calcd for C₁₉H₁₂INS 412.9735, found 412.9731.

2-(tert-butyl)-4-cyclopropyl-3-iodoquinoline (2h)

Following the General Procedure A, and target product was purified by flash chromatography (PE/EA = 10/1) to give **2h** 48 mg (68% yield) as an amorphous solid;

¹H NMR (500 MHz, CDCl₃) δ 8.42 (d, *J* = 9.0 Hz, 1H), 7.99 (d, *J* = 8.0 Hz, 1H), 7.63 (t, *J* = 8.0 Hz, 1H), 7.47 (t, *J* = 8.0 Hz, 1H), 2.11–2.01 (m, 1H), 1.72 (s, 9H), 1.49–1.43 (m, 2H), 0.77 (m, 2H);

¹³C NMR (126 MHz, CDCl₃) δ 165.2, 152.7, 145.5, 129.7, 128.9, 128.1, 125.8, 124.1, 99.4, 41.3, 30.1, 21.1, 12.9, 8.7;

HRMS (EI-TOF) calcd for $C_{16}H_{18}IN$ 351.0484, found 351.0487.

1-cyclopropyl-2-iodo-3-phenylbenzo[f]quinoline (2i)

Following the General Procedure A, and target product was purified by flash chromatography (PE/EA = 10/1) to give **2i** 53 mg (63% yield) as a yellow solid (Mp 103-104 °C);

¹H NMR (500 MHz, CDCl₃) δ 9.29 (d, *J* = 7.0 Hz, 1H), 8.40 (d, *J* = 9.0 Hz, 1H), 7.86 (d, *J* = 7.0 Hz, 1H), 7.79 (d, *J* = 9.0 Hz, 1H), 7.72 (d, *J* = 7.0 Hz, 2H), 7.68–7.59 (m, 2H), 7.50 (dd, *J* = 15.0, 7.0 Hz, 3H), 2.22–2.07 (m, 1H), 1.49 (m, 2H), 0.88 (m, 2H);

¹³C NMR (126 MHz, CDCl₃) δ 160.6, 152.0, 145.3, 144.2, 133.3, 131.6, 130.0, 128.4, 128.3, 127.7, 127.6, 127.5, 127.0, 126.6, 125.2, 121.9, 102.3, 20.0, 12.1;

HRMS (EI-TOF) calcd for C₂₂H₁₆IN 421.0327, found 421.0325.

4-(3-iodo-2-phenylquinolin-4-yl)benzyl 6-(3-((3r,5r,7r)-adamantan-1-yl)-4methoxyphenyl)-2-naphthoate (2j)

Following the General Procedure A, and target product was purified by flash chromatography (PE/EA = 3/1) to give 2j 91 mg (55% yield) as a white solid (Mp 112-113 °C);

¹H NMR (500 MHz, CDCl₃) δ 8.75 (s, 1H), 8.21 (t, *J* = 8.0 Hz, 2H), 8.05 (d, *J* = 10.0 Hz, 2H), 7.98 (d, *J* = 9.0 Hz, 1H), 7.85 (d, *J* = 8.0 Hz, 1H), 7.81–7.72 (m, 3H), 7.69 (d, *J* = 7.0 Hz, 2H), 7.65 (s, 1H), 7.58 (d, *J* = 8.0 Hz, 1H), 7.53 (d, *J* = 7.0 Hz, 2H), 7.51–7.43 (m, 3H), 7.40 (d, *J* = 7.0 Hz, 2H), 7.03 (d, *J* = 8.0 Hz, 1H), 5.62 (s, 2H), 3.94 (s, 3H), 2.22 (s, 6H), 2.14 (s, 3H), 1.84 (s, 6H);

¹³C NMR (126 MHz, CDCl₃) δ 166.7, 161.9, 159.0, 154.4, 146.9, 143.6, 142.0, 141.6, 139.1, 136.6, 136.1, 132.5, 131.3, 131.1, 130.2, 129.8, 129.5, 129.4, 129.3, 128.7, 128.4, 128.3, 128.0, 127.4, 127.3, 126.8, 126.7, 126.6, 126.0, 125.8, 125.7, 124.8, 112.2, 98.4, 66.4, 55.2, 40.6, 37.2, 29.7, 29.1;

HRMS (EI-TOF) calcd for C₅₀H₄₂INO₃ 831.2209, found 831.2205.

