Supporting Information

Modular Synthesis of Fluorinated 2*H*-Thiophenes via [4+1] Cyclization of Enaminothiones

Xinyu Zhang, Jinli Zhang, Jie Chen, Banghua Zhou, Jian Zhang, Shunhong Chen, Jian Wu* and Yaojia Jiang*

Table of Contents

1.	General methods	2
2.	Optimized reaction conditions	3
3.	General procedure and spectral data	4
	3.1 General procedure for enaminothiones and their spectral data	4
	3.2 General procedure for hydrazones and their spectral data	13
	3.3 General procedure for 2-CF ₃ -2 <i>H</i> -thiophenes	14
	3.4 Derivative products and their spectral data	31
4.	NMR spectra	35
	4.1 NMR spectra for enaminothiones	35
	4.2 NMR spectra for hydrazones	55
	4.3 NMR spectra for 2-CF ₃ -2 <i>H</i> -thiophenes	56
	4.4 NMR spectra for derivative products	97

1. General methods:

All reactions were carried out in flame or oven-dried glassware under argon atmosphere with freshly distilled dry solvents under anhydrous conditions unless otherwise indicated. Flash column chromatography was performed with silica gel 60 (230 – 400 mesh). Chromatograms were visualized by fluorescence quenching with UV light at 254 nm or by staining with base solution of potassium permanganate and molybdate. NMR spectra were recorded at RT on 300 or 400 MHz Bruker spectrometers. The residual solvent signals were taken as the reference (0.00 ppm for ¹H NMR spectra and 77.0 ppm for ¹³C NMR spectra in CDCl₃). Chemical shift (δ) is reported in ppm, coupling constants (*J*) are given in Hz. The following abbreviations classify the multiplicity: s = singlet, d = doublet, t = triplet, m = multiplet, dd = doublet of doublet, q = quartet and br = broad signal. HRMS (ESI) spectra were recorded on a Waters Q-Tof premier TM mass spectrometer.

2. Optimized reaction conditions:

	S Ph N	NNHTs + Ph CF ₃	conditions	Ph S Pl	ו יד ₃
	1a	2a		J 3aa	-
Entry	Metal Catalyst	Base	Solvent	temp	Yield (%)
1	CuI	^t BuOK	DCM	80	31
2	CuBr	^t BuOK	DCM	80	28
3	CuCl	^t BuOK	DCM	80	36
4	CuF ₂	^t BuOK	DCM	80	29
5	CuCl	^t BuOK	MeOH	80	38
6	CuCl	^t BuOK	IPA	80	37
7	CuCl	^t BuOK	Tol.	80	39
8	CuCl	NaOH	Tol.	80	45
9	CuCl	K_2CO_3	Tol.	80	51
10	CuCl	K_2CO_3	Tol.	90	58
11	CuCl	K ₂ CO ₃	Tol.	100	41
12	CuSCN	^t BuOK	DCE	80	10
13	CuSCN	^t BuOK	DCM	80	12
14	CuSCN	^t BuOK	PhCH3	80	14
15	CuSCN	^t BuOK	PhCl	80	13
16	CuSCN	^t BuOK	THF	80	27
17	CuSCN	^t BuOK	MeOH	80	19

Table S1 Optimized reaction conditions^a

^{*a*}If there is no otherwise noted, the reaction is performed as follows: **1a** (0.20 mmol, 1.0 equiv.), **2a** (0.48 mmol, 2.4 equiv.), metal catalyst (1.0 mol %) and base (0.50 mmol, 2.5 equiv.) were mixed with 2.0 mL solvent in sealed tube under argon atmosphere, and the obtained mixture was stirred at 90 °C until **1a** was consumed completely. ^{*b*} Isolated yield. ^{*c*}Metal catalyst-loading: 10 mol %. Oct = octanoate, TFA = trifluoroacetic acid, esp = $\alpha, \alpha, \alpha', \alpha'$ -tetramethyl-1,3-benzenedipropionic acid, DBU = 1,8-diazabicyclo[5.4.0]undec-7-ene, DIPEA = N,N-diisopropylethylamine. Tol. = toluene, THF = tetrahydrofuran, ACN = acetonitrile, DCM = dichloromethane.

3. General procedure and spectral data

3.1 General procedure for the synthesis of enaminothione and their spectral data¹:

To a stirred solution of Lawesson's reagent (1 mmol, 0.5 equiv.) in DCM (20 ml), the enaminone (2 mmol, 1.0 equiv.) was added. The reaction mixture was stired at room temperature until complete conversion monitored by TLC (30-60 min), and then the solvent was removed under reduced pressure to afford a yellow or brown residue that was purified by flash column chromatography. The desired enaminothiones were obtained.

(*E*)-3-(Dimethylamino)-1-phenylprop-2-ene-1-thione (1a):

The title compound was prepared according to the general procedure. The product was obtained as red solid, Mp. 102 - 104 °C. Yield: 92% (351.9 mg); ¹H NMR (400 MHz, CDCl₃) δ 8.41 (d, *J* = 10.4 Hz, 1H), 7.81 (s, 2H), 7.45 – 7.27 (m, 3H), 6.52 (d, *J* = 10.6 Hz, 1H), 3.25 (s, 3H), 3.00 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 215.3, 157.8, 148.3, 130.3, 128.0, 127.3, 111.3, 46.3, 38.6; HRMS (ESI) m/z [M+H]⁺: Calcd for C₁₁H₁₄NS: 192.0847. Found: 192.0840.

¹ R. Shabana, J. B. Rasmussen, S. O. Olesen and S.-O. Lawesson, *Tetrahedron*, 1980, **36**, 3047-3051.

(*E*)-3-(Dimethylamino)-1-(p-tolyl) prop-2-ene-1-thione (1b):

The title compound was prepared according to the general procedure. The product was obtained as red solid, Mp. 122 - 124 °C. Yield: 81% (332.6 mg); ¹H NMR (400 MHz, CDCl₃) δ 8.39 (s, 1H), 7.75 (s, 2H), 7.12 (d, *J* = 7.9 Hz, 2H), 6.53 (d, *J* = 9.4 Hz, 1H), 3.23 (s, 3H), 2.99 (s, 3H), 2.34 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 214.7, 157.7, 145.4, 140.7, 128.6, 127.5, 110.8, 46.2, 38.5, 21.5; HRMS (ESI) m/z [M+H]⁺: Calcd for C₁₂H₁₆NS: 206.1004. Found: 206.1003.

(E)-3-(Dimethylamino)-1-(4-methoxyphenyl) prop-2-ene-1-thione (1c):

The title compound was prepared according to the general procedure. The product was obtained as faint yellow solid, Mp. 96 - 98 °C. Yield: 85% (362.8 mg); ¹H NMR (400 MHz, CDCl₃) δ 8.38 (s, 1H), 7.86 (s, 2H), 6.88 – 6.81 (m, 2H), 6.55 (d, *J* = 16.5 Hz, 1H), 3.83 (s, 3H), 3.24 (s, 3H), 3.02 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 161.8, 140.6, 129.4, 113.1, 55.6, 46.2, 38.4; HRMS (ESI) m/z [M+H]⁺: Calcd for C₁₂H₁₆NOS: 222.0953. Found: 222.0946.

(*E*)-3-(Dimethylamino)-1-(4-phenoxyphenyl)prop-2-ene-1-thione (1d):

The title compound was prepared according to the general procedure (EA/PE = 1/1.5, $R_f = 0.1$). The product was obtained as red solid, Mp. 125 – 127 °C. Yield: 60% (339.0 mg); ¹H NMR (400 MHz, CDCl₃) δ 8.42 (s, 1H), 7.86 (s, 2H), 7.38 – 7.33 (m, 2H), 7.18 – 7.10 (m, 1H), 7.08 – 7.03 (m, 2H), 6.97 – 6.90 (m, 2H), 6.56 (d, *J* = 11.0 Hz, 1H), 3.28(s, 3H), 3.05 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 156.4, 129.8, 129.1, 123.7, 119.4, 117.4, 46.1, 38.2; HRMS (ESI) m/z [M+H]⁺: Calcd for C₁₇H₁₇NOS: 284.1109. Found: 284.1104.

