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1. Materials, instruments, and methods 

All raw materials and solvents were purchased through commercial channels, unless otherwise 

mentioned. 1H NMR and 13C NMR spectra were recorded by a nuclear magnetic resonance 

spectrometer (AV–400, Bruker, Germany). The UV–Vis spectra and fluorescence spectra were 

monitored via a UV–Vis spectrophotometer (UV–3900, Hitachi, Japan) and fluorescence 

spectrometer (FL–7000, Hitachi, Japan).  

The limit of detection (LOD) was calculated based on fluorescence titrations. A plot of the measured 

fluorescence intensity at the emission band 440 nm versus concentration of Hg2+/CH3Hg+ added 

allowed calculation of the limit of detection from equation LOD = 3σ / k, where σ is the standard 

deviation of the emission of a blank solution, which was measured 20 times, and k is the slope of 

the calibration curve. In the fluorescence detection system, the concentration of TPA–PBA is 1 µM. 

First, 1 mM probe solution is prepared by dissolving TPA–PBA in DMSO. Next, HEPEs buffer 

solution (pH 7.4, 10% DMSO, 10 mM) was prepared as the concentration diluent. The fluorescence 

emission spectra of all detection systems were recorded in the wavelength range of 400–600 nm 

under 344 nm excitation. 

Detailed protocol for the detection of mercury in the wastewater using the TPA–BPA prob 

Firstly, 1 mL of ultrapure water and 1 mL of 2 μM TPA–PBA solution (20% DMSO, pH=7.40, 20 

mM HEPES) were mixed well, and Hg2+/CH3Hg+ was added accordingly while the resulting 

fluorescence spectra were recorded. Then, the fluorescence intensity at 440 nm was linearly fitted 

to the added Hg2+/CH3Hg+ concentration to obtain the corresponding standard curve. Next, after the 

insoluble impurities in the actual water sample were removed by filter membrane, 1 mL of the actual 

water sample and 1 mL of 2 μM TPA–PBA solution (20% DMSO, pH=7.40, 20 mM HEPES) were 

mixed well, and different concentrations of Hg2+/CH3Hg+ were added respectively. The stabilized 

fluorescence intensities were substituted into the resulting standard curves, and the resulting 

standard concentrations were compared with the actual addition to calculate the recoveries, and each 

group of experiments was tested for three times. 
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2. Synthesis 

 

 

TPA–COOH: 4–(diphenylamino)benzaldehyde (2 g, 7.34 mmol) was dissolved in 100 mL 

acetone–H2O (v/v=4:1) and 0.96 g KMnO4 was added in batches. the reaction mixture was stirred 

at 80 °C for 4 h. The reaction process was detected by TLC, the mixture was filtered and the filtrate 

was washed with 1 M HCl aqueous solution to give a white precipitate. The precipitate was filtered, 

washed with water and dried under vacuum to give a white solid 4–diphenylaminobenzoic acid, 

TPA–COOH, in 58% yield. 1H NMR (400 MHz, DMSO–d6) δ = 12.52 (s, 1H), 7.78 (d, J = 8.8 Hz, 

2H), 7.37 (t, J = 7.9 Hz, 4H), 7.17 (d, J = 7.2 Hz, 2H), 7.12 (d, J = 8.7 Hz, 4H), 6.87 (d, J = 8.8 Hz, 

2H). 

 

 

TPA–BPA: TPA–COOH (0.5 g, 1.73 mmol) and p–aminophenylboronic acid hydrochloride (0.3 

g, 1.73 mmol) were dissolved in 20 mL of ethylene glycol ether at room temperature and reacted 

for 10 min. followed by the addition of 4–(4,6–dimethoxy–1,3,5–triazin–2–yl)–4–

methylmorpholinium chloride (DMT–MM) (0.51 g, 1.73 mmol). The reaction was monitored by 

TLC for 3 h at room temperature. The reaction mixture was poured into water and extracted with 

dichloromethane. The organic phases were combined and washed with saturated sodium carbonate, 

1 M HCI aqueous solution and saturated salt water in turn, and dried with anhydrous Na2SO4. The 
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crude product was purified by column chromatography to give 472 mg of pale yellow solid TPA–B 

