Electronic Supplementary Material (ESI) for Organic & Biomolecular Chemistry. This journal is © The Royal Society of Chemistry 2023

Synthesis of 1,2-diaminotruxinic δ -cyclobutanes by BF₃-controlled [2+2]-

photocycloaddition of 5(4*H*)-oxazolones. Stereoselective expansion of δ -

cyclobutanes to give highly substituted pyrrolidine-2,5-dicarboxylates

Sonia Sierra,¹ Rosa López,² Enrique Gómez-Bengoa,² Larry Falvello,¹ Esteban P. Urriolabeitia^{*1}

1 Instituto de Síntesis Química y Catálisis Homogénea, ISQCH (CSIC - Universidad de Zaragoza), 50009

Zaragoza (Spain)

2 Departamento de Química Orgánica I, Universidad del País Vasco, UPV-EHU, CP-20080 Donostia-San

Sebastián, Spain

Electronic Supplementary Information

Table of Contents

1 Complete experimental section	S1
2 References for the ESI	S16
3 ¹ H NMR control spectra of starting (Z)-4-arylidene-2-phenyl-5(4H)-oxazolones 1a-1u	S18
4 Copies of NMR spectra of delta-1,2-diaminotruxinic derivatives 2a-2u	S29
5 ¹ H NMR spectra of crudes during the synthesis of cyclobutanes 2a-2u	
(after washing with water, before column chromatography)	S76
6 Copies of NMR spectra of the pyrrolidine derivatives 3a-3r	S86
7 Cartesian coordinates and energies of the anionic species calculated by DFT	S110

1.- Complete experimental section

General Methods. The [2+2]-photocycloaddition reactions were carried out under inert (Ar) atmosphere, using dry and deoxygenated methanol from a Pure Solv MD5 solvent purification system. The purification of the compounds was carried out by flash column liquid chromatographies using silica gel (70-230 μ m) as support. ¹H, ¹³C and ¹⁹F NMR spectra of the isolated products **2** and **3** were recorded in $CDCl_3$ or CD_2Cl_2 solutions at 25 °C (other temperatures were specified) on Bruker AV300 and Bruker AV500 spectrometers (δ in ppm, J in Hz) at ¹H operating frequencies of 300.13 and 500.13 MHz, respectively. ¹H and ¹³C NMR spectra were referenced using the solvent signal as internal standard, while ¹⁹F NMR spectra were referenced to CFCl₃. The assignment of ¹H NMR peaks has been performed through standard 2D ¹H–COSY and selective 1D ¹H-SELNOE experiments. Typical mixing times in the case of selective 1D-SELNOE experiments were in the range 1.2-1.8 s, as a function of the irradiated signal. These values of optimized mixing times were set equal to the longitudinal relaxation time T_1 , determined using the inversion-recovery sequence. The ¹³C NMR peaks were identified using standard ¹H-¹³C edited-HSQC and ¹H-¹³C HMBC 2Dexperiments. In both cases spectral widths of 10 ppm (¹H) and 200 ppm (¹³C) were used, with averaged values of the coupling constants ${}^{1}J_{CH} = 145$ Hz and long-range ${}^{n}J_{CH} = 10$ Hz. ESI (ESI⁺) mass spectra were recorded using an Esquire 3000 ion-trap mass spectrometer (Bruker Daltonic GmbH) equipped with a standard ESI/APCI source. HRMS and ESI (ESI⁺) mass spectra were recorded using an MicroToF Q, API-Q-ToF ESI with a mass range from 20 to 3000 m/z and mass resolution 15000 (FWHM). The oxazolones 1 used as starting materials were synthesized according to published methods.¹ The compound $[Ru(bpy)_3](BF_4)_2$ was also prepared following published procedures,² and it was stored under protecting atmosphere (Ar) at 4 °C. Irradiation setup. The irradation setup used in this case was a metallic cylindrical recipitent (16 cm internal diameter and 10.5 cm high) whose internal surface was covered with blue LEDs (222 diodes, 465 nm). This home-made system provided a electrical power of 18W and used a 12V power supply.

X-ray diffraction. Crystals of cyclobutanes **2n**, **2o**, **2s** and pyrrolidine **3r** of quality for X-ray measurements were grown by slow diffusion of *n*-pentane into CH_2Cl_2 (**2n**, **2o**, **2s**) or $CHCl_3$ (**3r**) solutions of the respective crude products at -18 °C for several weeks. One selected single crystal of each compound was mounted at the end of a quartz fiber in a random orientation, covered with perfluorinated oil and placed under a cold

stream of N₂ gas. The data collection were performed at 123 K (2s, 3r) or 153 K (2n, 2o) on Oxford Diffraction Xcalibur Sapphire 3 (2n, 3r), Bruker P4 (2o) o Bruker APEX Duo (2s) diffractometers, using graphitemonocromated Mo-K α radiation (λ = 0.71073 Å). A hemisphere of data was collected based on ω -scan and ϕ -scan runs. The diffraction frames were integrated using the programs CrysAlis RED³ or SAINT⁴ and the integrated intensities were corrected for absorption with SADABS.⁵ The structures were solved and developed by Fourier methods.⁶ All non-hydrogen atoms were refined with anisotropic displacement parameters. The H atoms were placed at idealized positions and treated as riding atoms. Each H atom was assigned an isotropic displacement parameter equal to 1.2 times the equivalent isotropic displacement parameter of its parent atom. For structure solving and refinement the SHELX-97⁷ Software Package was used. The structures were refined to F_0^2 and all reflections were used in the least-squares calculations.⁸ CCDC-2177354 (2o), CCDC-2177355 (2s), and CCDC-2176207 (3r) contains the supplementary crystallographic data for this paper. These data can be obtained free of charge from The Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/data_request/cif. The structure of cyclobutane 2n could be solved, but the low quality of the data avoided a complete refinement, so the structure has to be considered only as a connectivity scheme. For the structure of 3r it was found a disordered pentane molecule in (1/2, 1/2, 1/2), which was refined using geometrical restraints and constraints for the anisotropic thermal displacement parameters.

Computational details

All structures were optimized using density functional theory (DFT) as implemented in Gaussian 16,⁹ with M06-2X¹⁰ as functional, and 6-311+G(d,p) as basis set, introducing solvation factors with the IEF-PCM¹¹ method, and methanol as solvent, as in the optimized experimental conditions. The stationary points were characterized by frequency calculations in order to verify that they have the right number of imaginary frequencies.

Synthesis of the cyclobutane bis(amino acid)s δ -1,2-diaminotruxinic derivatives 2a-2u

All bis(amino acid)s containing the 1,2-diaminotruxinic core **2a-2u** have been prepared following the same experimental method, which is exemplified here for **2a**.

S2

Synthesis of dimethyl-1,2-bis(benzamido)-3,4-diphenylcyclobutane-1,2-dicarboxylate **2a**. The oxazolone **1a** (149.45 mg, 0.60 mmol) and [Ru(bpy)₃](BF₄)₂ (11.2 mg, 0.015 mmol) were suspended in deoxygenated and dry methanol (4 mL) under Ar atmosphere at room temperature. This suspension was treated with BF₃·Et₂O (34.1 mg, 0.24 mmol), and the resulting mixture was irradiated with blue light (465 nm, see irradiation setup) for 25 h at room temperature. After the reaction time the solvent was evaporated to dryness, and the solid residue was suspended in chloroform (10 mL). This suspension was washed with water (3 × 5 mL) and the organic phase was dried with anhydrous MgSO₄. The resulting solution, which contains cyclobutane **2a**, was purified by column chromatography using silica as support and a mixture ethyl acetate/n-hexane in gradient from 1/9 to 3/7 ratio. Cyclobutane **2a** was isolated as a white solid by solvent evaporation. Obtained 56.8 mg (34% yield). ¹H NMR (CDCl₃, 300.13 MHz) δ 8.30 (s, 1H, NH), 7.56 (m, 2H, H_o, CO-Ph), 7.46 (m, 3H, H_o, Ph + H_p, CO-Ph), 7.39-7.27 (m, 5H, H_m, Ph + H_m, CO-Ph + H_p, Ph), 4.93 (s, 1H, CH), 3.73 (s, 3H, OCH₃). ¹³C(¹H) NMR (CDCl₃, 75.5 MHz) δ 171.6, 166.7, 134.7, 133.3, 131.9, 129.1, 128.7, 128.6, 128.2, 127.0, 64.1, 53.1, 47.6. HRMS (ESI⁺) m/z calcd for C₃₄H₃₀N₂NaO₆ [M+Na]⁺: 585.2002, found: 585.1987.

Synthesis of dimethyl-1,2-bis(benzamido)-3,4-bis(4-methoxyphenyl)cyclobutane-1,2-dicarboxylate **2b**. Cyclobutane **2b** was prepared following the same procedure than that described for **2a**, with small modifications in the chromatographic purification. Oxazolone **1b** (167.45 mg, 0.60 mmol), $[Ru(bpy)_3](BF_4)_2$ (11.2 mg, 0.015 mmol) and BF₃·Et₂O (34.1 mg, 0.24 mmol) were irradiated in deoxygenated methanol (4 mL) to give **2b** as a white solid after chromatographic purification (ethyl acetate/n-hexane in 1/9 to 4/6 gradient ratio). Obtained: 64.4 mg (34 % yield). ¹H NMR (CDCl₃, 300.13 MHz) δ 8.29 (s, 1H, NH), 7.59 (m, 2H, H_o, Ph), 7.46 (tt, ³J_{HH} = 7.4 Hz, ⁴J_{HH} = 1.75 Hz, 1H, H_p, Ph), 7.41-7.33 (m, 4H, H_m, Ph + H₂, H₆, C₆H₄), 6.84 (m, 2H, H₃, H₅, C₆H₄), 4.80 (s, 1H, CH), 3.73 (s, 3H, CH₃O), 3.72 (s, 3H, COOCH₃). ¹³C{¹H} NMR (CDCl₃, 75.5 MHz) δ 171.8, 166.7, 159.4, 133.4, 131.8, 130.2, 128.6, 127.0, 126.7, 114.1, 64.1, 55.3, 53.0, 47.3. HRMS (ESI⁺) m/z calc for C₃₆H₃₄N₂NaO₈ [M+Na]⁺: 645.2213, found: 645.2212.

Synthesis of dimethyl-1,2-bis(benzamido)-3,4-di-p-tolylcyclobutane-1,2-dicarboxylate 2c.

Cyclobutane **2c** was prepared following the same procedure than that described for **2a**, with small modifications in the chromatographic purification. Oxazolone **1c** (157.85 mg, 0.60 mmol), $[Ru(bpy)_3](BF_4)_2$ (11.2 mg, 0.015 mmol) and BF₃·Et₂O (34.1 mg, 0.24 mmol) were irradiated in deoxygenated methanol (4

mL) to give **2c** as a white solid after chromatographic purification (ethyl acetate/n-hexane in 2/8 to 3/7 gradient ratio). Obtained: 80.0 mg (45 % yield). ¹H NMR (CDCl₃, 300.13 MHz) δ 8.33 (s, 1H, NH), 7.60 (m, 2H, H_o, C₆H₅), 7.47 (tt, ³J_{HH} = 7.3 Hz, ⁴J_{HH} = 1.5 Hz, 1H, H_p, C₆H₅), 7.38 (m, 2H, H_m, C₆H₅), 7.36 (m, 2H, H₂, H₆, C₆H₄), 7.12 (m, 2H, H₃, H₅, C₆H₄), 4.86 (s, 1H, CH), 3.72 (s, 3H, COOCH₃), 2.28 (s, 3H, CH₃). ¹³C{¹H} NMR (CDCl₃, 75.5 MHz) δ 171.7, 166.7, 137.8, 133.4, 131.7, 131.6, 129.4, 128.9, 128.5, 127.0, 64.1, 52.9, 47.4, 21.1. HRMS (ESI⁺) m/z calc for C₃₆H₃₄N₂NaO₆ [M+Na]⁺ 613.2315, found: 613.2326.

Synthesis of dimethyl-1,2-bis(benzamido)-3,4-bis(4-chlorophenyl)cyclobutane-1,2-dicarboxylate 2d. Cyclobutane 2d was prepared following the same procedure than that described for 2a. Oxazolone 1d (170.45 mg, 0.60 mmol), $[Ru(bpy)_3](BF_4)_2$ (11.2 mg, 0.015 mmol) and $BF_3 \cdot Et_2O$ (34.1 mg, 0.24 mmol) were irradiated in deoxygenated methanol (4 mL) to give 2d as a white solid after chromatographic purification (ethyl acetate/n-hexane in 1/9 to 3/7 gradient ratio). Obtained: 53.4 mg (28 % yield). ¹H NMR (CDCl₃, 300.13 MHz) δ 8.17 (s, 1H, NH), 7.58 (m, 2H, H₀, C₆H₅), 7.50 (tt, ³J_{HH} = 7.3 Hz, ⁴J_{HH} = 1.4 Hz, 1H, H_p, C₆H₅), 7.41 (m, 2H, H_m, C₆H₅), 7.35-7.38 (m, 2H, H₂₋₆, C₆H₄Cl), 7.28 (m, 2H, H₃₋₅, C₆H₄Cl), 4.84 (s, 1H, CH), 3.74 (s, 3H, COOCH₃). ¹³C{¹H} NMR (CDCl₃, 75.5 MHz) δ 171.3, 166.9, 134.3, 133.0, 132.9, 132.1, 130.3, 129.0, 128.8, 126.9, 64.3, 53.2, 46.9. HRMS (ESI⁺) m/z calc for C₃₄H₂₈Cl₂N₂NaO₆ [M+Na]⁺ 653.1222, found: 653.1198.

Synthesis of dimethyl-1,2-bis(benzamido)-3,4-bis(4-fluorophenyl)cyclobutane-1,2-dicarboxylate **2e**. Cyclobutane **2e** was prepared following the same procedure than that described for **2a**. Oxazolone **1e** (160.85 mg, 0.60 mmol), [Ru(bpy)₃](BF₄)₂ (11.2 mg, 0.015 mmol) and BF₃·Et₂O (34.1 mg, 0.24 mmol) were irradiated in deoxygenated methanol (4 mL) to give **2e** as a white solid after chromatographic purification (ethyl acetate/n-hexane in 1/9 to 3/7 gradient ratio). Obtained: 41 mg (23 % yield). ¹H NMR (CDCl₃, 300.13 MHz) δ 8.16 (s, 1H, NH), 7.57 (m, 2H, H₀, C₆H₅), 7.49 (tt, ³J_{HH} = 7.3 Hz, ⁴J_{HH} = 1.5 Hz, 1H, H_p, C₆H₅), 7.45-7.35 (m, 4H, H_m, C₆H₅ + H₂₋₆, C₆H₄F), 7.00 (t, ³J_{HH} = ³J_{FH} = 8.7 Hz, 2H, H₃₋₅, C₆H₄F), 4.84 (s, 1H, CH), 3.74 (s, 3H, COOCH₃). ¹³C{¹H} NMR (CDCl₃, 75.5 MHz) δ 171.5, 166.8, 162.7, 133.1, 132.1, 130.7, 130.3, 128.8, 127.0, 115.8, 64.2, 53.2, 47.1. ¹⁹F{¹H} NMR (CDCl₃, 282.40 MHz) δ -113.54 (s). HRMS (ESI⁺) m/z calc for C₃₄H₂₈F₂N₂NaO₆ [M+Na]⁺ 621.1813, found: 621.1780.

Synthesis of dimethyl-1,2-bis(benzamido)-3,4-bis(4-bromophenyl)cyclobutane-1,2-dicarboxylate **2f.** Cyclobutane **2f** was prepared following the same procedure than that described for **2a**, with slight deviations in the chromatographic purification. Oxazolone **1f** (160.85 mg, 0.60 mmol), [Ru(bpy)₃](BF₄)₂ (11.2 mg, 0.015 mmol) and BF₃·Et₂O (34.1 mg, 0.24 mmol) were irradiated for 48 h in deoxygenated methanol (4 mL) to give **2f** as a white solid after chromatographic purification (ethyl acetate/n-hexane in 3/7 to 7/3 gradient ratio). Obtained: 35.7 mg (16 % yield). ¹H NMR (CDCl₃, 300.13 MHz): δ = 8.13 (s, 1H, NH), 7.57 (m, 2H, H_o, C₆H₅), 7.52-7.49 (m, 1H, H_p, C₆H₅), 7.45-7.39 (m, 4H, H_m, C₆H₅ + H₃₋₅, C₆H₄Br), 7.29 (m, 2H, H₂₋₆, C₆H₄Br), 4.80 (s, 1H, CH), 3.73 (s, 3H, COOCH₃). ¹³C{¹H} NMR (CDCl₃, 75.5 MHz): δ 171.3, 167.0, 133.5, 133.1, 132.2, 132.0, 130.7, 128.8, 127.0, 122.6, 64.3, 53.3, 47.0. HRMS (ESI⁺) m/z calc for C₃₄H₂₈Br₂N₂NaO₆ [M+Na]⁺ 741.0314, found: 741.0170.

Synthesis of dimethyl-1,2-bis(benzamido)-3,4-bis(4-cyanophenyl)cyclobutane-1,2-dicarboxylate **2g**. Cyclobutane **2g** was prepared following the same procedure than that described for **2a**, with minor changes in the chromatographic purification. Oxazolone **1g** (164.4 mg, 0.60 mmol), $[Ru(bpy)_3](BF_4)_2$ (11.2 mg, 0.015 mmol) and BF₃·Et₂O (34.1 mg, 0.24 mmol) were irradiated for 25 h in deoxygenated methanol (4 mL) to give **2g** as a white solid after chromatographic purification (ethyl acetate/n-hexane in 3/7 to 7/3 gradient ratio). Obtained: 66.5 mg (36 % yield). ¹H NMR (CDCl₃, 300.13 MHz) δ 7.94 (s, 1H, NH), 7.61-7.48 (m, 7H, H_o, H_p, C₆H₅ + H₂₋₆, H₃₋₅, C₆H₄), 7.40 (m, 2H, H_m, C₆H₅), 4.97 (s, 1H, CH), 3.77 (s, 3H, COOCH₃). ¹³C{¹H} NMR (CDCl₃, 75.5 MHz) δ 170.7, 166.9, 139.6 (2C₁), 132.5, 132.4, 129.7, 128.9, 126.9, 118.5, 112.3, 64.7, 53.6, 46.8. HRMS (ESI⁺) m/z calc for C₃₆H₂₈N₄NaO₆ [M+Na]⁺ 635.1907, found: 635.1871.

Synthesis of dimethyl-1,2-bis(benzamido)-3,4-bis(4-trifluoromethylphenyl)cyclobutane-1,2-dicarboxylate **2h.** Cyclobutane **2h** was prepared following the same procedure than that described for **2a**, with minor changes in the chromatographic purification. Oxazolone **1h** (190.24 mg, 0.60 mmol), $[Ru(bpy)_3](BF_4)_2$ (11.2 mg, 0.015 mmol) and BF₃·Et₂O (34.1 mg, 0.24 mmol) were irradiated for 25 h in deoxygenated methanol (4 mL) to give **2h** as a white solid after chromatographic purification (ethyl acetate/n-hexane in 1/9 to 4/6 gradient ratio). Obtained: 57.7 mg (28 % yield). ¹H NMR (CDCl₃, 300.13 MHz) δ 8.09 (s, 1H, NH), 7.57 (s, 4H, H₂₋₆ + H₃₋₅, C₆H₄-CF₃), 7.56-7.47 (m, 3H, H_o + H_p, C₆H₅), 7.39 (m, 2H, H_m, C₆H₅), 4.99 (s, 1H, CH), 3.77 (s, 3H, COOCH₃). ¹³C{¹H} NMR (CDCl₃, 75.5 MHz) δ 171.1, 167.0, 138.4, 132.8, 132.3, 130.6, 129.4, 128.8, 126.9, 125.7, 120.4, 64.6, 53.4, 47.0. ¹⁹F{¹H} NMR (CDCl₃, 282.40 MHz) δ -62.71 (s). HRMS (ESI⁺) m/z calc for C₃₆H₂₈F₆N₂NaO₆ [M+Na]⁺ 721.1749, found: 721.1745. Synthesis of dimethyl-1,2-bis(benzamido)-3,4-bis(m-tolyl)cyclobutane-1,2-dicarboxylate **2i**. Cyclobutane **2i** was prepared following the same procedure than that described for **2a**, with minor changes in the chromatographic purification. Oxazolone **1i** (157.85 mg, 0.60 mmol), [Ru(bpy)₃](BF₄)₂ (11.2 mg, 0.015 mmol) and BF₃·Et₂O (34.1 mg, 0.24 mmol) were irradiated for 25 h in deoxygenated methanol (4 mL) to give **2i** as a white solid after chromatographic purification (ethyl acetate/n-hexane in 3/7 to 6/4 gradient ratio). Obtained: 88.31 mg (50 % yield). ¹H NMR (CDCl₃, 300.13 MHz) δ 8.33 (s, 1H, NH), 7.57 (m, 2H, H_o, C₆H₅), 7.47 (tt, ³J_{HH} = 7.3 Hz, ⁴J_{HH} = 1.4 Hz, 1H, H_p, C₆H₅), 7.37 (m, 2H, H_m, C₆H₅), 7.30-7.26 (m, 1H, H₆, C₆H₄), 7.24-7.17 (m, 2H, H₂, H₅, C₆H₄), 7.08-7.04 (m, 1H, H₄, C₆H₄), 4.85 (s, 1H, CH), 3.72 (s, 3H, COOCH₃), 2.26 (s, 3H, CH₃). ¹³C{¹H} NMR (CDCl₃, 75.5 MHz) δ 171.7, 166.7, 138.4, 134.7, 133.4, 131.9, 129.9, 129.0, 128.7, 128.6, 127.0, 126.3, 64.1, 53.1, 47.7, 21.5. HRMS (ESI⁺) m/z calc for C₃₆H₃₄N₂NaO₆ [M+Na]⁺ 613.2315, found: 613.2281.