(E)-4-(3-(Dimethylamino) prop-2-enethioyl) benzonitrile (1e):

The title compound was prepared according to the general procedure, The product was obtained as red solid, Mp. 99 - 102 °C. Yield: 83% (359.1 mg); ¹H NMR (400 MHz, CDCl₃) δ 8.42 (d, *J* = 11.4 Hz, 1H), 7.83 (d, *J* = 8.2 Hz, 2H), 7.62 – 7.58 (m, 2H), 6.49 (d, *J* = 11.4 Hz, 1H), 3.33 (s, 3H), 3.07 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 212.1, 158.3, 152.0 131.9, 127.6, 119.0, 112.9, 111.6, 46.7, 38.8; HRMS (ESI) m/z [M+H]⁺: Calcd for C₁₂H₁₃N₂S: 217.0799. Found: 217.0794.

Methyl (E)-4-(3-(dimethylamino)prop-2-enethioyl)benzoate(1f):

The title compound was prepared according to the general procedure, The product was obtained as faint yellow solid, Mp. 96 - 98 °C. Yield: 73% (363.5 mg); ¹H NMR (400 MHz, CDCl₃) δ 8.45 (d, J = 11.4 Hz, 1H), 8.07 – 7.95 (m, 2H), 7.90 – 7.78 (m, 2H), 6.48 (d, J = 11.4 Hz, 1H), 3.93 (s, 3H), 3.33 (s, 3H), 3.08 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 166.8, 157.4, 129.2, 126.9, 111.5, 99.9, 52.2, 46.3, 38.5; HRMS (ESI) m/z [M+H]⁺: Calcd for C₁₂H₁₆NOS: 250.0902. Found: 250.0909.

(*E*)-3-(Dimethylamino)-1-(4-nitrophenyl)prop-2-ene-1-thione (1g):

The title compound was prepared according to the general procedure. The product was obtained as red solid, Mp. 122 - 123 °C. Yield: 60% (283.0 mg); ¹H NMR (400 MHz, CDCl₃) δ 8.35 (d, *J* = 11.3 Hz, 1H), 8.07 (d, *J* = 8.8 Hz, 2H), 7.80 (d, *J* = 8.6 Hz, 2H), 6.45 (d, *J* = 11.3 Hz, 1H), 3.29 (s, 3H), 3.03 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 210.6, 158.0, 153.4, 147.8, 127.5, 122.9, 111.7, 46.4, 38.6; HRMS (ESI) m/z [M+H]⁺: Calcd for C₁₁H₁₃N₂O₂S: 237.0698. Found: 237.0700.

(E)-3-(Dimethylamino)-1-(4-fluorophenyl) prop-2-ene-1-thione (1h):

The title compound was prepared according to the general procedure. The product was obtained as red solid, Mp. 99 - 100 °C. Yield: 91% (380.9 mg); ¹H NMR (400 MHz,

CDCl₃) δ 8.38 (s, 1H), 7.83 (s, 2H), 7.00 – 6.95 (m, 2H), 6.58 – 6.37 (m, 1H), 3.25(s, 3H), 3.00 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 212.9, 165.5, 158.1, 144.3, 129.5 (d, J = 6.9 Hz), 114.8 (d, J = 21.5 Hz), 110.8, 46.4, 38.6; ¹⁹F NMR (376 MHz, CDCl₃) δ - 111.00; HRMS (ESI) m/z [M+H]⁺: Calcd for C₁₁H₁₃FNS: 210.0753. Found: 210.0746.

(E)-1-(4-Chlorophenyl)-3-(dimethylamino) prop-2-ene-1-thione (1i):

The title compound was prepared according to the general procedure. The product was obtained as red solid, Mp. 113 - 114 °C. Yield: 88% (397.3 mg); ¹H NMR (400 MHz, CDCl₃) δ 8.37 (d, *J* = 10.9 Hz, 1H), 7.85 – 7.65 (m, 2H), 7.37 – 7.16 (m, 2H), 6.47 (d, *J* = 10.9 Hz, 1H), 3.25 (s, 3H), 3.00 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 212.6, 158.2, 146.4, 136.2, 128.7, 128.1, 110.9, 46.5, 38.7; HRMS (ESI) m/z [M+H]⁺: Calcd for C₁₁H₁₃CINS: 226.0457. Found: 226.0451.

(E)-1-(4-Bromophenyl)-3-(dimethylamino) prop-2-ene-1-thione (1j):

The title compound was prepared according to the general procedure. The product was obtained as red solid, Mp. 110 - 111 °C. Yield: 91% (491.7 mg); ¹H NMR (400 MHz, CDCl₃) δ 8.38 (d, J = 10.7 Hz, 1H), 7.76 – 7.63 (m, 2H), 7.46 – 7.39 (m, 2H), 6.48 (d, J = 11.0 Hz, 1H), 3.27 (s, 3H), 3.01 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 212.7,

158.2, 146.9, 131.0, 128.5, 124.7, 110.9, 46.5, 38.7; HRMS (ESI) m/z [M+H]⁺: Calcd for C₁₁H₁₃BrNS: 269.9952. Found: 269.9944.

(E)-3-(Dimethylamino)-1-(4-iodophenyl) prop-2-ene-1-thione (1k):

The title compound was prepared according to the general procedure. The product was obtained as red solid, Mp. 139 - 140 °C. Yield: 81% (513.8 mg); ¹H NMR (400 MHz, CDCl₃) δ 8.40 (d, *J* = 10.5 Hz, 1H), 7.75 – 7.62 (m, 2H), 7.55 (d, *J* = 6.4 Hz, 2H), 6.48 (d, *J* = 10.9 Hz, 1H), 3.29 (s, 3H), 3.03 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 213.3, 158.1, 147.5, 137.0, 129.0, 110.9, 97.0, 46.5, 38.7; HRMS (ESI) m/z [M+H]⁺: Calcd for C₁₁H₁₃INS: 317.9813. Found: 317.9807.

(1E, 4E)-1-(Dimethylamino)-5-phenylpenta-1, 4-diene-3-thione (11):

The title compound was prepared according to the general procedure. The product was obtained as red solid, Mp. 105 - 107 °C. Yield: 80% (347.7 mg); ¹H NMR (400 MHz, CDCl₃) δ 8.47 (s, 1H), 7.80 (d, *J* = 15.4 Hz, 1H), 7.59 (d, *J* = 7.6 Hz, 2H), 7.38 – 7.31 (m, 3H), 7.29 – 7.22 (m, 1H), 6.34 (d, *J* = 11.7 Hz, 1H), 3.27 (s, 3H), 3.04 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 169.1, 144.0, 136.2, 136.0, 128.4, 79.8, 79.4; HRMS (ESI) m/z [M+H]⁺: Calcd for C₁₃H₁₆NS: 218.1003. Found: 218.0998.

(E)-3-(Dimethylamino)-1-(furan-2-yl)prop-2-ene-1-thione (1m):

The title compound was prepared according to the general procedure (EA/PE = 1/1.5, $R_f = 0.1$). The product was obtained as red solid, Mp. 90 – 92 °C. Yield: 60% (218.5 mg); ¹H NMR (400 MHz, CDCl₃) δ 8.43 (d, J = 11.8 Hz, 1H), 7.52 (dd, $J_I = 1.7$ Hz, $J_2 = 0.8$ Hz, 1H), 7.39(dd, $J_I = 3.5$ Hz, $J_2 = 0.8$ Hz, 1H), 6.80 (d, J = 11.7 Hz, 1H), 6.48 (dd, $J_I = 3.5$ Hz, $J_2 = 1.7$ Hz, 1H), 3.30 (s, 3H), 3.08 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 194.2, 159.1, 157.6, 144.2, 116.0, 113.0, 107.3, 46.1, 38.3; HRMS (ESI) m/z [M+H]⁺: Calcd for C₉H₁₂NOS: 182.0640. Found: 182.0634.