4-(3-iodo-2-phenylquinolin-4-yl)benzyl oxocyclopentyl)methyl)phenyl)propanoate (2k)

2-(4-((2-

Following the General Procedure A, and target product was purified by flash chromatography (PE/EA = 2/1) to give **2k** 64 mg (48% yield) as a white solid (Mp 90-91 °C);

¹H NMR (500 MHz, CDCl₃) δ 8.20 (d, J = 8.0 Hz, 1H), 7.76 (t, J = 8.0 Hz, 1H), 7.67 (d, J = 7.0 Hz, 2H), 7.55–7.47 (m, 3H), 7.45 (t, J = 7.0 Hz, 3H), 7.40 (d, J = 8.0 Hz, 1H), 7.28 (t, J = 7.0 Hz, 4H), 7.16 (d, J = 8.0 Hz, 2H), 5.32–5.23 (m, 2H), 3.86 (q, J = 7.0 Hz, 1H), 3.15 (dd, J = 14.0, 4.0 Hz, 1H), 2.53 (dd, J = 14.0, 10.0 Hz, 1H), 2.39–2.28 (m, 2H), 2.15–2.06 (m, 2H), 1.94 (m, 1H), 1.71 (m, 1H), 1.59 (d, J = 7.0 Hz, 3H), 1.57–1.50 (m, 1H);

¹³C NMR (126 MHz, CDCl₃) δ 174.4, 161.9, 154.3, 146.9, 143.6, 141.7, 139.0, 138.2, 136.5, 130.2, 129.5, 129.4, 129.3, 129.2, 128.7, 128.0, 127.9, 127.6, 127.4, 127.3, 126.7, 98.4, 66.0, 51.0, 45.2, 38.2, 35.2, 29.2, 20.5, 18.5;

HRMS (EI-TOF) calcd for C₃₇H₃₂INO₃ 665.1427, found 665.1429.

Following the General Procedure B, and target product was purified by flash chromatography (PE/EA = 5/1) to give **3a** 58 mg (68% yield) as a pale yellow solid (Mp 125-126 °C);

¹H NMR (500 MHz, CDCl₃) δ 7.94 (d, J = 7.0 Hz, 2H), 7.56–7.49 (m, 3H), 7.38 (d, J = 3.0 Hz, 3H), 7.31 (dd, J = 6.0, 3.0 Hz, 2H), 6.45 (d, J = 10.0 Hz, 2H), 6.37 (d, J = 10.0 Hz, 2H);

¹³C NMR (126 MHz, CDCl₃) δ 185.2, 177.0, 170.0, 142.6, 133.2, 133.0, 131.7,

131.0, 129.6, 129.2, 128.7, 128.3, 127.7, 93.7, 83.0;

HRMS (EI-TOF) calcd for $C_{21}H_{14}INO$ 423.0120, found 423.0123.

2-(2-chlorophenyl)-3-iodo-4-phenyl-1-azaspiro[4.5]deca-1,3,6,9-tetraen-8one (3b)

Following the General Procedure B, and target product was purified by flash chromatography (PE/EA = 5/1) to give **3b** 57 mg (62% yield) as a pale yellow solid (Mp 106-107 °C);

¹H NMR (500 MHz, CDCl₃) δ 7.95 (s, 1H), 7.85 (d, *J* = 8.0 Hz, 1H), 7.51 (d, *J* = 8.0 Hz, 1H), 7.44 (t, *J* = 8.0 Hz, 1H), 7.40–7.37 (m, 3H), 7.31 (dd, *J* = 7.0, 3.0 Hz, 2H), 6.46 (d, *J* = 10.0 Hz, 2H), 6.35 (d, *J* = 10.0 Hz, 2H);

¹³C NMR (126 MHz, CDCl₃) δ 185.0, 175.8, 170.5, 142.2, 134.7, 134.4, 133.0, 131.8, 131.0, 129.8, 129.6, 129.4, 128.7, 127.6, 127.4, 92.9, 83.1;

HRMS (EI-TOF) calcd for $C_{21}H_{13}$ ClINO 456.9730, found 456.9732.