(67%). 1H NMR (400 MHz, DMSO–d6) δ = 10.07(s, 1H), 7.91 (s, 2H), 7.85 (d, J = 8.8 Hz, 2H), 

7.78 – 7.69 (q, J = 8.1 Hz, 4H), 7.38 (t, J = 7.1 Hz, 4H), 7.16 (d, J = 7.5 Hz, 2H), 7.11 (d, J = 7.4 

Hz, 4H), 6.96 (d, J = 8.8 Hz, 2H). 13C NMR (100 MHz, DMSO–d6) δ = 165.02, 150.34, 146.43, 

141.10, 134.73, 129.86, 128.69, 127.28, 125.30, 124.38, 120.09, 118.97. HRMS (ESI) m/z 407.1567 

[M–H]– calcd for C25H20BN2O3，found 407.1570. 

 

3. Characterization 

 

 

Fig. S1. 1H NMR spectrum of TPA–COOH 
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Fig. S2. 1H NMR spectrum of TPA–PBA 

 

 

 

Fig. S3. 13C NMR spectrum of TPA–PBA 
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Fig. S4. ESI–MS spectrum of TPA–PBA 

 

 

4. Spectroscopic analysis 

 

 

 

Fig. S5. Fluorescence spectra of TPA–PBA (1 µM) in DMSO system with different water content. 

ex=344 nm. Slit: 2.5 nm/2.5 nm. 
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Fig. S6. pH effect on the fluorescence emission of TPA–PBA and (a) TPA–PBA/Hg2+ and (b) 

TPA–PBA/CH3Hg+ in DMSO/H2O (fw = 90%, pH 7.4, 10 mM HEPEs) λex = 344 nm, Slit: 2.5 

nm/2.5 nm.  

 

  

Fig. S7 Time–dependent emission intensity at 440 nm of TPA–PBA (1 µM) with Hg2+ (0–5 equiv.) 

in aqueous buffered solution (10 mM, HEPES, pH 7.4) containing 10% DMSO (λex = 344 nm). 
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Fig. S8 DFT–optimized structure of probe TPA–PBA: (a) top view and (b) front view. 

 

 

Fig. S9 The LUMO of TPA–PBA probe. 
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Fig. S10 Theoretical fluorescent spectrum of probe TPA–PBA in water, showing the emission 

maxima at about 440 nm as well. 

 

 

Fig. S11 Time–dependent emission intensity at 435 nm of TPA–PBA (1 µM) with MeHg+ (0–5 

equiv.) in aqueous buffered solution (10 mM, HEPES, pH 7.4) containing 10% DMSO (λex = 344 

nm). 
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Fig. S12. Selective experiments of TPA–PBA (1.0 μM) in DMSO/H2O (fw = 90%, pH 7.4, 10 mM 

HEPEs) medium after the addition of (a) Hg2+ (10 μM) and (c) CH3Hg+ (10 μM) and other 

interfering ions (1000 μM), respectively; The interference experiments of TPA–PBA (1 μM) in 

DMSO/H2O (fw = 90%, pH 7.4, 10 mM HEPEs) medium with (b) Hg2+ (10 μM) and (d) CH3Hg+ 

(10 μM) and other interfering ions (1000 μM), respectively. λex=344 nm. Slit: 2.5 nm/2.5 nm. 

 

Fig. S13. The fluorescence intensity of TPA–PBA at 440 nm as a function of (a) Hg2+ (0–3 µM) 

and (b) CH3Hg+ (0–3.6 µM) in pure water. ex=344 nm. Slit: 2.5 nm/2.5 nm.   
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Fig. S14. FTIR spectrum of the product of TPA–PBA with Hg2+ (5eq) 

 

Fig. S15. Partial 11B NMR spectra of probe TPA–PBA and a mixture of TPA–PBA and Hg2+ in 

DMSO–d6. 
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Fig. S16. Partial 13C NMR spectra of probe TPA–PBA and a mixture of TPA–PBA and Hg2+ in 

DMSO–d6. 

  

Fig. S17. MS (EI) of the reaction product of TPA–PBA with 5 equiv Hg2+ 
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