(E)-3-(Dimethylamino)-1-(thiophen-2-yl) prop-2-ene-1-thione (1n):

The title compound was prepared according to the general procedure. The product was obtained as red solid, Mp. 129 - 131 °C. Yield: 84% (331.4 mg); ¹H NMR (400 MHz, CDCl₃) δ 8.36 (d, J = 11.5 Hz, 1H), 7.61 (dd, $J_I = 1.0$ Hz, $J_2 = 3.8$ Hz, 1H), 7.49 (dd, $J_I = 1.2$ Hz, $J_2 = 5.2$ Hz, 1H), 7.07 (dd, $J_I = 3.8$ Hz, $J_2 = 5.1$ Hz, 1H), 6.62 (d, J = 11.5 Hz, 1H), 3.26 (s, 3H), 3.04 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 201.2, 157.9, 154.7, 132.9, 128.1, 125.4, 108.0, 46.3, 38.5; HRMS (ESI) m/z [M+H]⁺: Calcd for C₉H₁₂NS₂: 198.0411. Found: 198.0414.

(E)-1-(Benzo[b]thiophen-2-yl)-3-(dimethylamino)prop-2-ene-1-thione(1o):

The title compound was prepared according to the general procedure. The product was obtained as red solid, Mp. 195 - 197 °C. Yield: 60% (296.4 mg); ¹H NMR (400 MHz, CDCl₃) δ 8.38 (d, *J* = 11.5 Hz, 1H), 7.86 (s, 1H), 7.83 – 7.75 (m, 2H), 7.40 – 7.28 (m, 2H), 6.77 (d, *J* = 11.7 Hz, 1H), 3.28 (s, 3H), 3.08 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 197.6, 157.5, 142.9, 139.9, 125.9, 125.4, 124.5, 122.3, 121.6, 46.2, 38.4, 29.7; HRMS (ESI) m/z [M+H]⁺: Calcd for C₁₃H₁₄NS₂: 248.0568. Found: 248.0562.

(E)-3-(Dimethylamino)-1-(phenanthren-2-yl)prop-2-ene-1-thione(1p):

The title compound was prepared according to the general procedure. The product was obtained as red solid, Mp. 169 - 170 °C. Yield: 84% (489.5 mg); ¹H NMR (400 MHz, CDCl₃) δ 8.67 (d, *J* = 8.0 Hz, 1H), 8.62 (d, *J* = 8.7 Hz, 1H), 8.55 - 8.30 (m, 2H), 8.18 (s, 1H), 7.89 - 7.87 (m, 1H), 7.83 - 7.71 (m, 2H), 7.69 - 7.56 (m, 2H), 6.73 (d, *J* = 11.2 Hz, 1H), 3.22 (s, 3H), 3.02 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 213.9, 157.9, 145.8, 132.6, 131.7, 131.5, 130.1, 128.8, 127.7, 127.5, 127.3, 127.2, 126.9, 126.1, 123.2, 122.4, 111.4, 46.3, 38.7; HRMS (ESI) m/z [M+H]⁺: Calcd for C₁₉H₁₈NS: 292.1160. Found: 292.1153.

(E)-1-(Adamantan-1-yl)-3-(dimethylamino) prop-2-ene-1-thione (1q):

The title compound was prepared according to the general procedure. The product was obtained as red solid, Mp. 144 - 146 °C. Yield: 73% (364.1 mg); ¹H NMR (400 MHz, CDCl₃) δ 8.37 (d, J = 11.4 Hz, 1H), 6.27 (d, J = 11.4 Hz, 1H), 3.21 (s, 3H), 2.97 (s, 3H), 2.04 (s, 3H), 2.01 – 1.94 (m, 6H), 1.69 (s, 6H); ¹³C NMR (100 MHz, CDCl₃) δ 158.0, 108.7, 48.7, 43.2, 38.3, 36.9, 29.2; HRMS (ESI) m/z [M+H]⁺: Calcd for C₁₅H₂₄NS: 250.1630. Found: 250.1627.

(*E*)-1-(Dimethylamino)-5-phenylpent-1-ene-3-thione (1r):

The title compound was prepared according to the general procedure. The product was obtained as red oil. Yield: 42% (182.6 mg); ¹H NMR (400 MHz, CDCl₃) δ 8.22 (d, J = 10.8 Hz, 1H), 7.32 – 7.20 (m, 4H), 7.15 – 7.09 (m, 1H), 5.97 (d, J = 11.4 Hz, 1H), 3.14 (s, 3H), 3.00 (s, 3H), 2.92 – 2.75 (m, 4H); ¹³C NMR (100 MHz, CDCl₃) δ 223.0, 156.9, 141.4, 128.2, 128.0, 125.5, 111.8, 53.3, 45.7, 37.9, 36.7; HRMS (ESI) m/z [M+H]⁺: Calcd for C₁₃H₁₈NS: 220.1160. Found:.220.1160.

(*E*)-1-Phenyl-3-(pyrrolidin-1-yl) prop-2-ene-1-thione (1s):

The title compound was prepared according to the general procedure. The product was

obtained as red solid, Mp. 121 - 123 °C. Yield: 78% (339.3 mg); ¹H NMR (400 MHz, CDCl₃) δ 8.65 (d, *J* = 10.9 Hz, 1H), 7.84 (d, *J* = 7.3 Hz, 2H), 7.41 – 7.30 (m, 3H), 6.51 (d, *J* = 11.2 Hz, 1H), 3.72 (t, *J* = 6.0 Hz, 2H), 3.40 (t, *J* = 6.6 Hz, 2H), 2.14 – 1.92 (m, 4H); ¹³C NMR (100 MHz, CDCl₃) δ 214.1, 153.3, 148.1, 129.9, 127.7, 127.1, 112.1, 53.4, 48.2, 24.9; HRMS (ESI) m/z [M+H]⁺: Calcd for C₁₃H₁₆NS: 218.1003. Found: 218.0998.

3.2 General procedure for hydrazones and their spectral data²:

To a round bottom flask surmounted with a reflux condenser was added Ntosylhydrazide **B** (5.0 mmol, 1.0 equiv.) and the minimum quantity of solvent (either methanol or toluene according to individual substrates) needed to dissolve the hydrazide at reflux (approximately 1.5 M). Subsequently the reaction was cooled to room temperature and trifluoroacetophenone **A** (5.0 mmol, 1.0 equiv.) was added in one portion. The reaction mixture was then stirred at 65 °C (MeOH) or 90 °C (Toluene) over 4-16 h (monitor by TLC). The solution was cooled down to 0 °C, at which point the product precipitated out of solution in most cases (precipitation can be induced by addition of pentane). The precipitate was collected by vacuum filtration and washed with pentane, in which case it was used without further purification. If no precipitation occurred, the solvent was removed under reduced pressure and the residue used in the

² X. Liang, P. Guo, W. Yang, M. Li, C. Jiang, W. Sun, T.-P. Loh and Y. Jiang, *Chem. Commun.*, 2020, **56**, 2043-2046.

next step without further purification.

N'-(1-(9H-fluoren-3-yl)-2,2,2-trifluoroethylidene)-4-

methylbenzenesulfonohydrazide (2h):

The title compound was prepared according to the general procedure (EA/PE = 1/1.5, $R_f = 0.4$). The product was obtained as yellow solid, Mp. 82 – 85 °C. Yield: 86% (1853.8 mg); ¹H NMR (400 MHz, CDCl₃) δ 8.10 – 8.04 (m, 1H), 7.93 – 7.88 (m, 1H), 7.89 – 7.80 (m, 3H), 7.63 – 7.57 (m, 1H), 7.47 – 7.32 (m, 5H), 7.29 – 7.21 (m, 1H), 3.95 (s, 2H), 2.47 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 145.0, 144.9, 144.7, 143.6, 140.0, 134.5, 129.8, 128.2, 128.0, 127.2, 126.8, 125.2, 124.7, 122.8, 121.1, 120.6, 36.9, 21.7; ¹⁹F NMR (376 MHz, CDCl₃) δ -67.95; HRMS (ESI) m/z [M+H]⁺: Calcd for C₂₂H₁₈F₃N₂O₂S: 431.1041. Found: 431.1047. The spectroscopic properties of the other compounds were consistent with literature data².

3.3 General procedure for 2-CF₃-2*H*-thiophenes and their spectral data:

A mixture of **1** (0.2 mmol, 1.0 equiv.), **2** (0.48 mmol, 2.4 equiv.), $Rh_2(esp)_2$ (0.002 mmol, 1 mol%), Cs_2CO_3 (0.5 mmol, 2.5 equiv.) and acetonitrile (4 mL) was sealed in a Schlenk tube under Argon protection at 90 °C and the mixture was stirred for 20 h or

until the **1** was consumed completely. Then the reaction mixture was filetered by diatomite and concentrated under reduced pressure and purified by column chromatography (EA/PE = 1:20) to give the desired product **3**.