Synthesis of dimethyl-1,2-bis(benzamido)-3,4-bis(3-chlorophenyl)cyclobutane-1,2-dicarboxylate **2j**. Cyclobutane **2j** was prepared following the same procedure than that described for **2a**, with minor changes in the chromatographic purification. Oxazolone **1j** (170.45 mg, 0.60 mmol), $[Ru(bpy)_3](BF_4)_2$ (11.2 mg, 0.015 mmol) and BF₃·Et₂O (34.1 mg, 0.24 mmol) were irradiated for 25 h in deoxygenated methanol (4 mL) to give **2j** as a white solid after chromatographic purification (ethyl acetate/n-hexane in 2/8 to 5/5 gradient ratio). Obtained: 67 mg (35 % yield). ¹H NMR (CDCl₃, 300.13 MHz) δ 8.15 (s, 1H, NH), 7.56 (m, 2H, H_o, C₆H₅), 7.45 (tt, ³J_{HH} = 7.4 Hz, ⁴J_{HH} = 1.5 Hz, 1H, H_p, C₆H₅), 7.40-7.32 (m, 4H, H_m, C₆H₅ + H₂, H₆, C₆H₄Cl), 7.22 (m, 2H, H₄, H₅, C₆H₄Cl), 4.81 (s, 1H, CH), 3.72 (s, 3H, COOCH₃). ¹³C{¹H} NMR (CDCl₃, 75.5 MHz) δ 171.2, 166.9, 136.5, 134.7, 133.0, 132.1, 130.0, 129.0, 128.7, 128.6, 127.3, 126.9, 64.2, 53.3, 47.0. HRMS (ESI⁺) m/z calc for C₃₄H₂₈Cl₂N₂OA₆ [M+Na]⁺ 653.1222, found: 653.1195.

Synthesis of dimethyl-1,2-bis(benzamido)-3,4-bis(3-fluorophenyl)cyclobutane-1,2-dicarboxylate **2k**. Cyclobutane **2k** was prepared following the same procedure than that described for **2a**, with minor changes in the chromatographic purification. Oxazolone **1k** (180.14 mg, 0.60 mmol), $[Ru(bpy)_3](BF_4)_2$ (11.2 mg, 0.015 mmol) and BF₃·Et₂O (34.1 mg, 0.24 mmol) were irradiated for 25 h in deoxygenated methanol (4 mL) to give **2k** as a white solid after chromatographic purification (ethyl acetate/n-hexane in 3/7 to 7/3 gradient ratio). Obtained: 63.6 mg (35 % yield). ¹H NMR (CDCl₃, 300.13 MHz) δ 8.20 (s, 1H, NH), 7.58 (m, 2H, H_o, C₆H₅), 7.49 (m, 1H, H_p, C₆H₅), 7.39 (m, 2H, H_m, C₆H₅), 7.32-7.23 (m, 2H, H₆, H₅, C₆H₄F), 7.14 (m, 1H, H₂, C₆H₄F), 6.97 (m, 1H, H₄, C₆H₄F), 4.85 (s, 1H, CH), 3.74 (s, 3H, COOCH₃). $^{13}C{^{1}H}$ NMR (CDCl₃, 75.5 MHz) δ 171.3, 166.9, 162.9, 137.1, 133.1, 132.1, 130.4, 128.8, 127.0, 124.8, 116.1, 115.4, 64.3, 53.3, 47.2. $^{19}F{^{1}H}$ NMR (CDCl₃, 282.40 MHz) δ -112.12 (s). HRMS (ESI⁺) m/z calc for C₃₄H₂₈F₂N₂NaO₆ [M+Na]⁺ 621.1813, found 621.1873.

Synthesis of dimethyl-1,2-bis(benzamido)-3,4-bis(3-bromophenyl)cyclobutane-1,2-dicarboxylate **21**. Cyclobutane **21** was prepared following the same procedure than that described for **2a**, with minor changes in the chromatographic purification. Oxazolone **11** (197.40 mg, 0.60 mmol), $[Ru(bpy)_3](BF_4)_2$ (11.2 mg, 0.015 mmol) and BF₃·Et₂O (34.1 mg, 0.24 mmol) were irradiated for 25 h in deoxygenated methanol (4 mL) to give **21** as a white solid after chromatographic purification (ethyl acetate/n-hexane in 3/7 to 5/5 gradient ratio). Obtained: 93.5 mg (43 % yield). ¹H NMR (CDCl₃, 300.13 MHz) δ 8.16 (s, 1H, NH), 7.61-7.55 (m, 3H, H₀, C₆H₅ + H₂, C₆H₄Br), 7.49 (tt, ³J_{HH} = 7.3 Hz, ⁴J_{HH} = 1.3 Hz, 1H, H_p, C₆H₅), 7.43-7.37 (m, 4H, H_m, C₆H₅ + H₄, H₆, C₆H₄Br), 7.20 (m, 1H, H₅, C₆H₄Br), 4.82 (s, 1H, CH), 3.75 (s, 3H, COOCH₃). ¹³C{¹H} NMR (CDCl₃, 75.5 MHz) δ 171.1, 166.9, 136.7, 133.0, 132.1, 131.9, 131.5, 130.3, 128.8, 127.9, 127.0, 122.9, 64.2, 53.3, 47.0. HRMS (ESI⁺) m/z calc for C₃₄H₂₈Br₂N₂NaO₆ [M+Na]⁺ 741.0212, found 741.0228.

Synthesis of dimethyl-1,2-bis(benzamido)-3,4-bis(3-trifluoromethylphenyl)cyclobutane-1,2-dicarboxylate **2m.** Cyclobutane **2m** was prepared following the same procedure than that described for **2a**, with minor changes in the chromatographic purification. Oxazolone **1m** (190.24 mg, 0.60 mmol), $[Ru(bpy)_3](BF_4)_2$ (11.2 mg, 0.015 mmol) and BF₃·Et₂O (34.1 mg, 0.24 mmol) were irradiated for 25 h in deoxygenated methanol (4 mL) to give **2m** as a white solid after chromatographic purification (ethyl acetate/n-hexane in 3/7 to 5/5 gradient ratio). Obtained: 80.5 mg (38 % yield). ¹H NMR (CDCl₃, 300.13 MHz) δ 8.08 (s, 1H, NH), 7.71-7.66 (m, 2H, H₆ + H₂, C₆H₄-CF₃), 7.57-7.45 (m, 5H, H₀ + H_p, C₆H₅ + H₄ + H₅, C₆H₄-CF₃), 7.38 (m, 2H, H_m, C₆H₅), 4.98 (s, 1H, CH), 3.77 (s, 3H, COOCH₃). ¹³C{¹H} NMR (CDCl₃, 75.5 MHz) δ 171.1, 166.9, 135.5, 132.9, 132.8, 132.3, 131.1, 129.4, 128.8, 126.9, 125.4, 125.3, 123.9, 64.4, 53.4, 47.0. ¹⁹F{¹H} NMR (CDCl₃, 282.40 MHz) δ -62.72. HRMS (ESI⁺) m/z calc for C₃₆H₂₈F₆N₂NaO₆ [M+Na]⁺ 721.1749, found 721.1712.

Synthesis of dimethyl-1,2-bis(benzamido)-3,4-bis(2-methoxyphenyl)cyclobutane-1,2-dicarboxylate **2n.** Cyclobutane **2n** was prepared following the same procedure than that described for **2a**, with minor changes in the chromatographic purification and using an optimized reaction time. Oxazolone **1n** (167.45 mg, 0.60 mmol), [Ru(bpy)₃](BF₄)₂ (11.2 mg, 0.015 mmol) and BF₃·Et₂O (34.1 mg, 0.24 mmol) were irradiated for 60 h in deoxygenated methanol (4 mL) to give **2n** as a white solid after chromatographic purification (ethyl acetate/n-hexane in 3/7 to 5/5 gradient ratio). Obtained: 78.4 mg (42 % yield). ¹H NMR (CDCl₃, 300.13 MHz) δ 8.39 (s, 1H, NH), 7.61(m, 3H, H_o, C₆H₅), 7.48-7.35 (m, 4H, H_m + H_p, C₆H₅ + H₆, C₆H₄), 7.23 (m, 1H, H₄, C₆H₄), 6.87 (m, 2H, H₃ + H₅, C₆H₄), 5.38 (s, 1H, CH), 3.87 (s, 3H, CH₃O), 3.67 (s, 3H, COOCH₃). ¹³C{¹H} NMR (CDCl₃, 75.5 MHz) δ 171.2, 166.8, 158.8, 134.1, 131.6, 129.4, 128.8, 128.6, 127.1, 123.5, 120.7, 111.2, 64.6, 56.1, 52.8, 40.8. HRMS (ESI⁺) m/z calc for C₃₆H₃₄N₂NaO₈ [M+Na]⁺ 645.2213, found 645.2253.

Synthesis of dimethyl-1,2-bis(benzamido)-3,4-bis(2-fluorophenyl)cyclobutane-1,2-dicarboxylate **20**. Cyclobutane **20** was prepared following the same procedure than that described for **2a**, with minor changes in the chromatographic purification and using an optimized reaction time. Oxazolone **1o** (160.85 mg, 0.60 mmol), [Ru(bpy)₃](BF₄)₂ (11.2 mg, 0.015 mmol) and BF₃·Et₂O (34.1 mg, 0.24 mmol) were irradiated for 48 h in deoxygenated methanol (4 mL) to give **2o** as a white solid after chromatographic purification (ethyl acetate/n-hexane in 3/7 to 4/6 gradient ratio). Obtained: 55.8 mg (31 % yield). ¹H NMR (CDCl₃, 300.13 MHz): δ 8.29 (s, 1H, NH), 7.61 (m, 2H, H₀, C₆H₅), 7.55-7.46 (m, 2H, H_p, C₆H₅ + H₅, C₆H₄F), 7.39 (m, 2H, H_m, C₆H₅), 7.30-7.22 (m, 1H, H₄, C₆H₄F), 7.11-7.02 (m, 2H, H₃ + H₆, C₆H₄F), 5.29 (s, 1H, CH), 3.71 (s, 3H, COOCH₃). ¹³C{¹H} NMR (CDCl₃, 75.5 MHz) δ 170.9, 167.0, 162.0, 133.4, 132.0, 130.2, 129.1, 128.7, 127.1, 124.3, 121.7, 115.9, 64.4, 53.1, 40.0. ¹⁹F{¹H} NMR (CDCl₃, 282.40 MHz) δ -114.71. HRMS (ESI⁺) m/z calc for C₃₄H₂₈F₂N₂NaO₆ [M+Na]⁺ 621.1813, found 621.1783.

Synthesis of dimethyl-1,2-bis(benzamido)-3,4-bis(3,4-dimethoxyphenyl)cyclobutane-1,2-dicarboxylate **2p**. Cyclobutane **2p** was prepared following the same procedure than that described for **2a**, with minor changes in the chromatographic purification. Oxazolone **1p** (185.46 mg, 0.60 mmol), $[Ru(bpy)_3](BF_4)_2$ (11.2 mg, 0.015 mmol) and BF₃·Et₂O (34.1 mg, 0.24 mmol) were irradiated for 25 h in deoxygenated methanol (4 mL) to give **2p** as a white solid after chromatographic purification (ethyl acetate/n-hexane in 2/8 to 5/5 gradient ratio). Obtained: 94.2 mg (46 % yield). ¹H NMR (CDCl₃, 300.13 MHz): δ 8.31 (s, 1H, NH), 7.58 (m, 2H, H_o, C₆H₅), 7.45 (tt, ³J_{HH} = 7.5 Hz, ⁴J_{HH} = 1.4 Hz, 1H, H_p, C₆H₅), 7.38-7.32 (m, 2H, H_m, C₆H₅), 7.01 (dd, ³J_{HH} = 8.2 Hz, ⁴J_{HH} = 2.1 Hz, 1H, H₆, C₆H₃), 6.94 (d, ⁴J_{HH} = 2.1 Hz, 1H, H₂, C₆H₃), 6.80 (d, ³J_{HH} = 8.2 Hz, 1H, H₅, C₆H₃), 4.74 (s, 1H, CH), 3.79 (s, 3H, CH₃O), 3.75 (s, 3H, CH₃O), 3.70 (s, 3H, COOCH₃). ¹³C{¹H} NMR (CDCl₃, 75.5 MHz) δ 171.7, 166.6, 149.0, 148.9, 133.2, 131.9, 128.6, 127.2, 126.9, 121.3, 112.1, 111.1, 64.1, 55.8, 55.8, 52.9, 47.8. HRMS (ESI⁺) m/z calc for C₃₈H₃₈N₂NaO₁₀ [M+Na]⁺ 705.2424, found 705.2393.

Synthesis of dimethyl-1,2-bis(benzamido)-3,4-bis(3,4-dimethylphenyl)cyclobutane-1,2-dicarboxylate **2q**. Cyclobutane **2q** was prepared following the same procedure than that described for **2a**, with minor changes in the chromatographic purification. Oxazolone **1q** (166.25 mg, 0.60 mmol), $[Ru(bpy)_3](BF_4)_2$ (11.2 mg, 0.015 mmol) and BF₃·Et₂O (34.1 mg, 0.24 mmol) were irradiated for 25 h in deoxygenated methanol (4 mL) to give **2q** as a white solid after chromatographic purification (ethyl acetate/n-hexane in 3/7 to 6/4 gradient ratio). Obtained: 56.8 mg (31 % yield). ¹H NMR (CDCl₃, 300.13 MHz): δ 8.36 (s, 1H, NH), 7.60 (m, 2H, H_o, C₆H₅), 7.47 (tt, ³J_{HH} = 7.4 Hz, ⁴J_{HH} = **1**.5 Hz, 1H, H_p, C₆H₅), 7.39-7.34 (m, 2H, H_m, C₆H₅), 7.23-7.17 (m, H₂ + H₆, C₆H₃), 7.06 (d, ³J_{HH} = 7.3 Hz, 1H, H₅, C₆H₃), 4.80 (s, 1H, CH), 3.71 (s, 3H, COOCH₃), 2.17 (s, 6H, 2 CH₃). ¹³C{¹H} NMR (CDCl₃, 75.5 MHz): δ 171.8, 166.7, 136.8, 136.5, 133.6, 132.1, 131.7, 130.4, 130.0, 128.6, 127.0, 126.5, 64.1, 52.9, 47.7, 19.9, 19.5. HRMS (ESI⁺) m/z calc for C₃₈H₃₈N₂NaO₆ [M+Na]⁺ 641.2630, found 641.2627.

Synthesis of dimethyl-1,2-bis(benzamido)-3,4-bis(3,4-dichlorophenyl)cyclobutane-1,2-dicarboxylate **2r**. Cyclobutane **2r** was prepared following the same procedure than that described for **2a**, with minor changes in the chromatographic purification. Oxazolone **1r** (380.5 mg, 1.20 mmol), $[Ru(bpy)_3](BF_4)_2$ (22.4 mg, 0.030 mmol) and BF₃·Et₂O (68.2 mg, 0.48 mmol) were irradiated for 25 h in deoxygenated methanol (8 mL) to give **2r** as a white solid after chromatographic purification (ethyl acetate/n-hexane in 3/7 to 6/4 gradient ratio). Obtained: 205.2 mg (49 % yield). ¹H NMR (CDCl₃, 300.13 MHz) δ 8.06 (s, 1H, NH), 7.58 (m, 2H, H_o, C₆H₅), 7.51 (tt, ³J_{HH} = 7.4 Hz, ⁴J_{HH} = 1.5 Hz, 1H, H_p, C₆H₅), 7.48 (d, ⁴J_{HH} = 2.1 Hz, 1H, H₂, C₆H₃Cl₂), 7.41 (m, 2H, H_m, C₆H₅), 7.38 (d, ³J_{HH} = 8.2 Hz, 1H, H₅, C₆H₃Cl₂), 7.29 (dd, ³J_{HH} = 8.2 Hz, ⁴J_{HH} = 2.1 Hz, 1H, H₆, C₆H₃Cl₂), 4.77 (s, 1H, CH), 3.75 (s, 3H, COOCH₃). ¹³C{¹H} NMR (CDCl₃, 75.5 MHz) δ 170.9, 167.0, 134.5, 133.0, 132.7, 132.7, 132.3, 130.7, 128.8, 128.3, 126.9, 64.4, 53.4, 46.5. HRMS (ESI⁺) m/z calc for C₃₄H₂₆Cl₄N₂NaO₆ [M+Na]⁺ 721.0437, found 721.0427.

Synthesis of dimethyl-1,2-bis(benzamido)-3,4-bis(3,5-difluorophenyl)cyclobutane-1,2-dicarboxylate **2s**. Cyclobutane **2s** was prepared following the same procedure than that described for **2a**, with minor changes in the chromatographic purification. Oxazolone **1s** (171.04 mg, 0.60 mmol), $[Ru(bpy)_3](BF_4)_2$ (11.2 mg, 0.015 mmol) and $BF_3 \cdot Et_2O$ (34.1 mg, 0.24 mmol) were irradiated for 25 h in deoxygenated methanol (4 mL) to give **2r** as a white solid after chromatographic purification (ethyl acetate/n-hexane in 2/8 to 7/3 gradient ratio). Obtained: 73.6 mg (38 % yield). ¹H NMR (CDCl₃, 300.13 MHz) δ 8.08 (s, 1H, NH), 7.60 (m, 2H, H_o, C₆H₅), 7.52 (tt, ³J_{HH} = 7.3 Hz, ⁴J_{HH} = 1.3 Hz, 1H, H_p, C₆H₅), 7.42 (m, 2H, H_m, C₆H₅), 6.96 (m, 2H, H₂₋₆, C₆H₃F₂), 6.73 (tt, ³J_{HH} = 8.8 Hz, ⁴J_{HH} = 2.3 Hz, 1H, H₄, C₆H₃F₂), 4.77 (s, 1H, CH), 3.76 (s, 3H, COOCH₃). ¹³C{¹H} NMR (CDCl₃, 75.5 MHz) δ 170.9, 167.1, 163.2, 138.2, 132.8, 132.4, 128.9, 127.0, 112.0, 104.1, 64.4, 53.5, 47.0. ¹⁹F{¹H} NMR (CDCl₃, 282.40 MHz): δ -108.42. HRMS (ESI⁺) m/z calc for C₃₄H₂₆F₄N₂NaO₆ [M+Na]⁺ 657.1625, found 657.1628.

Synthesis of dimethyl-1,2-bis(benzamido)-3,4-bis(3,4,5-trimethoxyphenyl)cyclobutane-1,2-dicarboxylate **2t**. Cyclobutane **2t** was prepared following the same procedure than that described for **2a**, with minor changes in the chromatographic purification. Oxazolone **1t** (203.47 mg, 0.60 mmol), [Ru(bpy)₃](BF₄)₂ (11.2 mg, 0.015 mmol) and BF₃·Et₂O (34.1 mg, 0.24 mmol) were irradiated for 25 h in deoxygenated methanol (4 mL). After the reaction time a precipitate was formed, which was removed by filtration and characterized as the dispyrocyclobutane **2t***. Yellow solid. Obtained: 38 mg (19% yield) The alcoholic solution was evaporated to dryness and the usual work-up of the resulting residue gave **2t** as a white solid after chromatographic purification (ethyl acetate/n-hexane in 1/9 to 6/4 gradient ratio). Obtained: 96.1 mg (43 % yield).

Characterization of 2t*: ¹H NMR (CDCl₃, 300.13 MHz) δ 8.04 (m, 2H, H_o, C₆H₅), 7.59 (tt, ³J_{HH} = 7.4 Hz, ⁴J_{HH} = 1.4 Hz, 1H, H_p, C₆H₅), 7.49 (m, 2H, H_m, C₆H₅), 6.94 (m, 2H, H₂, H₆, C₆H₂), 4.81 (s, 1H, CH), 3.88 (s, 6H, CH₃O-C₃₋₅), 3.82 (s, 3H, CH₃O-C₄). ¹³C{¹H} NMR (CDCl₃, 75.5 MHz) δ 176.1, 161.6, 152.8, 138.3, 133.4, 129.0, 128.2, 127.3, 125.6, 108.1, 73.3, 60.9, 57.2, 56.3. HRMS (ESI⁺) m/z calc for C₃₈H₃₄N₂NaO₁₀ [M+Na]⁺ 701.2111, found 701.2075. **Characterization of 2t**: ¹H NMR (CDCl₃, 300.13 MHz) δ 8.33 (s, 1H, NH), 7.60 (m, 2H, H_o, C₆H₅), 7.49 (tt, ³J_{HH} = 7.4 Hz, ⁴J_{HH} = 1.3 Hz, 1H, H_p, C₆H₅), 7.39 (m, 2H, H_m, C₆H₅), 6.68 (s, 2H, H₂₋₆, C₆H₂), 4.69 (s, 1H, CH), 3.77 (s, 3H, CH₃O), 3.76 (s, 6H, CH₃O), 3.73 (s, 3H, COOCH₃). ¹³C{¹H} NMR (CDCl₃, 75.5 MHz) δ 171.8, 166.6, 153.5, 138.1, 133.2, 132.2, 130.6, 128.8, 126.9, 106.3, 64.2, 61.0, 56.3, 53.2, 48.9. HRMS (ESI⁺) m/z calc for C₄₀H₄₂N₂NaO₁₂ [M+Na]⁺ 765.2635, found 765.2638.