2-(4-fluorophenyl)-3-iodo-4-phenyl-1-azaspiro[4.5]deca-1,3,6,9-tetraen-8one (3c) Following the General Procedure B, and target product was purified by flash chromatography (PE/EA = 5/1) to give **3c** 62 mg (70% yield) as a pale yellow solid (Mp 114-115 °C);

¹H NMR (500 MHz, CDCl₃) δ 8.01–7.95 (m, 2H), 7.41–7.35 (m, 3H), 7.33–7.28 (m, 2H), 7.19 (t, *J* = 9.0 Hz, 2H), 6.45 (d, *J* = 10.0 Hz, 2H), 6.36 (d, *J* = 10.0 Hz, 2H);

¹³C NMR (126 MHz, CDCl₃) δ 185.1, 175.8, 170.3, 164.4 (d, $J_{C-F} = 253.0$ Hz), 142.5, 133.1, 131.7, 131.5 (d, $J_{C-F} = 9.0$ Hz), 129.7, 129.2 (d, $J_{C-F} = 4.0$ Hz), 128.7, 127.6, 115.5 (d, $J_{C-F} = 21.0$ Hz), 93.3, 83.0;

¹⁹F NMR (471 MHz, CDCl₃) δ -112.8;

HRMS (EI-TOF) calcd for $C_{21}H_{13}FINO$ 441.0026, found 441.0025.

2-(4-chlorophenyl)-3-iodo-4-phenyl-1-azaspiro[4.5]deca-1,3,6,9-tetraen-8one (3d)

Following the General Procedure B, and target product was purified by flash chromatography (PE/EA = 5/1) to give **3d** 65 mg (71% yield) as a pale yellow solid (Mp 117-118 °C);

¹H NMR (500 MHz, CDCl₃) δ 7.91 (d, *J* = 9.0 Hz, 2 H), 7.48 (d, *J* = 9.0 Hz, 2 H), 7.41-7.35 (m, 3 H), 7.33-7.28 (m, 2 H), 6.45 (d, *J* = 10.0 Hz, 2H), 6.35 (d, *J* = 10.0 Hz, 2 H);

¹³C NMR (126 MHz, CDCl₃) δ 185.0, 175.9, 170.5, 142.3, 137.3, 133.1, 131.7, 131.4, 130.7, 129.7, 128.7, 128.6, 127.6, 93.1, 83.1;

HRMS (EI-TOF) calcd for C₂₁H₁₃ClINO 456.9730, found 456.9732.

3-iodo-4-phenyl-2-(p-tolyl)-1-azaspiro[4.5]deca-1,3,6,9-tetraen-8-one (3e)

Following the General Procedure B, and target product was purified by flash chromatography (PE/EA = 5/1) to give **3e** 67 mg (77% yield) as a pale yellow solid (Mp 120-121 °C);

¹H NMR (500 MHz, CDCl₃) δ 7.86 (d, J = 8.0 Hz, 2H), 7.40–7.34 (m, 3H), 7.30 (t, J = 8.0 Hz, 4H), 6.43 (d, J = 10.0 Hz, 2H), 6.36 (d, J = 10.0 Hz, 2H), 2.43 (s, 3H);

¹³C NMR (126 MHz, CDCl₃) δ 185.2, 176.7, 169.8, 142.8, 141.3, 133.3, 131.6, 130.2, 129.6, 129.2, 129.0, 128.6, 127.7, 93.9, 82.9, 21.6;

HRMS (EI-TOF) calcd for C₂₂H₁₆INO 437.0277, found 437.0279.

3-iodo-2,4-di-p-tolyl-1-azaspiro[4.5]deca-1,3,6,9-tetraen-8-one (3f)

Following the General Procedure B, and target product was purified by flash chromatography (PE/EA = 5/1) to give **3f** 68 mg (75% yield) as a pale yellow solid (Mp 116-117 °C);

¹H NMR (500 MHz, CDCl₃) δ 7.85 (d, J = 8.0 Hz, 2H), 7.30 (d, J = 8.0 Hz, 2H), 7.22 (d, J = 8.0 Hz, 2H), 7.17 (d, J = 8.0 Hz, 2H), 6.43 (d, J = 10.0 Hz, 2H), 6.35 (d, J= 10.0 Hz, 2H), 2.42 (s, 3H), 2.35 (s, 3H);

¹³C NMR (126 MHz, CDCl₃) δ 185.3, 176.8, 169.7, 143.1, 141.2, 139.7, 131.5, 130.3, 129.4, 129.2, 129.0, 127.6, 93.4, 82.8, 21.6, 21.5;

HRMS (EI-TOF) calcd for $C_{23}H_{18}INO$ 451.0433, found 451.0434.

4-(4-chlorophenyl)-3-iodo-2-(*p*-tolyl)-1-azaspiro[4.5]deca-1,3,6,9-tetraen-8one (3g)

Following the General Procedure B, and target product was purified by flash chromatography (PE/EA = 5/1) to give **3g** 65 mg (69% yield) as a pale yellow solid (Mp 105-106 °C);

¹H NMR (500 MHz, CDCl₃) δ 7.85 (d, J = 8.0 Hz, 2H), 7.37 (d, J = 8.0 Hz, 2H), 7.32 (d, J = 8.0 Hz, 2H), 7.26 (d, J = 9.0 Hz, 2H), 6.45 (d, J = 10.0 Hz, 2H), 6.35 (d, J= 10.0 Hz, 2H), 2.44 (s, 3H);

¹³C NMR (126 MHz, CDCl₃) δ 185.0, 176.7, 168.5, 142.5, 141.5, 135.7, 131.7, 131.6, 130.0, 129.3, 129.2, 129.1, 129.0, 94.4, 82.8, 21.6;

HRMS (EI-TOF) calcd for C₂₂H₁₅ClINO 470.9887, found 470.9885.

3-iodo-2-(thiophen-2-yl)-4-(*p*-tolyl)-1-azaspiro[4.5]deca-1,3,6,9-tetraen-8-one (3h)

Following the General Procedure B, and target product was purified by flash chromatography (PE/EA = 5/1) to give **3h** 68 mg (77% yield) as a yellow solid (Mp 94-95 °C);

¹H NMR (500 MHz, CDCl₃) δ 7.75 (d, J = 8.0 Hz, 2H), 7.62 (d, J = 4.0 Hz, 1H), 7.50 (d, J = 5.0 Hz, 1H), 7.29 (d, J = 8.0 Hz, 2H), 7.10 (t, J = 4.0 Hz, 1H), 6.57 (d, J = 10.0 Hz, 2H), 6.39 (d, J = 10.0 Hz, 2H), 2.43 (s, 3H);

¹³C NMR (126 MHz, CDCl₃) δ 185.4, 177.9, 160.1, 144.6, 141.1, 133.7, 131.5, 130.4, 129.9, 129.2, 128.9, 128.8, 127.5, 89.9, 81.8, 21.6;

HRMS (EI-TOF) calcd for $C_{20}H_{14}INOS$ 442.9841, found 442.9844.

2-(*tert*-butyl)-4-(4-chlorophenyl)-3-iodo-1-azaspiro[4.5]deca-1,3,6,9-tetraen-8-one (3i)

Following the General Procedure B, and target product was purified by flash chromatography (PE/EA = 5/1) to give **3i** 56 mg (64% yield) as a pale yellow solid (Mp 72-73 °C);

¹H NMR (500 MHz, CDCl₃) δ 7.34 (d, *J* = 8.0 Hz, 2H), 7.08 (d, *J* = 8.0 Hz, 2H), 6.39 (d, *J* = 10.0 Hz, 2H), 6.18 (d, *J* = 10.0 Hz, 2H), 1.54 (s, 9H);

¹³C NMR (126 MHz, CDCl₃) δ 185.0, 183.5, 169.1, 142.8, 135.4, 131.9, 131.7, 129.3, 128.9, 91.5, 81.4, 37.1, 28.2;

HRMS (EI-TOF) calcd for $C_{19}H_{17}$ ClINO 437.0043, found 437.0045.

3-bromo-2-(4-chlorophenyl)-4-cyclopropyl-1-azaspiro[4.5]deca-1,3,6,9tetraen-8-one (3j)

Following the General Procedure B, and target product was purified by flash chromatography (PE/EA = 5/1) to give **3j** 43 mg (57% yield) as a white solid (Mp 88-89 °C);

¹H NMR (500 MHz, CDCl₃) δ 7.86 (d, *J* = 8.0 Hz, 2H), 7.45 (d, *J* = 8.0 Hz, 2H), 6.53 (d, *J* = 10.0 Hz, 2H), 6.25 (d, *J* = 10.0 Hz, 2H), 1.70 (m, 1H), 1.23–1.16 (m, 2H), 1.00–0.93 (m, 2H);

¹³C NMR (126 MHz, CDCl₃) δ 185.3, 174.3, 165.7, 143.4, 137.3, 131.5, 130.7, 130.3, 128.6, 115.0, 80.0, 11.8, 7.3;

HRMS (EI-TOF) calcd for C₁₈H₁₃BrClNO 372.9869, found 372.9866.

2-(4-chlorophenyl)-4-cyclopropyl-3-iodo-1-azaspiro[4.5]deca-1,3,6,9-tetraen-8-one (3k)

Following the General Procedure B, and target product was purified by flash chromatography (PE/EA = 5/1) to give **3k** 56 mg (66% yield) as a pale yellow solid (Mp 96-97 °C);

¹H NMR (500 MHz, CDCl₃) δ 7.80 (d, *J* = 9.0 Hz, 2H), 7.45 (d, *J* = 9.0 Hz, 2H), 6.51 (d, *J* = 10.0 Hz, 2H), 6.23 (d, *J* = 10.0 Hz, 2H), 1.77 (m, 1H), 1.11 (m, 2H), 0.97 (m, 2H);

¹³C NMR (126 MHz, CDCl₃) δ 185.3, 175.9, 171.4, 143.3, 137.0, 131.5, 131.3, 130.5, 128.5, 90.3, 81.4, 14.5, 7.6;

HRMS (EI-TOF) calcd for C₁₈H₁₃ClINO 420.9730, found 420.9731.

4-(3-iodo-8-oxo-2-phenyl-1-azaspiro[4.5]deca-1,3,6,9-tetraen-4-yl)benzyl 2,2,3,3-tetramethylcyclopropane-1-carboxylate (3l)

Following the General Procedure B, and target product was purified by flash chromatography (PE/EA = 2/1) to give **3l** 63 mg (55% yield) as a pale yellow solid (Mp 91-92 °C);

¹H NMR (500 MHz, CDCl₃) δ 7.96 (d, J = 7.0 Hz, 2H), 7.55 (m, 3H), 7.40 (d, J = 8.0 Hz, 2H), 7.36 (d, J = 8.0 Hz, 2H), 6.48 (d, J = 10.0 Hz, 2H), 6.39 (d, J = 10.0 Hz, 2H), 5.10 (s, 2H), 1.30 (s, 1H), 1.28 (s, 6H), 1.22 (s, 6H);

¹³C NMR (126 MHz, CDCl₃) δ 185.1, 177.0, 171.9, 169.5, 142.6, 138.2, 133.0, 132.7, 131.7, 130.9, 129.2, 128.3, 128.1, 127.8, 93.8, 83.0, 64.9, 35.6, 30.6, 23.6, 16.6;

HRMS (EI-TOF) calcd for C₃₀H₂₈INO₃ 577.1114, found 577.1118.

4-(3-iodo-8-oxo-2-phenyl-1-azaspiro[4.5]deca-1,3,6,9-tetraen-4-yl)benzyl (Z)-3-(2-chloro-3,3,3-trifluoroprop-1-en-1-yl)-2,2-dimethylcyclopropane-1carboxylate (3m)

Following the General Procedure B, and target product was purified by flash chromatography (PE/EA = 2/1) to give **3m** 70 mg (52% yield) as a white solid (Mp 83-84 °C);

¹H NMR (500 MHz, CDCl₃) δ 7.96 (d, J = 7.0 Hz, 2H), 7.59–7.52 (m, 3H), 7.40 (d, J = 8.0 Hz, 2H), 7.35 (d, J = 8.0 Hz, 2H), 6.95 (d, J = 9.0 Hz, 1H), 6.48 (d, J = 10.0 Hz, 2H), 6.39 (d, J = 10.0 Hz, 2H), 5.18–5.10 (m, 2H), 2.22 (t, J = 9.0 Hz, 1H), 2.09 (d, J = 8.0 Hz, 1H), 1.33 (d, J = 5.0 Hz, 6H);

¹³C NMR (126 MHz, CDCl₃) δ 185.1, 177.0, 170.0, 169.4, 142.6, 137.2, 133.1, 132.9, 131.7, 131.0, 130.0 (q, $J_{C-F} = 5.0$ Hz), 129.2, 128.3, 128.3, 127.9, 121.5, 119.4, 93.9, 83.0, 65.8, 32.9, 31.0, 28.4, 14.9;

HRMS (EI-TOF) calcd for C₃₁H₂₄ClF₃INO₃ 677.0441, found 677.0438.

4-(3-iodo-8-oxo-2-phenyl-1-azaspiro[4.5]deca-1,3,6,9-tetraen-4-yl)benzyl 2-(2-fluoro-[1,1'-biphenyl]-4-yl)propanoate (3n)

Following the General Procedure B, and target product was purified by flash chromatography (PE/EA = 2/1) to give **3n** 90 mg (66% yield) as a pale yellow solid (Mp 108-109 °C);

¹H NMR (500 MHz, CDCl₃) δ 8.00–7.92 (m, 2H), 7.60–7.52 (m, 5H), 7.47 (t, *J* = 8.0 Hz, 2H), 7.41 (m, 2H), 7.35–7.29 (m, 4H), 7.22–7.13 (m, 2H), 6.47 (d, *J* = 10.0 Hz, 2H), 6.37 (d, *J* = 10.0 Hz, 2H), 5.17 (q, *J* = 13.0 Hz, 2H), 3.87 (q, *J* = 7.0 Hz, 1H), 1.60 (d, *J* = 7.0 Hz, 3H);

¹³C NMR (126 MHz, CDCl₃) δ 185.1, 177.0, 173.7, 169.4, 159.7 (d, $J_{C-F} = 248.0$ Hz), 142.6, 141.6 (d, $J_{C-F} = 8.0$ Hz), 137.3, 135.5, 133.0, 132.9, 131.7, 131.0, 130.9 (d, $J_{C-F} = 4.0$ Hz), 129.2, 129.0 (d, $J_{C-F} = 4.0$ Hz), 128.5, 128.3, 127.9, 127.8, 127.7, 123.6 (d, $J_{C-F} = 5.0$ Hz), 115.3 (d, $J_{C-F} = 23.0$ Hz), 93.9, 83.0, 65.9, 45.0, 18.3;

HRMS (EI-TOF) calcd for C₃₇H₂₇FINO₃ 679.1020, found 679.1025.

4-(3-iodo-8-oxo-2-phenyl-1-azaspiro[4.5]deca-1,3,6,9-tetraen-4-yl)benzyl 2-(6-methoxynaphthalen-2-yl)propanoate (30)

Following the General Procedure B, and target product was purified by flash chromatography (PE/EA = 2/1) to give **30** 80 mg (60% yield) as a pale yellow solid

(Mp 102-103 °C);

¹H NMR (500 MHz, CDCl₃) δ 7.95 (d, J = 7.0 Hz, 2H), 7.75–7.68 (m, 3H), 7.55 (m, 3H), 7.43 (d, J = 9.0 Hz, 1H), 7.28–7.22 (m, 4H), 7.20–7.12 (m, 2H), 6.47 (d, J = 8.0 Hz, 2H), 6.36 (d, J = 10.0 Hz, 2H), 5.15 (q, J = 13.0 Hz, 2H), 4.01–3.95 (m, 1H), 3.94 (s, 3H), 1.64 (d, J = 7.0 Hz, 3H);

¹³C NMR (126 MHz, CDCl₃) δ 185.1, 177.0, 174.4, 169.4, 157.7, 142.6, 137.6, 135.4, 133.8, 133.0, 132.8, 131.7, 131.0, 129.3, 129.2, 128.9, 128.3, 127.8, 127.7, 127.2, 126.3, 126.1, 119.0, 105.6, 93.8, 82.9, 65.7, 55.4, 45.4, 18.5;

HRMS (EI-TOF) calcd for C₃₆H₂₈INO₄ 665.1063, found 665.1061.

4-(3-iodo-8-oxo-2-phenyl-1-azaspiro[4.5]deca-1,3,6,9-tetraen-4-yl)benzyl 5-(2,5-dimethylphenoxy)-2,2-dimethylpentanoate (3p)

Following the General Procedure B, and target product was purified by flash chromatography (PE/EA = 2/1) to give **3p** 59 mg (43% yield) as a pale yellow solid (Mp 86-87 °C);

¹H NMR (500 MHz, CDCl₃) δ 8.00–7.91 (m, 2H), 7.56 (m, 3H), 7.38 (d, J = 8.0 Hz, 2H), 7.35 (d, J = 8.0 Hz, 2H), 7.02 (d, J = 7.0 Hz, 1H), 6.68 (d, J = 7.0 Hz, 1H), 6.62 (s, 1H), 6.48 (d, J = 10.0 Hz, 2H), 6.38 (d, J = 10.0 Hz, 2H), 5.15 (s, 2H), 3.92 (t, J = 6.0 Hz, 2H), 2.32 (s, 3H), 2.17 (s, 3H), 1.76 (m, 4H), 1.29 (s, 6H);

¹³C NMR (126 MHz, CDCl₃) δ 185.1, 177.5, 177.0, 169.4, 156.9, 142.6, 137.9, 136.5, 133.0, 132.8, 131.7, 131.0, 130.3, 129.2, 128.3, 127.8, 127.7, 123.6, 120.7, 111.9, 93.8, 83.0, 67.8, 65.4, 42.2, 37.2, 25.2, 21.5, 15.8;

HRMS (EI-TOF) calcd for C₃₇H₃₆INO₄ 685.1689, found 685.1687.

4-(3-iodo-8-oxo-2-phenyl-1-azaspiro[4.5]deca-1,3,6,9-tetraen-4-yl)benzyl 2-(3-cyano-4-isobutoxyphenyl)-4-methylthiazole-5-carboxylate (3q)

Following the General Procedure B, and target product was purified by flash chromatography (PE/EA = 1/1) to give **3q** 63 mg (42% yield) as a white solid (Mp 117-118 °C);

¹H NMR (500 MHz, CDCl₃) δ 8.21 (d, J = 2.0 Hz, 1H), 8.12 (dd, J = 9.0, 2.0 Hz, 1H), 7.96 (d, J = 7.0 Hz, 2H), 7.59–7.50 (m, 3H), 7.47 (d, J = 8.0 Hz, 2H), 7.39 (d, J = 8.0 Hz, 2H), 7.03 (d, J = 9.0 Hz, 1H), 6.49 (d, J = 10.0 Hz, 2H), 6.40 (d, J = 10.0 Hz, 2H), 5.37 (s, 2H), 3.92 (d, J = 7.0 Hz, 2H), 2.81 (s, 3H), 2.22 (m, 1H), 1.11 (d, J = 7.0 Hz, 6H);

¹³C NMR (126 MHz, CDCl₃) δ 185.2, 177.0, 169.3, 167.6, 162.6, 162.0, 161.7, 142.6, 137.1, 133.2, 132.9, 132.6, 132.2, 131.7, 131.0, 129.2, 128.3, 128.1, 128.0, 125.9, 121.1, 115.4, 112.7, 103.0, 94.0, 83.0, 75.7, 66.1, 28.2, 19.1, 17.6;

HRMS (EI-TOF) calcd for C₃₈H₃₀IN₃O₄S 751.1002, found 751.1006.

4-(3-iodo-8-oxo-2-phenyl-1-azaspiro[4.5]deca-1,3,6,9-tetraen-4-yl)benzyl 2-(1-(4-chlorobenzoyl)-5-methoxy-2-methyl-1*H*-indol-3-yl)acetate (3r)

Following the General Procedure B, and target product was purified by flash

chromatography (PE/EA = 1/1) to give **3r** 59 mg (37% yield) as a pale yellow solid (Mp 102-103 °C);

¹H NMR (500 MHz, CDCl₃) δ 7.86 (d, J = 7.0 Hz, 2H), 7.58 (d, J = 8.0 Hz, 2H), 7.48–7.41 (m, 3H), 7.38 (d, J = 8.0 Hz, 2H), 7.23 (q, J = 8.0 Hz, 4H), 6.89 (d, J = 2.0 Hz, 1H), 6.80 (d, J = 9.0 Hz, 1H), 6.59 (dd, J = 9.0, 2.0 Hz, 1H), 6.38 (d, J = 10.0 Hz, 2H), 6.29 (d, J = 10.0 Hz, 2H), 5.07 (s, 2H), 3.71 (s, 3H), 3.67 (s, 2H), 2.30 (s, 3H);

¹³C NMR (126 MHz, CDCl₃) δ 185.1, 177.0, 170.6, 169.3, 168.3, 156.1, 142.6, 139.3, 137.3, 136.1, 133.9, 133.1, 132.9, 131.7, 131.2, 131.0, 130.8, 130.6, 129.2, 129.1, 128.3, 128.1, 127.9, 115.0, 112.4, 111.8, 101.3, 94.0, 83.0, 66.1, 55.8, 30.4, 13.4;

HRMS (EI-TOF) calcd for C₄₁H₃₀ClIN₂O₅ 792.0888, found 792.0884.

4-chlorophenyl 6-methyl-2,4-diphenylquinoline-3-carboxylate (4)

Pale yellow oil (PE/EA = 5/1), 59 mg, 66% yield;

¹H NMR (500 MHz, CDCl₃) δ 8.02 (d, *J* = 9.0 Hz, 2H), 7.59 (q, *J* = 8.0 Hz, 6H), 7.44 (t, *J* = 9.0 Hz, 2H), 7.36 (t, *J* = 7.0 Hz, 1H), 7.01 (d, *J* = 9.0 Hz, 2H), 6.51 (d, *J* = 10.0 Hz, 2H), 6.40 (d, *J* = 10.0 Hz, 2H), 2.35 (s, 3H);

¹³C NMR (126 MHz, CDCl₃) δ 161.5, 149.3, 143.2, 139.2, 133.6, 132.0, 131.3, 130.9, 130.8, 130.0, 129.8, 128.8, 128.7, 127.7, 127.6, 127.5, 127.1, 126.5, 125.3, 124.8, 120.3, 21.6;

HRMS (EI-TOF) calcd for C₂₉H₂₀ClNO₂ 449.1183, found 449.1185.

2-(4-chlorophenyl)-8-oxo-4-phenyl-1-azaspiro[4.5]deca-1,3,6,9-tetraene-3carbonitrile (5)

White solid (PE/EA = 2/1), 51 mg, 71% yield;

¹H NMR (500 MHz, CDCl₃): = 7.94 (d, *J* = 7.0 Hz, 2 H), 7.70 (d, *J* = 8.0 Hz, 2H), 7.54 (m, 3 H), 7.43 (d, *J* = 8.0 Hz, 2 H), 6.48 (d, *J* = 10.0 Hz, 2H), 6.36 (d, *J* = 10.0 Hz, 2 H);

¹³C NMR (126 MHz, CDCl₃): = 184.6, 176.6, 167.9, 141.8, 137.9, 132.5, 132.0, 131.2, 129.2, 128.6, 128.4, 127.0, 118.0, 113.4, 83.2;

HRMS (EI-TOF) calcd for C₂₂H₁₃ClN₂O: 356.0716; found: 356.0719.

5. The ¹H and ¹³C NMR spectra of compounds