(2S,3S)-N,N-Dimethyl-2,5-diphenyl-2-(trifluoromethyl)-2,3-dihydrothiophen-3-

amine (3aa):

The title compound was prepared according to the general procedure (EA/PE = 1/20, $R_f = 0.5$). The product was obtained as yellow solid, Mp. 131 – 133 °C. Yield: 91% (63.7 mg); ¹H NMR (400 MHz, CDCl₃) δ 7.60 – 7.57 (m, 4H), 7.42 – 7.33 (m, 6H), 6.14 (d, J = 3.2 Hz, 1H), 4.59 (d, J = 3.2 Hz, 1H), 2.15 (s, 6H); ¹³C NMR (100 MHz, CDCl₃) δ 141.8, 132.9, 132.2, 131.1 (q, J = 1.4 Hz), 128.9, 128.6, 128.3, 128.2, 126.8, 126.6, 113.8, 73.3 (q, J = 1.5 Hz); ¹⁹F NMR (376 MHz, CDCl₃) δ -75.25; HRMS (ESI) m/z [M+H]⁺: Calcd for C₁₉H₁₉F₃NS: 350.1190. Found: 350.1181.

(2S,3S)-N,N-Dimethyl-2-phenyl-5-(p-tolyl)-2-(trifluoromethyl)-2,3-

dihydrothiophen-3-amine (3ab):

The title compound was prepared according to the general procedure (EA/PE = 1/20, $R_f = 0.6$). The product was obtained as yellow solid, Mp. 95 – 96 °C. Yield: 82% (59.7

mg); ¹H NMR (400 MHz, CDCl₃) δ 7.62 – 7.55 (m, 2H), 7.50 – 7.44 (m, 2H), 7.37 – 7.32 (m, 3H), 7.22 – 7.17 (m, 2H), 6.09 (d, *J* = 3.1 Hz, 1H), 4.57 (d, *J* = 3.1 Hz, 1H), 2.38 (s, 3H), 2.13 (s, 6H); ¹³C NMR (100 MHz, CDCl₃) δ 139.0, 132.3, 131.1 (q, *J* = 1.6 Hz), 130.1, 129.3, 128.6, 128.0, 126.8, 126.5, 112.9, 73.2 (q, *J* = 1.3 Hz), 21.3; ¹⁹F NMR (376 MHz, CDCl₃) δ -75.22; HRMS (ESI) m/z [M+H]⁺: Calcd for C₂₀H₂₁F₃NS: 364.1347. Found: 364.1341.

(2*S*,3*S*)-5-(4-Methoxyphenyl)-*N*,*N*-dimethyl-2-phenyl-2-(trifluoromethyl)-2,3dihydrothiophen-3-amine (3ac):

The title compound was prepared according to the general procedure (EA/PE = 1/20, $R_f = 0.5$). The product was obtained as red solid, Mp. 90 – 92 °C. Yield: 93% (70.7 mg); ¹H NMR (400 MHz, CDCl₃) δ 7.59 – 7.57 (m, 2H), 7.54 – 7.49 (m, 2H), 7.36 – 7.30 (m, 3H), 6.94 – 6.90 (m, 2H), 6.01 (d, *J* = 3.1 Hz, 1H), 4.56 (d, *J* = 3.1 Hz, 1H), 3.84 (s, 3H), 2.13 (s, 6H); ¹³C NMR (100 MHz, CDCl₃) δ 160.2, 141.3, 132.3, 131.1(q, *J* = 1.6 Hz), 128.0, 127.9, 126.8, 125.6, 114.0, 111.9, 73.3 (q, *J* = 1.5 Hz), 55.4; ¹⁹F NMR (376 MHz, CDCl₃) δ -75.12; HRMS (ESI) m/z [M+H]⁺: Calcd for C₂₀H₂₁F₃NOS: 380.1296. Found: 380.1292.

(2*S*,3*S*)-*N*,*N*-Dimethyl-5-(4-phenoxyphenyl)-2-phenyl-2-(trifluoromethyl)-2,3dihydrothiophen-3-amine (3ad):

The title compound was prepared according to the general procedure (EA/PE = 1/20, $R_f = 0.6$). The product was obtained as red solid, Mp. 123 – 133 °C. Yield: 85% (75.2 mg); ¹H NMR (400 MHz, CDCl₃) δ 7.58 – 7.53 (m, 4H), 7.39 – 7.32 (m, 5H), 7.19 – 7.13 (m, 1H), 7.06 – 7.00 (m, 4H), 6.07 (d, *J* = 3.1 Hz, 1H), 4.58 (d, *J* = 3.1 Hz, 1H), 2.14 (s, 6H); ¹³C NMR (100 MHz, CDCl₃) δ 158.0, 156.6, 141.0, 132.1, 131.1 (q, *J* = 1.3 Hz), 129.9, 128.1, 128.1, 127.9, 126.8, 123.7, 119.2, 118.6, 113.0, 73.2 (q, *J* = 1.5 Hz); ¹⁹F NMR (376 MHz, CDCl₃) δ -75.27; HRMS (ESI) m/z [M+H]⁺: Calcd for C₂₅H₂₃F₃NOS: 442.1452. Found: 442.1447.

4-((4*S*,5*S*)-4-(Dimethylamino)-5-phenyl-5-(trifluoromethyl)-4,5-dihydrothiophen-2-yl)benzonitrile (3ae):

The title compound was prepared according to the general procedure (EA/PE = 1/20, $R_f = 0.4$). The product was obtained as yellow solid, Mp. 105 – 106 °C. Yield: 49% (36.8 mg); ¹H NMR (400 MHz, CDCl₃) δ 7.70 – 7.65 (m, 4H), 7.55 – 7.53 (m, 2H), 7.38 – 7.33 (m, 3H), 6.27 (d, J = 3.2 Hz, 1H), 4.61 (d, J = 3.2 Hz, 1H), 2.16 (s, 6H); ¹³C NMR (100 MHz, CDCl₃) δ 140.3, 137.2, 132.4, 131.6, 131.0 (q, J = 1.3 Hz), 127.2, 126.9, 118.5, 117.7, 112.3, 73.2 (q, J = 1.4 Hz); ¹⁹F NMR (376 MHz, CDCl₃) δ -75.40;

HRMS (ESI) m/z [M+H]⁺: Calcd for C₂₀H₁₈F₃N₂S: 375.1143. Found: 375.1141.

4-Methyl-((4S,5S)-4-(dimethylamino)-5-phenyl-5-(trifluoromethyl)-4,5-

dihydrothiophen-2-yl)benzoate (3af):

The title compound was prepared according to the general procedure (EA/PE = 1/20, $R_f = 0.6$). The product was obtained as yellow solid, Mp. 131 – 133 °C. Yield: 53% (42.3 mg); ¹H NMR (400 MHz, CDCl₃) δ 8.07 – 8.05 (m, 2H), 7.65 – 7.56 (m, 4H), 7.55 – 7.26 (m, 3H), 6.26 (d, J = 1.2 Hz, 1H), 4.60 (d, J = 1.6 Hz, 1H), 3.94 (s, 3H), 2.15 (s, 6H); ¹³C NMR (100 MHz, CDCl₃) δ 166.5, 140.9, 137.1, 131.9, 131.1 (q, J = 1.3 Hz), 130.2, 129.9, 128.2, 126.9, 126.5, 116.4, 73.2 (q, J = 1.4 Hz), 52.3; ¹⁹F NMR (376 MHz, CDCl₃) δ -75.43; HRMS (ESI) m/z [M+H]⁺: Calcd for C₂₁H₂₁F₃NO₂S: 408.1245. Found: 408.1250.