Synthesis of dimethyl-1,2-bis(benzamido)-3,4-di(2-thienyl)cyclobutane-1,2-dicarboxylate **2u.** Cyclobutane **2u** was prepared following the same procedure than that described for **2a**, with minor changes in the chromatographic purification and using an optimized reaction time. Oxazolone **1u** (153.02 mg, 0.60 mmol), [Ru(bpy)₃](BF₄)₂ (11.2 mg, 0.015 mmol) and BF₃·Et₂O (34.1 mg, 0.24 mmol) were irradiated for 48 h in

deoxygenated methanol (4 mL) to give **2r** as a white solid after chromatographic purification (ethyl acetate/n-hexane in 3/7 to 6/4 gradient ratio). Obtained: 53.6 mg (31 % yield). ¹H NMR (CDCl₃, 300.13 MHz) δ 8.32 (s, 1H, NH), 7.57 (m, 2H, H_o, C₆H₅), 7.41 (tt, ³J_{HH} = 8.2 Hz, ⁴J_{HH} = 1.2 Hz, 1H, H_p, C₆H₅), 7.35-7.28 (m, 2H, H_m, C₆H₅), 7.17 (dd, ³J_{HH} = 5.2 Hz, ⁴J_{HH} = 1.2 Hz, 1H, H₃, SC₄H₃), 7.10 (dd, ³J_{HH} = 3.6 Hz, ⁴J_{HH} = 1.2 Hz, 1H, H₅, SC₄H₃), 6.89 (dd, ³J_{HH} = 5.2 Hz, ³J_{HH} = 3.6 Hz, H₄, SC₄H₃), 4.90 (s, 1H, CH), 3.64 (s, 3H, COOCH₃). ¹³C{¹H} NMR (CDCl₃, 75.5 MHz) δ 171.0, 166.9, 137.3, 133.1, 132.0, 128.6, 127.6, 127.3, 127.1, 126.4, 64.2, 53.1, 46.4. HRMS (ESI⁺) m/z calc for C₃₀H₂₇N₂O₆S₂ [M+H]⁺ 575.1311, found 575.1295.

Expansion of the cyclobutane ring of δ -1,2-diaminotruxínics: synthesis of pyrrolidines 3.

All pyrrolidine-2,5-dicarboxylate derivatives **3** have been prepared following the same experimental method, which is detailed here for **3a**.

Synthesis of dimethyl-2-benzamido-1-benzoyl-3,4-diphenylpyrrolidine-2,5-dicarboxylate **3a**. A solution of δ -cyclobutane **2a** (41.8 mg, 0.074 mmol) in methanol (5 mL) was treated with NaOMe (4.06 mg, 0.075 mmol), and the resulting mixture was heated at 110 °C for 1 h in a J-Young Sample Flask. Once cooled, the resulting solution was evaporated to dryness and the solid residue extracted with CH₂Cl₂ (3×5 mL). Any insoluble solid was removed at this point by filtration through Celite. The resulting clear solution was evaporated to dryness to give impure pyrrolidine **3a**, which was purified by crystallization from CH₂Cl₂/pentane to give **3a** as a white solid. Obtained: 21.2 mg (51% yield). Pyrrolidine **3a** was characterized by NMR methods as the mixture of two diastereoisomers in 1:0.45 molar ratio. Only the major isomer could be fully characterized by NMR. ¹H NMR (CDCl₃, 300.13 MHz) δ 8.14 (s, 1H, NH), 7.91 (m, 2H, H_o, NHCO-C₆H₅), 7.59-7.12 (m, 18H, C₆H₅), 5.28 (d, ³J_{HH} = 10 Hz, 1H, H-C₅), 5.27 (d, ³J_{HH} = 13.1 Hz, 1H, H-C₃), 4.27 (dd, ³J_{HH} = 13.1 Hz, ³J_{HH} = 10 Hz, 1H, H-C₅), 5.27 (d, ³J_{HH} = 13.1 Hz, 1H, H-C₃), 4.27 (dd, ³J_{HH} = 13.1 Hz, ³J_{HH} = 10 Hz, 1H, H-C₄), 3.70 (s, 3H, C₂-COOCH₃), 3.10 (s, 3H, C₅-COOCH₃). ¹³C{¹H}</sup>NMR (CDCl₃, 75.5 MHz) δ 170.9, 170.8, 169.0, 167.4, 136.2, 135.2, 134.6, 133.0, 132.2, 130.9, 129.0, 128.9, 128.7, 128.6, 128.6, 128.4, 128.2, 128.2, 127.4, 81.4, 69.7, 53.4, 51.9, 51.8. HRMS (ESI⁺) m/z calc for C₃₄H₃₀N₂NaO₆ [M+Na]⁺ 585.2002, found 585.2003.

Synthesis of dimethyl-2-benzamido-1-benzoyl-3,4-bis(4-chlorophenyl)pyrrolidine-2,5-dicarboxylate **3d**. The synthesis of **3d** was carried out following the same synthetic method than that detailed for **3a**. Therefore, δ -cyclobutane **2d** (79.4 mg, 0.126 mmol) was reacted with NaOMe (6.75 mg, 0.125 mmol) in MeOH (110

^oC) for 1h to give **3d** as a single diastereoisomer after crystallization from CH₂Cl₂/pentane. Obtained: 40.1 mg (50% yield). White solid. ¹H NMR (CDCl₃, 300.13 MHz) δ 8.12 (s, 1H, NH), 7.89 (m, 2H, H_o, NHCO-C₆H₅), 7.63-7.55 (m, 3H, H_p, NHCO-C₆H₅ + H_o, N₁CO-C₆H₅), 7.50 (m, 2H, H_m, NHCO-C₆H₅), 7.38-7.30 (m, 7H, H_p, H_m, N₁CO-C₆H₅ + H_o, H_m, C₄-C₆H₄), 7.22 (m, 2H, H_m, C₃-C₆H₄), 7.12 (m, 2H, H_o, C₃-C₆H₄), 5.22 (d, ³J_{HH} = 10 Hz, 1H, H-C₅), 5.20 (d, ³J_{HH} = 13 Hz, 1H, H-C₃), 4.17 (dd, ³J_{HH} = 13 Hz, ³J_{HH} = 10 Hz, 1H, H-C₄), 3.73 (s, 3H, C₂-COOCH₃), 3.10 (s, 3H, C₅-COOCH₃). ¹³C{¹H}NMR (CDCl₃, 75.5 MHz) δ 170.6, 169.0, 168.7, 167.6, 135.0, 134.5, 134.4, 134.3, 134.1, 131.3, 132.5, 131.1, 129.8, 129.4, 129.4, 129.0, 128.4, 128.2, 127.3, 81.1, 69.3, 53.6, 52.8, 52.1, 51.4. HRMS (ESI⁺) m/z calc for C₃₄H₂₈Cl₂N₂NaO₆ [M+Na]⁺ 653.1222; found: 653.1179.

Synthesis of dimethyl-2-benzamido-1-benzoyl-3,4-bis(4-fluorophenyl)pyrrolidine-2,5-dicarboxylate **3e**. The synthesis of **3e** was carried out following the same synthetic method than that detailed for **3a**. Therefore, δ -cyclobutane **2e** (46.7 mg, 0.078 mmol) was reacted with NaOMe (4.3 mg, 0.08 mmol) in MeOH (110 °C) for 1h to give **3e** as a single diastereoisomer after crystallization from CH₂Cl₂/pentane. Obtained: 21.5 mg (46% yield). ¹H NMR (CDCl₃, 300.13 MHz) δ 8.12 (s, 1H, NH), 7.89 (m, 2H, H_o, NHCO-C₆H₅), 7.58-7.52 (m, 3H, H_p, NHCO-C₆H₅ + H_o, N₁CO-C₆H₅), 7.48 (m, 2H, H_m, NHCO-C₆H₅), 7.42-7.31 (m, 5H, H_p, H_m, N₁CO-C₆H₅ + H_o, C₄-C₆H₄), 7.17 (m, 2H, H_o, C₃-C₆H₄), 6.95 (m, 4H, H_m, C₆H₄), 5.22 (d, ³J_{HH} = 10.1 Hz, 1H, H-C₅), 5.20 (d, ³J_{HH} = 13.1 Hz, ³J_{HH} = 10.1 Hz, 1H, H-C₄), 3.72 (s, 3H, C₂-COOCH₃), 3.10 (s, 3H, C₅-COOCH₃). ¹³C NMR (CDCl₃, 75.5 MHz) δ 170.7, 169.0, 168.8, 167.6, 162.7, 162.5, 135.1, 134.4, 132.4, 131.7, 131.0, 130.1, 129.7, 129.0, 128.6, 128.4, 128.2, 127.3, 116.1, 115.8, 81.2, 69.5, 53.5, 52.8, 52.0, 51.4. ¹⁹F NMR (CDCl₃, 282.4 MHz) δ -113.47 (m), -113.86 (m). HRMS (ESI⁺) m/z calc for C₃₄H₂₈F₂N₂NaO₆ [M+Na]⁺ 621.1813, found 621.1792.

Synthesis of dimethyl-2-benzamido-1-benzoyl-3,4-bis(4-cyanophenyl)pyrrolidine-2,5-dicarboxylate **3g**. The synthesis of **3g** was carried out following the same synthetic method than that detailed for **3a**. Therefore, δ -cyclobutane **2g** (62 mg, 0.10 mmol) was reacted with NaOMe (5.9 mg, 0.10 mmol) in MeOH (110 °C) for 1h to give **3g** as a mixture of two different diastereoisomers (3.3/1 molar ratio) after crystallization from CH₂Cl₂/pentane. Obtained: 41.5 mg (67% yield). Only the major isomer could be fully characterized by NMR spectroscopy. ¹H NMR (CDCl₃, 400.13 MHz) δ 8.12 (s, 1H, NH), 7.89 (m, 2H, H_o, NHCO-C₆H₅), 7.60-7.47 (m, 14H, C₆H₅ + C₆H₄), 7.34-7.29 (m, 4H, C₆H₅ + C₆H₄), 5.36 (d, ³J_{HH} = 12.9 Hz, 1H, H-C₃), 5.27 (d, ³J_{HH} = 9.9 Hz, 1H,

H-C₅), 4.29 (dd, ${}^{3}J_{HH}$ = 12.9 Hz, ${}^{3}J_{HH}$ = 10 Hz, 1H, H-C₄), 3.71 (s, 3H, C₂-COOCH₃), 3.11 (s, 3H, C₅-COOCH₃). ${}^{13}C{}^{1}H{NMR}$ (CDCl₃, 100.6 MHz) δ 170.1, 169.0, 168.2, 167.9, 141.0, 138.0, 134.7, 133.9, 133.1, 132.5, 132.7, 129.2, 129.1 (2C), 128.9, 128.5, 128.1, 127.3, 118.3, 118.2, 112.8, 112.6, 81.1, 69.1, 53.7, 53.1, 52.3, 51.6. HRMS (ESI⁺) m/z calc for C₃₆H₂₈N₄NaO₆ [M+Na]⁺ 635.1907, found: 635.1903.

Synthesis of dimethyl-2-benzamido-1-benzoyl-3,4-bis(4-(trifluoromethyl)phenyl)pyrrolidine-2,5dicarboxylate **3h**. The synthesis of **3h** was carried out following the same synthetic method than that detailed for **3a**. Therefore, δ -cyclobutane **2h** (41.5 mg, 0.06 mmol) was reacted with NaOMe (3.2 mg, 0.06 mmol) in MeOH (110 °C) for 1h to give **3h** as a single diastereoisomer after crystallization from CH₂Cl₂/pentane. Obtained: 16.1 mg (39% yield). ¹H NMR (CDCl₃, 300.13 MHz) δ 8.14 (s, 1H, NH), 7.90 (m, 2H, H₀, NHCO-C₆H₅), 7.58-7.52 (m, 3H, H_p, NHCO-C₆H₅ + H₀, N₁CO-C₆H₅), 7.48 (m, 2H, H_m, NHCO-C₆H₅), 7.42-7.31 (m, 5H, H_p, H_m, N₁CO-C₆H₅ + H₀, C₄-C₆H₄), 7.17 (m, 2H, H₀, C₃-C₆H₄), 6.95 (m, 4H, H_m, C₆H₄), 5.37 (d, ³J_{HH} = 13 Hz, 1H, H-C₃), 5.29 (d, ³J_{HH} = 9.9 Hz, 1H, H-C₅), 4.32 (dd, ³J_{HH} = 13 Hz, ³J_{HH} = 9.9 Hz, 1H, H-C₄), 3.71 (s, 3H, C₂-COOCH₃), 3.12 (s, 3H, C₅-COOCH₃). ¹³C NMR (CDCl₃, 75.5 MHz) δ 170.4, 169.0, 168.5, 167.8, 139.9, 136.8, 134.9, 134.1, 132.6, 131.2, 130.8, 130.6, 129.1, 128.9, 128.5, 128.5, 128.2, 127.3, 126.2, 125.7, 120.3, 120.3, 81.2, 69.3, 53.6, 53.1, 52.2, 51.5. ¹⁹F NMR (CDCl₃, 282.4 MHz) δ -62.71 (s), -62.75 (s). HRMS (ESI⁺) m/z calc for C₃₆H₂₈F₆N₂NaO₆ [M+Na]⁺ 721.1752, found 721.1744.

Synthesis of dimethyl-2-benzamido-1-benzoyl-3,4-bis(3-fluorophenyl)pyrrolidine-2,5-dicarboxylate **3k**. The synthesis of **3k** was carried out following the same synthetic method than that detailed for **3a**. Therefore, δ -cyclobutane **2k** (107.4 mg, 0.18 mmol) was reacted with NaOMe (9.8 mg, 0.18 mmol) in MeOH (110 °C) for 1h to give **3k** as a mixture of two different diastereoisomers (2/1 molar ratio) after crystallization from CH₂Cl₂/pentane. Obtained: 78.4 mg (73% yield). Only the major isomer could be fully characterized by NMR spectroscopy. ¹H NMR (CDCl₃, 300.13 MHz) δ 8.12 (s, 1H, NH), 7.90 (m, 2H, H_o, NHCO-C₆H₅), 7.58-7.53 (m, 3H, H_p, NHCO-C₆H₅ + H_o, N₁CO-C₆H₅), 7.49 (m, 2H, H_m, NHCO-C₆H₅), 7.38-7.35 (m, 3H, H_p, H_m, N₁CO-C₆H₅), 7.24-7.20 (m, 2H, C₆H₄F), 7.18-7.13 (m, 2H, C₆H₄F), 7.01-6.98 (m, 1H, C₆H₄F), 6.94-6.91 (m, 3H, C₆H₄F), 5.25 (d, ³J_{HH} = 10 Hz, 1H, H-C₅), 5.23 (d, ³J_{HH} = 13.3 Hz, 1H, H-C₃), 4.19 (dd, ³J_{HH} = 13. Hz, ³J_{HH} = 10 Hz, 1H, H-C₄), 3.74 (s, 3H, C₂-COOCH₃), 3.12 (s, 3H, C₅-COOCH₃). ¹³C NMR (CDCl₃, 75.5 MHz) δ 170.5, 169.0, 168.7, 167.6, 163.1, 162.8, 138.4, 135.4, 135.0, 134.3, 132.4, 131.0, 130.7, 130.2, 129.0, 128.4, 128.2, 127.3, 124.5, 123.8, 115.4,

115.1, 81.1, 69.3, 53.5, 53.0, 52.1, 51.6. ¹⁹F NMR (CDCl₃, 282.4 MHz) δ -112.00 (m), -112.26 (m). HRMS (ESI⁺) m/z calc for C₃₄H₂₈F₂N₂NaO₆ [M+Na]⁺ 621.1813, found 621.1812.

Synthesis of dimethyl-2-benzamido-1-benzoyl-3,4-bis(3-bromophenyl)pyrrolidine-2,5-dicarboxylate **3I**. The synthesis of **3I** was carried out following the same synthetic method than that detailed for **3a**. Therefore, δ -cyclobutane **2I** (88.0 mg, 0.12 mmol) was reacted with NaOMe (6.7 mg, 0.12 mmol) in MeOH (110 °C) for 1h to give **3I** as a single diastereoisomer after crystallization from CH₂Cl₂/pentane. Obtained: 60.5 mg (69% yield). ¹H NMR (CDCl₃, 300.13 MHz) δ 8.10 (s, 1H, NH), 7.89 (m, 2H, H_o, NHCO-C₆H₅), 7.58-7.53 (m, 4H, H_p, NHCO-C₆H₅ + H_o, N₁CO-C₆H₅ + H, C₆H₄Br), 7.48 (m, 2H, H_m, NHCO-C₆H₅), 7.39-7.33 (m, 7H, H_m, H_p, N₁CO-C₆H₅ + C₆H₄Br), 7.20-7.12 (m, 3H, C₆H₄Br), 5.23 (d, ³J_{HH} = 10 Hz, 1H, H-C₅), 5.18 (d, ³J_{HH} = 13.1Hz, 1H, H-C₃), 4.15 (dd, ³J_{HH} = 13.1 Hz, ³J_{HH} = 10 Hz, 1H, H-C₄), 3.76 (s, 3H, C₂-COOCH₃), 3.12 (s, 3H, C₅-COOCH₃). ¹³C{¹H}NMR (CDCl₃, 75.5 MHz) δ 170.5, 169.0, 168.6, 167.6, 138.1, 135.0, 134.9, 134.3, 132.4, 131.7, 131.3, 131.1, 131.6, 131.0, 130.7, 130.3, 129.0, 128.4, 128.2, 127.6, 127.3, 126.7, 123.1, 122.8, 81.2, 69.2, 53.6, 53.0, 52.1, 51.4. HRMS (ESI⁺) m/z calc for C₃₄H₂₈Br₂N₂NaO₆ [M+Na]⁺ 741.0212, found 741.0222.

Synthesis of dimethyl-2-benzamido-1-benzoyl-3,4-bis(3-(trifluoromethyl)phenyl)pyrrolidine-2,5dicarboxylate **3m**. The synthesis of **3m** was carried out following the same synthetic method than that detailed for **3a**. Therefore, δ -cyclobutane **2m** (80.5 mg, 0.13 mmol) was reacted with NaOMe (7.1 mg, 0.13 mmol) in MeOH (110 °C) for 1h to give **3m** as a single diastereoisomer after crystallization from CH₂Cl₂/pentane. Obtained: 16.4 mg (20% yield). ¹H NMR (CDCl₃, 300.13 MHz): δ 8.12 (s, 1H, NH), 7.90 (m, 2H, H₀, NHCO-C₆H₅), 7.73 (m, 1H, C₆H₄), 7.59-7.45 (m, 10H, C₆H₅ + C₆H₄), 7.39-7.31 (m, 5H, C₆H₅ + C₆H₄), 5.34 (d, ³J_{HH} = 13.1 Hz, 1H, H-C₃), 5.29 (d, ³J_{HH} = 10Hz, 1H, H-C₅), 4.32 (dd, ³J_{HH} = 13.1 Hz, ³J_{HH} = 10 Hz, 1H, H-C₄), 3.73 (s, 3H, C₂-COOCH₃), 3.12 (s, 3H, C₅-COOCH₃). ¹³C{¹H}NMR (CDCl₃, 75.5 MHz) δ 170.4, 169.0, 168.6, 167.7, 136.7, 134.9, 134.2, 133.8, 132.5, 131.1, 132.7, 130.9, 129.9, 129.4, 129.0, 128.5, 128.2, 127.3, 125.4, 124.5, 81.1, 69.2, 53.6, 52.9, 52.1, 51.6. ¹⁹F NMR (CDCl₃, 282.4 MHz) δ -62.67 (s), -62.73 (s). HRMS (ESI⁺) m/z calc for C₃₆H₂₈F₆N₂NaO₆ [M+Na]⁺ 721.1749, found 721.1757.

Synthesis of dimethyl-2-benzamido-1-benzoyl-3,4-bis(2-fluorophenyl)pyrrolidine-2,5-dicarboxylate **30**. The synthesis of **30** was carried out following the same synthetic method than that detailed for **3a**. Therefore, δ -cyclobutane **20** (62 mg, 0.10 mmol) was reacted with NaOMe (5.7 mg, 0.10 mmol) in MeOH (110 °C) for

1h to give **3o** as a mixture of two different diastereoisomers (2/1 molar ratio) after crystallization from CH₂Cl₂/pentane. Obtained: 37.7 mg (61% yield). Only the major isomer could be fully characterized by NMR spectroscopy. ¹H NMR (CDCl₃, 400.13 MHz): $\delta = 8.05$ (s, 1H, NH), 7.87 (m, 2H, H_o, NHCO-C₆H₅), 7.76 (m, 1H, H₆, C₄-C₆H₄F), 7.59 (m, 2H, H_o, N₁CO-C₆H₅), 7.52 (m, 1H, H_p, NHCO-C₆H₅), 7.45 (m, 2H, H_m, NHCO-C₆H₅), 7.38-7.29 (m, 5H, H_p, H_m, N₁CO-C₆H₅ + C₆H₄F), 7.17 (m, 2H, H₅, H₄, C₆H₄F), 7.05 (m, 1H, H₅, C₆H₄F), 6.95 (m, 2H, H₃, C₆H₄F), 5.79 (d, ³J_{HH} = 13.3 Hz, 1H, H-C₃), 5.29 (d, ³J_{HH} = 10 Hz, 1H, H-C₅), 4.70 (dd, ³J_{HH} = 13.3 Hz, ³J_{HH} = 10 Hz, 1H, H-C₄), 3.73 (s, 3H, C₂-COOCH₃), 3.13 (s, 3H, C₅-COOCH₃). ¹³C {¹H} NMR (CDCl₃, 100.6 MHz): $\delta = 170.2$, 169.0, 168.9, 167.7, 162.2, 161.3, 135.2, 134.8, 132.0, 130.9, 130.0, 129.6, 128.8, 128.4, 128.4, 128.1, 128.0, 127.3, 125.2, 124.2, 122.9, 120.2, 116.0, 115.5, 80.7, 68.7, 53.4, 52.1, 45.4, 42.8. ¹⁹F NMR (CDCl₃, 376.5 MHz) δ -115.15 (m), -119.45 (m). HRMS (ESI⁺) m/z calc for C₃₄H₂₈F₂N₂NaO₆ [M+Na]⁺ 621.1813, found 621.1820.

