Electronic Supplementary Material (ESI) for Organic & Biomolecular Chemistry. This journal is © The Royal Society of Chemistry 2023

Supporting information

N,N'-dimethylurea as an efficient ligand for the synthesis of pharma-relevant motifs through Chan–Lam cross-coupling strategy

Rakhee Saikia,^a Sanghamitra Das,^a Arzu Almin,^a Abhijit Mahanta,^{a,b} Bipul Sarma,^a Ashim J Thakur,^a Utpal Bora*^a

^aDepartment of Chemical Sciences, Tezpur University, Napaam, Tezpur, Assam 784028, India

^bDepartment of Chemistry, Digboi College, Tinsukia, Assam-786171, India

E-mail: utbora@yahoo.co.in, ubora@tezu.ernet.in

Contents:

Section		Page No.
1	General information	53
2	¹ H and ¹³ C NMR spectral analysis of the <i>N</i> -aryl derivatives.	S3-S14
3	References	S14-S15
4.1	¹ H and ¹³ C NMR spectra of <i>N</i> -arylamines	S16-S32
4.2	¹ H and ¹³ C NMR spectra of 3-arylaminophenols	\$33-\$43
4.3	¹ H and ¹³ C NMR spectra of <i>N</i> -arylamides	S44-S56
4.4	¹ H and ¹³ C NMR spectra of APIs	S57-S58

-{ S2 }

1. General information

All the chemicals used for the reactions were procured commercially and used without further purification. The progress of the reaction was monitored through thin layer chromatography on Merck Kieselgel Silica gel 60F₂₅₄ plates using short wave UV light (λ =254 nm). The products were purified by column chromatography using Silica gel (60-120 mesh). The identification of the purified products was done by NMR spectroscopy. The ¹H and ¹³C NMR spectra were recorded on a 400 MHz JEOL NMR spectrometer (400 MHz for ¹H and 100 MHz for ¹³C spectroscopy). Chemical shifts for both ¹H (δ_H) and ¹³C (δ_c) NMR are assigned in parts per million (ppm) using TMS (0 ppm) as the internal reference and CDCl₃ and DMSO- d_6 as solvent (CDCl₃: δ_H = 7.25 ppm and δ_c = 77.1 ppm; DMSO- d_6 : δ_H = 2.5 ppm, DMSO- d_6 absorbed water = 3.3 ppm and δ_c = 40.0 ppm). The multiplicities of the signals are assigned as: s= singlet, d= doublet, t= triplet, q= quartet, m= multiplet and br= broad. Raw NMR data was processed using MestReNova software. Single crystal X-ray diffractions were collected on a Bruker SMART APEX-II CCD diffractometer using Mo K α (λ =0.71073 Å) radiation.

2. ¹H and ¹³C NMR spectral analysis of the *N*-aryl derivatives.

¹H and ¹³C NMR spectral analysis of N-arylamines (**3**)

Diphenylamine (3a)¹

Synthesized as per the general experimental procedure **A**; obtained as a colourless solid, Yield: (101 mg, 80%); mp 55-56 °C; ¹H NMR (400 MHz, DMSO- d_6): δ_H (ppm) 6.78 (d, J = 8 Hz, 2H), 7.05 (d, J = 8 Hz, 4H), 7.19 (t, J = 8 Hz, 4H), 8.12 (br s, 1H); ¹³C NMR (100 MHz, DMSO- d_6): δ_C (ppm) 117.3, 120.1, 129.7, 143.9

3,4-Dimethoxy-N-phenylamine (3b)²

Synthesized as per the general experimental procedure **A**; obtained as a colourless solid, Yield: (154 mg, 90%); mp 98-99 °C; ¹H NMR (400 MHz, DMSO- d_6): δ_H (ppm) 3.66 (s, 3H), 3.67 (s, 3H), 6.59 (d, J = 8 Hz, 1H), 6.65-6.69 (m, 2H), 6.81 (d, J = 8 Hz, 1H), 6.91 (d, J = 8 Hz, 2H), 7.12 (t, J = 8 Hz, 2H), 7.81 (br s, 1H); ¹³C NMR (100 MHz, DMSO- d_6): δ_C (ppm) 55.8, 56.5, 104.7, 110.4, 113.6, 115.7, 118.9, 129.6, 137.3, 143.7, 145.3, 149.9

Bis-(4-methoxyphenyl)amine (3c) ³

Synthesized as per the general experimental procedure **A**; obtained as a colourless solid, Yield: (146 mg, 85%); mp 100-101 °C; ¹H NMR (400 MHz, DMSO- d_6): δ_H (ppm) 3.64 (s, 6H), 6.76 (d, J = 8 Hz, 4H), 6.87 (d, J = 8 Hz, 4H), 7.46 (br s, 1H); ¹³C NMR (100 MHz, DMSO- d_6): δ_C (ppm) 55.7, 115.0, 118.5, 138.5, 153.3