(2*S*,3*S*)-*N*,*N*-Dimethyl-5-(4-nitrophenyl)-2-phenyl-2-(trifluoromethyl)-2,3dihydrothiophen-3-amine (3ag):

The title compound was prepared according to the general procedure (EA/PE = 1/20, $R_f = 0.4$). The product was obtained as yellow solid, Mp. 128 – 129 °C. Yield: 27%

(21.4 mg); ¹H NMR (400 MHz, CDCl₃) δ 8.28 – 8.24 (m, 2H), 7.74 – 7.71 (m, 2H), 7.56 – 7.54 (m, 2H), 7.39 – 7.33 (m, 3H), 6.32 (d, J = 3.2 Hz, 1H), 4.63 (d, J = 3.2 Hz, 1H), 2.17 (s, 6H); ¹³C NMR (100 MHz, CDCl₃) δ 147.7, 139.9, 139.0, 131.6, 130.9 (q, J = 1.3 Hz), 128.3, 127.3, 127.0, 123.9, 118.6, 73.4 (q, J = 1.3 Hz); ¹⁹F NMR (376 MHz, CDCl₃) δ -75.38; HRMS (ESI) m/z [M+H]⁺: Calcd for C₁₉H₁₈F₃N₂O₂S: 395.1041. Found:395.1036.

(2*S*,3*S*)-5-(4-Fluorophenyl)-*N*,*N*-dimethyl-2-phenyl-2-(trifluoromethyl)-2,3dihydrothiophen-3-amine (3ah):

The title compound was prepared according to the general procedure (EA/PE = 1/20, $R_f = 0.5$). The product was obtained as yellow solid, Mp. 97 – 99 °C. Yield: 71% (52.3 mg); ¹H NMR (400 MHz, CDCl₃) δ 7.58 – 7.53 (m, 4H), 7.37 – 7.32 (m, 3H), 7.11 – 7.05 (m, 2H), 6.06 (d, J = 3.1 Hz, 1H), 4.58 (d, J = 3.1 Hz, 1H), 2.14 (s, 6H); ¹³C NMR (100 MHz, CDCl₃) δ 163.0 (d, J = 249.3 Hz), 161.8, 140.7, 132.1, 131.1 (q, J = 1.3 Hz), 129.2 (d, J = 3.4 Hz), 128.4 (d, J = 8.2 Hz), 128.2, 126.9, 125.4, 115.6 (d, J = 21.6 Hz), 113.8, 73.3 (q, J = 1.4 Hz), 70.4; ¹⁹F NMR (376 MHz, CDCl₃) δ -75.32, -111.88; HRMS (ESI) m/z [M+H]⁺: Calcd for C₁₉H₁₈F₄NS: 368.1096. Found: 368.1100.

(2*S*,3*S*)-5-(4-Chlorophenyl)-*N*,*N*-dimethyl-2-phenyl-2-(trifluoromethyl)-2,3dihydrothiophen-3-amine (3ai):

The title compound was prepared according to the general procedure (EA/PE = 1/20, $R_f = 0.6$). The product was obtained as yellow solid, Mp. 100 – 102 °C. Yield: 78% (59.9 mg); ¹H NMR (400 MHz, CDCl₃) δ 7.57 – 7.55 (m, 2H), 7.53 – 7.50 (m, 2H), 7.39 – 7.32 (m, 5H), 6.12 (d, J = 2.8 Hz, 1H), 4.59 (d, J = 3.2 Hz, 1H), 2.14 (s, 6H); ¹³C NMR (100 MHz, CDCl₃) δ 140.7, 134.8, 131.4, 131.6 (q, J = 1.5 Hz), 128.8, 128.2, 127.8, 126.9, 114.6, 73.3 (q, J = 1.1 Hz); ¹⁹F NMR (376 MHz, CDCl₃) δ -75.34; HRMS (ESI) m/z [M+H]⁺: Calcd for C₁₉H₁₈ClF₃NS: 384.0801. Found: 384.0797.

(2*S*,3*S*)-5-(4-Bromophenyl)-*N*,*N*-dimethyl-2-phenyl-2-(trifluoromethyl)-2,3dihydrothiophen-3-amine (3aj):

The title compound was prepared according to the general procedure (EA/PE = 1/20, $R_f = 0.6$). The product was obtained as yellow solid, Mp. 101 – 103 °C. Yield: 84% (71.9 mg); ¹H NMR (400 MHz, CDCl₃) δ 7.57 – 7.51 (m, 4H), 7.46 – 7.43 (m, 2H), 7.38 – 7.32 (m, 3H), 6.14 (d, *J* = 3.2 Hz, 1H), 4.58 (d, *J* = 3.2 Hz, 1H), 2.14 (s, 6H); ¹³C NMR (100 MHz, CDCl₃) δ 140.8, 132.0, 131.9, 131.7, 131.1 (q, *J* = 1.4 Hz), 128.2, 128.1, 126.9, 122.9, 114.7, 73.3 (q, *J* = 1.7 Hz); ¹⁹F NMR (376 MHz, CDCl₃) δ -75.32; HRMS (ESI) m/z [M+H]⁺: Calcd for C₁₉H₁₈BrF₃NS: 428.0295. Found: 428.0290.

(2S,3S)-5-(4-Iodophenyl)-N,N-dimethyl-2-phenyl-2-(trifluoromethyl)-2,3-

dihydrothiophen-3-amine (3ak):

The title compound was prepared according to the general procedure (EA/PE = 1/20, $R_f = 0.6$). The product was obtained as yellow solid, Mp. 101 – 103 °C. Yield: 85% (80.9 mg); ¹H NMR (400 MHz, CDCl₃) δ 7.72 – 7.70 (d, J = 8.4 Hz, 2H), 7.55 – 7.53 (d, J = 6.8 Hz, 2H), 7.34 – 7.29 (m, 5H), 6.13 (d, J = 2.8 Hz, 1H), 4.56 (d, J = 2.8 Hz, 1H), 2.12 (s, 6H); ¹³C NMR (100 MHz, CDCl₃) δ 140.9, 137.7, 132.4, 131.9, 131.1 (q, J = 1.1 Hz), 128.2, 128.1, 126.9, 114.8, 94.6, 73.2 (q, J = 1.1 Hz); ¹⁹F NMR (376 MHz, CDCl₃) δ -75.28; HRMS (ESI) m/z [M+H]⁺: Calcd for C₁₉H₁₈F₃INS: 476.0157. Found: 476.0158.

(2S,3S)-N,N-Dimethyl-2-phenyl-5-((E)-styryl)-2-(trifluoromethyl)-2,3-

The title compound was prepared according to the general procedure (EA/PE = 1/20, $R_f = 0.5$). The product was obtained as yellow solid, Mp. 121– 122 °C. Yield: 58% (43.6 mg); ¹H NMR (400 MHz, CDCl₃) δ 7.62 – 7.53 (m, 2H), 7.49 – 7.43 (m, 2H), 7.39 – 7.32 (m, 5H), 7.31 – 7.26 (m, 1H), 7.02 (d, *J* = 15.9 Hz, 1H), 6.69 (d, *J* = 15.9

Hz, 1H), 5.90 (d, J = 3.2 Hz, 1H), 4.51 (d, J = 3.2 Hz, 1H), 2.10 (s, 6H); ¹³C NMR (100 MHz, CDCl₃) δ 140.8, 136.3, 133.9, 131.1 (q, J = 1.6 Hz), 128.7, 128.3, 128.1, 126.9, 126.7, 121.5, 119.1,72.6 (q, J = 1.2 Hz); ¹⁹F NMR (376 MHz, CDCl₃) δ -75.14; HRMS (ESI) m/z [M+H]⁺: Calcd for C₂₁H₂₁F₃NS: 376.1347. Found: 376.1348.

(2S,3S)-5-(Furan-2-yl)-N,N-dimethyl-2-phenyl-2-(trifluoromethyl)-2,3-

dihydrothiophen-3-amine (3am):

The title compound was prepared according to the general procedure (EA/PE = 1/20, $R_f = 0.5$). The product was obtained as yellow solid, Mp. 62 – 64 °C. Yield: 85% (57.8mg); ¹H NMR (400 MHz, CDCl₃) δ 7.62 – 7.50 (m, 2H), 7.50 – 7.45 (m, 1H), 7.40 – 7.26 (m, 3H), 6.70 – 6.38 (m, 2H), 6.15 (d, J = 3.2 Hz, 1H), 4.58 (s, 1H), 2.13 (s, 6H); ¹³C NMR (100 MHz, CDCl₃) δ 143.0, 131.0 (q, J = 1.1 Hz), 128.2, 126.9, 112.8, 111.6, 109.3, 99.9, 73.1 (q, J = 1.7 Hz); ¹⁹F NMR (376 MHz, CDCl₃) δ -75.15; HRMS (ESI) m/z [M+H]⁺: Calcd for C₁₇H₁₇F₃NOS: 340.0983. Found: 340.0977.