Synthesis of dimethyl-2-benzamido-1-benzoyl-3,4-bis(3,4-dichlorophenyl)pyrrolidine-2,5-dicarboxylate **3r**. The synthesis of **3r** was carried out following the same synthetic method than that detailed for **3a**. Therefore, δ -cyclobutane **2r** (115.3 mg, 0.18 mmol) was reacted with NaOMe (10.0 mg, 0.18 mmol) in MeOH (110 °C) for 1h to give **3r** as a single diastereoisomer after column chromatography (silica, CHCl₃ as eluent) and crystallization from CH₂Cl₂/pentane. Obtained: 62.5 mg (54% yield). ¹H NMR (CDCl₃, 500.13 MHz) δ 8.11 (s, 1H, NH), 7.91 (m, 2H, H₀, NHCO-C₆H₅), 7.63-7.54 (m, 3H, H_p, NHCO-C₆H₅ + H₀, N₁CO-C₆H₅), 7.54-7.47 (m, 3H, H_m, NHCO-C₆H₅ + H₂, C₃-C₆H₃Cl₂), 7.45-7.34 (m, 5H, H_p, H_m, N₁CO-C₆H₅ + H₅, C₄-C₆H₃Cl₂ + H₅, C₃-C₆H₃Cl₂), 7.33-7.29 (m, 2H, H₂, H₆, C₄-C₆H₃Cl₂), 7.05 (dd, 1H, H₆, C₃-C₆H₃Cl₂), 5.23 (d, ³J_{HH} = 16.4 Hz, 1H, H-C₅), 5.18 (d, ³J_{HH} = 10.2 Hz, 1H, H-C₃), 4.13 (dd, ³J_{HH} = 16.4 Hz, ³J_{HH} = 10.2 Hz, 1H, H-C₄), 3.81 (s, 3H, C₂-C(O)OCH₃), 3.16 (s, 3H, C₅-C(O)OCH₃). ¹³C{¹H}NMR (CDCl₃, 125.7 MHz) δ 170.1, 168.8, 168.3, 167.6, 135.8, 134.7, 134.0, 133.3, 133.0, 132.9, 132.7, 132.6, 132.4, 131.1, 131.0, 130.7, 130.1, 129.9, 128.9, 128.3, 128.0, 127.9, 127.2, 127.1, 80.9, 68.9, 53.5, 52.5, 52.1, 51.0. HRMS (ESI⁺) m/z calc for C₃₄H₂₆Cl₄N₂NaO₆ [M+Na]⁺ 721.0437, found 721.0418.

2.- References for the Supporting Information

(1) (a) J. Plöchl, Ueber Phenylglycidasäure (Phenyloxacrylsäure) *Chem. Ber.* 1883, 16, 2815; (b) J. Plöchl,
Ueber einige Derivate der Benzoylimidozimmtsäure. *Chem. Ber.* 1884, 17, 1623; (c) E. Erlenmeyer, Ueber
die Condensation der Hippursäure mit Phtalsäureanhydrid und mit Benzaldehyd. *Justus Liebigs Annalen der Chemie* 1893, 275, 1; (d) H. E. Carter, *Azlactones*, Chapter 5 of the book series *Organic Reactions* 1946, 3,
198; (e) R. Filler, *Advances in Heterocyclic Chemistry*, A. R. Katrizky, Editor, Academic Press, New York, 1954,
ch. 4, p. 75; (f) Y. S. Rao and R. Filler, R. Geometric Isomers of 2-Aryl(Aralkyl)-4-arylidene(alkylidene)-5(4*H*)oxazolones. *Synthesis* 1975, 12, 749; (g) C. Cativiela, M. D. Díaz de Villegas and E. Meléndez, On the
synthesis of geometric isomers of 2-methyl (or phenyl)-4-[α-arylethylidene]-5(4*H*)-oxazolones. *J. Heterocycl. Chem.* 1985, 22, 1655; (h) F. M. Bautista, J. M. Campelo, A. García, D. Luna, J. M. Marinas and A.
A. Romero, Study on dry-media microwave azlactone synthesis on different supported KF catalysts:
influence of textural and acid–base properties of supports. *J. Chem. Soc., Perkin Trans* 2, 2002, 227.

(2) (a) F. H. Burstall, Optical activity dependent on co-ordinated bivalent ruthenium. *J. Chem. Soc.* 1936, 173. (b) J. A. Broomhead, C. G. Young and P. Hood, Tris(2,2'-Bipyridine)Ruthenium(II) Dichloride Hexahydrate *Inorg. Synth.* 1982, **21**, 127.

(3) CrysAlis RED, version 1.171.27p8; Oxford Diffraction Ltd., Oxford, U.K., 2005.

(4) SAINT; Version 5.0 ed.; Bruker Analytical X-Ray Systems: Madison, WI, 1998.

(5) G. M. Sheldrick, SADABS, Program for absorption and other corrections, Göttingen University, 1996.

(6) G. M. Sheldrick, SHELXS-86, Phase annealing in SHELX-90: direct methods for larger structures. *Acta Cryst.* **1990**, *A46*, 467.

(7) G. M. Sheldrick, SHELXL-97, A short history of SHELX. Acta Cryst. 2008, A64, 112.

(8) G. M. Sheldrick, Crystal structure refinement with SHELXL. *Acta Cryst. Sect. C: Struct. Chem.* 2015,**C71**, 3.

S16

(9) Gaussian 16, Revision C.01, M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R.
Cheeseman, G. Scalmani, V. Barone, G. A. Petersson, H. Nakatsuji, X. Li, M. Caricato, A. V. Marenich, J. Bloino,
B. G. Janesko, R. Gomperts, B. Mennucci, H. P. Hratchian, J. V. Ortiz, A. F. Izmaylov, J. L. Sonnenberg, D.
Williams-Young, F. Ding, F. Lipparini, F. Egidi, J. Goings, B. Peng, A. Petrone, T. Henderson, D. Ranasinghe, V.
G. Zakrzewski, J. Gao, N. Rega, G. Zheng, W. Liang, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M.
Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, K. Throssell, J. A. Jr. Montgomery, J. E. Peralta, F.
Ogliaro, M. J. Bearpark, J. J. Heyd, E. N. Brothers, K. N. Kudin, V. N. Staroverov, T. A. Keith, R. Kobayashi, J.
Normand, K. Raghavachari, A. P. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, J. M. Millam, M. Klene,
C. Adamo, R. Cammi, J. W. Ochterski, R. L. Martin, K. Morokuma, O. Farkas, J. B. Foresman and D. J. Fox,
Gaussian, Inc., Wallingford CT, **2016**.

(10) Y. Zhao and D. G. Truhlar, The M06 suite of density functionals for main group thermochemistry, thermochemical kinetics, noncovalent interactions, excited states, and transition elements: two new functionals and systematic testing of four M06-class functionals and 12 other functionals. *Theor. Chem. Acc.*, **2008**, *120*, 215.

(11) (a) E. Cancés, B. Mennucci and J. Tomasi, A new integral equation formalism for the polarizable continuum model: Theoretical background and applications to isotropic and anisotropic dielectrics. *J. Chem. Phys.*, **1997**, *107*, 3032; (b) M. Cossi, V. Barone, B. Mennucci and J. Tomasi, Ab initio study of ionic solutions by a polarizable continuum dielectric model. *Chem. Phys. Lett.*, **1998**, *286*, 253; (c) J. Tomasi, B. Mennucci and E. Cancès, The IEF version of the PCM solvation method: an overview of a new method addressed to study molecular solutes at the QM ab initio level. *Mol. Struc.: THEOCHEM*, **1999**, *464*, 211.

3.- ¹H NMR control spectra of starting (Z)-4-arylidene-2-phenyl-5(4H)-oxazolones 1a-1u

¹H NMR (CD₂Cl₂, 300.13 MHz) spectrum of oxazolone **1b**

¹H NMR (CD₂Cl₂, 300.13 MHz) spectrum of oxazolone **1c**

 ^1H NMR (CDCl₃, 300.13 MHz) spectrum of oxazolone 1d

8.5

9.0

9.5

2.03] 2.06]

8.0

3.18-2.08-

f1 (ppm)

7.5

1.00-I

7.0

6.5

6.0

5.

 ^1H NMR (CDCl_3, 300.13 MHz) spectrum of oxazolone 1h

 ^1H NMR (CDCl₃, 300.13 MHz) spectrum of oxazolone 1j

 ^1H NMR (CDCl₃, 300.13 MHz) spectrum of oxazolone 1r

¹H NMR (CDCl₃, 300.13 MHz) spectrum of oxazolone **1t**

4.- Copies of NMR spectra of delta-1,2-diaminotruxinic derivatives 2a-2u

¹H NMR spectrum (CDCl₃, 300.13 MHz) of **2a** (* = ethyl acetate).

¹³C{¹H} (APT) NMR spectrum (CDCl₃, 75.5 MHz) of **2a**

 $^{13}\text{C}\{^1\text{H}\}$ (APT) NMR spectrum (CDCl₃, 75.5 MHz) of 2b

 $^1\text{H-}^{13}\text{C}$ HSQC (CDCl₃) correlation spectrum of 2b

¹H-¹³C HMBC (CDCl₃) correlation spectrum of **2b**

¹³C{¹H} (APT) NMR spectrum (CDCl₃, 75.5 MHz) of **2c**

 $^1\text{H-}^{13}\text{C}$ HSQC (CDCl₃) correlation spectrum of 2c

 $^1\text{H-}{}^{13}\text{C}$ HMBC (CDCl_3) correlation spectrum of 2c

 $^{13}\text{C}\{^1\text{H}\}$ (APT) NMR spectrum (CDCl₃, 75.5 MHz) of 2d

(

 $^1\text{H-}^{13}\text{C}$ HMBC (CDCl₃) correlation spectrum of 2d

- 4.84

 $^{13}\text{C}\{^1\text{H}\}$ (APT) NMR spectrum (CDCl₃, 75.5 MHz) of 2e

Ċ

¹H-¹³C HMBC (CDCl₃) correlation spectrum of **2e**

¹H NMR spectrum (CDCl₃, 300.13 MHz) of **2f** (* = ethyl acetate).

 $^1\text{H-}^{13}\text{C}$ HSQC (CDCl₃) correlation spectrum of 2f

 $^1\text{H-}^{13}\text{C}$ HSQC (CDCl3) correlation spectrum of 2g

 $^1\text{H-}^{13}\text{C}$ HSQC (CDCl₃) correlation spectrum of 2h

S45

 $^1\text{H-}^{13}\text{C}$ HMBC (CDCl_3) correlation spectrum of 2i

8.0

7.5

7.0

6.5

9.0

6.0 5.5 f2 (ppm)

5.0

4.5

4.0

3.5

3.0

2.5

 $^1\text{H-}^{13}\text{C}$ HMBC (CDCl_3) correlation spectrum of 2I

 ^1H NMR spectrum (CDCl_3, 300.13 MHz) of 2m

 $^1\text{H-}^{13}\text{C}$ HSQC (CDCl3) correlation spectrum of 2m

 $^{19}\mathsf{F}$ NMR spectrum (CDCl₃, 282.40 MHz) of 2m

— 3.87 — 3.67

 $^1\text{H-}^{13}\text{C}$ HMBC (CDCl₃) correlation spectrum of 2n

 $^{13}\text{C}\{^1\text{H}\}$ (APT) NMR spectrum (CDCl₃, 75.5 MHz) of 2o

 $^1\text{H-}^{13}\text{C}$ HMBC (CDCl₃) correlation spectrum of 2o

S61

 $^1\text{H-}^{13}\text{C}$ HSQC (CDCl₃) correlation spectrum of 2p

¹H NMR spectrum (CDCl₃, 300.13 MHz) of **2r** (* = ethyl acetate)

 $^1\text{H-}^{13}\text{C}$ HSQC (CDCl_3) correlation spectrum of 2r

\sim 170.87 \sim 164.11 \sim 164.143 \sim 161.43 \sim 161.43 \sim 151.83 \sim 152.82 \sim 122.28 \sim 122.28 \sim 122.29 \sim 122.29

 $^1\text{H-}^{13}\text{C}$ HSQC (CDCl₃) correlation spectrum of 2s

10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 f1 (ppm)

$^{19}\text{F}\{^1\text{H}\}$ NMR spectrum (CDCl₃, 282.40 MHz) of 2s

 $^1\text{H-}^{13}\text{C}$ HMBC (CDCl₃) correlation spectrum of $2t^*$

¹H-¹³C HSQC (CDCl₃) correlation spectrum of **2u**

 $^1\text{H-}^{13}\text{C}$ HMBC (CDCl_3) correlation spectrum of 2u

5.- ¹H NMR spectra of crudes during the synthesis of cyclobutanes 2a-2u (after washing with water, before column chromatography)

¹H NMR spectrum (CDCl₃, 300.13 MHz) of crude of **2b**

 ^1H NMR spectrum (CDCl_3, 300.13 MHz) of crude of 2d

 ^1H NMR spectrum (CDCl_3, 300.13 MHz) of crude of 2f

 ^1H NMR spectrum (CDCl_3, 300.13 MHz) of crude of 2h

 ^1H NMR spectrum (CDCl_3, 300.13 MHz) of crude of 2j

¹H NMR spectrum (CDCl₃, 300.13 MHz) of crude of **2**I

 ^1H NMR spectrum (CDCl_3, 300.13 MHz) of crude of 2p

 ^1H NMR spectrum (CDCl_3, 300.13 MHz) of crude of 2r

 ^1H NMR spectrum (CDCl_3, 300.13 MHz) of crude of 2t

 ^1H NMR spectrum (CDCl₃, 300.13 MHz) of crude of 2u

6.- Copies of NMR spectra of the pyrrolidine derivatives 3a-3r

 $^1\text{H-}^{13}\text{C}$ HSQC (CDCl_3) correlation spectrum of 3a (mixture of diastereomers)

 ^1H NMR spectrum (CDCl_3, 300.13 MHz) of 3d

$^{13}\text{C}\{^{1}\text{H}\}$ (APT) NMR spectrum (CDCl₃, 75.5 MHz) of 3d

(1812) (1713)

¹H NMR spectrum (CDCl₃, 300.13 MHz) of **3e**

 $^1\text{H-}^{13}\text{C}$ HSQC (CDCl₃) correlation spectrum of 3e

-113.42 -113.45 -113.45 -113.47 -113.49 -113.50

-113.86 -113.88 -113.89 -113.91

¹H-¹³C HMBC (CDCl₃) correlation spectrum of **3e**

 $^{19}\mathsf{F}$ NMR spectrum (CDCl_3, 282.4 MHz) of 3e

¹H NMR spectrum (CDCl₃, 400.13 MHz) of **3g** (mixture of diastereomers)

¹H NMR spectrum (CDCl₃, 400.13 MHz) of **3g** (mixture of diastereomers, zoom of the aliphatic part)

 $^1\text{H-}^{13}\text{C}$ HSQC (CDCl₃) correlation spectrum of **3g** (mixture of diastereomers)

813
7,35

7,35
7,55

7,35
7,55

7,35
7,55

7,35
7,55

7,35
7,55

7,35
7,55

7,35
7,55

7,35
7,55

7,35
7,35

7,35
7,35

7,35
7,35

7,35
7,35

7,35
7,35

7,33
7,35

7,33
7,35

7,33
7,35

7,33
7,35

7,33
7,35

7,33
7,35

7,33
7,35

7,33
7,35

7,33
7,35

7,33
7,32

7,33
7,33

7,33
7,33

7,33
7,33

7,33
7,33

7,33
7,33

7,33
7,33

7,33
7,33

7,34
7,33

7,35</td

 ^1H NMR spectrum (CDCl₃, 300.13 MHz) of 3h

 $^1\text{H-}^{13}\text{C}$ HSQC (CDCl3) correlation spectrum of 3h

 $^1\text{H-}^{13}\text{C}$ HMBC (CDCl₃) correlation spectrum of 3h

 $^{19}\mathsf{F}\,\mathsf{NMR}$ spectrum (CDCl₃, 282.4 MHz) of 3h

5.25 5.25 5.23 5.23 4.17 4.17 - 3.12

 ^1H NMR spectrum (CDCl_3, 300.13 MHz) of 3k (mixture of isomers)

¹H NMR spectrum (CDCl₃, 300.13 MHz) of **3k** (mixture of isomers, zoom of the aliphatic part)

¹H-¹³C HSQC (CDCl₃) correlation spectrum of **3k** (mixture of isomers)

¹H-¹³C HMBC (CDCl₃) correlation spectrum of **3k** (mixture of isomers)

-111.96 -111.98 -111.98 -111.00 -112.01 -112.04 -112.04 -112.25 -112.2

 $^{19}\mathsf{F}$ NMR spectrum (CDCl₃, 282.4 MHz) of **3k** (mixture of isomers)

¹³C{¹H} (APT) NMR spectrum (CDCl₃, 75.5 MHz) of **3I**

 $^1\text{H-}^{13}\text{C}$ HMBC (CDCl_3) correlation spectrum of 3I

 $^1\text{H-}^{13}\text{C}$ HMBC (CDCl₃) correlation spectrum of 3m

 ^1H NMR spectrum (CDCl₃, 400.13 MHz) of 3o (mixture of isomers)

S105

¹H-¹³C HMBC (CDCl₃) correlation spectrum of **30** (mixture of isomers)

$\int_{-115.12}^{-115.12} \int_{-115.15}^{-115.12} \int_{-115.15}^{-115.13} \int_{-115.18}^{-115.18} \int_{-119.42}^{-119.42} \int_{-119.45}^{-119.45} \int_{-119.45}^{-119.45$

¹H NMR spectrum (CDCl₃, 500.13 MHz) of **3r**

 $^1\text{H-}^{13}\text{C}$ HSQC (CDCl₃) correlation spectrum of 3r

 $^1\text{H-}^{13}\text{C}$ HMBC (CDCl_3) correlation spectrum of 3r

7.- Cartesian coordinates and energies of the anionic species calculated by DFT methods

Table S1. Energies of the computed structures in Figure 12 of the manuscript

Cartesian coordinates of the optimized structures are shown below:

2a Anion

	Standard orientation:							
Center Atomic Atomic Coordinates (Angstr								
Ν	Number Nu	mber 1	Type X	Y	Z			
1	6	0	0.654666	-0.434501	-0.426514			
2	6	0	0.353527	1.085837	-0.726792			
3	6	0	-0.338979	1.170072	0.652360			
4	6	0	-0.553301	-0.372823	0.591299			
5	1	0	0.411320	1.343035	1.424141			
6	6	0	-1.520172	2.069186	0.870341			
7	6	0	-2.481781	2.286257	-0.120695			
8	6	0	-1.700885	2.677951	2.116032			
9	6	0	-3.603927	3.070882	0.134896			
10) 1	0	-2.365887	1.840980	-1.102694			
11	16	0	-2.817214	3.465869	2.373874			
14		0	-0.959958	2.518245	2.892602			
1:	3 6	0	-3.///51/	3.660310	1.383422			
10	+ 1 = 1	0	-4.341889	3.221031	-0.644/31			
14	5 1	0	-2.939079	J.JZ/ZZJ	1 591661			
17	7 6	0	-4.030103 0 379/153	4.271322	-1 597/98			
18	2 2	0	-0 223921	-1.051820	-2 599438			
19) 8	0	0.744248	-2.626277	-1.347601			
20) 6	0	0.487721	-3.569629	-2.391882			
21	í 1	0	1.030878	-3.284011	-3.293068			
22	2 1	0	0.844232	-4.526277	-2.020659			
23	3 1	0	-0.579708	-3.617393	-2.607985			
24	16	0	-0.319931	-1.122616	1.891808			
25	5 8	0	0.055362	-0.609627	2.913860			
26	5 8	0	-0.542307	-2.428060	1.753647			
27	76	0	-0.329037	-3.219783	2.927114			
28	31	0	-0.994434	-2.890677	3.725433			
29) 1	0	-0.555475	-4.242569	2.639969			
30	0 1	0	0.706853	-3.135177	3.255178			
31	16	0	1.464535	2.038393	-1.048078			
32	2 6	0	1.503120	2.658598	-2.300025			
3:	3 b	0	2.4/6854	2.331546	-0.128185			
24	+ 0	0	2.531001	3.333130	2 020079			
24	5 6	0	2 500021	2.444045	-3.020378			
3	50 71	0	2 470395	1 856384	0.404373			
38	, <u>-</u> 3 6	0	3 543243	3 804010	-1 719969			
39) ()) ()	0	2.543418	4.001443	-3.615044			
40) 1	0	4.291817	3.410188	0.257299			
41	1 1	0	4.348164	4.482082	-1.978804			
42	2 1	0	-0.391195	1.124683	-1.523726			
43	37	0	-1.794915	-0.765486	-0.039001			
44	47	0	1.875859	-0.668469	0.274130			
45	5 1	0	-1.835932	-0.744077	-1.050007			
46	56	0	2.921247	-0.752478	-0.525926			
47	76	0	-2.965286	-0.780078	0.650138			
48	38	0	-3.010063	-0.619182	1.861462			
49	98	0	2.912109	-0./30689	-1./85837			
50	л б Г с	U	-4.199486	-1.009889	-0.169203			
51		0	-2.39/930	-0.4/3489	0.302022			
52		0	-4.103019	-1.750428	-1.304904 -0 122786			
50	, U 1 1	n	-5 292700	0.041000	1 224270			
55	5 6	0	-5.361424	-1.907978	-2.083958			
-				-				

56	1	0	-3.265740	-2.180954	-1.727585
57	6	0	-6.552975	-1.359784	-1.617610
58	1	0	-7.497334	-0.214503	-0.060389
59	1	0	-5.348329	-2.478069	-3.004891
60	1	0	-7.468068	-1.495337	-2.181755
61	6	0	4.258386	-0.888079	0.175595
62	6	0	5.401680	-1.157907	-0.577260
63	6	0	4.384144	-0.720551	1.557539
64	6	0	6.647015	-1.271583	0.035933
65	1	0	5.297498	-1.276217	-1.648953
66	6	0	5.627467	-0.827657	2.172525
67	1	0	3.495172	-0.503528	2.137276
68	6	0	6.763475	-1.105747	1.413432
69	1	0	7.526449	-1.486473	-0.560605
70	1	0	5.713185	-0.692640	3.244904
71	1	0	7.731904	-1.190093	1.893091

TS1

Center	Atom	ic Ato	mic	Coordinates	(Angstroms)
Num	nber	Number	Туре	Х	Y Z
	 6	 0	1 111025	-0 305001	1 106107
2	6	0	0 722587	0.303334	0.155659
2	6	0	-0 718905	1 321443	0 348150
4	6	0	-1.624003	0.074555	0.241488
5	1	0	-0.838455	1.713515	1.359344
6	6	0	-1.118419	2.392183	-0.643647
7	6	0	-1.813774	3.518756	-0.200886
8	6	0	-0.866244	2.259803	-2.012050
9	6	0	-2.248983	4.491308	-1.097929
10	1	0	-2.017022	3.633184	0.859551
11	6	0	-1.295055	3.230778	-2.911266
12	1	0	-0.336981	1.390258	-2.387916
13	6	0	-1.989210	4.350225	-2.457406
14	1	0	-2.787177	5.358646	-0.733488
15	1	0	-1.089092	3.112321	-3.968761
16	1	0	-2.323146	5.105777	-3.158721
17	6	0	1.004580	-0.021881	2.593893
18	8	0	0.677149	1.048613	3.045162
19	8	0	1.357915	-1.057696	3.340928
20	6	0	1.226546	-0.871055	4.753802
21	1	0	0.189220	-0.650290	5.006189
22	1	0	1.536757	-1.809191	5.204572
23	1	0	1.865869	-0.054884	5.089581
24	6	0	-3.068489	0.508613	0.465476
25	8	0	-3.548235	0.797465	1.535169
26	8	0	-3.755059	0.565582	-0.679508
27	6	0	-5.122705	0.970973	-0.567490
28	1	0	-5.185976	1.973717	-0.144012
29	1	0	-5.520046	0.958003	-1.578618
30	1	0	-5.667402	0.268974	0.065062
31	6	0	1.791111	1.911446	0.217624
32	6	0	2.966065	1.730918	-0.516454
33	6	0	1.647278	3.075279	0.974506
34	6	0	3.980716	2.682941	-0.491036
35	1	0	3.088180	0.836187	-1.120104
36	6	0	2.657397	4.032861	0.996401
37	1	0	0.748449	3.233040	1.556997
38	6	0	3.828034	3.839773	0.267542
39	1	0	4.883784	2.523519	-1.068785
40	1	0	2.529068	4.932593	1.587014

41	1	0	4.612654	4.586936	0.287710
42	1	0	0.777821	0.385447	-0.841929
43	7	0	-1.149113	-0.865057	1.230385
44	7	0	1.834883	-1.305083	0.757429
45	6	0	1.926476	-1.765264	-0.539721
46	6	0	-1.587079	-2.113870	1.186058
47	8	0	-1.188891	-3.028593	1.941013
48	8	0	0.950022	-2.015799	-1.229227
49	6	0	-2.676740	-2.482599	0.193251
50	6	0	-4.011570	-2.486005	0.600396
51	6	0	-2.358804	-2.829222	-1.120853
52	6	0	-5.020486	-2.826237	-0.297314
53	1	0	-4.260777	-2.212964	1.620960
54	6	0	-3.367851	-3.175758	-2.015838
55	1	0	-1.320134	-2.810468	-1.434955
56	6	0	-4.700469	-3.171234	-1.608012
57	1	0	-6.055367	-2.821448	0.026194
58	1	0	-3.115182	-3.445294	-3.035209
59	1	0	-5.484526	-3.435738	-2.307964
60	6	0	3.318134	-2.032042	-1.027263
61	6	0	3.493033	-2.515491	-2.325290
62	6	0	4.432574	-1.768225	-0.228102
63	6	0	4.772265	-2.738041	-2.819688
64	1	0	2.619229	-2.710181	-2.935148
65	6	0	5.712407	-1.989623	-0.725131
66	1	0	4.289182	-1.393656	0.778192
67	6	0	5.882780	-2.475045	-2.019580
68	1	0	4.905790	-3.114024	-3.826912
69	1	0	6.575938	-1.786228	-0.103385
70	1	0	6.880574	-2.648607	-2.405261
71	1	0	-1.555640	-0.305433	-0.785574

Int A

Cen	Center Atomic Atomic Coordinates (Angstroms)						
Num	nber Nur	nber T	ype X	Y	Z		
1	6	0	0.796142	0.084938	-0.795724		
2	6	0	0.731932	-1.201244	0.114936		
3	6	0	-0.745640	-1.608122	0.100921		
4	6	0	-1.445258	-0.231355	0.135226		
5	1	0	-0.993062	-2.064722	-0.861171		
6	6	0	-1.152073	-2.530431	1.221329		
7	6	0	-1.735119	-3.766121	0.941292		
8	6	0	-0.952332	-2.165629	2.556915		
9	6	0	-2.111624	-4.625635	1.971581		
10	1	0	-1.894836	-4.057783	-0.091841		
11	6	0	-1.328199	-3.020820	3.586393		
12	1	0	-0.502629	-1.205226	2.791771		
13	6	0	-1.908707	-4.254692	3.296365		
14	1	0	-2.562250	-5.582951	1.737144		
15	1	0	-1.168760	-2.725465	4.616874		
16	1	0	-2.200594	-4.920711	4.099722		
17	6	0	1.069285	-0.384585	-2.236722		
18	8	0	0.229546	-0.901875	-2.934475		
19	8	0	2.341773	-0.272843	-2.599678		
20	6	0	2.675098	-0.867811	-3.858415		
21	1	0	2.108444	-0.399347	-4.662725		
22	1	0	3.739646	-0.696950	-3.992229		
23	1	0	2.458866	-1.936798	-3.831863		
24	6	0	-2.880608	-0.382498	-0.336987		
25	8	0	-3.226031	-0.585572	-1.472909		

26	8	0	-3.721915	-0.322439	0.693304
27	6	0	-5.112492	-0.457170	0.370447
28	1	0	-5.300482	-1.424931	-0.093557
29	1	0	-5.643438	-0.375215	1.314157
30	1	0	-5.409822	0.342904	-0.308309
31	6	0	1.732793	-2.275012	-0.231089
32	6	0	2.983907	-2.251218	0.392384
33	6	0	1.477559	-3.275086	-1.173730
34	6	0	3.962003	-3.187441	0.073062
35	1	0	3.188877	-1.482219	1.130303
36	6	0	2.453176	-4.216672	-1.492253
37	1	0	0.518180	-3.320208	-1.675919
38	6	0	3.699334	-4.174103	-0.873864
39	1	0	4.926659	-3.148856	0.565694
40	1	0	2.237158	-4.984952	-2.225773
41	1	0	4.457479	-4.907102	-1.123373
42	1	0	0.962557	-0.828977	1.113530
43	7	0	-0.608119	0.564314	-0.747566
44	7	0	1.775511	1.028090	-0.358416
45	6	0	1.568885	1.588097	0.817244
46	6	0	-0.965082	1.685541	-1.416007
47	8	0	-0.270451	2.168378	-2.304822
48	8	0	0.604151	1.415789	1.613189
49	6	0	-2.239663	2.355868	-0.991450
50	6	0	-3.177836	2.736680	-1.950388
51	6	0	-2.445987	2.660297	0.353738
52	6	0	-4.338020	3.393516	-1.559259
53	1	0	-2.998799	2.502600	-2.993526
54	6	0	-3.599997	3.338315	0.739305
55	1	0	-1.691214	2.3///15	1.082205
56	6	0	-4.549420	3.694561	-0.213698
57	1	0	-5.076877	3.6/405/	-2.300489
58	1	0	-3./5/3//	3.585578	1.782468
59	1	0	-5.452551	4.211/54	0.088545
60	6	0	2.653251	2.56/144	1.244616
61	6	0	2.536359	3.219051	2.472800
62	6	0	3.767983	2.834179	0.445169
63	0	0	3.510370	4.119651	2.897755
04 65	1	0	1.009052	3.00/5/8	3.080949
60	1	0	4.745005	5./520/5 1 227720	0.000510
67	т 6	0	5.652106	2.527750	2 005214
68	0 1	0	4.010113 2 //15176	4.576700	2.055214
60	1 1	n n	5 602/15	3 030383	0.034401
70	1 1	n n	5 277722	5 070117	2 1220121
70	1	0	-1 422052	0 167702	2.422937
, <u> </u>	ـــــــــــــــــــــــــــــــــــــ		1.752050		

Int B

Center Atomic Atomic Coordinates (Angstroms)								
Number Number			ype X	Y	Z			
1	6	0	0.237332	0.289552	0.351005			
2	6	0	-1.089634	-0.525207	0.544453			
3	6	0	-1.847991	-0.258236	-0.756515			
4	6	0	-1.632827	1.257257	-0.939371			
5	1	0	-1.314708	-0.738390	-1.580781			
6	6	0	-3.293703	-0.694933	-0.796045			
7	6	0	-4.120506	-0.634902	0.329253			
8	6	0	-3.841558	-1.127860	-2.005043			
9	6	0	-5.464858	-0.985736	0.240691			
10	1	0	-3.721679	-0.309414	1.283788			

11	6	0	-5.184737	-1.480487	-2.096632
12	1	0	-3.207647	-1.184520	-2.884273
13	6	0	-6.002349	-1.406885	-0.972482
14	1	0	-6.091884	-0.932634	1.123191
15	1	0	-5.591071	-1.813847	-3.044426
16	1	0	-7.048427	-1.681409	-1.039482
17	6	0	0.704287	0.781699	1.751211
18	8	0	0.036073	0.718026	2.754930
19	8	0	1.896437	1.360407	1.709542
20	6	0	2.397477	1.869379	2.945072
21	1	0	2.528016	1.054964	3.658895
22	1	0	3 353841	2 327700	2 706149
23	1	0	1 712981	2 611384	3 357592
24	6	Ő	-2 669931	2.069429	-0 177552
25	8	0 0	-2 609309	2 351480	0.992149
26	8	0	-3 699251	2.331400	-0.96/33/
20	6	0	-1 811166	2.07/838	-0 317014
27	1	0	-4.514400	2 0/6526	0.137176
20	1	0	-4.308287	2 177627	1 007029
29	1	0	-5.550151	3.177027	-1.097058
30	I C	0	-5.210008	2.338838	0.447419
31	6	0	-0.935445	-1.983344	0.885950
32	6	0	-1.213856	-2.41/868	2.182619
33	6	0	-0.542177	-2.928040	-0.065/36
34	6	0	-1.073583	-3./56/40	2.535063
35	1	0	-1.523070	-1.689689	2.925335
36	6	0	-0.395477	-4.267297	0.283653
37	1	0	-0.323099	-2.614330	-1.079320
38	6	0	-0.656184	-4.686334	1.586203
39	1	0	-1.288042	-4.073611	3.549382
40	1	0	-0.078398	-4.986010	-0.463674
41	1	0	-0.542263	-5.729704	1.856881
42	1	0	-1.620947	-0.035490	1.361447
43	7	0	-0.287370	1.469490	-0.424311
44	7	0	1.224486	-0.395264	-0.416508
45	6	0	2.010096	-1.212336	0.256218
46	6	0	0.249823	2.690355	-0.704121
47	8	0	-0.471569	3.575516	-1.165605
48	8	0	2.004313	-1.440420	1.493848
49	6	0	1.708108	2.975553	-0.513981
50	6	0	2.061568	4.130289	0.183753
51	6	0	2.691527	2.184250	-1.102641
52	6	0	3.401146	4.468342	0.335662
53	1	0	1.284643	4,749534	0.617882
54	6	0	4 030578	2 540749	-0.971176
55	1	0	2 405835	1 281608	-1 626317
56	6	0	1 388274	3 672313	-0 242648
57	1	0	3 675385	5 3529/8	0.242040
58	1	0	4 796665	1 028300	-1 /3307/
50	1	0	4.790003 5.422006	2 020222	0 121196
59	6	0	2.433090	1 020602	0.131180
60	0	0	3.03/31/	-1.959005	-0.595670
61	6	0	3.919562	-2.830640	0.018661
62	6	0	3.128117	-1./45/39	-1.975101
63	б	0	4.8/5932	-3.513648	-0.728/6/
64	1	0	3.842245	-2.9/6502	1.089148
65	6	0	4.082576	-2.425722	-2./25310
66	1	0	2.438525	-1.058574	-2.449370
67	6	0	4.960656	-3.312594	-2.103958
68	1	0	5.554813	-4.202716	-0.239043
69	1	0	4.142472	-2.265906	-3.796054
70	1	0	5.703964	-3.842909	-2.688183
71	1	0	-1.690139	1.550335	-1.987945

TS2 *R,S*

Standard orientation:

Number Number Type X Y Z 1 6 0 1.111935 -0.305994 1.106107 2 6 0 -0.718905 1.321443 0.348150 4 6 0 -1.624003 0.074555 0.241488 5 1 0 -0.838455 1.713515 1.359344 6 6 0 -1.813774 3.518756 -0.200886 8 6 0 -0.866244 2.259803 -2.012050 9 6 0 -2.248983 4.491308 -1.09729 10 1 0 -2.017022 3.633184 0.859551 11 6 0 -1.89201 4.350225 -2.457406 14 1 0 -2.787177 5.358646 -0.733488 15 1 0 1.089029 3.112321 -3.66761 15 1 0 1.226546 -0.871055 4.753802 16						
Number Nyber X 1 2 1 6 0 1.111935 -0.305994 1.106107 2 6 0 -0.72587 0.825845 0.155659 3 6 0 -0.718905 1.321443 0.348150 4 6 0 -1.624003 0.074555 0.241488 5 1 0 -0.838455 1.713515 1.359344 6 6 0 -1.813774 3.518756 -0.200886 8 6 0 -0.866244 2.259803 -0.017022 3.633184 0.859551 11 6 0 -1.295055 3.230778 -2.911266 12 1 0 -2.787177 5.358646 -0.733488 15 1 0 -1.289020 3.105221 -3.968761 16 1 0 -2.323146 5.105777 -3.158721 17 6 0 1.04580 -0.021881 2.593893	Center	Aton mber	Numbe	omic ar Type	Coordinate	s (Angstroms) v 7
1 6 0 1.111935 0.305994 1.106107 2 6 0 0.722587 0.825845 0.155659 3 6 0 -1.624003 0.074555 0.241488 5 1 0 -0.838455 1.13515 1.359344 6 6 0 -1.118419 2.392183 -0.643647 7 6 0 -2.248983 4.491308 -1.097029 9 6 0 -2.248983 4.491308 -1.09729 10 1 0 -2.017022 3.633184 0.859551 11 6 0 -1.295055 3.230778 -2.911266 12 1 0 -2.37217 -3.58646 0.73348 15 1 0 -1.28717 -3.58761 1.345121 15 1 0 -1.23146 5.105777 -3.158721 17 6 0 1.004580 -0.021881 2.593893 18 <td></td> <td></td> <td></td> <td></td> <td>~</td> <td>····</td>					~	····
2 6 0 0.722587 0.825845 0.155659 3 6 0 -0.718905 1.321443 0.348150 4 6 0 -1.624003 0.074555 0.241488 5 1 0 -0.838455 1.713515 1.359344 6 0 -1.813774 3.518756 -0.200886 8 6 0 -0.248983 4.91308 -1.097929 10 1 0 -2.248983 4.035025 -2.387166 12 1 0 -0.366841 1.390258 -2.387916 13 6 0 -1.989210 4.350225 -2.457406 14 1 0 -2.323146 5.105777 -3.158721 17 6 0 1.048680 -0.021881 2.593893 18 8 0 0.677149 1.048613 3.045162 19 8 0 1.526576 1.830161 2.457802 21 <t< td=""><td>1</td><td>6</td><td>0</td><td>1.111935</td><td>-0.305994</td><td>1.106107</td></t<>	1	6	0	1.111935	-0.305994	1.106107
3 6 0 -0.718905 1.321443 0.348150 4 6 0 -1.624003 0.074555 0.241488 5 1 0 -0.838455 1.713515 1.359344 6 6 0 -1.118419 2.392183 -0.643647 7 6 0 -1.813774 3.518756 -0.200886 8 6 0 -2.248983 4.491308 -1.07929 10 1 0 -2.248981 1.330258 -2.312166 12 1 0 -0.336981 1.330228 -2.387916 13 6 0 -1.285055 3.230778 -2.911266 12 1 0 -2.32146 5.105777 -3.158721 16 1 0 -2.32146 5.105777 -3.158721 17 6 0 1.307575 -1.809191 5.204572 21 1 0 1.386757 -1.809191 5.204572	2	6	0	0.722587	0.825845	0.155659
4 6 0 -1.624003 0.074555 0.241488 5 1 0 -0.838455 1.713515 1.359344 6 0 -1.118419 2.392183 -0.636647 7 6 0 -2.88933 4.491308 -1.097929 10 1 0 -2.017022 3.633184 0.859551 11 6 0 -1.295055 3.230778 -2.911266 12 1 0 -2.3787177 5.358646 -0.733488 15 1 0 -1.089092 3.112321 -3.968761 16 1 0 -2.323146 5.105777 -3.158721 17 6 0 1.004580 -0.021881 2.593893 18 8 0 0.677149 1.048613 3.04928 20 6 0 1.26546 -0.871055 4.753802 21 1 0 1.89205 0.565582 -0.679508 22	3	6	0	-0.718905	1.321443	0.348150
5 1 0 -0.838455 1.713515 1.359344 6 0 -1.118419 2.392183 -0.643647 7 6 0 -0.866244 2.259803 -2.012050 9 6 0 -2.248883 4.491308 -1.097929 10 1 0 -2.248983 4.491308 -1.097929 10 1 0 -2.248983 4.391308 -2.911266 12 1 0 -0.369210 4.350225 -2.87717 13 6 0 -1.089092 3.112321 -3.968761 16 1 0 -2.323146 5.105777 -3.158721 17 6 0 1.026546 -0.871055 4.753802 21 1 0 1.85689 -0.54844 5.089581 22 1 0 1.85689 0.56582 -0.679508 22 1 0 -5.126046 0.98003 -1.578618 24	4	6	0	-1.624003	0.074555	0.241488
6 6 0 -1.118419 2.392183 -0.643647 7 6 0 -1.813774 3.518756 -0.200886 8 6 0 -2.248983 4.491308 -1.097929 10 1 0 -2.218923 3.230778 -2.911266 12 1 0 -0.336981 1.390258 -2.387916 13 6 0 -1.295055 3.230778 -2.911266 14 1 0 -2.787177 5.358646 -0.73448 15 1 0 -1.089092 3.112321 -3.968761 16 1 0 -2.323146 5.105777 -3.158721 17 6 0 1.004580 -0.021881 2.593893 18 8 0 0.677149 1.048613 3.045162 19 8 0 1.35757 1.809191 5.204572 23 1 0 1.536757 1.809191 5.204576	5	1	0	-0.838455	1.713515	1.359344
7 6 0 -1.813774 3.518756 -0.200886 8 6 0 -0.866244 2.259803 -2.01702 9 6 0 -2.248983 4.491308 -1.097929 10 1 0 -2.217022 3.633184 0.859551 11 6 0 -1.295055 3.230778 -2.911266 12 1 0 -0.336981 1.390258 -2.38716 13 6 0 -1.295055 3.230778 -2.911266 14 1 0 -2.787177 5.358646 -0.733488 15 1 0 -1.089902 3.112321 -3.06871 16 1 0 -2.323146 5.105777 -3.15821 17 6 0 1.30757 -1.801919 5.204572 23 1 0 1.85569 -0.05484 5.089581 24 6 0 -3.068489 0.505613 0.465476	6	6	0	-1.118419	2.392183	-0.643647
8 6 0 -0.866244 2.259803 -2.012050 9 6 0 -2.248983 4.491308 -1.097929 10 1 0 -2.017022 3.633184 0.859551 11 6 0 -1.295055 3.230778 -2.911266 12 1 0 -0.36981 1.390258 -2.457406 14 1 0 -2.787177 5.358646 -0.733488 15 1 0 -1.089092 3.112321 -3.968761 16 1 0 -2.323146 5.105777 -3.158721 17 6 0 1.04580 -0.07149 1.048613 3.045162 19 8 0 0.677149 1.048613 3.045162 19 8 0 1.535765 1.535169 21 1 0 1.86589 0.050813 0.465476 25 8 0 -3.548235 0.797455 1.535169 <	7	6	0	-1.813774	3.518756	-0.200886
9 6 0 -2.248983 4.491308 -1.097929 10 1 0 -2.017022 3.633184 0.859551 11 6 0 -1.295055 3.230778 2.911266 12 1 0 -0.336981 1.390258 -2.387161 13 6 0 -1.989210 4.350225 -2.457406 14 1 0 -2.787177 5.358646 -0.733488 15 1 0 -1.089092 3.112321 -3.968761 16 1 0 -2.323146 5.105777 -3.158721 17 6 0 1.357915 -1.057696 3.40928 20 6 0 1.326577 -1.809191 5.204572 23 1 0 1.85869 -0.50484 5.089581 24 6 0 -3.648235 0.797455 1.535169 25 8 0 -3.548235 0.797456 1.535169	8	6	0	-0.866244	2.259803	-2.012050
10 1 0 -2.017022 3.633184 0.859551 11 6 0 -1.295055 3.230778 -2.911266 12 1 0 -0.336981 1.390258 -2.387916 13 6 0 -1.989210 4.350225 -2.457406 14 1 0 -2.787177 5.358646 -0.733488 15 1 0 -1.089092 3.112321 -3.968761 16 1 0 -2.323146 5.105777 -3.158721 17 6 0 1.004580 -0.021881 2.593893 18 8 0 0.677149 1.048613 3.045162 19 8 0 1.536757 +1.80191 5.204572 23 1 0 1.865869 -0.54884 5.089581 24 6 0 -3.068489 0.50582 -0.67900 25 8 0 -3.548235 0.797465 1.535169	9	6	0	-2.248983	4.491308	-1.097929
11 6 0 -1.295055 3.230778 -2.911266 12 1 0 -0.336981 1.390258 -2.387916 13 6 0 -1.989210 4.350225 -2.457406 14 1 0 -2.787177 5.358646 -0.733488 15 1 0 -2.323146 5.105777 -3.158721 16 1 0 -2.323146 5.105777 -3.158721 17 6 0 1.004580 -0.021881 2.593893 18 8 0 0.677149 1.048613 3.045162 19 8 0 1.357915 -1.057696 3.340928 20 6 0 1.26546 -0.871055 4.753802 21 1 0 1.865869 -0.50484 5.089581 24 6 0 -3.054849 5.05582 -0.679508 27 6 0 5.122705 0.97073 -5.56440	10	1	0	-2.017022	3.633184	0.859551
12 1 0 -0.336981 1.390258 -2.387916 13 6 0 -1.989210 4.350225 -2.457406 14 1 0 -2.787177 5.358646 -0.733488 15 1 0 -2.323146 5.105777 -3.158721 17 6 0 1.004580 -0.021881 2.593893 18 8 0 6.677149 1.048613 3.045162 19 8 0 1.357915 -1.057696 3.340928 20 6 0 1.226546 -0.871055 4.753802 21 1 0 0.189220 -0.650290 5.006189 22 1 0 1.865869 -0.054844 5.089581 24 6 0 -3.068489 0.508613 0.465476 25 8 0 -3.755059 0.565582 -0.679508 27 6 0 -5.122705 0.97073 0.567402 28 1 0 -5.667402 0.268974 0.065062	11	6	0	-1.295055	3.230778	-2.911266
13 6 0 -1.989210 4.350225 -2.457406 14 1 0 -2.787177 5.358646 -0.733488 15 1 0 -1.089092 3.112321 -3.968761 16 1 0 -2.323146 5.105777 -3.158721 17 6 0 1.004580 -0.021881 2.593893 18 8 0 .6677149 1.048613 3.045162 19 8 0 1.357915 -1.57696 3.340928 20 6 0 1.226546 -0.871055 4.753802 21 1 0 0.189220 -0.650290 5.006189 22 1 0 1.536757 -1.809191 5.204572 23 1 0 1.865869 -0.054844 5.089581 24 6 0 -3.058429 0.679508 2.76790 25 8 0 -5.122705 0.970973 -0.567402	12	1	0	-0.336981	1.390258	-2.387916
14 1 0 -2.787177 5.358646 -0.733488 15 1 0 -2.323146 5.105777 -3.158721 17 6 0 1.004580 -0.021881 2.593893 18 8 0 6.677149 1.048613 3.045162 19 8 0 1.357915 -1.057696 3.340928 20 6 0 1.226546 -0.871055 4.753802 21 1 0 0.189220 -0.650290 5.006189 22 1 0 1.536757 -1.809191 5.204572 23 1 0 1.865869 -0.054884 5.089581 24 6 0 -3.068489 0.508613 0.465476 25 8 0 -5.122705 0.970973 -0.57490 28 1 0 -5.52046 0.958003 -1.578618 30 1 0 -5.667402 0.268974 0.065062 31 6 0 1.991146 0.217624 32 6 <td>13</td> <td>6</td> <td>0</td> <td>-1.989210</td> <td>4.350225</td> <td>-2.457406</td>	13	6	0	-1.989210	4.350225	-2.457406
15 1 0 -1.089092 3.112321 -3.968761 16 1 0 -2.323146 5.105777 -3.158721 17 6 0 1.004580 -0.021881 2.593893 18 8 0 0.677149 1.048613 3.045162 19 8 0 1.357915 -1.057696 3.340928 20 6 0 1.226546 -0.871055 4.753802 21 1 0 0.189220 -0.650290 5.006189 22 1 0 1.865869 -0.05484 5.089581 24 6 0 -3.068489 0.505813 0.465476 25 8 0 -3.755059 0.565582 -0.679508 27 6 0 5.20046 0.958003 -1.578618 30 1 0 -5.520046 0.958003 -1.578618 30 1 0 5.52047 0.065062 31 6<	14	1	0	-2.787177	5.358646	-0.733488
16 1 0 -2.323146 5.105777 -3.158721 17 6 0 1.004580 -0.021881 2.593893 18 8 0 6.677149 1.048613 3.045162 19 8 0 1.357915 -1.057696 3.340928 20 6 0 1.226546 -0.871055 4.753802 21 1 0 0.189220 -0.650290 5.006189 22 1 0 1.865869 -0.054884 5.089581 24 6 0 -3.068489 0.508613 0.465476 25 8 0 -3.755059 0.565582 -0.679508 27 6 0 -5.122705 0.970973 -0.567490 28 1 0 -5.185976 1.973717 -0.144012 29 1 0 -5.667402 0.268974 0.065062 31 6 0 1.647278 3.075279 0.974506	15	1	0	-1.089092	3,112321	-3.968761
17 6 0 1.004580 -0.021881 2.593893 18 8 0 6677149 1.048613 3.045162 19 8 0 1.357915 -1.057696 3.340928 20 6 0 1.226546 -0.871055 4.753802 21 1 0 0.189220 -0.650290 5.006189 22 1 0 1.536757 -1.809191 5.204572 23 1 0 1.865869 -0.54884 5.089581 24 6 0 -3.068489 0.508613 0.465476 25 8 0 -5.75059 0.565582 -0.679508 27 6 0 -5.122705 0.970973 -0.567402 28 1 0 -5.520046 0.958003 -1.578618 30 1 0 -5.667402 0.268974 0.065062 31 6 0 1.697278 3.075279 0.974506 <	16	1	0	-2.323146	5.105777	-3.158721
18 8 0 0.677149 1.048613 3.045162 19 8 0 1.357915 -1.057696 3.340928 20 6 0 1.226546 -0.871055 4.753802 21 1 0 0.189220 -0.650290 5.006189 22 1 0 1.865869 -0.054884 5.089581 24 6 0 -3.068489 0.508613 0.465476 25 8 0 -3.755059 0.565582 -0.679508 27 6 0 -5.122705 0.970737 -0.7644012 29 1 0 -5.185976 1.973717 -0.144012 29 1 0 -5.67402 0.268974 0.065062 31 6 0 1.79111 1.911446 0.217624 32 6 0 3.088180 0.836187 -1.120104 36 0 1.647278 3.075279 0.974506 34	17	6	0	1.004580	-0.021881	2.593893
19 8 0 1.357915 -1.057696 3.340928 20 6 0 1.226546 -0.871055 4.753802 21 1 0 0.189220 -0.650290 5.006189 22 1 0 1.865869 -0.054884 5.089581 24 6 0 -3.068489 0.508613 0.465476 25 8 0 -3.755059 0.565582 -0.679508 27 6 0 -5.122705 0.970973 -0.567490 28 1 0 -5.185976 1.973717 -0.144012 29 1 0 -5.520046 0.958003 -1.578618 30 1 0 -5.667402 0.268974 0.065062 31 6 1.79111 1.911446 0.217624 32 6 0 3.88180 0.836187 -1.120104 36 0 1.647278 3.075279 0.974506 34 6	18	8	0	0 677149	1 048613	3 045162
20 6 0 1.226546 -0.871055 4.753802 21 1 0 0.189220 -0.650290 5.006189 21 0 1.536757 -1.809191 5.204572 23 1 0 1.855869 -0.054884 5.089581 24 6 0 -3.068489 0.508613 0.465476 25 8 0 -3.755059 0.565582 -0.679508 26 8 0 -5.122705 0.970973 -0.567490 28 1 0 -5.185976 1.973717 -0.144012 29 1 0 -5.520046 0.958003 -1.578618 30 1 0 -5.667402 0.268974 0.065062 31 6 0 1.9980716 2.682941 -0.491036 35 1 0 3.088180 0.836187 -1.120104 36 0 2.657397 4.032861 0.996401 37 1	19	8	0	1 357915	-1 057696	3 340928
21 1 0 0.189220 0.650290 5.006189 21 1 0 1.536757 -1.809191 5.204572 23 1 0 1.85869 -0.054884 5.089581 24 6 0 -3.068489 0.508613 0.465476 25 8 0 -3.548235 0.797465 1.535169 26 8 0 -5.122705 0.970973 -0.567490 28 1 0 -5.185976 1.973717 -0.144012 29 1 0 -5.520046 0.958003 -1.578618 30 1 0 -5.667402 0.268974 0.065062 31 6 0 1.791111 1.911446 0.217624 32 6 0 2.966065 1.730918 -0.516454 33 6 0 1.647278 3.075279 0.974506 34 6 0 3.980716 2.682941 -0.491036	20	6	0	1 226546	-0.871055	4 753802
1 0 0.105167 -1.809191 5.204572 23 1 0 1.865869 -0.054884 5.089581 24 6 0 -3.068489 0.508613 0.465476 25 8 0 -3.548235 0.797465 1.535169 26 8 0 -3.755059 0.565582 -0.679508 27 6 0 -5.122705 0.970973 -0.567490 28 1 0 -5.185976 1.973717 -0.144012 29 1 0 -5.667402 0.268974 0.065062 31 6 0 1.791111 1.911446 0.217624 32 6 0 2.966065 1.730918 -0.516454 33 6 0 1.647278 3.075279 0.974506 34 6 0 3.08180 0.836187 -1.120104 36 1 0.748449 3.233040 1.556997 38 6	20	1	0	0 189220	-0.650290	5 006189
23 1 0 1.350737 1.30737 1.30737 23 1 0 1.865869 -0.054884 5.089581 24 6 0 -3.068489 0.508613 0.465476 25 8 0 -3.548235 0.797465 1.535169 26 8 0 -5.122705 0.970973 -0.567490 28 1 0 -5.520046 0.958003 -1.578618 30 1 0 -5.667402 0.268974 0.065062 31 6 0 1.791111 1.911446 0.217624 32 6 0 2.966065 1.730918 -0.516454 33 6 0 1.647278 3.075279 0.974506 34 6 0 3.980716 2.682941 -0.491036 35 1 0 3.088180 0.836187 -1.120104 36 0 2.657397 4.032861 0.996401 37 <t< td=""><td>21</td><td>1</td><td>0</td><td>1 536757</td><td>-1 800101</td><td>5 204572</td></t<>	21	1	0	1 536757	-1 800101	5 204572
24 6 0 -3.068489 0.508613 0.465476 25 8 0 -3.548235 0.797465 1.535169 26 8 0 -3.755059 0.565582 -0.679508 27 6 0 -5.122705 0.970973 -0.567490 28 1 0 -5.520046 0.95803 -1.578618 30 1 0 -5.667402 0.268974 0.065062 31 6 0 1.791111 1.911446 0.217624 32 6 0 2.966065 1.730918 -0.516454 33 6 0 1.647278 3.075279 0.974506 34 6 0 3.088180 0.836187 -1.120104 36 0 1.647278 3.075279 0.974506 34 6 0 3.088180 0.836187 -1.120104 36 0 3.28034 3.83973 0.267542 39 1 <t< td=""><td>22</td><td>1</td><td>0</td><td>1 865860</td><td>-0.05/88/</td><td>5.080581</td></t<>	22	1	0	1 865860	-0.05/88/	5.080581
24 6 6 -3.068463 0.03013 0.4453476 25 8 0 -3.755059 0.565582 -0.679508 27 6 0 -5.122705 0.970973 -0.567490 28 1 0 -5.185976 1.973717 -0.144012 29 1 0 -5.520046 0.958003 -1.578618 30 1 0 -5.667402 0.268974 0.065062 31 6 0 1.791111 1.911446 0.217624 32 6 0 2.966065 1.730918 -0.516454 33 6 0 1.647278 3.075279 0.974506 34 6 0 3.980716 2.682941 -0.491036 35 1 0 3.088180 0.836187 -1.120104 36 0 2.657397 4.032861 0.996401 37 1 0 0.748449 3.233040 1.556997 38	23	с Г	0	2.069490	0 500612	0.465476
25 8 0 -3.75059 0.56582 -0.679508 27 6 0 -5.122705 0.970973 -0.567490 28 1 0 -5.185976 1.973717 -0.144012 29 1 0 -5.520046 0.958003 -1.578618 30 1 0 -5.667402 0.268974 0.065062 31 6 0 1.791111 1.911446 0.217624 32 6 0 2.966065 1.730918 -0.516454 33 6 0 1.647278 3.075279 0.974506 34 6 0 3.980716 2.682941 -0.491036 35 1 0 3.088180 0.836187 -1.120104 36 6 0 2.657397 4.032861 0.996401 37 1 0 0.748449 3.233040 1.556997 38 6 0 3.828034 3.839773 0.267542 <t< td=""><td>24</td><td>0</td><td>0</td><td>2 5 1 9 2 5</td><td>0.308013</td><td>1 525160</td></t<>	24	0	0	2 5 1 9 2 5	0.308013	1 525160
26 3 0 -5.75303 0.50332 -0.079308 27 6 0 -5.122705 0.970973 -0.567490 28 1 0 -5.185976 1.973717 -0.144012 29 1 0 -5.520046 0.958003 -1.578618 30 1 0 -5.667402 0.268974 0.065062 31 6 0 1.791111 1.911446 0.217624 32 6 0 2.966065 1.730918 -0.516454 33 6 0 1.647278 3.075279 0.974506 34 6 0 3.980716 2.682941 -0.491036 35 1 0 3.088180 0.836187 -1.120104 36 6 2.657397 4.032861 0.996401 37 1 0 0.748449 3.233040 1.556997 38 6 0 3.828034 3.839773 0.267542 39 <	25	0	0	-3.346233	0.797405	1.555109
2760 -5.122705 0.970973 -0.567490 28 10 -5.185976 1.973717 -0.144012 29 10 -5.520046 0.958003 -1.578618 30 10 -5.667402 0.268974 0.065062 31 60 1.791111 1.911446 0.217624 32 60 2.966065 1.730918 -0.516454 33 60 1.647278 3.075279 0.974506 34 60 3.980716 2.682941 -0.491036 35 10 3.088180 0.836187 -1.120104 36 60 2.657397 4.032861 0.996401 37 10 0.748449 3.233040 1.556997 38 60 3.828034 3.839773 0.267542 39 10 4.883784 2.523519 -1.068785 40 10 2.529068 4.932593 1.587014 41 10 4.612654 4.586936 0.287710 42 10 0.777821 0.385447 0.841929 43 70 1.834883 -1.305083 0.757429 45 60 -1.587079 -2.113870 1.186058 47 80 -1.18891 -3.028593 1.941013 48 80 0.950022 -2.015799 -1.229227 49 60 <td< td=""><td>20</td><td>0 6</td><td>0</td><td>-5.755059</td><td>0.000002</td><td>-0.079508</td></td<>	20	0 6	0	-5.755059	0.000002	-0.079508
2810 -5.185976 1.973717 -0.1440112 29 10 -5.520046 0.958003 -1.578618 30 10 -5.667402 0.268974 0.065062 31 60 1.791111 1.911446 0.217624 32 60 2.966065 1.730918 -0.516454 33 60 1.647278 3.075279 0.974506 34 60 3.980716 2.682941 -0.491036 35 10 3.088180 0.836187 -1.120104 36 60 2.657397 4.032861 0.996401 37 10 0.748449 3.233040 1.556997 38 60 3.828034 3.839773 0.267542 39 10 4.883784 2.523519 -1.068785 40 10 2.529068 4.932593 1.587014 41 10 4.612654 4.586936 0.287710 42 10 0.777821 0.385447 -0.841929 43 70 1.834883 -1.305083 0.757429 45 60 1.926476 -1.765264 0.539721 46 6 -1.587079 -2.113870 1.186058 47 80 -1.188891 -3.028593 1.941013 48 80 0.950022 -2.015799 1.229227 49 60 -2.6767	27	6	0	-5.122705	0.970973	-0.567490
2910 -5.520046 0.958003 -1.578618 3010 -5.667402 0.268974 0.065062 3160 1.791111 1.911446 0.217624 3260 2.966065 1.730918 -0.516454 3360 1.647278 3.075279 0.974506 3460 3.980716 2.682941 -0.491036 3510 3.088180 0.836187 -1.120104 3660 2.657397 4.032861 0.996401 3710 0.748449 3.233040 1.556997 3860 3.828034 3.839773 0.267542 3910 4.883784 2.523519 -1.068785 4010 2.529068 4.932593 1.587014 4110 4.612654 4.586936 0.287710 4210 0.777821 0.385447 -0.841929 4370 1.834883 -1.305083 0.757429 4560 -1.587079 -2.113870 1.186058 4780 -1.188911 -3.028593 1.941013 4880 0.950022 -2.015799 -1.229227 4960 -2.676740 -2.482599 0.193251 5060 -2.015777 -2.212964 1.620960 5160 -3.367851 -3.17578	28	1	0	-5.185976	1.9/3/1/	-0.144012
301 0 -5.667402 0.268974 0.065062 31 60 1.791111 1.911446 0.217624 32 60 2.966065 1.730918 -0.516454 33 60 1.647278 3.075279 0.974506 34 60 3.980716 2.682941 -0.491036 35 10 3.088180 0.836187 -1.120104 36 60 2.657397 4.032861 0.996401 37 10 0.748449 3.233040 1.556997 38 60 3.828034 3.839773 0.267542 39 10 4.883784 2.523519 -1.068785 40 10 2.529068 4.932593 1.587014 41 10 4.612654 4.586936 0.287710 42 10 0.777821 0.385447 -0.841929 43 70 1.834883 -1.305083 0.757429 45 60 -1.587079 -2.113870 1.186058 47 80 -1.676740 -2.482599 0.193251 50 60 -2.676740 -2.482599 0.193251 50 60 -2.358804 -2.826237 -0.297314 53 10 -4.260777 -2.212964 1.620960 54 60 -3.367851 -3.17578 -2.015838 55 10 <td>29</td> <td>1</td> <td>0</td> <td>-5.520046</td> <td>0.958003</td> <td>-1.578618</td>	29	1	0	-5.520046	0.958003	-1.578618
31 6 0 1.791111 1.911446 0.217624 32 6 0 2.966065 1.730918 -0.516454 33 6 0 1.647278 3.075279 0.974506 34 6 0 3.980716 2.682941 -0.491036 35 1 0 3.088180 0.836187 -1.120104 36 6 0 2.657397 4.032861 0.996401 37 1 0 0.748449 3.233040 1.556997 38 6 0 3.828034 3.839773 0.267542 39 1 0 4.883784 2.523519 -1.068785 40 1 0 2.529068 4.932593 1.587014 41 1 0 4.612654 4.586936 0.287710 42 1 0 0.777821 0.385447 -0.841929 43 7 0 -1.149113 -0.865057 1.230385 44 7 0 1.834883 -1.305083 0.757429 45 6 0 -1.587079 -2.113870 1.186058 47 8 0 -1.18891 -3.028593 1.941013 48 0 0.950022 -2.015799 -1.229227 49 6 0 -2.358804 -2.826237 -0.297314 53 1 0 -2.358804 -2.826237 -0.297314 53 1 0 -4.260777 -2.2129	30	I C	0	-5.667402	0.268974	0.065062
32602.9660651.730918-0.516454 33 601.647278 3.075279 0.974506 34 60 3.980716 2.682941 -0.491036 35 10 3.088180 0.836187 -1.120104 36 60 2.657397 4.032861 0.996401 37 10 0.748449 3.233040 1.556997 38 60 3.828034 3.839773 0.267542 39 10 4.883784 2.523519 -1.068785 40 10 2.529068 4.932593 1.587014 41 10 4.612654 4.586936 0.287710 42 10 0.777821 0.385447 -0.841929 43 70 -1.149113 -0.865057 1.230385 44 70 1.834883 -1.305083 0.757429 45 60 -1.587079 -2.113870 1.186058 47 80 -1.18891 -3.028593 1.941013 48 80 0.950022 -2.015799 -1.229227 49 60 -2.358804 -2.826237 -0.297314 53 10 -4.260777 -2.212964 1.620960 54 60 -3.367851 -3.17578 -2.015838 55 10 -1.320134 -2.810468 -1.434955 56 6 -4.700469	31	6	0	1.791111	1.911446	0.21/624
33 6 0 1.647278 3.075279 0.974506 34 6 0 3.980716 2.682941 -0.491036 35 1 0 3.088180 0.836187 -1.120104 36 6 0 2.657397 4.032861 0.996401 37 1 0 0.748449 3.233040 1.556997 38 6 0 3.828034 3.839773 0.267542 39 1 0 4.883784 2.523519 -1.068785 40 1 0 2.529068 4.932593 1.587014 41 1 0 4.612654 4.586936 0.287710 42 1 0 0.777821 0.385447 -0.841929 43 7 0 1.834883 -1.305083 0.757429 45 6 0 1.926476 -1.765264 -0.539721 46 6 0 -1.188891 -3.028593 1.941013 48 0 0.950022 -2.015799 -1.229227 49 6	32	6	0	2.966065	1./30918	-0.516454
34 6 0 3.980716 2.682941 -0.491036 35 1 0 3.088180 0.836187 -1.120104 36 6 0 2.657397 4.032861 0.996401 37 1 0 0.748449 3.233040 1.556997 38 6 0 3.828034 3.839773 0.267542 39 1 0 4.883784 2.523519 -1.068785 40 1 0 2.529068 4.932593 1.587014 41 1 0 4.612654 4.586936 0.287710 42 1 0 0.777821 0.385447 -0.841929 43 7 0 -1.834883 -1.305083 0.757429 43 7 0 1.834883 -1.305083 0.757429 45 6 0 -1.587079 -2.113870 1.186058 47 8 0 -95022 -2.015799 1.229227 49 6 0 -2.676740 -2.482599 0.193251 50<	33	6	0	1.64/2/8	3.075279	0.974506
3510 3.088180 0.836187 -1.120104 36 60 2.657397 4.032861 0.996401 37 10 0.748449 3.233040 1.556997 38 60 3.828034 3.839773 0.267542 39 10 4.883784 2.523519 -1.068785 40 10 2.529068 4.932593 1.587014 41 10 4.612654 4.586936 0.287710 42 10 0.777821 0.385447 -0.841929 43 70 -1.149113 -0.865057 1.230385 44 70 1.834883 -1.305083 0.757429 45 60 -1.587079 -2.113870 1.186058 47 80 -1.18891 -3.028593 1.941013 48 80 0.950022 -2.015799 -1.229227 49 60 -2.676740 -2.482599 0.193251 50 60 -4.011570 -2.486005 0.600396 51 60 -2.358804 -2.822222 -1.120853 52 60 -5.020486 -2.826237 -0.297314 53 10 -4.260777 -2.212964 1.620960 54 60 -3.367851 -3.17578 -2.015838 55 10 -1.320134 -2.810468 -1.434955 56 6 <t< td=""><td>34</td><td>6</td><td>0</td><td>3.980716</td><td>2.682941</td><td>-0.491036</td></t<>	34	6	0	3.980716	2.682941	-0.491036
36 6 0 2.657397 4.032861 0.996401 37 1 0 0.748449 3.233040 1.556997 38 6 0 3.828034 3.839773 0.267542 39 1 0 4.883784 2.523519 -1.068785 40 1 0 2.529068 4.932593 1.587014 41 1 0 4.612654 4.586936 0.287710 42 1 0 0.777821 0.385447 -0.841929 43 7 0 -1.149113 -0.865057 1.230385 44 7 0 1.834883 -1.305083 0.757429 45 6 0 -1.587079 -2.113870 1.186058 47 8 0 -950022 -2.015799 -1.229227 49 6 0 -2.676740 -2.482599 0.193251 50 6 0 -2.358804 -2.829222 -1.120853	35	1	0	3.088180	0.836187	-1.120104
37 1 0 0.748449 3.233040 1.556997 38 6 0 3.828034 3.839773 0.267542 39 1 0 4.883784 2.523519 -1.068785 40 1 0 2.529068 4.932593 1.587014 41 1 0 4.612654 4.586936 0.287710 42 1 0 0.777821 0.385447 -0.841929 43 7 0 -1.149113 -0.865057 1.230385 44 7 0 1.834883 -1.305083 0.757429 45 6 0 -1.587079 -2.113870 1.186058 47 8 0 -950022 -2.015799 -1.229227 49 6 0 -2.676740 -2.482599 0.193251 50 6 0 -2.358804 -2.829222 -1.120853 52 6 0 -2.367851 -3.175758 -2.015838 52 6 0 -3.367851 -3.175758 -2.015838	36	6	0	2.657397	4.032861	0.996401
38 6 0 3.828034 3.839773 0.267542 39 1 0 4.883784 2.523519 -1.068785 40 1 0 2.529068 4.932593 1.587014 41 1 0 4.612654 4.586936 0.287710 42 1 0 0.777821 0.385447 -0.841929 43 7 0 -1.149113 -0.865057 1.230385 44 7 0 1.834883 -1.305083 0.757429 45 6 0 1.926476 -1.765264 -0.539721 46 6 0 -1.587079 -2.113870 1.186058 47 8 0 -1.18891 -3.028593 1.941013 48 8 0 0.950022 -2.015799 -1.229227 49 6 0 -2.358804 -2.829222 -1.120853 50 6 0 -2.358804 -2.826237 -0.297314	37	1	0	0.748449	3.233040	1.556997
39 1 0 4.883784 2.523519 -1.068785 40 1 0 2.529068 4.932593 1.587014 41 1 0 4.612654 4.586936 0.287710 42 1 0 0.777821 0.385447 -0.841929 43 7 0 -1.149113 -0.865057 1.230385 44 7 0 1.834883 -1.305083 0.757429 45 6 0 -1.926476 -1.765264 -0.539721 46 6 0 -1.18891 -3.028593 1.941013 48 0 0.950022 -2.015799 -1.229227 49 6 0 -2.676740 -2.482599 0.193251 50 6 0 -2.358804 -2.829222 -1.120853 52 6 0 -2.367851 -3.17578 -2.015838 52 6 0 -3.367851 -3.17578 -2.015838 55 1 0 -4.260777 -2.212964 1.620960 54	38	6	0	3.828034	3.839773	0.267542
40 1 0 2.529068 4.932593 1.587014 41 1 0 4.612654 4.586936 0.287710 42 1 0 0.777821 0.385447 -0.841929 43 7 0 -1.149113 -0.865057 1.230385 44 7 0 1.834883 -1.305083 0.757429 45 6 0 1.926476 -1.765264 -0.539721 46 6 0 -1.587079 -2.113870 1.186058 47 8 0 -1.18891 -3.028593 1.941013 48 8 0 0.950022 -2.015799 -1.229227 49 6 0 -2.676740 -2.482599 0.193251 50 6 0 -2.358804 -2.829222 -1.120853 52 6 0 -2.367851 -3.17578 -2.015838 52 6 0 -3.367851 -3.17578 -2.015838 55 1 0 -4.260777 -2.212964 1.620960	39	1	0	4.883784	2.523519	-1.068785
41 1 0 4.612654 4.586936 0.287710 42 1 0 0.777821 0.385447 -0.841929 43 7 0 -1.149113 -0.865057 1.230385 44 7 0 1.834883 -1.305083 0.757429 45 6 0 1.926476 -1.765264 -0.539721 46 6 0 -1.587079 -2.113870 1.186058 47 8 0 -950022 -2.015799 -1.229227 49 6 0 -2.676740 -2.482599 0.193251 50 6 0 -2.358804 -2.829222 -1.120853 52 6 0 -2.367851 -3.17578 -2.015838 52 6 0 -3.367851 -3.17578 -2.015838 55 1 0 -4.260777 -2.212964 1.620960 54 6 0 -3.367851 -3.17578 -2.015838 55 1 0 -1.320134 -2.810468 -1.434955 <tr< td=""><td>40</td><td>1</td><td>0</td><td>2.529068</td><td>4.932593</td><td>1.587014</td></tr<>	40	1	0	2.529068	4.932593	1.587014
42100.7778210.385447-0.841929 43 70-1.149113-0.8650571.230385 44 701.834883-1.3050830.757429 45 601.926476-1.765264-0.539721 46 60-1.587079-2.1138701.186058 47 80-1.188891-3.0285931.941013 48 800.950022-2.015799-1.229227 49 60-2.676740-2.4825990.193251 50 60-4.011570-2.4860050.600396 51 60-2.358804-2.829222-1.120853 52 60-5.020486-2.826237-0.297314 53 10-4.260777-2.2129641.620960 54 60-3.367851-3.175758-2.015838 55 10-1.320134-2.810468-1.434955 56 60-4.700469-3.171234-1.608012 57 10-6.055367-2.8214480.026194 58 10-3.115182-3.445294-3.035209 59 10-5.484526-3.435738-2.307964	41	1	0	4.612654	4.586936	0.287710
43 7 0 -1.149113 -0.865057 1.230385 44 7 0 1.834883 -1.305083 0.757429 45 6 0 1.926476 -1.765264 -0.539721 46 6 0 -1.587079 -2.113870 1.186058 47 8 0 -1.587079 -2.113870 1.186058 47 8 0 -1.188891 -3.028593 1.941013 48 8 0 0.950022 -2.015799 -1.229227 49 6 0 -2.676740 -2.482599 0.193251 50 6 0 -2.676740 -2.486005 0.600396 51 6 0 -2.358804 -2.829222 -1.120853 52 6 0 -5.020486 -2.826237 -0.297314 53 1 0 -4.260777 -2.212964 1.620960 54 6 0 -3.367851 -3.175758 -2.015838 55 1 0 -1.320134 -2.810468 -1.434955	42	1	0	0.777821	0.385447	-0.841929
44 7 0 1.834883 -1.305083 0.757429 45 6 0 1.926476 -1.765264 -0.539721 46 6 0 -1.587079 -2.113870 1.186058 47 8 0 -1.587079 -2.113870 1.186058 47 8 0 -1.188891 -3.028593 1.941013 48 8 0 0.950022 -2.015799 -1.229227 49 6 0 -2.676740 -2.482599 0.193251 50 6 0 -4.011570 -2.486005 0.600396 51 6 0 -2.358804 -2.829222 -1.120853 52 6 0 -5.020486 -2.826237 -0.297314 53 1 0 -4.260777 -2.212964 1.620960 54 6 0 -3.367851 -3.175758 -2.015838 55 1 0 -1.320134 -2.810468 -1.434955 56 6 0 -3.07567 -2.821448 0.026194	43	7	0	-1.149113	-0.865057	1.230385
4560 1.926476 -1.765264 -0.539721 46 60 -1.587079 -2.113870 1.186058 47 80 -1.188891 -3.028593 1.941013 48 80 0.950022 -2.015799 -1.229227 49 60 -2.676740 -2.482599 0.193251 50 60 -4.011570 -2.486005 0.600396 51 60 -2.358804 -2.829222 -1.120853 52 60 -5.020486 -2.826237 -0.297314 53 10 -4.260777 -2.212964 1.620960 54 60 -3.367851 -3.175758 -2.015838 55 10 -1.320134 -2.810468 -1.434955 56 60 -4.700469 -3.171234 -1.608012 57 10 -6.055367 -2.821448 0.026194 58 10 -3.115182 -3.445294 -3.035209 59 10 -5.484526 -3.435738 -2.307964	44	7	0	1.834883	-1.305083	0.757429
46 6 0 -1.587079 -2.113870 1.186058 47 8 0 -1.188891 -3.028593 1.941013 48 8 0 0.950022 -2.015799 -1.229227 49 6 0 -2.676740 -2.482599 0.193251 50 6 0 -4.011570 -2.486005 0.600396 51 6 0 -2.358804 -2.829222 -1.120853 52 6 0 -5.020486 -2.826237 -0.297314 53 1 0 -4.260777 -2.212964 1.620960 54 6 0 -3.367851 -3.175758 -2.015838 55 1 0 -1.320134 -2.810468 -1.434955 56 6 0 -3.171234 -1.608012 57 1 0 -6.055367 -2.821448 0.026194 58 1 0 -3.115182 -3.445294 -3.035209 59 1 0 -5.484526 -3.435738 -2.307964	45	6	0	1.926476	-1.765264	-0.539721
4780-1.188891-3.0285931.94101348800.950022-2.015799-1.2292274960-2.676740-2.4825990.1932515060-4.011570-2.4860050.6003965160-2.358804-2.829222-1.1208535260-5.020486-2.826237-0.2973145310-4.260777-2.2129641.6209605460-3.367851-3.175758-2.0158385510-1.320134-2.810468-1.4349555660-4.700469-3.171234-1.6080125710-6.055367-2.8214480.0261945810-3.115182-3.445294-3.0352095910-5.484526-3.435738-2.307964	46	6	0	-1.587079	-2.113870	1.186058
48 8 0 0.950022 -2.015799 -1.229227 49 6 0 -2.676740 -2.482599 0.193251 50 6 0 -4.011570 -2.486005 0.600396 51 6 0 -2.358804 -2.829222 -1.120853 52 6 0 -5.020486 -2.826237 -0.297314 53 1 0 -4.260777 -2.212964 1.620960 54 6 0 -3.367851 -3.175758 -2.015838 55 1 0 -1.320134 -2.810468 -1.434955 56 6 0 -4.700469 -3.171234 -1.608012 57 1 0 -6.055367 -2.821448 0.026194 58 1 0 -3.115182 -3.445294 -3.035209 59 1 0 -5.484526 -3.435738 -2.307964	47	8	0	-1.188891	-3.028593	1.941013
4960-2.676740-2.4825990.1932515060-4.011570-2.4860050.6003965160-2.358804-2.829222-1.1208535260-5.020486-2.826237-0.2973145310-4.260777-2.2129641.6209605460-3.367851-3.175758-2.0158385510-1.320134-2.810468-1.4349555660-4.700469-3.171234-1.6080125710-6.055367-2.8214480.0261945810-3.115182-3.445294-3.0352095910-5.484526-3.435738-2.307964	48	8	0	0.950022	-2.015799	-1.229227
50 6 0 -4.011570 -2.486005 0.600396 51 6 0 -2.358804 -2.829222 -1.120853 52 6 0 -5.020486 -2.826237 -0.297314 53 1 0 -4.260777 -2.212964 1.620960 54 6 0 -3.367851 -3.175758 -2.015838 55 1 0 -1.320134 -2.810468 -1.434955 56 6 0 -4.700469 -3.171234 -1.608012 57 1 0 -6.055367 -2.821448 0.026194 58 1 0 -3.115182 -3.445294 -3.035209 59 1 0 -5.484526 -3.435738 -2.307964	49	6	0	-2.676740	-2.482599	0.193251
5160-2.358804-2.829222-1.1208535260-5.020486-2.826237-0.2973145310-4.260777-2.2129641.6209605460-3.367851-3.175758-2.0158385510-1.320134-2.810468-1.4349555660-4.700469-3.171234-1.6080125710-6.055367-2.8214480.0261945810-3.115182-3.445294-3.0352095910-5.484526-3.435738-2.307964	50	6	0	-4.011570	-2.486005	0.600396
52 6 0 -5.020486 -2.826237 -0.297314 53 1 0 -4.260777 -2.212964 1.620960 54 6 0 -3.367851 -3.175758 -2.015838 55 1 0 -1.320134 -2.810468 -1.434955 56 6 0 -4.700469 -3.171234 -1.608012 57 1 0 -6.055367 -2.821448 0.026194 58 1 0 -3.115182 -3.445294 -3.035209 59 1 0 -5.484526 -3.435738 -2.307964	51	6	0	-2.358804	-2.829222	-1.120853
53 1 0 -4.260777 -2.212964 1.620960 54 6 0 -3.367851 -3.175758 -2.015838 55 1 0 -1.320134 -2.810468 -1.434955 56 6 0 -4.700469 -3.171234 -1.608012 57 1 0 -6.055367 -2.821448 0.026194 58 1 0 -3.115182 -3.445294 -3.035209 59 1 0 -5.484526 -3.435738 -2.307964	52	6	0	-5.020486	-2.826237	-0.297314
5460-3.367851-3.175758-2.0158385510-1.320134-2.810468-1.4349555660-4.700469-3.171234-1.6080125710-6.055367-2.8214480.0261945810-3.115182-3.445294-3.0352095910-5.484526-3.435738-2.307964	53	1	0	-4.260777	-2.212964	1.620960
55 1 0 -1.320134 -2.810468 -1.434955 56 6 0 -4.700469 -3.171234 -1.608012 57 1 0 -6.055367 -2.821448 0.026194 58 1 0 -3.115182 -3.445294 -3.035209 59 1 0 -5.484526 -3.435738 -2.307964	54	6	0	-3.367851	-3.175758	-2.015838
56 6 0 -4.700469 -3.171234 -1.608012 57 1 0 -6.055367 -2.821448 0.026194 58 1 0 -3.115182 -3.445294 -3.035209 59 1 0 -5.484526 -3.435738 -2.307964	55	1	0	-1.320134	-2.810468	-1.434955
57 1 0 -6.055367 -2.821448 0.026194 58 1 0 -3.115182 -3.445294 -3.035209 59 1 0 -5.484526 -3.435738 -2.307964	56	6	0	-4.700469	-3.171234	-1.608012
58 1 0 -3.115182 -3.445294 -3.035209 -3.9	57	1	0	-6.055367	-2.821448	0.026194
59 1 0 -5.484526 -3.435738 -2.307964	58	1	0	-3.115182	-3.445294	-3.035209
	59	1	0	-5.484526	-3.435738	-2.307964

60	6	0	3.318134	-2.032042	-1.027263
61	6	0	3.493033	-2.515491	-2.325290
62	6	0	4.432574	-1.768225	-0.228102
63	6	0	4.772265	-2.738041	-2.819688
64	1	0	2.619229	-2.710181	-2.935148
65	6	0	5.712407	-1.989623	-0.725131
66	1	0	4.289182	-1.393656	0.778192
67	6	0	5.882780	-2.475045	-2.019580
68	1	0	4.905790	-3.114024	-3.826912
69	1	0	6.575938	-1.786228	-0.103385
70	1	0	6.880574	-2.648607	-2.405261
71	1	0	-1.555640	-0.305433	-0.785574

TS2 S,S

Center Atomic Atomic			Coordinate	s (Angstroms)	
Nur	mber	Numbe	er Type	Х	Y Z
1	6	0	-0.527964	-1.111680	-0.131364
2	6	0	-0.551349	0.419081	-0.263795
3	6	0	0.797408	1.016543	-0.677079
4	6	0	1.892977	0.408683	0.260327
5	1	0	1.044833	0.661074	-1.6/6365
6	6	0	0.832553	2.530518	-0.702757
/	6	0	1.696588	3.166137	-1.598475
8	6	0	0.085307	3.323312	0.1/3303
9	6	0	1.822301	4.551//2	-1.616277
10	1	0	2.279201	2.563426	-2.288452
11	6	0	0.206214	4./1053/	0.157260
12	1	0	-0.597734	2.863274	0.878507
13	6	0	1.076997	5.329907	-0./34/2/
14	1	0	2.499413	5.022809	-2.319387
15	1	0	-0.383511	5.307692	0.843308
16	1	0	1.1/02/4	6.409433	-0.745896
1/	6	0	-0.043438	-1.946852	-1.324381
18	8	0	0.712869	-1.549305	-2.1/8663
19	8	0	-0.601318	-3.1496/9	-1.361563
20	6	0	-0.099392	-4.021614	-2.377801
21	1	0	0.973240	-4.161905	-2.240947
22	1	0	-0.627876	-4.961/25	-2.246856
23	1	0	-0.295045	-3.60/939	-3.366884
24	6	0	-1./0255/	0.835855	-1.160155
25	6	0	-2.866180	1.352302	-0.586400
26	6	0	-1.646829	0.694079	-2.550052
27	0	0	-3.955551	1./110/0	-1.3/5112
28	I C	0	-2.920303	1.4/3602	0.491383
29	0	0	-2.735240	1.051275	-3.341017
30	I C	0	-0.750974	0.300502	-3.016913
31	0	0	-3.893943	1.55/841	-2./5686/
32	1	0	-4.849005	2.109/3/	-0.909498
20	1	0	-2.077425	1 025504	-4.417090
34 2E	1	0	-4.739403	1.8355594	-3.3/5220
35	1 7	0	-0.772001	0.750921	0.750752
30	7	0	1.4/2290	-0.933520	0.578300
37	6	0	-1.412/12	-1./0/858	1.605371
30	6	0	-2.133009	-1.102488	1.025278
39	0	0	2.280599	-1.9/2919	0.420224
40 11	ð	0	1.000/31	-3.131020	0.388215
41 10	ō C	0	2 701020	1 764024	2.031291
42	b C	0	3./81039	-1./04034	0.201403
43	D C	0	4.439348	-2.34559/	-U.8U2855
44	6	U	4.518430	-1.051612	1.220687

45	6	0	5.815075	-2.199954	-0.951345
46	1	0	3.864008	-2.910037	-1.528479
47	6	0	5.898649	-0.924933	1.092432
48	1	0	4.014901	-0.602521	2.075936
49	6	0	6.548130	-1.492295	-0.000732
50	1	0	6.316731	-2.642711	-1.804075
51	1	0	6.465489	-0.381006	1.839104
52	1	0	7.621023	-1.386122	-0.110488
53	6	0	-3.628934	-1.265318	1.452610
54	6	0	-4.457822	-0.713817	2.430237
55	6	0	-4.194256	-1.840320	0.312801
56	6	0	-5.839086	-0.733866	2.270732
57	1	0	-4.006304	-0.264460	3.306528
58	6	0	-5.575765	-1.862266	0.154035
59	1	0	-3.542717	-2.261199	-0.443914
60	6	0	-6.399575	-1.307621	1.131233
61	1	0	-6.478560	-0.301054	3.031010
62	1	0	-6.010870	-2.308963	-0.732229
63	1	0	-7.475975	-1.322180	1.005188
64	6	0	2.082856	1.295356	1.485567
65	8	0	3.049633	1.998487	1.667682
66	8	0	1.050968	1.247434	2.325583
67	6	0	1.111174	2.130116	3.450426
68	1	0	1.158866	3.165060	3.108014
69	1	0	0.197600	1.955143	4.011833
70	1	0	1.984873	1.906225	4.061965
71	1	0	2.848752	0.457470	-0.269397

TS2 *R,R*

Standard orientation:

Center	Ator	nic A	tomic	Coordinate	s (Angstroms)
Nur	nber	Numb	er Type	Х	Y Z
1	6	0	-0.415207	-1.445818	-0.938484
2	6	0	-0.812465	-1.032571	0.494408
3	6	0	-0.533281	0.468871	0.668306
4	6	0	0.952353	0.619210	0.272259
5	1	0	-1.138789	1.044051	-0.034770
6	6	0	-0.842505	0.958897	2.066773
7	6	0	-1.738840	2.009558	2.264778
8	6	0	-0.254065	0.365018	3.186089
9	6	0	-2.046658	2.456433	3.546238
10	1	0	-2.191878	2.487240	1.401401
11	6	0	-0.557536	0.808190	4.470304
12	1	0	0.449375	-0.452957	3.061887
13	6	0	-1.456984	1.854902	4.654887
14	1	0	-2.745516	3.274250	3.678886
15	1	0	-0.091612	0.334802	5.326775
16	1	0	-1.694757	2.199700	5.654301
17	6	0	0.348259	-2.777859	-0.991939
18	8	0	0.865815	-3.284506	-0.024460
19	8	0	0.343990	-3.331648	-2.192631
20	6	0	1.151975	-4.504705	-2.326982
21	1	0	0.791775	-5.291756	-1.664839
22	1	0	1.058904	-4.809272	-3.365657
23	1	0	2.186282	-4.258509	-2.087777
24	6	0	-2.218847	-1.480338	0.832134
25	6	0	-2.413278	-2.780348	1.306668
26	6	0	-3.331518	-0.653559	0.674260
27	6	0	-3.688593	-3.248482	1.607748
28	1	0	-1.551906	-3.427432	1.441356
29	6	0	-4.608445	-1.116315	0.978391

30	1	0	-3.211745	0.359790	0.307460
31	6	0	-4.792013	-2.415312	1.444067
32	1	0	-3.819486	-4.259832	1.974830
33	1	0	-5.461585	-0.460089	0.850333
34	1	0	-5.786709	-2.773804	1.681596
35	1	0	-0.128106	-1.569800	1.155257
36	7	0	1.223232	-0.351421	-0.757987
37	7	0	-1.187418	-1.238512	-1.969939
38	6	0	-2.097257	-0.288593	-2.279567
39	6	0	2.443003	-0.859270	-0.943563
40	8	0	2.723205	-1.608706	-1.894683
41	8	0	-3.276338	-0.552626	-2.514983
42	6	0	3.528532	-0.614302	0.083179
43	6	0	4.638914	0.179299	-0.195446
44	6	0	3.445185	-1.281511	1.306527
45	6	0	5.655358	0.311698	0.746607
46	1	0	4.697664	0.700157	-1.143884
47	6	0	4.465610	-1.154942	2.245274
48	1	0	2.580459	-1.907153	1.509525
49	6	0	5.571210	-0.354825	1.967347
50	1	0	6.514576	0.935454	0.528441
51	1	0	4.398118	-1.680100	3.191055
52	1	0	6.364671	-0.251630	2.698234
53	6	0	-1.625436	1.127281	-2.506490
54	6	0	-2.545279	2.167342	-2.350848
55	6	0	-0.315856	1.412311	-2.891745
56	6	0	-2.157463	3.483815	-2.569272
57	1	0	-3.561255	1.929006	-2.058046
58	6	0	0.063445	2.730028	-3.136380
59	1	0	0.397690	0.603471	-2.992870
60	6	0	-0.853215	3.764805	-2.973567
61	1	0	-2.870617	4.288780	-2.435293
62	1	0	1.079962	2.948238	-3.442178
63	1	0	-0.552606	4.790063	-3.158041
64	1	0	1.559775	0.456932	1.175092
65	6	0	1.345908	2.023357	-0.185601
66	8	0	2.317634	2.263074	-0.856824
67	8	0	0.537062	2.967665	0.298475
68	6	0	0.922798	4.322374	0.036981
69	1	0	0.123092	4.939353	0.437950
70	1	0	1.864874	4.543098	0.539618
71	1	0	1.030852	4.483628	-1.034348

TS2 *S,R*

Cente	er Ato	mic At	omic	Coordinate	s (Angst	roms)
Ν	Number	Numbe	r Type	х	Y	Z
1	6	0	0.712882	-1.648271	-0.5187	34
2	6	0	1.406674	-0.290909	-0.6833	07
3	6	0	0.670985	0.742337	0.1837	70
4	6	0	-0.828276	0.756554	-0.2949	10
5	1	0	0.645158	0.387882	1.2149	41
6	6	0	1.298686	2.118758	0.2102	99
7	6	0	1.168914	2.898464	1.3608	30
8	6	0	1.961282	2.659466	-0.8942	91
9	6	0	1.676039	4.193492	1.4081	55
10) 1	0	0.662100	2.482708	2.2274	141
11	. 6	0	2.470977	3.954074	-0.8506	584
12	1	0	2.085270	2.068372	-1.7956	664
13	6	0	2.327374	4.726448	0.2991	136
14	1	0	1.565368	4.784065	2.3101	175
15	5 1	0	2.984323	4.358632	-1.7154	425
16	i 1	0	2.725752	5.733623	0.3323	300

17	6	0	0.496778	-2.424738	-1.818217
18	8	0	0.655271	-1.949978	-2.917060
19	8	0	0.194040	-3.697587	-1.609895
20	6	0	-0.149730	-4.443206	-2.779116
21	1	0	0.684410	-4.462136	-3.480271
22	1	0	-0.379132	-5.447278	-2.433344
23	1	0	-1.022470	-3.993591	-3.253319
24	6	0	2.896026	-0.420747	-0.420097
25	6	0	3.713807	-0.893779	-1.449933
26	6	0	3,481251	-0.105003	0.806669
27	6	0	5.082646	-1.056398	-1.258963
28	1	0	3 267362	-1 131915	-2 410636
29	6	0	4 850324	-0 263495	1 000616
30	1	0	2 872353	0.203433	1.000010
21	6	0	5 655607	0.205214	0.020005
22	1	0	5.055007	1 422272	2 070102
52 22	1	0	5.700745	-1.425275	1 050211
33	1	0	5.288910	-0.011784	1.959311
34	1	0	6.721803	-0.860739	0.122243
35	1	0	1.268589	-0.020275	-1./31508
36	7	0	-1.085516	-0.551427	-0.833544
37	7	0	0.736943	-2.360440	0.553775
38	6	0	1.059532	-2.098209	1.850546
39	6	0	-2.279502	-1.111288	-0.920393
40	8	0	-2.444081	-2.301493	-1.266622
41	8	0	2.096421	-2.501018	2.363143
42	6	0	-3.530590	-0.323670	-0.584682
43	6	0	-4.379328	-0.802994	0.414904
44	6	0	-3.896789	0.818095	-1.296039
45	6	0	-5.551757	-0.125538	0.731801
46	1	0	-4.118712	-1.717954	0.936505
47	6	0	-5.081129	1.487091	-0.995321
48	1	0	-3.273651	1.171350	-2.110436
49	6	0	-5.903634	1.024709	0.027681
50	1	0	-6.195719	-0.498379	1.520080
51	1	0	-5.361000	2.367405	-1.562222
52	1	0	-6.820279	1.550339	0.267968
53	6	0	0.030481	-1.405945	2.706127
54	6	0	0.473298	-0.750595	3.857126
55	6	0	-1.321217	-1.369788	2.360776
56	6	0	-0.423945	-0.042980	4.647899
57	1	0	1.525838	-0.792401	4,111303
58	-	0	-2 220649	-0.675668	3 165772
59	1	0	-1 655522	-1 888225	1 468491
60	6	0	-1 772894	-0.005601	4 301741
61	1	0	-0.07/127	0.005001	5 521200
62	1	0	-0.074127	0.477745	2 006022
62	1	0	-3.271752	0 643696	2.900023
03	1 C	0	-2.4/595/	0.542585	4.91/800
64 CF	0	0	-1.011023	1.909992	-1.277485
65	8	0	-1.462435	2.988108	-0.9/44/2
00	8	0	-0.5/9333	1.021869	-2.50686/
б/ СО	6	U	-0.623342	2.698941	-3.450560
68	1	0	0.004115	3.521311	-3.103979
69	1	0	-0.241445	2.291683	-4.382327
70	1	0	-1.647886	3.048881	-3.577089
71	1	0	-1.462016	1.012511	0.563534

3a Anion R,S

Standard orientation:

Center Atomic Atomic Coordinates (Angstroms)								
Nun	nber Nur	nber T	ype X	Y	Z			
1	6	0	-0.698575	-0.066110	0.732813			
2	6	0	-0.123490	-1.324262	-0.017987			
3	6	0	1.369937	-1.312368	0.313575			
4	6	0	1.700498	0.205843	0.232925			
5	1	0	1.509354	-1.577565	1.362205			
6	6	0	2.262070	-2.196891	-0.526673			
7	6	0	1.973036	-2.510519	-1.856878			

8	6	0	3.444118	-2.687527	0.034245
9	6	0	2.852346	-3.286006	-2.609065
10	1	0	1.060375	-2.150407	-2.317431
11	6	0	4.324682	-3.460910	-0.714523
12	1	0	3.675159	-2.455798	1.069356
13	6	0	4.031435	-3.760409	-2.042668
14	1	0	2.612030	-3.521009	-3.639440
15	1	0	5.236650	-3.831565	-0.261300
16	1	0	4.713671	-4.364287	-2.629214
17	6	0	-0.920164	-0.490227	2.209279
18	8	0	-0.008249	-0.692453	2.977758
19	8	0	-2.189849	-0.709234	2.526919
20	6	0	-2.411658	-1.240397	3.837622
21	1	0	-2.038010	-0.551521	4.594842
22	1	0	-3.487559	-1.360331	3.928575
23	1	0	-1.909257	-2.203280	3.939346
24	6	0	2.063290	0.564964	-1.202858
25	8	0	1.286739	0.692089	-2.113731
26	8	0	3.387850	0.644953	-1.341435
27	6	0	3.862716	0.842676	-2.678877
28	1	0	3.479402	1.782389	-3.076700
29	1	0	4.946001	0.871200	-2.607289
30	1	0	3.540972	0.014906	-3.311725
31	6	0	-0.866823	-2.607410	0.251734
32	6	0	-1.962184	-2.935037	-0.552176
33	6	0	-0.527279	-3.467014	1.299992
34	6	0	-2.710047	-4.082296	-0.309295
35	1	0	-2.230814	-2.2/1992	-1.36/390
36	6	0	-1.273866	-4.617377	1.544975
37	1	0	0.319813	-3.242227	1.938233
38	6	0	-2.368789	-4.92/425	0.744011
39	1	0	-3.557491	-4.318026	-0.942693
40	1	0	-0.996152	-5.2/2444	2.362/32
41	1	0	-2.948090	-5.823112	1.069999
42	1	0	-0.259515	-1.000550	-1.000000
43	7	0	1 90/070	0.820900	0.716408
44	, 6	0	-2.051782	1 508073	-0 509170
46	6	0	0 442279	1.975009	1 443234
40	8	0	-0.460160	2 225506	2 230295
48	8	0 0	-1 264337	2.223300	-0 660731
49	6	0	1 572014	2 933377	1 214794
50	6	0	2.320052	3.403561	2.292580
51	6	0	1.831651	3.390974	-0.077201
52	6	0	3.351685	4.311050	2.072982
53	1	0	2.096698	3.052460	3.293810
54	6	0	2.853482	4.311638	-0.289845
55	1	0	1.199657	3.042571	-0.887695
56	6	0	3.619071	4.763898	0.782544
57	1	0	3.944497	4.667779	2.906886
58	1	0	3.049765	4.679382	-1.290308
59	1	0	4.419662	5.474740	0.614672
60	6	0	-3.435734	1.655506	-1.148310
61	6	0	-3.802111	2.883308	-1.701381
62	6	0	-4.346192	0.596713	-1.209400
63	6	0	-5.050035	3.056312	-2.296476
64	1	0	-3.090657	3.698849	-1.656640
65	6	0	-5.591203	0.762311	-1.808819
66	1	0	-4.057066	-0.354539	-0.779797
67	6	0	-5.949186	1.994836	-2.353562
68	1	0	-5.320218	4.018482	-2.717380
69	1	0	-6.285187	-0.069940	-1.851896
70	1	0	-6.919574	2.125090	-2.818979
71	1	0	2.550664	0.453345	0.868860

	3a	Ani	ion	S,R	
--	----	-----	-----	-----	--

Standard orientation:

 Cen	iter Ato	mic A	tomic C	oordinates (A	ngstroms)
Num	nber Nun	nber 1	Гуре Х	Y	Z
				0 1 7 4 5 4 6	
1	6	0	-0.569/12	-0.1/4546	0.483007
2	6	0	-0.450470	1.320650	0.040929
3	6	0	1.033679	1.540233	-0.353603
4	5	0	1.727431	0.101/25	-0.199255
5	I C	0	1.049713	1.784100	-1.419270
5	6	0	1./11334	2.69/501	0.358400
/ 0	6	0	2 022707	3.894029	0.510194
0	6	0	3.033707	Z.051200	0.602152
9 10	1	0	1.567069	2.001313	1.110/51
10	1	0	-0.021110	2 750002	1 410604
12	1	0	2 629769	1 755527	0.6700094
12	6	0	2 001657	1.755557	1 575690
17	1	0	2.901037	5 01/000	1.373080
15	1	0	1.013270	3 607618	1.252545
16	1	0	3 358035	5 707151	2 050226
17	6	0	-0 231030	-0 247670	1 996802
18	g	0	0.251030	0.247070	2 611777
19	8	0	-0 508554	-1 445989	2.011777
20	6	0	-0 178085	-1 619614	2.510504
21	1	0	-0.724286	-0.897717	4,499181
22	1	0	-0.479198	-2.632589	4.143211
23	1	0	0.892856	-1.490095	4.049072
24	6	0	2.619555	-0.086788	-1.410017
25	8	0	2.204048	-0.320715	-2.516431
26	8	0	3.906999	0.040757	-1.108359
27	6	0	4.826900	-0.144001	-2.194718
28	1	0	4.651222	0.606110	-2.965117
29	1	0	5.816860	-0.028114	-1.763728
30	1	0	4.703662	-1.143126	-2.612164
31	6	0	-1.410659	1.655648	-1.077816
32	6	0	-2.522917	2.456202	-0.824420
33	6	0	-1.225152	1.154242	-2.370412
34	6	0	-3.434075	2.754783	-1.837053
35	1	0	-2.683133	2.834568	0.179756
36	6	0	-2.132980	1.445768	-3.381483
37	1	0	-0.370796	0.516656	-2.580476
38	6	0	-3.242447	2.249279	-3.118254
39	1	0	-4.292440	3.381113	-1.622219
40	1	0	-1.978680	1.044037	-4.376508
41	1	0	-3.948902	2.478712	-3.907505
42	1	0	-0.702630	1.927564	0.907146
43	7	0	0.629711	-0.805818	-0.149305
44	7	0	-1.794126	-0.798911	0.128573
45	6	0	-2.800651	-0.382551	0.862230
46	6	0	0.855973	-2.162018	-0.21/1/9
47	8	0	-0.012783	-3.010562	-0.277472
48 40	ð C	0	-2./44/16	0.429140	1.831046
49 50	0	0	2.301204	-2.3991/8	-U.109049
50	U F	0	2.004029	-3.2/3501	-1.2/0523
57	6	0	3.031143 A 167377	-2.409270	-1 212/16
52	1	0	7.107277	-3 424651	-2 171/105
53	6	n	7 3201031 7 3221031	-2 885017	1 040588
55	1	n	2.612251	-1.896892	1.821213
56	6	Õ	4.918457	-3.534662	-0.055093
	-	-			

57	1	0	4.603646	-4.237346	-2.064100
58	1	0	4.933991	-2.744970	1.946412
59	1	0	5.939496	-3.894045	-0.005988
60	6	0	-4.157824	-0.938539	0.478274
61	6	0	-5.291013	-0.510411	1.170939
62	6	0	-4.311994	-1.858943	-0.562448
63	6	0	-6.554917	-0.989782	0.834902
64	1	0	-5.163712	0.204340	1.974679
65	6	0	-5.572547	-2.341380	-0.899280
66	1	0	-3.431279	-2.189280	-1.099107
67	6	0	-6.699364	-1.907641	-0.201859
68	1	0	-7.426549	-0.647124	1.381142
69	1	0	-5.678603	-3.056706	-1.707149
70	1	0	-7.681560	-2.282776	-0.465723
71	1	0	2.331735	0.134865	0.708874

3a Anion *S,S*

Center	Ator	nic At	omic	Coordinate	s (Angstroms)
Nur	nber	Numbe	er Type	Х	Y Z
 1	6	0	-0 608575	-0.066110	0 732813
2	6	0	-0.038373	-0.000110	-0.017987
2	6	0	1 369937	-1 312368	0.313575
	6	0	1 700/198	0 2058/13	0.313375
5	1	0	1 509354	-1 577565	1 362205
6	6	0	2 262070	-2 196891	-0 526673
7	6	0	1 973036	-2 510519	-1 856878
, 8	6	0	3.444118	-2.687527	0.034245
9	6	0	2.852346	-3.286006	-2.609065
10	1	0	1.060375	-2.150407	-2.317431
11	6	0	4.324682	-3.460910	-0.714523
12	1	0	3.675159	-2.455798	1.069356
13	6	0	4.031435	-3.760409	-2.042668
14	1	0	2.612030	-3.521009	-3.639440
15	1	0	5.236650	-3.831565	-0.261300
16	1	0	4.713671	-4.364287	-2.629214
17	6	0	-0.920164	-0.490227	2.209279
18	8	0	-0.008249	-0.692453	2.977758
19	8	0	-2.189849	-0.709234	2.526919
20	6	0	-2.411658	-1.240397	3.837622
21	1	0	-2.038010	-0.551521	4.594842
22	1	0	-3.487559	-1.360331	3.928575
23	1	0	-1.909257	-2.203280	3.939346
24	6	0	2.063290	0.564964	-1.202858
25	8	0	1.286739	0.692089	-2.113731
26	8	0	3.387850	0.644953	-1.341435
27	6	0	3.862716	0.842676	-2.678877
28	1	0	3.479402	1.782389	-3.076700
29	1	0	4.946001	0.871200	-2.607289
30	1	0	3.540972	0.014906	-3.311725
31	6	0	-0.866823	-2.607410	0.251734
32	6	0	-1.962184	-2.935037	-0.552176
33	6	0	-0.527279	-3.467014	1.299992
34	6	0	-2.710047	-4.082296	-0.309295
35	1	0	-2.230814	-2.271992	-1.367390
36	6	0	-1.273866	-4.617377	1.544975
37	1	0	0.319813	-3.242227	1.938233
38	6	0	-2.368789	-4.927425	0.744011
39	1	0	-3.557491	-4.318026	-0.942693
40	1	0	-0.996152	-5.272444	2.362732
41	1	0	-2.948090	-5.823112	0.935210

42	1	0	-0.259313	-1.060530	-1.068888
43	7	0	0.478011	0.826966	0.718408
44	7	0	-1.904070	0.360352	0.116533
45	6	0	-2.051782	1.508073	-0.509170
46	6	0	0.442279	1.975009	1.443234
47	8	0	-0.460160	2.225506	2.230295
48	8	0	-1.264337	2.477760	-0.660731
49	6	0	1.572014	2.933377	1.214794
50	6	0	2.320052	3.403561	2.292580
51	6	0	1.831651	3.390974	-0.077201
52	6	0	3.351685	4.311050	2.072982
53	1	0	2.096698	3.052460	3.293810
54	6	0	2.853482	4.311638	-0.289845
55	1	0	1.199657	3.042571	-0.887695
56	6	0	3.619071	4.763898	0.782544
57	1	0	3.944497	4.667779	2.906886
58	1	0	3.049765	4.679382	-1.290308
59	1	0	4.419662	5.474740	0.614672
60	6	0	-3.435734	1.655506	-1.148310
61	6	0	-3.802111	2.883308	-1.701381
62	6	0	-4.346192	0.596713	-1.209400
63	6	0	-5.050035	3.056312	-2.296476
64	1	0	-3.090657	3.698849	-1.656640
65	6	0	-5.591203	0.762311	-1.808819
66	1	0	-4.057066	-0.354539	-0.779797
67	6	0	-5.949186	1.994836	-2.353562
68	1	0	-5.320218	4.018482	-2.717380
69	1	0	-6.285187	-0.069940	-1.851896
70	1	0	-6.919574	2.125090	-2.818979
71	1	0	2.550664	0.453345	0.868860

3a Anion R,R

Center	ter Atomic Atomic		Coordinates (Angstroms)		
Number		Numbe	er Type	Х	Y Z
	6	0	-0 569712		0 /183007
2	6	0	-0.303712	1 220650	0.483007
2	6	0	1 033670	1.520050	-0.353603
7	6	0	1 727/21	0 161725	-0.333003
4 5	1	0	1.727431	1 78/160	-0.199233
5	6	0	1 71122/	2 607501	0.358400
7	6	0	1.711554	2.097301	0.538400
, o	6	0	2 022707	2.694029	0.010194
0	6	0	1 597090	5 001212	1 110751
10	1	0	1.387089	2 061212	0.160557
10	т С	0	-0.021116	3.901313	1 410604
12	1	0	3.021403	3./39093	0.670008
12	L C	0	3.028708	1./0000	1.575690
13	1	0	2.901057	4.93/108	1.373080
14	1	0	1.015270	2.914999	1.232545
15	1	0	4.647749	3.09/018	1.753614
10	1 C	0	3.358935	5./9/151	2.050226
1/	6	0	-0.231030	-0.24/6/0	1.996802
18	8	0	0.352623	0.613510	2.611///
19	8	0	-0.508554	-1.445989	2.510304
20	6	0	-0.178085	-1.619614	3.891593
21	1	0	-0.724286	-0.897717	4.499181
22	1	0	-0.479198	-2.632589	4.143211
23	1	0	0.892856	-1.490095	4.049072
24	6	0	2.619555	-0.086788	-1.410017
25	8	0	2.204048	-0.320715	-2.516431
26	8	0	3.906999	0.040757	-1.108359

27	6	0	4.826900	-0.144001	-2.194718
28	1	0	4.651222	0.606110	-2.965117
29	1	0	5.816860	-0.028114	-1.763728
30	1	0	4.703662	-1.143126	-2.612164
31	6	0	-1.410659	1.655648	-1.077816
32	6	0	-2.522917	2.456202	-0.824420
33	6	0	-1.225152	1.154242	-2.370412
34	6	0	-3.434075	2.754783	-1.837053
35	1	0	-2.683133	2.834568	0.179756
36	6	0	-2.132980	1.445768	-3.381483
37	1	0	-0.370796	0.516656	-2.580476
38	6	0	-3.242447	2.249279	-3.118254
39	1	0	-4.292440	3.381113	-1.622219
40	1	0	-1.978680	1.044037	-4.376508
41	1	0	-3.948902	2.478712	-3.907505
42	1	0	-0.702630	1.927564	0.907146
43	7	0	0.629711	-0.805818	-0.149305
44	7	0	-1.794126	-0.798911	0.128573
45	6	0	-2.800651	-0.382551	0.862230
46	6	0	0.855973	-2.162018	-0.217179
47	8	0	-0.012783	-3.010562	-0.277472
48	8	0	-2.744716	0.429140	1.831046
49	6	0	2.301264	-2.599178	-0.189649
50	6	0	2.854629	-3.273501	-1.276523
51	6	0	3.051143	-2.409270	0.970364
52	6	0	4.167277	-3.728959	-1.212416
53	1	0	2.261637	-3.424651	-2.171495
54	6	0	4.356436	-2.885017	1.040588
55	1	0	2.612251	-1.896892	1.821213
56	6	0	4.918457	-3.534662	-0.055093
57	1	0	4.603646	-4.237346	-2.064100
58	1	0	4.933991	-2.744970	1.946412
59	1	0	5.939496	-3.894045	-0.005988
60	6	0	-4.157824	-0.938539	0.478274
61	6	0	-5.291013	-0.510411	1.170939
62	6	0	-4.311994	-1.858943	-0.562448
63	6	0	-6.554917	-0.989782	0.834902
64	1	0	-5.163712	0.204340	1.974679
65	6	0	-5.572547	-2.341380	-0.899280
66	1	0	-3.431279	-2.189280	-1.099107
67	6	0	-6.699364	-1.907641	-0.201859
68	1	0	-7.426549	-0.647124	1.381142
69	1	0	-5.678603	-3.056706	-1.707149
70	1	0	-7.681560	-2.282776	-0.465723
71	1	0	2.331735	0.134865	0.708874