4-Ethyl-N-phenylamine (3d) 4

Synthesized as per the general experimental procedure **A**; obtained as a light yellow oil, Yield: (110 mg, 75%); ¹H NMR (400 MHz, DMSO- d_6): δ_H (ppm) 1.11 (t, J = 8 Hz, 3H), 2.48 (q, J = 8 Hz, 2H), 6.70-6.73 (m, 1H), 6.96-6.98 (m, 4H), 7.03 (d, J = 8 Hz, 2H), 7.14 (t, J = 8 Hz, 2H), 7.96 (br s, 1H); ¹³C NMR (100 MHz, DMSO- d_6): δ_C (ppm) 16.4, 28.0, 116.4, 118.0, 119.5, 128.8, 129.5, 135.8, 141.4, 144.5

2-Methyl-N-phenylamine (3e) 5

Synthesized as per the general experimental procedure **A**; obtained as a yellow oil, Yield: (50 mg, 40%); ¹H NMR (400 MHz, DMSO- d_6): δ_H (ppm) 2.17 (s, 3H), 6.71-6.73 (m, 1H), 6.86 (d, J = 8 Hz, 3H), 7.06-7.09 (m, 1H), 7.13-7.16 (m, 4H), 7.35 (br s, 1H); ¹³C NMR (100 MHz, DMSO- d_6): δ_C (ppm) 18.5, 116.5, 119.2, 120.0, 122.3, 126.9, 129.5, 129.8, 131.3, 141.8, 145.4

3-Nitro-N-phenylamine (3f)¹

Synthesized as per the general experimental procedure **A**; obtained as a orange solid, Yield: (112 mg, 70%); mp 87-88 °C; ¹H NMR (400 MHz, DMSO- d_6): δ_H (ppm) 6.93 (t, J = 8 Hz, 1H), 7.12 (d, J = 8 Hz, 2H), 7.28 (t, J = 8 Hz, 2H), 7.36-7.43 (m, 2H), 7.53 (d, J = 8 Hz, 1H), 7.75 (s, 1H), 8.69 (br s, 1H); ¹³C NMR (100 MHz, DMSO- d_6): δ_C (ppm) 109.2, 113.6, 119.2, 121.9, 122.2, 130.0, 130.9, 142.0, 145.8, 149.2

N¹,N⁴-diphenylbenzene-1,4-diamine (3g)⁶

Synthesized as per the general experimental procedure **A**; obtained as a offwhite solid, Yield: (98 mg, 50%); mp 147-148 °C; ¹H NMR (400 MHz, DMSO d_6): δ_H (ppm) 6.67 (t, J = 8 Hz, 2H), 6.91 (d, J = 8 Hz, 4H), 6.99 (s, 4H), 7.12 (t, J = 8 Hz, 4H), 7.84 (br s, 2H); ¹³C NMR (100 MHz, DMSO- d_6): δ_C (ppm) 115.5 , 118.8, 120.2, 129.5, 136.9, 145.4

4-phenylmorpholine (3h)¹

Synthesized as per the general experimental procedure **A**; obtained as a light yellow solid, Yield: (95 mg, 78%); mp 50-51 °C; ¹H NMR (400 MHz, DMSO- d_6): δ_H (ppm) 3.03-3.05 (m, 4H), 3.68-3.70 (m, 4H), 6.76 (t, J = 8 Hz, 1H), 6.89 (d, J = 8 Hz, 2H), 7.18 (t, J = 8 Hz, 2H); ¹³C NMR (100 MHz, DMSO- d_6): δ_C (ppm) 48.9, 66.6, 115.6, 119.6, 129.5, 151.6

N-cyclohexylamine (3i) 7

Synthesized as per the general experimental procedure **A**; obtained as a colourless oil, Yield: (117 mg, 89%); ¹H NMR (400 MHz, DMSO- d_6): δ_H (ppm) 1.07-1.19 (m, 3H), 1.25-1.34 (m, 2H), 1.54-1.58 (m, 1H), 1.66-1.71 (m, 2H), 1.88-1.91 (m, 2H), 3.11-3.16 (m, 1H), 5.22 (s, 1H), 6.44 (t, J = 8 Hz, 1H), 6.52 (d, J = 8 Hz, 2H), 7.00 (t, J = 8 Hz, 2H); ¹³C NMR (100 MHz, DMSO- d_6): δ_C (ppm) 25.1, 26.2, 33.1, 51.1, 112.8, 115.6, 129.3, 148.5

1-Phenylpiperidine (3j)⁸

Synthesized as per the general experimental procedure **A**; obtained as a light yellow oil, Yield: (78 mg, 65%); ¹H NMR (400 MHz, DMSO- d_6): δ_H (ppm) 1.46-1.49 (m, 2H), 1.53-1.59 (m, 4H), 3.05-3.07 (m, 4H), 6.69 (t, J = 8 Hz, 1H), 6.86 (d, J = 8 Hz, 2H), 7.14 (t, J = 8 Hz, 2H); ¹³C NMR (100 MHz, DMSO- d_6): δ_C (ppm) 24.4, 25.7, 50.1, 116.3, 118.8, 129.4, 152.2

N-(3,4-dichlorophenyl)-2,4-dimethylaniline (3k)

Synthesized as per the general experimental procedure **A**; obtained as a colourless solid, Yield: (126 mg, 63%); mp 187-188 °C; ¹H NMR (400 MHz, DMSO- d_6): δ_H (ppm) 2.07 (s, 3H), 2.19 (s, 3H), 6.61 (d, J = 8 Hz, 1H), 6.77 (d, J = 8 Hz, 1H), 6.92 (d, J = 8 Hz, 1H), 7.00 (d, J = 8 Hz, 2H), 7.24 (d, J = 8 Hz, 1H), 7.76 (br s, 1H); ¹³C NMR (100 MHz, DMSO- d_6): δ_C (ppm) 18.1, 20.9, 114.6, 115.2, 123.9, 127.8, 131.2, 131.8, 132.2, 132.50, 133.8, 137.2, 147.2

N-phenylnapthalen-2-amine (31) 9

Synthesized as per the general experimental procedure **A**; obtained as a colourless solid, Yield: (131 mg, 80%); mp 109-110 °C; ¹H NMR (400 MHz, DMSO- d_6): δ_H (ppm) 7.18 (d, J = 8 Hz, 2H), 7.20-7.27 (m, 4H), 7.31-7.34 (m, 1H), 7.44 (s, 1H), 7.63 (d, J = 8 Hz, 1H), 7.70 (d, J = 8 Hz, 1H), 7.73 (d, J = 8 Hz, 1H), 8.40 (br s, 1H); ¹³C NMR (100 MHz, DMSO- d_6): δ_C (ppm) 109.5, 117.8, 120.4, 120.7, 123.2, 126.7, 127.9, 128.2, 128.6, 129.3, 129.7, 134.9, 141.9, 143.6

N-methyl-N-(4-trifluoromethyl)phenyl)aniline (3m) 10

Synthesized as per the general experimental procedure **A**; obtained as a yellow solid, Yield: (139 mg, 74%); mp 78-79 °C; ¹H NMR (400 MHz, DMSO- d_6): δ_H (ppm) 2.26 (s, 3H), 7.08 (d, J = 8 Hz, 4H), 7.13 (d, J = 8 Hz, 2H), 7.48 (d, J = 8 Hz, 2H), 8.56 (br s, 1H); ¹³C NMR (100 MHz, DMSO- d_6): δ_C (ppm) 20.8, 114.5, 120.3, 124.1, 127.0, 130.2, 131.5, 139.2, 148.6

N-(p-tolyl)pyrimidin-2-amine (3n) 11

Synthesized as per the general experimental procedure **A**; obtained as a colourless solid, Yield: (70 mg, 50%); mp 122-124 °C; ¹H NMR (400 MHz, DMSO- d_6): δ_H (ppm) 2.25 (s, 3H), 6.78-6.81 (m, 1H), 7.08 (d, J = 8 Hz, 2H), 7.63 (d, J = 8 Hz, 2H), 8.45 (d, J = 8 Hz, 2H), 9.47 (br s, 1H); ¹³C NMR (100 MHz, DMSO- d_6): δ_C (ppm) 20.8, 112.5, 119.4, 129.3, 130.6, 138.3, 158.4, 160.5

N-(6-methoxypyridin-3-yl)pyridine-2-amine (30)

Synthesized as per the general experimental procedure **A**; obtained as a yellow oil, Yield: (82 mg, 55%); ¹H NMR (400 MHz, DMSO- d_6): δ_H (ppm) 3.76 (s, 3H), 6.64-6.67 (m, 1H), 6.71 (t, J = 8 Hz, 2H), 7.49 (t, J = 8 Hz, 1H), 7.97 (d, J = 8 Hz, 1H), 8.04 (d, J = 8 Hz, 1H), 8.35 (s, 1H), 8.87 (br s, 1H); ¹³C NMR (100 MHz, DMSO- d_6): δ_C (ppm) 53.4, 110.1, 110.5, 110.9, 114.4, 127.7, 131.4, 132.8, 133.0, 137.1, 137.7, 147.6, 149.0, 156.4, 157.3, 158.6

N-phenylbenzo[*d*][1,3]dioxol-5-amine (**3p**)⁹

Synthesized as per the general experimental procedure **A**; obtained as a colourless solid, Yield: (117 mg, 73%); mp 150-152 °C; ¹H NMR (400 MHz, DMSO- d_6): δ_H (ppm) 5.90 (s, 2H), 6.51 (dd, J = 8 Hz, 2 Hz, 1H), 6.65 (d, J = 8 Hz, 1H), 6.68-6.71 (m, 1H), 6.76 (d, J = 8 Hz, 1H), 6.90 (d, J = 8 Hz, 2H), 7.13 (t, J = 8 Hz, 2H), 7.85 (br s, 1H); ¹³C NMR (100 MHz, DMSO- d_6): δ_C (ppm) 101.3, 109.0, 111.3, 115.9, 119.2, 129.6, 138.3, 141.7, 145.1, 148.2

¹H and ¹³C NMR spectral analysis of 3-arylaminophenols (5)

3-(Phenylamino)phenol (5a) ¹²

Synthesized as per the general experimental procedure **B**; obtained as a brown solid, Yield: (108 mg, 78%); mp 77-78 °C; ¹H NMR (400 MHz, DMSO- d_6): δ_H (ppm) 6.21 (d, J = 8 Hz, 1H), 6.47 (t, J = 8 Hz, 2H), 6.76 (t, J = 8 Hz, 1H), 6.96 (t, J = 8 Hz, 1H), 7.02 (d, J = 8 Hz, 2H), 7.17 (t, J = 8 Hz, 2H), 7.98 (br s, 1H), 9.14 (br s, 1H); ¹³C NMR (100 MHz, DMSO- d_6): δ_C (ppm) 104.0, 107.4, 108.2, 117.5, 120.0, 129.6, 130.3, 143.9, 145.1, 158.7

3-((4-Methoxyphenyl)amino)phenol (5b) 13

Synthesized as per the general experimental procedure **B**; obtained as a brown solid, Yield: (132 mg, 82%); mp 69-70 °C; ¹H NMR (400 MHz, DMSO- d_6): δ_H (ppm) 3.66 (s, 3H), 6.08 (d, J = 8 Hz, 1H), 6.30 (d, J = 8 Hz, 2H), 6.81 (d, J = 8 Hz, 2H), 6.88 (t, J = 8 Hz, 1H), 6.97 (d, J = 8 Hz, 2H), 7.68 (br s, 1H), 9.04 (br s, 1H); ¹³C NMR (100 MHz, DMSO- d_6): δ_C (ppm) 55.6, 102.0, 106.2, 114.9, 121.2, 130.2, 136.6, 146.9, 154.2, 158.7

3-((4-Ethylphenyl)amino)phenol (5c)

Synthesized as per the general experimental procedure **B**; obtained as a brown solid, Yield: (120 mg, 75%); mp 84-85 °C; ¹H NMR (400 MHz, DMSO- d_6): δ_H (ppm) 1.10 (t, J = 8 Hz, 3H), 2.47 (q, J = 8 Hz, 2H), 6.15 (dd, J = 8 Hz, 1.2 Hz, 1H), 6.41 (t, J = 8 Hz, 2H), 6.90-6.95 (m, 3H), 7.02 (d, J = 8 Hz, 2H), 7.86 (br s, 1H), 9.10 (br s, 1H); ¹³C NMR (100 MHz, DMSO- d_6): δ_C (ppm) 16.4, 19.4, 103.0, 106.8, 107.5, 118.3, 128.8, 130.2, 135.7, 141.4, 145.7, 158.6

3-(m-tolylamino)phenol (5d)

Synthesized as per the general experimental procedure **B**; obtained as a yellow solid, Yield: (108 mg, 73%); mp 79-80 °C; ¹H NMR (400 MHz, DMSO- d_6): δ_H (ppm) 2.20 (s, 3H), 6.22 (d, J = 8 Hz, 1H), 6.48 (t, J = 8 Hz, 2H), 6.59 (d, J = 8 Hz, 1H), 6.84 (d, J = 8 Hz, 2H), 6.96 (t, J = 8 Hz, 1H), 7.06 (t, J = 8 Hz, 1H), 7.92 (br s, 1H), 9.16 (br s, 1H); ¹³C NMR (100 MHz, DMSO- d_6): δ_C (ppm) 21.7, 103.9, 107.4, 108.3, 114.7, 118.2, 120.9, 129.4, 130.3, 138.7, 143.9, 145.2, 158.7

3-(o-tolylamino)phenol (5e) 12

Synthesized as per the general experimental procedure **B**; obtained as a yellow oil, Yield: (94 mg, 63%); ¹H NMR (400 MHz, DMSO- d_6): δ_H (ppm) 2.13 (s, 3H), 6.12 (dd, J = 8 Hz, 2 Hz, 1H), 6.24-6.28 (m, 2H), 6.84 (d, J = 8 Hz, 1H), 6.89 (t, J = 8 Hz, 1H), 7.05 (t, J = 8 Hz, 1H), 7.12 (t, J = 8 Hz, 2H), 7.21 (br s, 1H), 9.03 (br s, 1H); ¹³C NMR (100 MHz, DMSO- d_6): δ_C (ppm) 18.5, 103.1, 106.5, 107.6, 120.8, 122.4, 126.9, 130.2, 131.31, 141.8, 146.8, 158.6

3-((4-Fluorophenyl)amino)phenol (5f) 11

Synthesized as per the general experimental procedure **B**; obtained as a yellow oil, Yield: (119 mg, 78%); ¹H NMR (400 MHz, DMSO- d_6): δ_H (ppm) 6.17 (d, J = 8 Hz, 1H), 6.37-6.41 (m, 2H), 6.93 (t, J = 8 Hz, 1H), 7.02 (d, J = 8 Hz, 4H), 7.93 (br s, 1H), 9.13 (br s, 1H); ¹³C NMR (100 MHz, DMSO- d_6): δ_C (ppm) 103.3, 107.2, 107.6, 116.1, 119.6, 130.3, 140.3, 145.7, 156.8 (d, $J_{C-F} = 240$ Hz), 158.7

3-((3,4-Difluorophenyl)amino)phenol (5g)13

Synthesized as per the general experimental procedure **B**; obtained as a orange solid, Yield: (132 mg, 80%); mp 101-103 °C; ¹H NMR (400 MHz, DMSO- d_6): δ_H (ppm) 6.31 (d, J = 8 Hz, 1H), 6.50 (d, J = 8 Hz, 2H), 6.83 (d, J = 8 Hz, 1H), 6.96-6.99 (m, 1H), 7.02-7.05 (m, 1H), 7.22-7.29 (m, 1H), 8.20 (br s, 1H), 9.27 (br s, 1H); ¹³C NMR (100 MHz, DMSO- d_6): δ_C (ppm) 104.4, 105.3, 105.5, 108.3, 108.6, 113.1, 118.0, 118.2, 130.4, 141.5, 143.5 (d, $J_{C-F} = 240$ Hz), 144.3, 150.1 (d, $J_{C-F} = 250$ Hz), 158.7

3-((4-Chlorophenyl)amino)phenol (5h) ¹³

Synthesized as per the general experimental procedure **B**; obtained as a brown solid, Yield: (125 mg, 76%); mp 109-110 °C; ¹H NMR (400 MHz, DMSO- d_6): δ_H (ppm) 6.23 (d, J = 8 Hz, 1H), 6.45 (d, J = 8 Hz, 2H), 6.95-7.01 (m, 3H), 7.19 (d, J = 8 Hz, 2H), 8.15 (br s, 1H), 9.23 (br s, 1H); ¹³C NMR (100 MHz, DMSO- d_6): δ_C (ppm) 104.4, 108.1, 108.7, 117.4, 118.5, 123.0, 129.3, 130.5, 143.1, 144.4, 158.7

2-Methyl-5-(phenylamino)phenol (5i) 14

Synthesized as per the general experimental procedure **B**; obtained as a brown solid, Yield: (119 mg, 80%); mp 93-94 °C; ¹H NMR (400 MHz, DMSO- d_6): δ_H (ppm) 1.98 (s, 3H), 6.38 (d, J = 8 Hz, 1H), 6.55 (s, 1H), 6.70 (t, J = 8 Hz, 1H), 6.84 (d, J = 8 Hz, 1H), 6.95 (d, J = 8 Hz, 2H), 7.13 (t, J = 8 Hz, 2H), 7.84 (br s, 1H), 9.05 (br s, 1H); ¹³C NMR (100 MHz, DMSO- d_6): δ_C (ppm) 15.9, 104.6, 108.8, 115.9, 116.6, 119.3, 129.5, 131.3, 142.4, 144.6, 156.3

2-Chloro-5-(phenylamino)phenol (5j) ¹³

Synthesized as per the general experimental procedure **B**; obtained as a brown solid, Yield: (132 mg, 80%); mp 91-92 °C; ¹H NMR (400 MHz, DMSO- d_6): δ_H (ppm) 6.50 (d, J = 8 Hz, 1H), 6.75 (s, 1H), 6.85 (t, J = 8 Hz, 1H), 7.06 (d, J = 8 Hz, 2H), 7.12 (d, J = 8 Hz, 1H), 7.23-7.26 (m, 2H), 8.17 (br s, 1H), 9.92 (br s, 1H); ¹³C NMR (100 MHz, DMSO- d_6): δ_c (ppm) 104.5, 109.0, 110.1, 117.9, 120.5, 129.6, 130.4, 143.4, 143.9, 153.9

3-((3-Nitrophenyl)amino)phenol (5I) ¹²

Synthesized as per the general experimental procedure **B**; obtained as a yellow liquid, Yield: (120 mg, 70%); ¹H NMR (400 MHz, DMSO- d_6): δ_H (ppm) 6.41 (d, J = 8 Hz, 1H), 6.59-6.61 (m, 2H), 7.11 (t, J = 8 Hz, 1H), 7.42 (d, J = 8 Hz, 1H), 7.46 (t, J = 8 Hz, 1H), 7.58 (d, J = 8 Hz, 1H), 7.81 (s, 1H), 8.62 (br s, 1H), 9.40 (br s, 1H); ¹³C NMR (100 MHz, DMSO- d_6): δ_C (ppm) 105.9, 109.4, 109.5, 109.8, 113.5, 122.1, 130.5, 130.8, 143.2, 145.8, 149.1, 158.8

¹H and ¹³C NMR spectral analysis of N-arylamides (7)

N-phenylbenzamide (7a) 15

Synthesized as per the general experimental procedure **C**; obtained as a colourless solid, Yield: (94 mg, 64%); mp 162-163 °C; ¹H NMR (400 MHz, DMSO- d_6): δ_H (ppm) 7.06 (t, J = 8 Hz, 1H), 7.31 (t, J = 8 Hz, 2H), 7.49 (t, J = 8 Hz, 2H), 7.55 (t, J = 8 Hz, 1H), 7.74 (d, J = 8 Hz, 2H), 7.92 (t, J = 8 Hz, 2H), 10.20 (br s, 1H); ¹³C NMR (100 MHz, DMSO- d_6): δ_C (ppm) 120.9, 124.2, 128.1, 128.8, 129.1, 132.0, 135.5, 139.7, 166.1

2-Ethoxy-N-phenylbenzamide (7b) ¹⁶

Synthesized as per the general experimental procedure **C**; obtained as a colourless solid, Yield: (115 mg, 64%); mp 71-72 °C; ¹H NMR (400 MHz, DMSO- d_6): δ_H (ppm) 1.36 (t, J = 8 Hz, 3H), 4.13 (q, J = 8 Hz, 2H), 7.03 (q, J = 8 Hz, 2H), 7.12 (d, J = 8 Hz, 1H), 7.30 (t, J = 8 Hz, 2H), 7.45 (t, J = 8 Hz, 1H), 7.66-7.70 (m, 3H), 10.10 (br s, 1H); ¹³C NMR (100 MHz, DMSO- d_6): δ_C (ppm) 15.0, 64.8, 113.4, 119.9, 121.0, 123.9, 124.8, 129.3, 130.5, 132.8, 139.5, 156.4, 164.6

2-Chloro-N-phenylbenzamide (7c) ¹⁷

Synthesized as per the general experimental procedure **C**; obtained as a white solid, Yield: (111 mg, 64%); mp 113-115 °C; ¹H NMR (400 MHz, DMSO- d_6): δ_H (ppm) 7.05-7.08 (m, 1H), 7.31 (t, J = 8 Hz, 2H), 7.41 (t, J = 8 Hz, 1H), 7.45-7.48 (m, 1H), 7.53 (t, J = 8 Hz, 2H), 7.68 (d, J = 8 Hz, 2H), 10.47 (br s, 1H); ¹³C NMR (100 MHz,

DMSO- d_6): δ_c (ppm) 120.0, 124.3, 127.8, 129.3, 130.2, 130.4, 131.5, 137.5, 139.4, 165.4

4-Methyl-N-phenylbenzamide (7d)¹

Synthesized as per the general experimental procedure **C**; obtained as a white solid, Yield: (101 mg, 64%); mp 156-157 °C; ¹H NMR (400 MHz, DMSO- d_6): δ_H (ppm) 2.42 (s, 3H), 7.13 (t, J = 8 Hz, 1H), 7.36-7.40 (m, 4H), 7.82 (d, J = 8 Hz, 2H), 7.92 (d, J = 8 Hz, 2H), 10.20 (br s, 1H); ¹³C NMR (100 MHz, DMSO- d_6): δ_C (ppm) 21.4, 120.8, 124.0, 128.1, 129.0, 129.37, 132.5, 139.7, 142.0, 165.8

N-phenylnicotinamide (**7e**) ¹⁸

Synthesized as per the general experimental procedure **C**; obtained as a brown solid, Yield: (119 mg, 80%); mp 117-118 °C; ¹H NMR (400 MHz, DMSO- d_6): δ_H (ppm) 7.16 (t, J = 8 Hz, 1H), 7.40 (t, J = 8 Hz, 2H), 7.60 (t, J = 8 Hz, 1H), 7.82 (d, J = 8 Hz, 2H), 8.33 (d, J = 8 Hz, 1H), 8.80 (s, 1H), 9.15 (s, 1H), 10.48 (br s, 1H); ¹³C NMR (100 MHz, DMSO- d_6): δ_C (ppm) 120.8, 123.9, 124.4, 129.1, 131.1, 135.9, 139.3, 149.1, 152.5, 164.5

N-phenylisonicotinamide (7f) ¹⁹

Synthesized as per the general experimental procedure **C**; obtained as a light brown solid, Yield: (110 mg, 74%); mp 169-170 °C; ¹H NMR (400 MHz, DMSO- d_6): δ_H (ppm) 7.15 (t, J = 8 Hz, 1H), 7.39 (t, J = 8 Hz, 2H), 7.79 (d, J = 8 Hz, 2H), 7.88 (d, J = 8 Hz, 2H), 8.80 (d, J = 8 Hz, 2H), 10.51 (br s, 1H); ¹³C NMR (100 MHz, DMSO- d_6): δ_C (ppm) 120.9, 122.0, 124.6, 129.1, 139.0, 142.4, 150.7, 164.4

4-Nitro-N-phenylbenzamide (7g) 15

Synthesized as per the general experimental procedure **C**; obtained as a Offwhite solid, Yield: (116 mg, 64%); mp 199-200 °C; ¹H NMR (400 MHz, DMSO d_6): δ_H (ppm) 7.15 (t, J = 8 Hz, 1H), 7.39 (t, J = 8 Hz, 2H), 7.79 (d, J = 8 Hz, 2H), 8.19 (d, J = 8 Hz, 2H), 8.38 (d, J = 8 Hz, 2H), 10.57 (br s, 1H); ¹³C NMR (100 MHz, DMSO- d_6): δ_C (ppm) 120.9, 124.0, 124.6, 129.1, 129.6, 139.1, 141.1, 149.6, 164.3 2-Amino-N-phenylbenzamide (7h) 20

Synthesized as per the general experimental procedure **C**; obtained as a colourless solid, Yield: (116 mg, 73%); mp 131-132 °C; ¹H NMR (400 MHz, DMSO- d_6): δ_H (ppm) 6.31 (s, 2H), 6.60 (t, J = 8 Hz, 1H), 6.76 (d, J = 8 Hz, 1H), 7.08 (t, J = 8 Hz, 1H), 7.19-7.22 (m, 1H), 7.33 (t, J = 8 Hz, 2H), 7.63 (d, J = 8 Hz, 1H), 7.72 (d, J = 8 Hz, 2H), 9.98 (br s, 1H); ¹³C NMR (100 MHz, DMSO- d_6): δ_C (ppm) 115.1, 115.7, 116.8, 121.0, 123.8, 128.9, 129.1, 132.5, 139.7, 150.1, 168.3

N-(3,4-dimethoxyphenyl)-3,5-dimethoxybenzamide (7i)²¹

Synthesized as per the general experimental procedure **C**; obtained as a light purple solid, Yield: (142 mg, 60%); mp 188-189 °C; ¹H NMR (400 MHz, DMSO- d_6): δ_H (ppm) 3.75 (s, 3H), 3.76 (s, 3H), 3.83 (s, 6H), 6.71 (s, 1H), 6.94 (d, J = 8 Hz, 1H), 7.11 (s, 2H), 7.32 (dd, J = 8 Hz, 2.4 Hz, 1H), 7.47 (s, 1H), 10.02 (br s, 1H); ¹³C NMR (100 MHz, DMSO- d_6): δ_C (ppm) 55.8, 55.9, 56.2, 103.6, 106.0, 106.1, 112.3, 112.9, 133.0, 137.5, 145.7, 148.9, 160.8, 165.0

N-(4-fluorophenyl)benzamide (7j) 22

Synthesized as per the general experimental procedure **C**; obtained as a colourless solid, Yield: (129 mg, 80%); mp 183-184 °C; ¹H NMR (400 MHz, DMSO- d_6): δ_H (ppm) 7.20 (t, J = 8 Hz, 2H), 7.54 (t, J = 8 Hz, 2H), 7.60 (t, J = 8 Hz, 1H), 7.80-7.83 (m, 2H), 7.97 (d, J = 8 Hz, 2H), 10.31 (br s, 1H); ¹³C NMR (100 MHz, DMSO- d_6): δ_C (ppm) 115.5, 115.7, 122.6, 122.7, 128.0, 128.8, 132.0, 135.3, 136.0, 158.7 (d, $J_{CF} = 240$ Hz), 165.9

N-(3-cyanophenyl)benzamide (7k) ²³

Synthesized as per the general experimental procedure **C**; obtained as a colourless solid, Yield: (113 mg, 68%); mp 135-136 °C; ¹H NMR (400 MHz, DMSO- d_6): δ_H (ppm) 7.55 (d, J = 8 Hz, 2H), 7.59 (d, J = 8 Hz, 2H), 7.63 (t, J = 8 Hz, 1H), 7.98 (d, J = 4 Hz, 2H), 8.06 (d, J = 8 Hz, 1H), 8.27 (s, 1H), 10.56 (br s, 1H); ¹³C NMR (100 MHz, DMSO- d_6): δ_C (ppm) 111.9, 119.2, 123.4, 125.3, 127.6, 128.2, 128.9, 129.3, 130.6, 132.4, 134.8, 140.4, 166.4

N-(3,4-dimethoxyphenyl)benzamide (7I) ²²

Synthesized as per the general experimental procedure **C**; obtained as a colourless solid, Yield: (158 mg, 82%); mp 179-180 °C; ¹H NMR (400 MHz, DMSO- d_6): δ_H (ppm) 3.75 (s, 3H), 3.77 (s, 3H), 6.94 (d, J = 8 Hz, 1H), 7.36 (d, J = 8 Hz, 1H), 7.53 (t, J = 8 Hz, 3H), 7.58 (d, J = 8 Hz, 1H), 7.97 (d, J = 8 Hz, 2H), 10.11 (br s, 1H); ¹³C NMR (100 MHz, DMSO- d_6): δ_C (ppm) 55.8, 56.2, 106.0, 112.4, 112.8, 127.9, 128.8, 131.8, 133.2, 135.5, 145.6, 148.9, 165.5

4-Amino-N-phenylbenzenesulfonamide (7m)²⁴

Synthesized as per the general experimental procedure **C**; obtained as a darkred solid, Yield: (149 mg, 80%); mp 197-198 °C; ¹H NMR (400 MHz, DMSO- d_6): δ_H (ppm) 5.94 (br s, 2H), 6.54 (d, J = 8 Hz, 2H), 6.97 (t, J = 8 Hz, 1H), 7.07 (d, J = 8Hz, 2H), 7.20 (t, J = 8 Hz, 2H), 7.40 (d, J = 8 Hz, 2H), 9.83 (br s, 1H); ¹³C NMR (100 MHz, DMSO- d_6): δ_C (ppm) 113.0, 119.9, 123.7, 124.9, 129.1, 129.4, 129.8, 138.9, 153.2

¹H and ¹³C NMR spectral analysis of **9a** and **9b**

N-(5-(N-phenylsulfamoyl)-1,3,4-thiadiazol-2-yl)acetamide (9a)

Synthesized as per the general experimental procedure **C**; obtained as a colourless solid, Yield: (157 mg, 70%); mp 288-289 °C; ¹H NMR (400 MHz, DMSO- d_6): δ_H (ppm) 2.21 (s, 3H), 7.15 (d, J = 8 Hz, 1H), 7.20 (d, J = 8 Hz, 2H), 7.31 (d, J = 8 Hz, 2H), 11.17 (s, 1H), 13.07 (br s, 1H); ¹³C NMR (100 MHz, DMSO- d_6): δ_C (ppm) 22.7, 121.5, 125.6, 129.8, 136.7, 161.0, 162.1, 170.0; HRMS-ESI m/z: [M+H]⁺ calcd for C₁₀H₁₀N₄O₃S₂, 298.0194; found, 299.0275

5-Chloro-2-methoxy-*N*-(4-(*N*-phenylsulfamoyl)phenethyl)benzamide (**9b**)

Synthesized as per the general experimental procedure **C**; obtained as a light orange oil, Yield: (166 mg, 50%); ¹H NMR (400 MHz, CDCl₃): δ_H (ppm); 2.93-2.96 (m , 2H), 3.66 (s, 3H), 3.69-3.74 (m, 2H), 6.83 (t, *J* = 8 Hz, 1H), 7.09 (t, *J* = 8 Hz, 3H), 7.20-7.24 (m, 3H), 7.30 (d, *J* = 8 Hz, 2H), 7.36 (dd, *J* = 8 Hz, 2.8 Hz, 1H), 7.73 (d, *J* = 8 Hz, 2H), 7.78 (br s, 1H), 8.14 (s, 1H); ¹³C NMR (100 MHz, CDCl₃): δ_C (ppm) 35.4, 40.5, 56.1, 112.9, 121.5, 122.6, 125.3, 126.7, 127.5, 129.3, 129.5, 131.9, 132.4, 136.5, 137.5, 144.9, 155.9, 164.1; HRMS-ESI *m/z*: [M+H]⁺ calcd for C₂₂H₂₁ClN₂O₄S, 444.0911; found, 445.1014

3. References

- 1. D. S. Raghuvanshi, A. K., Gupta and K. N. Singh, Org. Lett., 2012, 14, 4326-4329.
- 2. M. A. Carroll and R. A. Wood, *Tetrahedron*, 2007, **63**, 11349-11354.
- J. McNulty, S. Cheekoori, T. P. Bender and J. A. Coggan, *Eur. J. Org. Chem.*, 2007, 2007, 1423-1428.
- 4. S. Nadri, E. Rafiee, S. Jamali and M. Joshaghani, *Tetrahedron Lett.*, 2014, 55, 4098-4101.
- 5. Y. Yu, J. Srogl, and L. S. Liebeskind, Org. Lett., 2004, 6, 2631-2634.
- 6. P. G. Alsabeh and M. Stradiotto, Angew. Chem. Int. Ed., 2013, 52, 7242-7246.
- 7. S. Roy, M. J. Sarma, B. Kashyap and P. Phukan, *Chem. Commun.*, 2016, **52**, 1170-1173.
- 8. F. Y. Kwong, A. Klapars and S. L. Buchwald, Org. Lett., 2002, 4, 581-584.
- S. Suárez-Pantiga, R. Hernández-Ruiz, C. Virumbrales, M. R. Pedrosa and R. Sanz, Angew. Chem. Int. Ed., 2019, 58, 2129-2133.
- 10. V. Semeniuchenko, J. S. Ovens, W. M. Braje and M. G. Organ, *Organometallics*, 2021, **40**, 3276-3290.
- 11. X. Huang, S. Xu, Q. Tan, M. Gao, M. Li and B. Xu, Chem. Commun., 2014, 50, 1465-1468.
- A. S. Reddy, K. R. Reddy, D. N. Rao, C. K. Jaladanki, P. V. Bharatam, P. Y. Lam and P. Das, *Org. Biomol. Chem.*, 2017, **15**, 801-806.
- 13. D. Maiti and S. L. Buchwald, J. Am. Chem. Soc., 2009, 131, 17423-17429.
- S. Paul, B. P. Joy, G. Sasikala, A. G. Raghuthaman and V. B. Gudimetla, *ChemistrySelect* 2020, 5, 15004-15009.

- 15. S. Jammi, S. Sakthivel, L. Rout, T. Mukherjee, S. Mandal, R. Mitra, and T. Punniyamurthy, J. Org. Chem., 2009, **74**, 1971-1976.
- 16. L. M. Werbel, C. A. Hess and E. F. Elslager, J. Med. Chem., 1967, 10, 508-509.
- 17. X. Tang, S. Chen and L. Wang, Asian J. Chem., 2012, 24, 2860-2862.
- 18. A. Schoenberg, R. F. Heck, J. Org. Chem., 1974, 39, 3327-3331.
- B. Stanovnik, M. Tišler, V. Golob, I. Hvala and O. Nikolić, *J. Heterocycl. Chem.*, 1980, **17**, 733-736.
- 20. R. Cheng, T. Guo, D. Zhang-Negrerie, Y. Du, and K. Zhao, *Synthesis*, 2013, **45**, 2998-3006.
- 21. S. Fujimoto, K. Matsumoto, T. Iwata and M. Shindo, *Tetrahedron Lett.*, 2017, 58, 973-976.
- 22. W. Y. Fang, Y. M. Huang, J. Leng and H. L. Qin, Asian J. Org. Chem., 2018, 7, 751-756.
- 23. Z. Chen, P. Liang, B. Liu, H. Luo, J. Zheng, X. Wen, T. Liu and M. Ye, *Org. Biomol. Chem.*, 2018, **16**, 8481-8485.
- 24. W. Zu, S. Liu, X. Jia and L. Xu, Org. Chem. Front., 2019, 6, 1356-1360.

4. ¹H and ¹³C NMR spectra of *N*-aryl derivatives:

4.1 ¹H and ¹³C NMR spectra of N-arylamines (3)

S16

S18

200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 Chemical Shift (ppm)

S29

4.2 ¹H and ¹³C NMR spectra of 3-arylaminophenols (5)

S39

4.3 ¹H and ¹³C NMR spectra of 3-arylamides (7)

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 Chemical Shift (ppm)

S51

S54

4.4 ¹H and ¹³C NMR spectra of **9a** and **9b**