(4*S*,5*S*)-*N*,*N*-Dimethyl-5-phenyl-5-(trifluoromethyl)-4,5-dihydro-[2,2'-bithiophen]-4-amine (3an):

The title compound was prepared according to the general procedure (EA/PE = 1/20,

R_f = 0.5). The product was obtained as yellow solid, Mp. 84 – 86 °C. Yield: 85% (60.5 mg); ¹H NMR (400 MHz, CDCl₃) δ 7.62 – 7.48 (m, 2H), 7.42 – 7.32 (m, 4H), 7.18 – 7.14 (m, 1H), 7.08– 7.00 (m, 1H), 6.03 (d, *J* = 3.2 Hz, 1H), 4.55 (s, 1H), 2.14 (s, 6H); ¹³C NMR (100 MHz, CDCl₃) δ 135.9, 134.7, 132.0 131.1 (q, *J* = 1.4 Hz), 128.2, 127.6,126.9, 126.7, 125.9,113.8, 99.9, 73.2 (q, *J* = 1.4 Hz); ¹⁹F NMR (376 MHz, CDCl₃) δ -75.15; HRMS (ESI) m/z [M+H]⁺: Calcd for C₁₇H₁₇F₃NS₂: 356.0755. Found: 356.0747.

(2*S*,3*S*)-5-(Benzo[b]thiophen-2-yl)-*N*,*N*-dimethyl-2-phenyl-2-(trifluoromethyl)-2,3-dihvdrothiophen-3-amine (3ao):

The title compound was prepared according to the general procedure (EA/PE = 1/20, $R_f = 0.5$). The product was obtained as yellow solid, Mp. 97–99 °C. Yield: 73% (59.3 mg); ¹H NMR (400 MHz, CDCl₃) δ 7.80–7.75 (m, 2H), 7.58–7.56 (m, 2H), 7.39–7.35 (m, 6H), 6.15 (d, J = 3.2 Hz, 1H), 4.60 (d, J = 3.2 Hz, 1H), 2.16 (s, 6H); ¹³C NMR (100 MHz, CDCl₃) δ 139.7, 139.3, 135.6, 135.2, 131.9, 131.0 (q, J = 1.6 Hz), 128.2, 126.9, 125.4, 124.8, 124.0, 123.8, 122.1, 116.5, 73.2 (q, J = 1.8 Hz); ¹⁹F NMR (376 MHz, CDCl₃) δ -75.14; HRMS (ESI) m/z [M+H]⁺: Calcd for C₂₁H₁₉F₃NS₂: 406.0911. Found:406.0906.

dihydrothiophen-3-amine (3ap):

The title compound was prepared according to the general procedure (EA/PE = 1/20, $R_f = 0.6$). The product was obtained as yellow solid, Mp. 168 – 170 °C. Yield: 75% (67.5 mg); ¹H NMR (400 MHz, CDCl₃) δ 8.82 (s, 1H), 8.78 – 8.76 (d, J = 8.4 Hz, 1H), 7.93 – 7.84 (m, 3H), 7.80 – 7.62 (m, 6H), 7.41 – 7.38 (m, 3H), 6.35 (d, J = 2.8 Hz, 1H), 4.69 (d, J = 3.2 Hz, 1H), 2.22 (s, 6H); ¹³C NMR (100 MHz, CDCl₃) δ 142.1, 132.3, 132.3, 131.2 (q, J = 1.6 Hz), 130.9, 130.2, 130.1, 128.8, 128.7, 128.1, 127.8, 127.0,126.9, 126.8, 126.4, 124.5, 122.8, 121.3, 114.5,114.5, 73.4 (q, J = 1.2 Hz); ¹⁹F NMR (376 MHz, CDCl₃) δ -75.13; HRMS (ESI) m/z [M+H]⁺: Calcd for C₂₇H₂₃F₃NS: 450.1503. Found:450.1504.

(2S,3S)-5-((3S,5S,7S)-Adamantan-1-yl)-N,N-dimethyl-2-phenyl-2-

(trifluoromethyl)-2,3-dihydrothiophen-3-amine (3aq):

The title compound was prepared according to the general procedure (EA/PE = 1/20, $R_f = 0.5$). The product was obtained as yellow solid, Mp. 85 – 87 °C. Yield: 58% (47.4 mg); ¹H NMR (400 MHz, CDCl₃) δ 7.55 – 7.50 (m, 2H), 7.45 – 7.26 (s, 3H), 5.38 (d, *J* = 2.8 Hz, 1H), 4.36 (d, *J* = 2.8 Hz, 1H), 2.05 – 1.70 (m, 21H); ¹³C NMR (100 MHz,

CDCl₃) δ 155.2, 132.7, 131.2 (q, J = 1.5 Hz), 127.8, 126.7, 108.7, 72.2 (q, J = 1.4 Hz), 42.5, 36.8, 36.7, 28.4; ¹⁹F NMR (376 MHz, CDCl3) δ -75.30; HRMS (ESI) m/z [M+H]⁺: Calcd for C₂₃H₂₉F₃NS: 408.1973. Found: 408.1979.

(2S,3S)-N,N-Dimethyl-5-phenethyl-2-phenyl-2-(trifluoromethyl)-2,3-

dihydrothiophen-3-amine (3ar):

The title compound was prepared according to the general procedure (EA/PE = 1/20, $R_f = 0.4$). The product was obtained as red oil. Yield: 35% (26.5 mg); ¹H NMR (400 MHz, CDCl₃) δ 7.56 – 7.45 (m, 2H), 7.36 – 7.15 (m, 8H), 5.44 (d, J = 3.2 Hz, 1H), 4.35 (d, J = 3.2 Hz, 1H), 2.97 – 2.87 (m, 2H), 2.77 – 2.67 (m, 2H), 1.96 (s, 6H); ¹³C NMR (100 MHz, CDCl₃) δ 140.7, 131.1 (q, J = 1.4 Hz), 128.4, 128.4, 127.9, 126.7, 126.1, 113.6, 72.8 (q, J = 1.1 Hz), 34.8, 32.6; ¹⁹F NMR (376 MHz, CDCl₃) δ -75.25; HRMS (ESI) m/z [M+H]⁺: Calcd for C₂₁H₂₃F₃NS: 378.1503. Found: 378.1497.

1-((2S,3S)-2,5-Diphenyl-2-(trifluoromethyl)-2,3-dihydrothiophen-3-

yl)pyrrolidine (3as):

The title compound was prepared according to the general procedure (EA/PE = 1/20, R_f = 0.4). The product was obtained as yellow oil. Yield: 70% (52.7 mg); ¹H NMR (400

MHz, CDCl₃) δ 7.60 – 7.50 (m, 4H), 7.42 – 7.27 (m, 6H), 6.10 (d, J = 3.2 Hz, 1H), 4.90 (d, J = 3.2 Hz, 1H), 2.65 – 2.64 (m, 2H), 2.37 – 2.34 (m, 2H), 1.54 – 1.37 (m, 4H); ¹³C NMR (100 MHz, CDCl₃) δ 141.6, 133.0, 132.6, 130.9 (q, J = 1.4 Hz), 128.9, 128.6, 128.0, 126.6, 126.5, 113.9, 69.1 (q, J = 1.2 Hz), 24.0; ¹⁹F NMR (376 MHz, CDCl₃) δ - 74.90; HRMS (ESI) m/z [M+H]⁺: Calcd for C₂₁H₂₀F₃NS: 376.1347. Found: 376.1350.

(2*S*,3*S*)-2-(4-(Tert-butyl)phenyl)-N,N-dimethyl-5-phenyl-2-(trifluoromethyl)-2,3dihydrothiophen-3-amine(3ba):

The title compound was prepared according to the general procedure (EA/PE = 1/20, $R_f = 0.6$). The product was obtained as yellow solid, Mp. 92 – 93 °C. Yield: 96% (77.9 mg); ¹H NMR (400 MHz, CDCl₃) δ 7.62 – 7.55 (m, 2H), 7.53 – 7.45 (m, 2H), 7.44 – 7.30 (m, 5H), 6.14 (d, *J* = 3.0 Hz, 1H), 4.58 (d, *J* = 2.5 Hz, 1H), 2.15 (s, 6H), 1.34 (s, 9H); ¹³C NMR (100 MHz, CDCl₃) δ 150.8, 133.0 130.6 (q, *J* = 1.6 Hz), 128.9, 128.6, 126.6, 123.8, 114.0, 112.9, 105.1, 73.2 (q, *J* = 1.1 Hz), 34.5, 31.3; ¹⁹F NMR (376 MHz, CDCl₃) δ -75.33; HRMS (ESI) m/z [M+H]⁺: Calcd for C₂₃H₂₇F₃NS: 406.1816. Found: 406.1809.

(2*S*,3*S*)-2-(4-Methoxyphenyl)-*N*,*N*-dimethyl-5-phenyl-2-(trifluoromethyl)-2,3dihydrothiophen-3-amine (3ca):

The title compound was prepared according to the general procedure (EA/PE = 1/20, $R_f = 0.4$). The product was obtained as yellow solid, Mp. 88 – 90 °C. Yield: 74% (56.3 mg); ¹H NMR (400 MHz, CDCl₃) δ 7.60 – 7.55 (m, 2H), 7.54 – 7.49 (m, 2H), 7.37 – 7.30 (m, 3H), 6.94 – 6.89 (m, 2H), 6.01 (d, *J* = 3.2 Hz, 1H), 4.56 (d, *J* = 3.2 Hz, 1H), 3.84 (s, 3H), 2.13 (s, 6H); ¹³C NMR (100 MHz, CDCl₃) δ 160.2, 141.3, 132.3, 131.1 (q, *J* = 1.6 Hz), 128.0, 127.9, 126.8, 125.6, 113.9, 111.9, 73.3 (q, *J* = 1.6 Hz), 55.4; ¹⁹F NMR (376 MHz, CDCl₃) δ -75.60; HRMS (ESI) m/z [M+H]⁺: Calcd for C₂₀H₂₁F₃NOS: 380.1296. Found: 380.1292.

(2*S*,3*S*)-*N*,*N*-Dimethyl-2-(3-phenoxyphenyl)-5-phenyl-2-(trifluoromethyl)-2,3dihydrothiophen-3-amine (3da):

The title compound was prepared according to the general procedure (EA/PE = 1/20, $R_f = 0.6$). The product was obtained as yellow oil. Yield: 85% (75.2 mg); ¹H NMR (400 MHz, CDCl₃) δ 7.58 – 7.54 (m, 2H), 7.41 – 7.28 (m, 8H), 7.10 – 6.96 (m, 4H), 6.10 (d, J = 3.2 Hz, 1H), 4.50 (d, J = 3.2 Hz, 1H), 2.14 (s, 6H); ¹³C NMR (100 MHz, CDCl₃) δ 157.5,155.1,141.8,134.0 (q, J = 1.0 Hz), 132.8, 129.6, 129.0, 128.6, 128.2, 126.6, 126.2, 123.0, 122.9, 119.3, 118.1, 113.7, 73.3 (q, J = 1.5 Hz); ¹⁹F NMR (376 MHz, CDCl₃) δ

-75.16; HRMS (ESI) m/z [M+H]⁺: Calcd for C₂₅H₂₃F₃NOS: 442.1452. Found: 442.1447.

4-((2*S*,3*S*)-3-(Dimethylamino)-5-phenyl-2-(trifluoromethyl)-2,3-dihydrothiophen-2-yl)benzonitrile (3ea):

The title compound was prepared according to the general procedure (EA/PE = 1/20, $R_f = 0.6$). The product was obtained as yellow solid, Mp. 103 – 105 °C. Yield: 28% (21.0 mg); ¹H NMR (400 MHz, CDCl₃) δ 7.72 – 7.64 (m, 4H), 7.58 – 7.55 (m, 2H), 7.44 – 7.38 (m, 3H), 6.13 (d, J = 2.8 Hz, 1H), 4.61 (s, 1H), 2.13 (s, 6H); ¹³C NMR (100 MHz, CDCl₃) δ 141.6, 137.6, 132.5, 132.0 (q, J = 1.3 Hz), 130.5, 129.2, 128.7, 126.6, 118.6, 113.5, 112.1, 73.6 (q, J = 1.2 Hz); ¹⁹F NMR (376 MHz, CDCl₃) δ -74.88; HRMS (ESI) m/z [M+H]⁺: Calcd for C₂₀H₁₈F₃N₂S: 375.1143. Found: 375.1138.

(2*S*,3*S*)-2-(4-Bromophenyl)-*N*,*N*-dimethyl-5-phenyl-2-(trifluoromethyl)-2,3dihydrothiophen-3-amine (3fa):

The title compound was prepared according to the general procedure (EA/PE = 1/20, $R_f = 0.6$). The product was obtained as yellow oil. Yield: 83% (71.1 mg); ¹H NMR (400

MHz, CDCl₃) δ 7.60 – 7.55 (m, 2H), 7.51 – 7.44 (m, 4H), 7.43 – 7.36 (m, 3H), 6.13 (d, J = 3.2 Hz, 1H), 4.55 (d, J = 3.2 Hz, 1H), 2.14 (s, 6H); ¹³C NMR (100 MHz, CDCl₃) δ 141.8, 132.8 (q, J = 1.5 Hz), 132.7, 131.3, 130.0, 129.1, 128.6, 126.6, 122.7, 113.7, 73.3 (q, J = 1.5 Hz); ¹⁹F NMR (376 MHz, CDCl₃) δ -75.34; HRMS (ESI) m/z [M+H]⁺: Calcd for C₁₉H₁₈BrF₃NS: 428.0295. Found: 428.0286.

(2S,3S)-N,N-dimethyl-2-(naphthalen-2-yl)-5-phenyl-2-(trifluoromethyl)-2,3-

The title compound was prepared according to the general procedure (EA/PE = 1/20, $R_f = 0.6$). The product was obtained as yellow solid, Mp. 122 – 123 °C. Yield: 92% (73.6 mg); ¹H NMR (400 MHz, CDCl₃) δ 8.07 – 8.06 (m, 1H), 7.92 – 7.83 (m, 2H), 7.81 – 7.77 (m, 1H), 7.72 – 7.66 (m, 1H), 7.64 – 7.60 (m, 2H), 7.56 – 7.48 (m, 2H), 7.46 – 7.34 (m, 3H), 6.19 (d, *J* = 3.2 Hz, 1H), 4.69 (d, *J* = 3.2 Hz, 1H), 2.16 (s, 6H); ¹³C NMR (100 MHz, CDCl₃) δ 141.9, 132.9, 132.7, 132.3, 130.4 (q, *J* = 1.1 Hz), 132.2, 129.0, 128.9, 128.9, 128.8, 128.6, 128.3, 127.3, 126.6, 126.6, 125.8, 125.5, 113.9, 73.3 (q, *J* = 1.3 Hz); ¹⁹F NMR (376 MHz, CDCl₃) δ -74.83; HRMS (ESI) m/z [M+H]⁺: Calcd for C₂₃H₂₁F₃NS: 400.1347. Found: 400.1342.

(2*S*,3*S*)-2-(9*H*-Fluoren-2-yl)-*N*,*N*-dimethyl-5-phenyl-2-(trifluoromethyl)-2,3dihydrothiophen-3-amine (3ha):

The title compound was prepared according to the general procedure (EA/PE = 1/20, $R_f = 0.6$). The product was obtained as yellow solid, Mp. 165 – 166 °C. Yield: 45% (39.4 mg); ¹H NMR (400 MHz, CDCl₃) δ 7.79 (d, *J* =7.5 Hz, 1H), 7.77 – 7.73 (m, 2H), 7.64 – 7.58 (m, 3H), 7.57 – 7.53 (m, 1H), 7.44 – 7.34 (m, 4H), 7.34 – 7.28 (m, 1H), 6.15 (d, *J* = 3.2 Hz, 1H), 4.63 (d, *J* = 3.2 Hz, 1H), 3.94 (s, 2H), 2.16 (s, 6H); ¹³C NMR (100 MHz, CDCl₃) δ 143.7, 141.9, 141.7, 141.5, 141.2, 133.0, 130.6, 129.9 (q, *J* = 1.5 Hz), 128.9, 128.6, 127.7, 126.9, 126.8, 126.6, 125.0, 120.1, 118.1, 114.0, 73.4 (q, *J* = 1.3 Hz), 37.0; ¹⁹F NMR (376 MHz, CDCl₃) δ -75.07; HRMS (ESI) m/z [M+H]⁺: Calcd for C₂₆H₂₃F₃NS: 438.1503. Found: 438.1495.

(2*S*,3*S*)-*N*,*N*-Dimethyl-5-phenyl-2-(trifluoromethyl)-2,3-dihydro-[2,3'-bithiophen]-3-amine (3ia)

The title compound was prepared according to the general procedure (EA/PE = 1/20, $R_f = 0.6$). The product was obtained as yellow solid, Mp. 74 – 76 °C. Yield: 65% (46.3 mg); ¹H NMR (400 MHz, CDCl₃) δ 7.60 – 7.51 (m, 3H), 7.45 – 7.33 (m, 3H), 7.31 – 7.26 (m, 2H), 6.09 (s, 1H), 4.58 (s, 1H), 2.18 (s, 6H); ¹³C NMR (100 MHz, CDCl₃) δ 141.5, 132.9,130.0, 129.0, 128.6,126.6, 123.6, 114.1, 99.9, 74.5 (q, J = 1.6 Hz); ¹⁹F

NMR (376 MHz, CDCl3) *δ* -75.42; HRMS (ESI) m/z [M+H]⁺: Calcd for C₁₇H₁₇F₃NS₂: 356.0755. Found: 356.0748.

3.4 Derivative products and their spectral data

Large-scale reaction of 3aa:

A mixture of **1a** (10.0 mmol, 1.0 equiv.), **2a** (24.0 mmol, 2.4 equiv.), $Rh_2(esp)_2$ (0.1 mmol, 1 mol%), Cs_2CO_3 (25.0 mmol, 2.5 equiv.) and acetonitrile (50 mL) was sealed in a Schlenk tube under Argon protection at 90 °C and the mixture was stirred until the **1a** was consumed completely. Then the reaction mixture was filetered by diatomite and concentrated under reduced pressure and purified by column chromatography (EA/PE = 1:20) to give the desired product **3aa** (2.86g, 82%).

Large-scale reaction of 5a:

A mixture of enaminothione **1a** (10.0 mmol, 1.0 equiv.), **4** (BrCF₂COOEt, 20.0 mmol, 2.0 equiv.), *ⁿ*Pr₃N (30.0 mmol, 3.0 equiv.), anhydrous THF (100 mL) was sealed in a Schlenk tube under nitrogen protection at 80 °C and the mixture was stirred until the enaminothione **1a** was consumed completely. The crude product was filtered through a short pad of Celite, and the filtrate was concentrated under vacuum and purified by flash chromatography (eluent: 20% v/v ethyl acetate in petroleum ether) to afford products **5a** (1.93g, 80%).

3-Methoxy-2,5-diphenyl-2-(trifluoromethyl)-2,3-dihydrothiophene (4)³:

A flame-dried round-bottomed flask was charged with **3aa** (0.2 mmol, 1.0 equiv.) and MeOH (2 mL), then cooled to 0 °C. BF₃.Et₂O (0.2 mmol, 1.0 equiv.) was added dropwise and the mixture was stirred at room temperature until the **3aa** was consumed completely. The layers were separated and the aqueous layer was extracted with DCM (2 × 5 mL). The combined organic layers were washed with brine (10 mL), then dried (Na₂SO₄). After removal of the solvent, the residue was subjected to column chromatography (PE:EtOAc = 19:1) to give **6** (52.3 mg, 78% yield) as yellow oil. ¹H NMR (400 MHz, CDCl₃) δ 7.63 – 7.56 (m, 4H), 7.45 – 7.35 (m, 6H), 6.12 (d, *J* = 3.2 Hz, 1H), 5.26 (d, *J* = 3.2 Hz, 1H), 3.00 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 132.5, 130.3 (q, *J* = 1.5 Hz), 129.5, 128.7, 128.6, 128.4, 128.2, 127.6, 126.8, 115.0, 99.9, 85.8, 54.0; HRMS (ESI) m/z [M+H]⁺: Calcd for C₁₈H₁₆F₃OS: 337.0874. Found: 337.0860.

N-(2,5-diphenyl-2-(trifluoromethyl)-2,3-dihydrothiophen-3-yl)-N-methylnitrous amide & N-(2,5-diphenyl-2-(trifluoromethyl)-2,3-dihydrothiophen-3-yl)-Nmethylnitramide (5)⁴:

³ M. Ikeda, T. Matsuzawa, T. Morita, T. Hosoya and S. Yoshida, *Chem. Eur. J.*, 2020, **26**, 12333–12337.

⁴ X. Jia, P. Li, Y. Shao, Y. Yuan, H. Ji, W. Hou, X. Liu and X. Zhang, *Green Chem.*, 2017, **19**, 5568–5574.

A tube was charged with 2*H*-thiophen **3aa** (0.4 mmol, 1.0 equiv.), TBN (0.6 mmol, 1.5 equiv.), TEMPO (0.04 mmol, 10 mol%), CH₃CN (5 mL) was added subsequently and the reaction mixture was stirred at 70 °C until the starting material was fully consumed (24 h). The product was obtained as brown oil. Yield: 73% (106.2 mg); ¹H NMR (400 MHz, CDCl₃) δ 7.65 – 755 (m, 2H), 7.49– 7.40 (m, 5H), 7.37 – 7.29 (m, 3H), 7.19 (d, J = 3.6 Hz, 0.07H) & 6.88 (d, J = 3.6 Hz, 0.93H), 6.06 (d, J = 3.6 Hz, 0.93H) & 5.67 (d, J = 3.6 Hz, 0.07H), 3.25 (s, 0.21H) & 2.39 (s, 2.79H); ¹³C NMR (100 MHz, CDCl₃) δ 146.3, 131.5, 130.1, 130.0 (q, J = 1.3 Hz), 129.1, 128.8, 128.1, 126.8, 72.3, 28.6; ¹⁹F NMR (376 MHz, CDCl₃) δ -74.74, 75.28; HRMS (ESI) m/z [M+H]⁺: Calcd for C₁₈H₁₆F₂N₂OS: 365.0935. Found: 365.0930. Calcd for C₁₈H₁₆F₃N₂O₂S: 381.0885. Found: 381.0877.

4-Bromo-2,5-diphenyl-2-(trifluoromethyl)-2,3-dihydrothiophen-3-yl acetate (6)⁵:

2H-thiophen **3aa** (0.2 mmol, 1.0 equiv.) and NBS (0.24 mmol, 1.2 equiv.) were dissolved into CH₃COOH (4 mL) stirred at 55 °C for 12 h. After reaction, saturated

⁵ M. Shi, Y. He, Y. Sun, D. Fang, J. Miao, M. U. Ali, T. Wang, Y. Wang, T. Zhang and H. Meng, *Org. Elect.*, 2020, **84**, 105793–105803.

sodium bicarbonate (5 mL) was added to react with excess CH₃COOH and then retracted with DCM. The organic phase was dried, evaporated, was purified by column chromatography to give the product was obtained as a yellow oil (54.8 mg, 62%). ¹H NMR (400 MHz, CDCl₃) δ 7.70 – 7.64 (m, 2H), 7.60 – 7.52 (m, 2H), 7.46 – 7.39 (m, 6H), 4.57 (s, 1H), 2.01 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 135.5, 133.0, 132.1, 131.6, 129.9, 129.5, 128.7, 128.7, 128.5, 127.9, 104.3, 73,4, 29.6; ¹⁹F NMR (376 MHz, CDCl₃) δ -74.47; HRMS (ESI) m/z [M+H]⁺: Calcd for C₁₉H₁₅BrF₃O₂S: 442.9928. Found: 442.9916.

4. NMR Spectra4.1 NMR spectra for enaminothiones

¹H NMR spectra of **1a**

4.2 NMR spectra for hydrazones

4.3 NMR spectra for 2-CF₃-2*H*-thiophenes

4.4 NMR spectra for derivative products:

