Electronic Supplementary Material (ESI) for Organic & Biomolecular Chemistry. This journal is © The Royal Society of Chemistry 2023

Supporting Information

Defluorinative Alkylation of 1-Trifluoromethyl Alkenes with Alkyl radicals Derived from Visible-Light Induced Deoxygenation of Xanthate Salts: Synthesis of gem-Difluoroalkenes

Xin Li,^{a #} Yan Jiao,^{a #} Lifei Han,^{* b} Jinwei Sun,^a Xuan Zhang^{* a}

^aSchool of Chemistry and Materials Science, Institute of Advanced Materials and Flexible Electronics

(IAMFE), Nanjing University of Information Science and Technology, 219 Ningliu Road, Nanjing

210044, China.

^bBreast Disease Center, Zhongda Hospital, School of Medicine, Southeast University, Nanjing 210009, China.

[#]These authors contributed equally.

E-mail: <u>1902994755@qq.com; xuanzhang@nuist.edu.cn</u>

Table of Contents

1. General Information	S2
2. Optimization of reaction conditions	S3
3. General Procedure for Synthesis of Xanthate Salts	S6
4. Preparation of Trifluoromethyl Alkenes	
5. General Procedure for Deoxygenative Difluoroallylation of Alcohols	S16
6. Gram Scale Reaction	S39
7. Cyclic Voltammetry of 2l and 2m	S42
8. Mechanistic Studies	S42
9. References	S48
10. Copies of NMR Spectra	S49

1. General Information.

All new compounds were fully characterized. NMR spectra were recorded on JNM-ECZ400S/L1 and calibrated using residual undeuterated solvent CDCl3, DMSO-D6 (¹H NMR spectra: CDCl₃: 7.26 ppm, DMSO-D6: 2.50 ppm; ¹³C NMR spectra: CDCl₃: 77.00 ppm, DMSO-D6: 39.50 ppm). Mass spectra were conducted at Bruker MTQ III q-TOF (ESI) Mass Spectrometer. Cyclic voltammetry (CV) experiments were used on CHI660E. Measurements of UV-Vis absorption spectra were made on SHIMADZU UV-3600Plus. Anhydrous solvents, such as Dichloromethane (DCM). Ν. N-Dimethylacetamide (DMA), Ν. N-Dimethylformamide (DMF), Dimethyl sulfoxide (DMSO), Tetrahydrofuran (THF), Ethyl acetate (EA), Methanol (CH₃OH), Acetonitrile (MeCN), Dichloroethane (DCE), N-Methyl-2-pyrrolidone (NMP) were purchased from Adamas. Anhydrous acetone was obtained by laboratory refining. Flash column chromatography was carried out using silica gel (General-Reagent, AR, 200-300 mesh, for column chromatography). All reactions were carried out in dried 20 mL vial under Nitrogen. Unless otherwise noted, materials were obtained from commercial suppliers and used without further purification. TEA and PE are the abbreviation of triethylamine and petroleum ether.

Photoreaction setup:

All Photoredox reactions were subjected to irradiation from double 40W Kessil PR160L blue LED bulbs (456 nm), with the reaction tube placed approximately ~ 5 cm from the bulbs and using a fan to keep at room temperature (Figure **S1**).

Figure S1. An over-dried 20 mL vial (left). Photoreaction setup (right).

2. Optimization of reaction conditions

Entry	Reductant	Yield of	Yield of	Yield of	Recovery
		3a (%)	3a'(%)	3a" (%)	of 2a (%)
1	PPh ₃	2	0	32	30
2	P ⁿ Bu ₃	60	0	2	13
3	P(OEt) ₃	3	0	28	40
4	P ^t Bu ₃	60	0.33	7.5	1
5	1,4-bis(dicyclohexylphosphino)	74	0	3.5	13
	butane				
6	PCy ₃	75	0	5	13
7	Ph ₂ PCy	31	0	10.5	52
8	PhPCy ₂	80	0	3.5	10

Table S1. Exploration of reductants^a

"Reaction conditions: **1a'** (0.1 mmol, 1 eq), **2a** (0.12 mmol, 1.2 eq), DMA (2 mL), Reductant (0.12 mmol, 1.2 eq), Kessil PR160L (456 nm), I = 25%, rt, 12 h, N₂ atmosphere. Yields were determined by ¹⁹F NMR with 1, 4-Difluorobenzene (9.8 μ L, 0.1 mmol) as an internal standard.

Entry	ntry Solvent		Yield of	Yield of	Recovery
		3a (%)	3a'(%)	3a" (%)	of 2a (%)
9	DMA (2 mL)	80	0	3.5	10
10	DMF (2 mL)	80	0	3	11
11	DMSO (2 mL)	82	0	5	9
12	THF (2 mL)	10	0	0	85
13	EA (2 mL)	11	0	0	92
14	Acetone (2 mL)	83	1.3	1	18
15	CH3OH (2 mL)	0	1.7	0	95
16	CH ₃ CN (2 mL)	78	0	2	44
17	DCE (2 mL)	0	0	5	91
18	NMP (2 mL)	75	0.33	3.5	7
19	DMSO/DCM=3/1 (2 mL)	0	0	2	91
20	CH ₃ CN/DCM=3/1 (2 mL)	10	0	1	93
21	DMSO/CH3CN=19/1 (2 mL)	78	0	7	5
22	DMSO/CH ₃ CN=9/1 (2 mL)	86	0	5	8
23	DMSO/CH ₃ CN=4/1 (2 mL)	82	0	4	10
24	DMSO/CH ₃ CN=3/1 (2 mL)	83	0	4	9
25	DMSO/CH ₃ CN=1/1 (2 mL)	79	0	3.5	15
26	DMSO/CH ₃ CN=1/3 (2 mL)	73	0	2	21
27	DMSO/CH ₃ CN=1/4 (2 mL)	79	0	2	16
28	DMSO/CH ₃ CN=1/9 (2 mL)	80	0	1.5	16
29	Acetone/CH ₃ CN=19/1 (2 mL)	86	1.3	3	26
30	Acetone/CH ₃ CN=9/1 (2 mL)	90	1	3	22
31	Acetone/CH ₃ CN=4/1 (2 mL)	85	0.67	3	25
32	Acetone/CH ₃ CN=3/1 (2 mL)	87	1	3	25
33	Acetone/CH ₃ CN=1/1 (2 mL)	87	0.67	2.5	21
34	Acetone/CH ₃ CN=1/3 (2 mL)	77	0.33	1.5	19
35	Acetone/CH ₃ CN=1/4 (2 mL)	81	0.33	2	24
36	Acetone/MeCN=9/1 (1 mL)	76	1	3	23
37	Acetone/MeCN=9/1 (4 mL)	81	1.7	2	19

Table S2. Exploration of solvents^a

"Reaction conditions: **1a'** (0.1 mmol, 1 eq), **2a** (0.12 mmol, 1.2 eq), PhPCy₂ (0.12 mmol, 1.2 eq), Solvent, Kessil PR160L (456 nm), I = 25%, rt, 12 h, N₂ atmosphere. Yields were determined by

_							
	Entry	Light (nm)	Intensity	Yield of	Yield of	Yield of	Recovery
_			(%)	3a (%)	3a'(%)	3a" (%)	of 2a (%)
	38	390	25	78	1.3	4	8
	39	427	25	83	1	2.5	16
	40	440	25	83	1	3	23
	41	456	25	90	1	3	22
	42	456	50	83	1	3	13
	43	456	75	84	1.3	2.5	18
	44	456	100	81	1.3	3	13

 19 F NMR with 1, 4-Difluorobenzene (9.8 μ L, 0.1 mmol) as an internal standard.

Table S3. Exploration of light sources^{*a*}

"Reaction conditions: **1a'** (0.1 mmol, 1 eq), **2a** (0.12 mmol, 1.2 eq), PhPCy₂ (0.12 mmol, 1.2 eq), Acetone/CH₃CN = (1.8 mL/0.2mL), Kessil PR160L (λ nm), I (%), rt, 12 h, N₂ atmosphere. Yields were determined by ¹⁹F NMR with 1, 4-Difluorobenzene (9.8 µL, 0.1 mmol) as an internal standard.

Entry	Olefin content	Reductant	Yield of	Yield of	Yield of	Recovery
	(eq)	content (eq)	3a (%)	3a'(%)	3a" (%)	of 2a (%)
45	1.05	1.2	75	0.33	2	8
46	1.1	1.2	79	0.33	2	13
47	1.2	1.2	90	1	3	22
48	1.2	1.1	85	1.3	2	24
49	1.2	1.5	84	1.3	2.5	21
50	1.2	2.0	82	1.3	2.5	21

Table S4. Exploration of olefin and reductant contents^a

"Reaction conditions: **1a'** (0.1 mmol, 1 eq), **2a**, PhPCy₂, Acetone/CH₃CN = (1.8 mL/0.2 mL), Kessil PR160L (456 nm), I = 25%, rt, 12 h, N₂ atmosphere. Yields were determined by ¹⁹F NMR with 1, 4-Difluorobenzene (9.8 μ L, 0.1 mmol) as an internal standard.

Tuble 55. Exploration of one pot procedure and bases						
Entry	Base	Yield of	Yield of	Yield of	Recovery	
		3 a (%)	3a'(%)	3a" (%)	of 2a (%)	
51	KO ^t Bu (1.0 eq)	78	1.2	2	18	
52	KO ^t Bu (1.05 eq)	68	1.2	2	28	
53	KO ^t Bu (1.1 eq)	87	1.8	2.8	19	
54	NaH (1.1 eq)	11	2.5	10	38	
55	NaOH (1.1 eq)	2	3.3	13	42	
56	KOH (1.1 eq)	19	3.2	12	27	
57	KHDMS (1.1 eq)	74	0.4	2.5	23	
58 ^b	KO ^t Bu (1.1 eq)	0	0	0	99	
59 ^c	KO ^t Bu (1.1 eq)	0	0	0	95	

Table S5. Exploration of one-pot procedure and bases^a

^{*a*}Reaction conditions: **1a** (0.1 mmol), base, CS₂ (0.3 mmol), THF (1 mL), 3 h. After the solvent was removed in vacuo, then **2a** (0.12 mmol), PPhCy₂ (0.12 mmol), acetone/CH₃CN = 9:1 (2 mL), Kessil PR160L (456 nm), I = 25%, rt, 12 h, N₂ atmosphere. ^{*b*}no light. ^{*c*}no reductant. Yields were determined by ¹⁹F NMR with 1, 4-Difluorobenzene (9.8 μ L, 0.1 mmol) as an internal standard.

3. General Procedure for Synthesis of Xanthate Salts

In a N₂-filled glovebox, 250 mL round-bottom flask equipped with a magnetic stir bar was charged sequentially with alcohol **1** (10.0 mmol), **KO'Bu** (1.12 g, 10.0 mmol), and **dry THF** (100 mL). The flask was sealed with a septum cap and transferred out of the glovebox, and a balloon was attached. The reaction mixture was stirred at room temperature for 30 minutes, followed by the addition of **CS₂** (1.8 mL, 30.0 mmol) via microsyringe at 0°C and continued to be stirred for 3 hours at 0°C before removing the solvent under reduced pressure.The solid was washed with Et₂O (2 × 50 mL), and dried in vacuo to afford the desired product.¹

Potassium(I) *O*-(3-phenylpropyl) carbonodithioat (1a'): pale-yellow solid, 2.34 g, 93% yield. ¹H NMR (400 MHz, DMSO-D6) δ: 7.28 (t, *J* = 7.4 Hz, 2H), 7.22-7.15 (m, 3H), 4.18 (t, *J* = 6.6 Hz, 2H), 2.63 (t, *J* = 7.9 Hz, 2H), 1.93-1.85

(m, 2H); ¹³C NMR (100 MHz, DMSO-D6) δ: 141.7, 128.3, 125.7, 70.0, 31.9, 30.3; HRMS m/z (ESI) calcd for C₁₀H₁₁KOS₂ (M+Na)⁺ 272.9786, found 272.9789.

4. Preparation of Trifluoromethyl Alkenes

Method A:²

In a Schlenk tube equipped with stir bar, arylboronic acids (1.5 equiv.), $Pd(PPh_3)_2Cl_2$ (5 mol%) were added. The vessel was evacuated and filled with nitrogen, then TEA (8.0 equiv.), DME (0.33 M) and H₂O (0.67 M) were added. After the addition of 2-bromo-3,3,3-trifluoropropene (1.0 equiv.), the solution was stirred at 75 °C overnight (TLC tracking detection). The mixture was purified by column chromatography to afford the corresponding trifluoromethyl alkenes. (Note: the products might be volatile under high vacuum).

Method B:²

In a Schlenk tube equipped with stir bar, arylboronic acids (1.0 equiv.), $Pd(PPh_3)_2Cl_2$ (3 mol%) and K_2CO_3 (4.0 equiv.) were added. The vessel was evacuated and filled with nitrogen, then THF (0.33 M) and H₂O (0.5 M) were added. After the

addition of 2-bromo-3,3,3-trifluoropropene (2.0 equiv.), the solution was stirred at 60 °C overnight (TLC tracking detection). The mixture was purified by column chromatography to afford the corresponding trifluoromethyl alkenes. (Note: the products might be volatile under high vacuum).

to Method A, the reaction was carried out with the corresponding arylboronic acid (5.16 g, 30.00 mmol), Pd(PPh₃)₂Cl₂ (701.9 mg, 1.02 mmol), TEA (8 mL, 142.50 mmol), DME (60 mL) and H₂O (30 mL), 2-bromo-3,3,3-trifluoropropene (2.08 mL, 20.00 mmol). The crude product was purified by flash column chromatography on silica gel (PE) to afford 4.09 g (92% yield) of 2a as a white solid: ¹H NMR (400 MHz, CDCl₃) δ: 7.94-7.85 (m, 4H), 7.58-7.51 (m, 3H), 6.05 (s, 1H), 5.91 (s, 1H). All data are in accordance with the literature.²

2-(3,3,3-trifluoroprop-1-en-2-yl)naphthalene (2a) : According

1-Chloro-4-(3,3,3-trifluoroprop-1-en-2-yl)benzene (2b): According to Method A, the reaction was carried out with the corresponding arylboronic acid (1.88 g, 12.00 mmol), CI Pd(PPh₃)₂Cl₂ (285.7 mg, 0.41 mmol), TEA (8 mL, 57.00 mmol), DME (24 mL) and H₂O (12 mL), 2-bromo-3,3,3-trifluoropropene (0.83 mL, 8.00 mmol). The crude product was purified by flash column chromatography on silica gel (PE) to afford 0.64 g (39% yield) of 2b as a yellow oil: ¹H NMR (400 MHz, CDCl₃) δ: 7.40-7.35 (m, 4H), 5.98 (s, 1H), 5.77 (s, 1H). All data are in accordance with the literature.²

1-Bromo-4-(3,3,3-trifluoroprop-1-en-2-yl)benzene (2c): According to Method A, the reaction was carried out with the corresponding arylboronic acid (2.41 g, 12.00 mmol), Pd(PPh₃)₂Cl₂ (285.7 mg, 0.41 mmol), TEA (8 mL, 57.00 mmol),

DME (24 mL) and H₂O (12 mL), 2-bromo-3,3,3-trifluoropropene (0.83 mL, 8.00 mmol). The crude product was purified by flash column chromatography on silica gel (PE) to afford 0.81 g (41% yield) of 2c as a white solid: ¹H NMR (400 MHz, CDCl₃) δ: 7.52 (d, J = 8.4 Hz, 2H), 7.32 (d, J = 8.6 Hz, 2H), 5.98 (s, 1H), 5.78 (s, 1H). All data are in accordance with the literature.²

8.00 mmol). The crude product was purified by flash column chromatography on silica gel (PE: DCM=3:1) to afford 1.04 g (57% yield) of **2d** as a yellow oil: ¹H NMR (400 MHz, CDCl₃) δ : 8.05 (d, J = 8.3 Hz, 2H), 7.53 (d, J = 8.6 Hz, 2H), 6.05 (s, 1H), 5.87 (s, 1H), 3.94 (s, 1H). All data are in accordance with the literature.²

4-4-(3,3,3-trifluoroprop-1-en-2-yl)benzaldehyde (2e) : According to Method A, the reaction was carried out with the corresponding arylboronic acid (1.82 g, 12.00 mmol), Pd(PPh_3)_2Cl_2 (285.7 mg, 0.41 mmol), TEA (8 mL, 57.00 mmol), DME (24 mL) and H_2O (12 mL), 2-bromo-3,3,3-trifluoropropene (0.83 mL, 8.00 mmol). The crude product was purified by flash column chromatography on silica gel (PE) to afford 0.67 g (42% yield) of 2e as a yellow oil: ¹H NMR (400 MHz, CDCl_3) δ : 10.05 (s, 1H), 7.92 (d, J = 8.4 Hz, 2H), 7.64 (d, J = 8.4 Hz, 1H), 6.09 (s, 1H), 5.90 (s, 1H). All data are in accordance with the literature.³

3-(3,3,3-Trifluoroprop-1-en-2-yl)benzonitrile (2f) : According to Method A, the reaction was carried out with the corresponding arylboronic acid (1.76 g, 12.00 mmol), Pd(PPh₃)₂Cl₂ (285.7 mg, 0.41 mmol), TEA (8 mL, 57.00 mmol), DME (24 mL) and H₂O (12 mL), 2-bromo-3,3,3-trifluoropropene (0.83 mL, 8.00 mmol). The crude product was purified by flash column chromatography on silica gel (PE: DCM=3:1) to afford 1.01 g (64% yield) of **2f** as an orange oil: ¹**H NMR (400 MHz, CDCl₃)** δ : 7.69 (d, *J* = 8.4 Hz, 2H), 7.57 (d, *J* = 7.4 Hz, 1H), 6.11(s, 1H), 5.88 (m, 1H). All data are in accordance with the literature.²

1-(Trifluoromethyl)-4-(3,3,3-trifluoroprop-1-en-2-yl)benzen e (2g) : According to Method A, the reaction was carried out with the corresponding arylboronic acid (2.28 g, 12.00 mmol), Pd(PPh_3)_2Cl_2 (285.7 mg, 0.41 mmol), TEA (8 mL, 57.00 mmol), DME (24 mL) and H_2O (12 mL), 2-bromo-3,3,3-trifluoropropene (0.83 mL, 8.00 mmol). The crude product was purified by flash column chromatography on silica gel (PE) to afford 0.49 g (26% yield) of **2g** as a yellow oil: ¹H NMR (400 MHz, CDCl_3) δ : 7.66 (d, *J* = 8.2 Hz, 2H), 7.57 (d, *J* = 8.8 Hz, 2H), 6.07 (s, 1H), 5.85 (s, 1H). All data are in accordance with the literature.²

3-(3,3,3-Trifluoroprop-1-en-2-yl)pyridine (2h) : According to Method A, the reaction was carried out with the corresponding arylboronic acid (1.48 g, 12.00 mmol), Pd(PPh₃)₂Cl₂ (285.7 mg, 0.41 mmol), TEA (8 mL, 57.00 mmol), DME (24 mL) and H₂O (12 mL), 2-bromo-3,3,3-trifluoropropene (0.83 mL, 8.00 mmol). The crude product was purified by flash column chromatography on silica gel (PE: DCM=5:1) to afford 0.82 g (59% yield) of **2h** as a brown oil: ¹**H NMR (400 MHz, CDCl₃)** δ : 8.70 (s, 1H), 8.64 (d, *J* = 4.7 Hz, 1H), 7.78 (d, *J* = 8.7 Hz, 1H), 7.34 (t, *J* = 7.0 Hz, 1H), 6.07 (s, 1H), 5.85 (s, 1H). All data are in accordance with the literature.²

3-(3,3,3-Trifluoroprop-1-en-2-yl)quinoline (2i) : According to TCF₃ Method B, the reaction was carried out with the corresponding arylboronic acid (1.39 g, 8.00 mmol), Pd(PPh₃)₂Cl₂ (168.5 mg,

0.24 mmol), K₂CO₃ (4.42 g, 32.00 mmol), THF (24 mL) and H₂O (16 mL), 2-bromo-3,3,3-trifluoropropene (1.66 mL, 16.00 mmol). The crude product was purified by flash column chromatography on silica gel (PE: EA=10:1) to afford 1.03 g (58% yield) of **2i** as a yellow solid: ¹H NMR (400 MHz, CDCl₃) δ : 8.99 (s, 1H), 8.25 (s, 1H), 8.13 (d, *J* = 8.6 Hz, 1H), 7.87 (d, *J* = 8.0 Hz, 1H), 7.77 (t, *J* = 7.0 Hz, 1H), 7.61 (t, *J* = 7.0 Hz, 1H), 6.17 (s, 1H), 6.00 (s, 1H). All data are in accordance with the literature.²

5-(3,3,3-trifluoroprop-1-en-2-yl)pyrimidine (2j) : According to
Method A, the reaction was carried out with the corresponding arylboronic acid (1.82 g, 12.00 mmol), Pd(PPh₃)₂Cl₂ (285.7 mg, 0.41 mmol), TEA (8 mL, 57.00 mmol), DME (24 mL) and H₂O (12 mL),

2-bromo-3,3,3-trifluoropropene (0.83 mL, 8.00 mmol). The crude product was purified by flash column chromatography on silica gel (PE) to afford 0.67 g (48% yield) of **2j** as a yellow oil: ¹H NMR (400 MHz, CDCl₃) δ : 9.25 (s, 1H), 8.83 (s, 2H), 6.17 (s, 1H), 5.93 (s, 1H). All data are in accordance with the literature.³

4-(3,3,3-Trifluoroprop-1-en-2-yl)dibenzo[b,d]furan (2k) : According to Method B, the reaction was carried out with the corresponding arylboronic acid (1.70 g, 8.00 mmol),

Pd(PPh₃)₂Cl₂ (168.5 mg, 0.24 mmol), K₂CO₃ (4.42 g, 32.00 mmol), THF (24 mL) and H₂O (12 mL), 2-bromo-3,3,3-trifluoropropene (1.66 mL, 16.00 mmol). The crude product was purified by flash column chromatography on silica gel (PE) to afford 1.6 g (76% yield) of 2**k** as a yellow oil: ¹**H NMR (400 MHz, CDCl₃)** δ : 7.98 (d, *J* = 7.6 Hz, 2H), 7.60 (d, *J* = 8.3 Hz, 1H), 7.54-7.47 (m, 2H), 7.37 (t, *J* = 7.6 Hz, 2H), 6.37 (t, *J* = 1.25 Hz, 2H). All data are in accordance with the literature.²

Methyl-4-(3,3,3-trifluoroprop-1-en-2-yl)benzene (2l) : Me CF_3 According to Method A, the reaction was carried out with the corresponding arylboronic acid (1.63 g, 12.00 mmol), Pd(PPh_3)_2Cl_2 (285.7 mg, 0.41 mmol), TEA (8 mL, 57.00 mmol), DME (24 mL) and H_2O (12 mL), 2-bromo-3,3,3-trifluoropropene (0.83 mL, 8.00 mmol). The crude product was purified by flash column chromatography on silica gel (PE) to afford 0.49 g (33% yield) of **2l** as a colorless oil: ¹H NMR (400 MHz, CDCl_3) δ : 7.36 (d, J = 7.0 Hz, 2H), 7.20 (d, J = 6.5 Hz, 2H), 5.91 (s, 1H), 5.74 (s, 1H), 2.38 (s, 3H). All data are in accordance with the literature.²

Me

Methoxy-4-(3,3,3-trifluoroprop-1-en-2-yl)benzene (2m) :

According to Method A, the reaction was carried out with the corresponding arylboronic acid (1.82 g, 12.00 mmol), Pd(PPh₃)₂Cl₂ (285.7 mg, 0.41 mmol), TEA (8 mL, 57.00 mmol), DME (24 mL) and H₂O (12 mL), 2-bromo-3,3,3-trifluoropropene (0.83 mL, 8.00 mmol). The crude product was purified by flash column chromatography on silica gel (PE) to afford 0.67 g (41% yield) of 1c as a yellow oil: ¹H NMR (400 MHz, CDCl₃) δ : 7.40 (d, J = 9.0 Hz, 2H), 6.91 (d, J = 8.5 Hz, 2H), 5.87 (s, 1H), 5.70 (s, 1H), 3.83 (s, 3H). All data are in accordance with the literature.²

1-methyl-3-(3,3,3-trifluoroprop-1-en-2-yl)benzene (2n) : Me According to Method B, the reaction was carried out with the corresponding arylboronic acid (816 mg, 6.00 mmol), Pd(PPh₃)₂Cl₂ (126.0 mg, 0.18 mmol), K₂CO₃ (3.32 g, 24.00 mmol), THF (18 mL) and H₂O (12 mL), 2-bromo-3,3,3-trifluoropropene (1.25 mL, 12.00 mmol). The crude product was purified by flash column chromatography on silica gel (PE) to afford 850 mg (76% yield) of **2n** as a colorless oil: ¹H NMR (400 MHz, CDCl₃) δ: 7.30-7.24 (m, 3H), 7.20 (d, J = 6.7 Hz, 1H), 5.94 (s, 1H), 5.75 (s, 1H), 2.38 (s, 3H). All data are in accordance with the literature.⁴

Me 1-methyl-2-(3,3,3-trifluoroprop-1-en-2-yl)benzene (20): According CF_3 to Method B, the reaction was carried out with the corresponding arylboronic acid (816 mg, 6.00 mmol), Pd(PPh₃)₂Cl₂ (126.0 mg, 0.18 mmol), K₂CO₃ (3.32 g, 24.00 mmol), THF (18 mL) and H₂O (12 mL), 2-bromo-3,3,3-trifluoropropene (1.25 mL, 12.00 mmol). The crude product was purified by flash column chromatography on silica gel (PE) to afford 582 mg (52% yield) of 20 as a colorless oil: ¹H NMR (400 MHz, CDCl₃) δ: 7.30-7.24 (m, 2H), 7.20 (d, J = 3.1 Hz, 2H), 6.11 (s, 1H), 5.49 (s, 1H), 2.30 (s, 3H). All data are in accordance with the literature.⁵

3-(3,3,3-Trifluoroprop-1-en-2-yl)phenyl2-(1-(4-chlor obenzoyl)-5-methoxy-2-methyl-1H-indol-3-yl)acetate (**2q) :** To a solution of carboxylic acid (3.26 g, 9.10 mmol, 1.0 equiv.), 4-dimethylaminopyridine (DMAP) (111.2 mg, 0.90 mmol, 0.1 equiv.) and 3- (3, 3, 3-

Trifluoroprop-1-en-2-yl) phenol (1.88 g, 10.00 mmol, 1.1 equiv.) in DMF (22.75 mL), *N*, *N*-dicyclohexylcarbodimide (DCC) (2.06 g, 10.00 mmol, 1.1 equiv.) was added. The reaction mixture was stirred at room temperature for 5 hours (TLC tracking detection). The mixture was purified by flash column chromatography on silica gel (PE: DCM=1:5) to afford 3.2 g (67% yield) of **2q** as a yellow oil: ¹H NMR (400 MHz, CDCl₃) δ : 7.68 (d, *J* = 8.4 Hz, 2H), 7.48 (d, *J* = 8.5 Hz, 2H), 7.40-7.30 (m, 2H), 7.20 (s, 1H), 7.14-7.11 (m, 1H), 7.09 (d, J = 2.5 Hz, 1H), 6.93 (d, J = 9.0 Hz, 1H), 6.73 (dd, J = 9.0 Hz, J = 2.5 Hz, 1H), 5.99 (s, 1H), 5.79 (s, 1H), 3.94 (s, 2H), 3.85 (s, 3H), 2.47 (s, 3H). All data are in accordance with the literature.²

2-(4-(4-Chlorobenzoyl)phenoxy)-2-methyl -N-(3-(3,3,3-trifluoroprop-1-en-2-yl)pheny l)propanamide (2r) : To a mixture of Fenofibric acid (1.09 g, 3.00 mmol, 1.0

equiv.) and oxalylchloride (0.51 mL, 6.00 mmol, 2.0 equiv.) in dry CH₂Cl₂ (12 mL) was added dropwise DMF (23.4 μ L, 0.30 mmol, 0.1 equiv.). The reaction mixture was stirred at room temperature for 6 hours. Removal of the solvent in vacuo afforded the desired acid chloride which was used in the next step without further purification. To a mixture of 3-(3,3,3-trifluoroprop-1-en-2-yl)aniline (0.57 g, 3.00 mmol, 1.0 equiv.) and K₂CO₃ (0.42 g, 3.00 mmol, 1.0 equiv.) in dry THF (6 mL) was added dropwise a solution of the freshly prepared acid chloride (3.00 mmol, 1.0 equiv.) in dry THF (6 mL). This mixture was stirred at room temperature for 6 hours before water was added to quench the reaction. The resultant mixture was extracted with EtOAc (3*20 mL). The combined organic phases were dried over anhydrous Na₂SO₄, filtered, and concentrated under reduced pressure. The resultant crude product was purified by column chromatography on silica gel (PE: EA=10:1) to give the desired trifluoromethyl alkene as a white solid 1.10 g (75% yield). ¹H NMR (400 MHz, **CDCl**₃) δ : 8.41 (s, 1H), 7.77 (d, J = 8.8 Hz, 2H), 7.72-7.70 (m, 3H), 7.59-7.56 (m, 1H), 7.45 (d, J = 8.6 Hz, 2H), 7.35 (t, J = 8.0 Hz, 1H), 7.24-7.22 (m, 1H), 7.05 (d, J = 8.8 Hz, 2H), 5.97 (s, 1H), 5.80 (s, 1H), 1.68 (s, 6H). All data are in accordance with the literature.²

2-(3-Cyano-4-isobutoxyphenyl)-4-methyl-N-(3 -(3,3,3-trifluoroprop-1-en-2-yl)phenyl)thiazol e-5-carboxamide (2s) : To a mixture of Febuxostat (0.95 g, 3.00 mmol, 1.0 equiv.) and

oxalylchloride (0.51 mL, 6.00 mmol, 2.0 equiv.) in dry CH₂Cl₂ (12 mL) was added dropwise DMF (23.4 µL, 0.30 mmol, 0.1 equiv.). The reaction mixture was stirred at room temperature for 6 hours. Removal of the solvent in vacuo afforded the desired acid chloride which was used in the next step without further purification. To a mixture of 3-(3,3,3-trifluoroprop-1-en-2-yl)aniline (0.57 g, 3.00 mmol, 1.0 equiv.) and K₂CO₃ (0.42 g, 3.00 mmol, 1.0 equiv.) in dry THF (6 mL) was added dropwise a solution of the freshly prepared acid chloride (3.00 mmol, 1.0 equiv.) in dry THF (6 mL). This mixture was stirred at room temperature for 6 hours before water was added to quench the reaction. The resultant mixture was extracted with EtOAc (3*20 mL). The combined organic phases were dried over anhydrous Na₂SO₄, filtered, and concentrated under reduced pressure. The resultant crude product was purified by column chromatography on silica gel (PE: EA=5:1) to give the desired trifluoromethyl alkene as a white solid 1.09 g (75% yield). ¹H NMR (400 MHz, **CDCl**₃) δ: 8.16 (d, *J* = 2.2 Hz, 1H), 8.08 (dd, *J* = 8.9 Hz, *J* = 2.3 Hz, 1H), 7.67-7.62 (m, 2H), 7.54 (s, 1H), 7.40 (t, J = 7.9 Hz, 1H), 7.02 (d, J = 8.9 Hz, 1H), 6.01-6.00 (m, 1H), 5.84-5.82 (m, 1H), 3.91 (d, J = 6.5 Hz, 2H), 2.80 (s, 3H), 2.24-2.17 (m, 1H), 1.09 (d, J = 6.7 Hz, 6H). All data are in accordance with the literature.²

5. General Procedure for Deoxygenative Difluoroallylation of Xanthate Salts

Method C:

In a N₂-filled glovebox, an oven-dried 20 mL glass vial equipped with a magnetic stir bar was charged sequentially with alcohol **1** (1.0 eq), **KO'Bu** (1.1 eq), and **dry THF** (0.1 M). After being sealed with a septum cap and transferred out of the glovebox, the reaction mixture was stirred at room temperature for 30 minutes, followed by the addition of **CS**₂ (3.0 eq) via microsyringe at 0°C and continued to be stirred for 3 hours at 0°C before removing the solvent in vacuo. The system was transferred into the glovebox, then **2** (1.2 eq), **PhPCy**₂ (1.2 eq), and the mixed solvents of **Acetone/MeCN** (9/1, 0.05 M) were added. The vial was sealed with a septum cap and transferred out of the glovebox. The reaction mixture was stirred at room temperature under blue LEDs (456 nm, the light intensity is 25%) irradiation for 12 h. The solvent was removed in vacuo and the residue was purified by column chromatography to afford the product and chemoselectivity were determined from analysis of the reaction mixture by either ¹⁹F NMR.

2-(1,1-difluoro-6-phenylhex-1-en-2-yl)naphthalene (3a) : According to Method C, the reaction was carried out with alcohol 1a (40.9 mg, 0.3 mmol), $KO^{t}Bu$ (37.0 mg, 0.33 mmol), dry THF (3.0 mL), CS_2 (54.1 µL, 0.9 mmol), and

then trifluoromethyl alkene **2a** (80.0 mg, 0.36 mmol), **PhPCy**₂ (98.8 mg, 0.36 mmol), **Acetone/MeCN** (5.4 mL/0.6 mL). The crude product was purified by flash column chromatography on silica gel (PE) to afford 83 mg (86% yield) of **3a** as a yellow oil: ¹**H NMR (400 MHz, CDCl**₃) δ : 7.87-7.79 (m, 4H), 7.54-7.45 (m, 3H), 7.29 (t, *J* = 7.2 Hz, 2H), 7.20 (dd, J = 7.7 Hz, 7.0 Hz, 3H), 2.63-2.56 (m, 4H), 1.74-1.66 (m, 2H), 1.53-1.46 (m, 2H); ¹³C NMR (100 MHz, CDCl₃) δ : 153.8 (dd, J = 288.9 Hz, 285.1 Hz), 142.3, 133.2, 132.4, 131.1 (t, J = 3.8 Hz), 128.3, 128.2, 128.0, 127.9, 127.6, 127.3 (t, J = 3.8 Hz), 126.2, 126.1 (t, J = 3.8 Hz), 126.0, 125.7, 92.4 (dd, J = 21.6 Hz, 12.9 Hz), 35.5, 30.7, 27.4, 27.2; ¹⁹F NMR (376 MHz, CDCl₃) δ : -91.01 (d, J = 43.4Hz), -91.40 (d, J = 43.3 Hz); HRMS m/z (ESI) calcd for C₂₂H₂₀F₂ (M+Na)⁺ 345.1431, found 345.1434.

2-(1,1-difluoro-5-(4-methoxyphenyl)pent-1-en-2-yl)naphthalene (3b) : According to Method C, the reaction was carried out with alcohol 1b (45.7 mg, 0.3 mmol), KO^tBu (37.0 mg, 0.33 mmol), dry THF

(3.0 mL), **CS**₂ (54.1 µL, 0.9 mmol), and then trifluoromethyl alkene **2a** (80.0 mg, 0.36 mmol), **PhPCy**₂ (98.8 mg, 0.36 mmol), **Acetone/MeCN** (5.4 mL/0.6 mL). The crude product was purified by flash column chromatography on silica gel (PE) to afford 71 mg (70% yield) of **3b** as a colorless oil: ¹**H NMR (400 MHz, CDCl**₃) δ : 7.85-7.81 (m, 3H), 7.74 (s, 1H), 7.52-7.43 (m, 3H), 7.06 (d, *J* = 8.7 Hz, 2H), 6.83 (d, *J* = 8.7 Hz, 2H), 3.79 (s, 3H), 2.62-2.53 (m, 4H), 1.76-1.68 (m, 2H); ¹³**C NMR (100 MHz, CDCl**₃) δ : 167.7, 153.8 (dd, *J* = 289.4 Hz, 285.6 Hz), 133.8, 133.2, 132.4, 131.0 (t, *J* = 3.4 Hz), 129.2, 128.0, 127.9, 127.6, 127.2 (t, *J* = 3.4 Hz), 126.2, 126.1, 126.1, 113.7, 92.3 (dd, *J* = 21.6 Hz, 12.9 Hz), 55.2, 34.2, 29.6, 27.1; ¹⁹**F NMR (376 MHz, CDCl**₃) δ : -90.86 (d, *J* = 41.9 Hz), -91.19 (d, *J* = 41.9 Hz). All data are in accordance with the literature.²

Tert-butyl(4-(5,5-difluoro-4-(naphthalen-2-yl)pent-4-en-1-yl)phenyl)carbamate(3c)According to Method C, the reaction was carriedout with alcohol 1c (71.2 mg, 0.3 mmol), KO^tBu(37.0 mg, 0.33 mmol), dry THF (3.0 mL), CS2

(54.1 μ L, 0.9 mmol), and then trifluoromethyl alkene **2a** (80 mg, 0.36 mmol), **PhPCy**₂(98.8 mg, 0.36 mmol), **Acetone/MeCN** (5.4 mL/0.6 mL). The crude product was purified by flash column chromatography on silica gel (PE:EA = 20:1) to afford

108 mg (82% yield) of **3c** as a white solid: ¹H NMR (400 MHz, CDCl₃) δ : 7.84-7.72 (m, 4H), 7.52-7.47 (m, 2H), 7.43 (d, J = 8.6 Hz, 1H), 7.25 (d, J = 8.4 Hz, 2H), 7.05 (d, J = 8.6 Hz, 2H), 6.45 (s, 1H), 2.61-2.51 (m, 4H), 1.74-1.66 (m, 2H), 1.53 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ : 153.7 (dd, J = 288.9 Hz, 285.6 Hz), 152.8, 136.4, 136.1, 133.2, 132.4, 130.9 (t, J = 3.4 Hz), 128.8, 128.0, 127.9, 127.5, 127.2(t, J = 3.4 Hz), 126.2, 126.1, 118.6, 92.3 (dd, J = 21.6 Hz, 13.0 Hz), 80.3, 34.4, 29.4, 28.3, 27.1; ¹⁹F NMR (376 MHz, CDCl₃) δ : -90.85 (d, J = 43.3 Hz), -91.1 (d, J = 43.3 Hz); HRMS m/z (ESI) calcd for C₂₆H₂₇F₂NO₂ (M+Na)⁺ 446.1908, found 446.1909.

(5-(4-bromophenyl)-1,1-difluoropent-1-en-2-yl)napht halene (3d) : According to Method C, the reaction was carried out with alcohol 1d (60.3 mg, 0.3 mmol), KO^tBu (37.0 mg, 0.33 mmol), dry THF (3.0 mL), CS₂

(54.1 µL, 0.9 mmol), and then trifluoromethyl alkene **2a** (80.0 mg, 0.36 mmol), **PhPCy**₂ (98.8 mg, 0.36 mmol), **Acetone/MeCN** (5.4 mL/0.6 mL). The crude product was purified by flash column chromatography on silica gel (PE) to afford 83 mg (72% yield) of **3d** as a white solid: ¹**H NMR (400 MHz, CDCl**₃) δ : 7.85-7.80 (m, 3H), 7.71 (s, 1H), 7.52-7.49 (m, 2H), 7.41 (dd, J = 8.6 Hz, 8.5 Hz, 3H), 6.99 (d, J = 8.4 Hz, 2H), 2.61-2.52 (m, 4H), 1.75-1.67 (m, 2H); ¹³**C NMR (100 MHz, CDCl**₃) δ : 153.8 (dd, J =288.9 Hz, 285.6 Hz), 140.7, 133.2, 132.4, 131.3, 130.8 (t, J = 3.8 Hz), 130.1, 128.1, 127.9, 127.6, 127.2 (d, J = 3.4 Hz), 126.3, 126.2, 126.0 (d, J = 2.9 Hz), 119.5, 92.2 (dd, J = 21.6 Hz,13.4 Hz), 34.5, 29.1, 27.1; ¹⁹**F NMR (376 MHz, CDCl**₃) δ : -90.75 (d, J = 41.9 Hz), -91.02 (d, J = 43.4 Hz). All data are in accordance with the literature.²

2-(1,1-difluoro-6-(4-(trifluoromethyl)phenyl)hex-1-e n-2-yl)naphthalene (3e) : According to Method C, the reaction was carried out with alcohol 1e (38.4 mg, 0.3 mmol), KO^tBu (37.0 mg, 0.33 mmol), dry THF (3.0 mL), CS₂ (54.1 μ L, 0.9 mmol), and then

trifluoromethyl alkene **2a** (80.0 mg, 0.36 mmol), **PhPCy**₂ (98.8 mg, 0.36 mmol), **Acetone/MeCN** (5.4 mL/0.6 mL). The crude product was purified by flash column chromatography on silica gel (PE) to afford 83 mg (71% yield) of **3e** as a colorless oil:

¹H NMR (400 MHz, CDCl₃) δ : 7.86-7.75 (m, 4H), 7.53-7.41 (m, 5H), 7.22 (d, J = 8.2Hz, 2H), 2.64-2.53 (m, 4H), 1.70-1.63 (m, 2H), 1.49-1.41 (m, 2H); ¹³C NMR (100 MHz, CDCl₃) δ : 153.8(dd, J = 288.9 Hz, 285.6 Hz), 146.4, 133.2, 132.4, 130.9, 128.6, 127.9(dt, J = 32.1 Hz, 25.4 Hz), 127.3(d, J = 3.4 Hz), 126.3, 126.2,126.1(t, J = 3.4 Hz), 125.7 (d, J = 270.7 Hz), 125.2(q, J = 3.4 Hz), 92.2(dd, J = 21.1 Hz, 13.9 Hz), 35.3, 30.3, 27.3, 27.1; ¹⁹F NMR (376 MHz, CDCl₃) δ : -62.13, -91.11 (d, J = 43.3 Hz), -91.30 (d, J = 43.3 Hz); HRMS m/z (ESI) calcd for C₂₃H₁₉F₅ (M+H)⁺ 391.1485, found 391.1481.

1-(5,5-difluoro-4-(naphthalen-2-yl)pent-4-en-1-yl)-1H-p yrazole (3f) : According to Method C, the reaction was carried out with alcohol **1f** (33.6 mg, 0.3 mmol), **KO^tBu** (37.0 mg, 0.33 mmol), **dry THF** (3.0 mL), **CS**₂ (54.1 μL,

0.9 mmol), and then trifluoromethyl alkene **2a** (80.0 mg, 0.36 mmol), **PhPCy**₂ (98.8 mg, 0.36 mmol), **Acetone/MeCN** (5.4 mL/0.6 mL).The crude product was purified by flash column chromatography on silica gel (PE:EA = 10:1) to afford 31 mg (35% yield) of **3f** as a yellow oil: ¹**H NMR (400 MHz, CDCl**₃) δ : 7.84-7.79 (m, 3H), 7.71 (s, 1H), 7.51-7.48 (m, 3H), 7.41 (m, 1H), 7.30 (d, *J* = 2.2 Hz, 1H), 4.13 (t, *J* = 7.0 Hz, 2H), 2.54-24.9 (m, 2H), 2.03-1.95 (m, 2H); ¹³**C NMR (100 MHz, CDCl**₃) δ : 153.8 (dd, *J* = 289.4 Hz, 286.1 Hz), 139.3, 133.2, 132.5, 130.4 (t, *J* = 3.4 Hz), 129.0, 128.2, 127.9, 127.6, 127.2 (t, *J* = 3.8 Hz), 126.4, 126.2, 125.9 (t, *J* = 3.4 Hz), 105.3, 91.5 (dd, *J* = 21.6 Hz, 13.4 Hz), 51.1, 28.5, 24.7; ¹⁹**F NMR (376 MHz, CDCl**₃) δ : -90.03 (d, *J* = 41.9 Hz), -90.34 (d, *J* = 41.9 Hz); **HRMS m/z (ESI)** calcd for C₁₈H₁₆F₂N₂ (M+H)⁺ 299.1360, found 299.1359.

2-(6,6-difluoro-5-(naphthalen-2-yl)hex-5-en-1-yl)thiophen e (**3g**) : According to Method C, the reaction was carried out with alcohol **1g** (38.5 mg, 0.3 mmol), **KO^tBu** (37.0 mg, 0.33 mmol), **dry THF** (3.0 mL), **CS**₂ (54.1 μL, 0.9 mmol), and

then trifluoromethyl alkene **2a** (80.0 mg, 0.36 mmol), **PhPCy₂** (98.8 mg, 0.36 mmol), **Acetone/MeCN** (5.4 mL/0.6 mL). The crude product was purified by flash column chromatography on silica gel (PE:EA = 10:1) to afford 41 mg (41% yield) of **3g** as a colorless oil: ¹H NMR (400 MHz, CDCl₃) δ : 7.85-7.76 (m, 4H), 7.50 (td, J = 3.6 Hz, 8.7 Hz, 3H), 7.10 (d, J = 5.2 Hz, 1H), 6.89 (t, J = 5.2 Hz, 1H), 6.74 (d, J = 3.7 Hz, 1H), 2.80 (t, J = 7.6 Hz, 2H), 2.57-2.53 (m, 2H), 1.76-1.69 (m, 2H), 1.53-1.45 (m, 2H); ¹³C NMR (100 MHz, CDCl₃) δ : 153.8 (dd, J = 288.9 Hz, 285.6 Hz), 145.2, 133.2, 132.4, 131.0(t, J = 3.8 Hz), 128.0, 127.9, 127.6, 127.3 (t, J = 3.4 Hz), 126.6, 126.2, 126.1, 124.0, 122.9, 92.3 (dd, J = 21.6 Hz, 13.4 Hz), 31.0, 29.5, 27.3, 27.1; ¹⁹F NMR (376 MHz, CDCl₃) δ : -91.05 (d, J = 43.3 Hz), -91.32 (d, J = 43.3 Hz); HRMS m/z (ESI) calcd for C₂₀H₁₈F₂S (M+H)⁺ 329.1176, found 329.1174.

0.33 mmol), **dry THF** (3.0 mL), **CS**₂ (54.1 µL, 0.9 mmol), and then trifluoromethyl alkene **2a** (80.0 mg, 0.36 mmol), **PhPCy**₂ (98.8 mg, 0.36 mmol), **Acetone/MeCN** (5.4 mL/0.6 mL). The crude product was purified by flash column chromatography on silica gel (PE:EA = 5:1) to afford 50 mg (52% yield) of **3h** as a yellow oil: ¹H **NMR** (400 MHz, CDCl₃) δ :7.44 (d, *J* = 6.2 Hz, 2H), 7.84-7.74 (m, 4H), 7.51-7.40 (m, 3H), 7.03 (d, *J* = 6.3 Hz, 2H), 2.57-2.51 (m, 4H), 1.69-1.61 (m, 2H), 1.48-1.40 (m, 2H); ¹³C **NMR** (100 MHz, CDCl₃) δ : 153.8 (dd, *J* = 288.9 Hz, 285.6 Hz), 151.1, 149.6, 133.2, 132.4, 130.8, 128.1, 127.8, 127.6, 127.3 (t, *J* = 3.4 Hz), 126.3, 126.2, 126.0 (t, *J* = 2.9 Hz), 123.8, 92.1 (dd, *J* = 21.1 Hz, 13.4 Hz), 34.7, 29.4, 27.3, 27.0; ¹⁹F **NMR** (376 MHz, CDCl₃) δ : -91.04 (d, *J* = 43.3 Hz), -91.23 (d, *J* = 43.3 Hz); **HRMS m/z** (ESI) calcd for C₂₁H₁₉F₂N (M+H)⁺ 324.1564, found 324.1562.

2-(1,1-difluoronon-1-en-2-yl)naphthalene (3i) : According to Method C, the reaction was carried out with alcohol **1i** (30.7 mg, 0.3 mmol), **KO^tBu** (37.0 mg, 0.33 mmol), **dry**

THF (3.0 mL), CS₂ (54.1 μ L, 0.9 mmol), and then trifluoromethyl alkene 2a (80.0 mg, 0.36 mmol), PhPCy₂ (98.8 mg, 0.36 mmol), Acetone/MeCN (5.4 mL/0.6 mL). The crude product was purified by flash column chromatography on silica gel (PE) to afford 71 mg (80% yield) of 3i as a colorless oil: ¹H NMR (400 MHz, CDCl₃) δ : 7.86-7.79 (m, 4H), 7.51-7.45 (m, 3H), 2.54-2.49 (m, 2H), 1.43-1.25 (m, 10H), 0.88 (t,

J = 7.1 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ : 153.8 (dd, J = 288.9 Hz, 285.1 Hz), 133.3, 132.4, 131.3 (t, J = 3.4 Hz), 128.0, 127.9, 127.6, 127.3 (t, J = 3.4 Hz), 126.2, 126.0, 92.6 (dd, J = 21.6 Hz, 12.9 Hz), 31.8, 29.0, 28.9, 27.8, 27.7, 22.6, 14.0; ¹⁹F NMR (376 MHz, CDCl₃) δ : -91.4 (d, J = 44.8 Hz), -91.71 (d, J = 44.8 Hz). All data are in accordance with the literature.²

2-(1,1-difluoropent-1-en-2-yl)naphthalene (3j) : According to Method C, the reaction was carried out with alcohol **1j** (13.8 mg, 0.3 mmol), **KO^tBu** (37.0 mg, 0.33 mmol), **dry THF** (3.0 mL), **CS**₂ (54.1 μL, 0.9 mmol), and then

trifluoromethyl alkene **2a** (80.0 mg, 0.36 mmol), **PhPCy**₂ (98.8 mg, 0.36 mmol), **Acetone/MeCN** (5.4 mL/0.6 mL). The crude product was purified by flash column chromatography on silica gel (PE) to afford 56 mg (80% yield) of **3j** as a colorless oil: ¹H NMR (400 MHz, CDCl₃) δ : 7.85-7.78 (m, 4H). 7.52-7.44 (m, 3H), 2.52-2.47 (m, 2H), 1.49-1.39 (m, 2H), 0.93 (t, J = 7.4 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ : 153.9 (dd, J = 288.5 Hz, 285.6 Hz), 133.2, 132.4, 131.3 (t, J = 3.4 Hz), 128.0, 127.9, 127.6, 127.3 (t, J = 3.4 Hz), 126.2, 126.0, 92.3 (dd, J = 21.6 Hz, 12.9 Hz), 29.6, 20.9, 13.4; ¹⁹F NMR (376 MHz, CDCl₃) δ : -91.39 (d, J = 44.8 Hz), -91.61 (d, J = 44.8 Hz); HRMS m/z (ESI) calcd for C₁₅H₁₄F₂ (M+H)⁺ 233.1142, found 233.1144.

> F 2-(1,1-difluoro-6-methoxyhex-1-en-2-yl)naphthalene (3k) : According to Method C, the reaction was carried out with alcohol 1k (45.7 mg, 0.3 mmol), KO^tBu (37.0 mg, 0.33

mmol), **dry THF** (3.0 mL), **CS**₂ (54.1 µL, 0.9 mmol), and then trifluoromethyl alkene **2a** (80.0 mg, 0.36 mmol), **PhPCy**₂ (98.8 mg, 0.36 mmol), **Acetone/MeCN** (5.4 mL/0.6 mL). The crude product was purified by flash column chromatography on silica gel (PE:DCM = 10:1) to afford 58 mg (70% yield) of **3k** as a colorless oil: ¹**H NMR (400 MHz, CDCl₃)** δ : 7.85-7.79 (m, 4H), 7.51-7.44 (m, 3H), 3.34 (ts, *J* = 6.6 Hz, 5H), 2.58-2.53 (m, 2H), 1.66-1.59 (m, 2H), 1.52-1.45 (m, 2H); ¹³**C NMR (100 MHz, CDCl₃)** δ : 153.8 (dd, *J* = 289.4 Hz, 285.1 Hz), 133.2, 132.4, 131.0 (t, *J* = 3.4 Hz), 128.0, 127.9, 127.6, 127.3 (t, *J* = 3.4 Hz), 126.2, 126.1 (t, *J* = 3.4 Hz), 126.0, 92.4 (dd, *J* = 21.6 Hz, 12.9 Hz), 72.4, 58.5, 28.9, 27.5, 24.4; ¹⁹**F NMR (376 MHz, CHC**) **CDCl₃)** δ : -91.08 (d, J = 43.3 Hz), -91.4 (d, J = 43.3 Hz); **HRMS m/z (ESI)** calcd for C₁₇H₁₈F₂O (M+H)⁺ 277.1404, found 277.1406.

F F N-(6,6-difluoro-5-(naphthalen-2-yl)hex-5-en-1-yl)-N-pheny laniline (3l) : According to Method C, the reaction was carried out with alcohol 1l (68.1 mg, 0.3 mmol), KO^tBu (37.0 mg, 0.33 mmol), dry THF (3.0 mL), CS₂ (54.1 μ L, 0.9 mmol),

and then trifluoromethyl alkene **2a** (80.0 mg, 0.36 mmol), **PhPCy**₂ (98.8 mg, 0.36 mmol), **Acetone/MeCN** (5.4 mL/0.6 mL).. The crude product was purified by flash column chromatography on silica gel (PE:EA = 20:1) to afford 53 mg (43% yield) of **3l** as a colorless oil: ¹**H NMR (400 MHz, CDCl**₃) δ : 7.85-7.72 (m, 4H), 7.50 (t, *J* = 4.8 Hz, 2H), 7.39 (d, *J* = 8.6 Hz, 1H), 7.22 (t, *J* = 7.4 Hz, 4H), 6.96-6.88 (m, 6H), 3.63 (t, *J* = 7.5 Hz, 2H), 2.52 (t, *J* = 7.4 Hz, 2H), 1.73-1.65 (m, 2H), 1.47-1.40 (m, 2H); ¹³**C NMR (100 MHz, CDCl**₃) δ : 153.8 (dd, *J* = 288.9 Hz, 285.1 Hz), 147.9, 133.2, 132.4, 130.9, 129.2, 128.1, 127.9, 127.6, 127.3 (t, *J* = 3.4 Hz), 126.3, 126.1, 121.1, 120.8, 92.3 (dd, *J* = 21.1 Hz, 13.4 Hz), 51.8, 27.4, 26.7, 25.1; ¹⁹**F NMR (376 MHz, CDCl**₃) δ : -91.10 (d, *J* = 43.3 Hz), -91.34 (d, *J* = 43.3 Hz); **HRMS m/z (ESI)** calcd for C₂₈H₂₅F₂N (M+H)⁺ 414.2033, found 414.2034.

F F ()₃Cl 2-(1,1,7,7,7-pentafluorohept-1-en-2-yl)naphthalene (3m) : According to Method C, the reaction was carried out with alcohol 1m (38.4 mg, 0.3 mmol), KO^tBu (37.0 mg, 0.33 mmol), dry THF (3.0 mL), CS₂ (54.1 μ L, 0.9 mmol), and

then trifluoromethyl alkene **2a** (80.0 mg, 0.36 mmol), **PhPCy**₂ (98.8 mg, 0.36 mmol), **Acetone/MeCN** (5.4 mL/0.6 mL). The crude product was purified by flash column chromatography on silica gel (PE) to afford 31 mg (33% yield) of **3m** as a colorless oil: ¹**H NMR (400 MHz, CDCl**₃) δ :7.86-7.76 (m, 4H), 7.53-7.41 (m, 3H), 2.57-2.52 (m, 2H), 2.06-2.00 (m, 2H), 1.64-1.56 (m, 2H), 1.51-1.43 (m, 2H); ¹³**C NMR (100 MHz, CDCl**₃) δ : 153.9 (dd, *J* = 288.0 Hz, 285.6 Hz), 133.2, 132.5, 130.7, 128.4, 128.2, 127.9, 127.6, 127.3 (t, J = 3.4 Hz), 126.4, 126.2, 126.0 (t, *J* = 3.4 Hz), 125.7, 91.9 (dd, *J* = 19.7 Hz, 15.3 Hz), 33.5 (q, *J* = 287.5 Hz), 27.3, 26.7, 21.2, 21.2; ¹⁹**F NMR (376 MHz, CDCl**₃) δ : -66.30 (t, *J* = 10.1 Hz), -90.88 (dd, *J* = 14.5 Hz, 14.4 Hz);

2-(1,1-difluoro-4-phenylbut-1-en-2-yl)naphthalene (3n) : According to Method C, the reaction was carried out with alcohol **1n** (32.4 mg, 0.3 mmol), **KO^tBu** (37.0 mg, 0.33 mmol), **dry THF** (3.0 mL), **CS**₂ (54.1 μ L, 0.9 mmol), and

then trifluoromethyl alkene **2a** (80.0 mg, 0.36 mmol), **PhPCy**₂ (98.8 mg, 0.36 mmol), **Acetone/MeCN** (5.4 mL/0.6 mL). The crude product was purified by flash column chromatography on silica gel (PE) to afford 40 mg (36% yield) of **3n** as a white solid: ¹**H NMR (400 MHz, CDCl**₃) δ : 7.89-7.79 (m, 4H), 7.55-7.46 (m, 3H), 7.31 (t, *J* = 7.6 Hz, 2H), 7.24-7.16 (m, 3H), 2.87-2.82 (m, 2H), 2.74-2.71 (m, 2H); ¹³**C NMR (100 MHz, CDCl**₃) δ : 153.9 (dd, *J* = 289.9 Hz, 285.6 Hz), 133.3, 132.5, 130.8 (t, *J* = 3.8 Hz), 128.4, 128.3, 128.1, 127.9, 127.6, 127.4 (t, *J* = 3.8 Hz), 126.3, 126.2, 126.1, 92.0 (dd, *J* = 21.6 Hz, 13.4 Hz), 34.0, 29.7; ¹⁹**F NMR (376 MHz, CDCl**₃) δ : -90.42 (d, *J* = 41.9 Hz), -91.06 (d, *J* = 41.9 Hz); **HRMS m/z (ESI)** calcd for C₂₀H₁₆F₂ (M+H)⁺ 295.1298, found 295.1295.

(E)-2-(1,1-difluorotrideca-1,7-dien-2-yl)naphthalene

(**3o**) : According to Method C, the reaction was carried out with alcohol **1o** (46.9 mg, 0.3 mmol), **KO^tBu** (37.0 mg, 0.33 mmol), **dry THF** (3.0 mL), **CS**₂ (54.1 μL, 0.9

mmol), and then trifluoromethyl alkene **2a** (80.0 mg, 0.36 mmol), **PhPCy**₂ (98.8 mg, 0.36 mmol), **Acetone/MeCN** (5.4 mL/0.6 mL). The crude product was purified by flash column chromatography on silica gel (PE) to afford 50 mg (49% yield) of **3o** as a colorless oil: ¹**H NMR (400 MHz, CDCl**₃) δ : 7.84-7.76 (m, 4H). 7.50-7.42 (m, 3H), 5.36-5.29 (m, 2H), 2.53-2.49 (m, 2H), 2.02-1.95 (m, 4H), 1.43-1.24 (m, 10H), 0.88 (t, J = 7.1 Hz, 3H), ¹³**C NMR (100 MHz, CDCl**₃) δ : 153.8 (dd, J = 288.5 Hz, 285.1 Hz), 133.3, 132.4, 131.2 (t, J = 3.8 Hz), 130.3, 129.3, 128.0, 127.9, 127.6, 127.3 (t, J = 3.4 Hz), 126.2, 126.2 (t, J = 3.4 Hz), 126.0, 92.5 (dd, J = 22.1 Hz, 12.5 Hz), 31.5, 29.4, 29.0, 27.6, 27.3, 27.1, 26.8, 22.5, 14.0; ¹⁹**F NMR (376 MHz, CDCl**₃) δ : -91.32 (d, J = 44.8 Hz), -91.61 (d, J = 44.8 Hz); **HRMS m/z (ESI)** calcd for C₂₃H₂₈F₂ (M+H)⁺ 343.2237, found 343.2238.

2-(1,1-difluoro-4-propylhept-1-en-2-yl)naphthalene

(**3p**) : According to Method C, the reaction was carried out with alcohol **1p** (34.9 mg, 0.3 mmol), **KO^tBu** (37.0

mg, 0.33 mmol), **dry THF** (3.0 mL), **CS**₂ (54.1 µL, 0.9 mmol), and then trifluoromethyl alkene **2a** (80.0 mg, 0.36 mmol), **PhPCy**₂ (98.8 mg, 0.36 mmol), **Acetone/MeCN** (5.4 mL/0.6 mL). The crude product was purified by flash column chromatography on silica gel (PE) to afford 72 mg (78% yield) of **3p** as a colorless oil: ¹H NMR (400 MHz, CDCl₃) δ : 7.85-7.82 (m, 3H), 7.77 (s, 1H), 7.52-7.43 (m, 3H), 2.45-2.42 (m, 2H), 1.36-1.21 (m, 9H), 0.87-0.80 (m, 6H); ¹³C NMR (100 MHz, CDCl₃) δ : 154.1 (dd, J = 287.5 Hz, 286.1 Hz), 133.2, 132.4, 131.4, 127.9, 127.8, 127.6, 127.4 (t, J = 3.4 Hz), 126.2 (t, J = 2.9 Hz), 126.1, 126.0, 91.8 (dd, J = 19.6 Hz, 14.4 Hz), 35.3, 35.0, 32.1, 19.4, 14.4; ¹⁹F NMR (**376** MHz, CDCl₃) δ : -91.28, -91.30; HRMS m/z (ESI) calcd for C₂₀H₂₄F₂ (M+H)⁺ 303.1924, found 303.1923.

2-(3-cyclohexyl-1,1-difluoroprop-1-en-2-yl)naphthalene (**3q**) : According to Method C, the reaction was carried out with alcohol **1q** (30.0 mg, 0.3 mmol), **KO^tBu** (37.0 mg, 0.33

mmol), **dry THF** (3.0 mL), **CS**₂ (54.1 µL, 0.9 mmol), and then trifluoromethyl alkene **2a** (80.0 mg, 0.36 mmol), **PhPCy**₂ (98.8 mg, 0.36 mmol), **Acetone/MeCN** (5.4 mL/0.6 mL). The crude product was purified by flash column chromatography on silica gel (PE) to afford 49 mg (57% yield) of **3q** as a white solid: ¹**H NMR** (400 **MHz, CDCl**₃) δ : 7.84-7.77 (m, 4H), 7.51-7.43 (m, 3H), 2.40-2.37 (m, 2H), 1.74-1.58 (m, 5H), 1.30-1.25 (m, 1H), 1.15-1.0 4(m, 3H), 0.99-0.91 (m, 2H); ¹³**C NMR** (100 **MHz, CDCl**₃) δ : 154.1 (dd, J = 288.9 Hz, 285.1 Hz), 133.2, 132.4, 131.4, 127.9, 127.9, 127.6, 127.3 (t, J = 3.4 Hz), 126.2 (t, J = 3.4 Hz), 126.2, 126.0, 91.2 (dd, J = 22.5 Hz, 12.5 Hz), 35.7, 35.3, 32.9, 26.4, 26.0; ¹⁹**F NMR** (376 MHz, CDCl₃) δ : -90.82 (d, J = 43.3 Hz), -91.53 (d, J = 43.3 Hz). All data are in accordance with the literature.⁷

2-(3-cycloheptyl-1,1-difluoroprop-1-en-2-yl)naphthalene (**3r**) : According to Method C, the reaction was carried out with alcohol **1r** (34.3 mg, 0.3 mmol), **KO^tBu** (37.0 mg, 0.33 mmol), **dry THF** (3.0 mL), **CS**₂ (54.1 µL, 0.9 mmol), and then trifluoromethyl alkene **2a** (80.0 mg, 0.36 mmol), **PhPCy**₂ (98.8 mg, 0.36 mmol), **Acetone/MeCN** (5.4 mL/0.6 mL). The crude product was purified by flash column chromatography on silica gel (PE) to afford 64 mg (71% yield) of **3r** as a white solid: ¹H **NMR (400 MHz, CDCl**₃) δ : 7.85-7.76 (m, 4H), 7.50-7.42 (dt, *J* = 3.7 Hz, 8.6 Hz, 3H), 2.42-2.39 (m, 2H), 1.72-1.68 (m, 2H), 1.64-1.57 (m, 2H), 1.53-1.42 (m, 5H), 1.34-1.17 (m, 4H); ¹³C **NMR (100 MHz, CDCl**₃) δ : 154.3 (dd, *J* = 288.5 Hz, 284.6 Hz), 133.2, 132.4, 131.4 (t, *J* = 4.3 Hz), 128.0, 127.9, 127.6, 127.3 (t, *J* = 2.9 Hz), 126.3 (t, *J* = 3.4 Hz),126.2, 126.0, 91.8 (dd, J = 21.6 Hz, 12.5 Hz), 37.1, 35.7, 34.0, 28.4, 26.0; ¹⁹F **NMR (376 MHz, CDCl**₃) δ : -91.13 (d, *J* = 43.2 Hz), -91.67 (d, *J* = 43.3 Hz). All data are in accordance with the literature.²

4-(3,3-difluoro-2-(naphthalen-2-yl)allyl)tetrahydro-2H-p yran (3s) : According to Method C, the reaction was carried out with alcohol **1s** (30.6 mg, 0.3 mmol), **KO^tBu** (37.0 mg, 0.33 mmol), **dry THF** (3.0 mL), **CS**₂ (54.1 μL,

0.9 mmol), and then trifluoromethyl alkene **2a** (80.0 mg, 0.36 mmol), **PhPCy**₂ (98.8 mg, 0.36 mmol), **Acetone/MeCN** (5.4 mL/0.6 mL). The crude product was purified by flash column chromatography on silica gel (PE:EA = 20:1) to afford 44 mg (49% yield) of **3s** as a yellow oil: ¹**H NMR (400 MHz, CDCl**₃) δ : 7.87-7.77 (m, 4H), 7.53-7.43 (m, 3H), 3.93-3.89 (m, 2H), 3.24 (t, *J* = 11.8 Hz, 2H), 2.48-2.45 (m, 2H), 1.66-1.48 (m, 3H), 1.39-1.32 (m, 2H); ¹³**C NMR (100 MHz, CDCl**₃) δ : 154.2 (dd, *J* = 289.9 Hz, 285.1 Hz), 133.2, 132.4, 131.1 (t, *J* = 3.8 Hz), 128.1, 127.9, 127.6, 127.3 (t, *J* = 3.4Hz), 126.3, 126.2, 126.0 (t, *J* = 2.9 Hz), 90.5 (dd, *J* = 22.0 Hz, 12.9 Hz), 67.7, 34.8, 33.2, 32.6; ¹⁹**F NMR (376 MHz, CDCl**₃) δ : -90.23 (d, *J* = 41.9 Hz), -90.81 (d, *J* = 41.9 Hz). All data are in accordance with the literature.⁷

Tert-butyl 4-(3,3-difluoro-2-(naphthalen-2-yl) allyl) piperidine-1-carboxylate (3t) : According to Method C, the reaction was carried out with alcohol **1t** (60.3 mg, 0.3 mmol), **KO'Bu** (37.0 mg, 0.33 mmol), **dry THF**

(3.0 mL), CS_2 (54.1 µL, 0.9 mmol), and then trifluoromethyl alkene 2a (80.0 mg, 0.36

mmol), **PhPCy**₂ (98.8 mg, 0.36 mmol), **Acetone/MeCN** (5.4 mL/0.6 mL). The crude product was purified by flash column chromatography on silica gel (PE:EA = 10:1) to afford 50 mg (43% yield) of **3t** as a colorless oil: ¹**H NMR** (400 MHz, CDCl₃) δ : 7.85-7.76 (m, 4H), 7.51-7.42 (m, 3H), 4.20-3.87 (m, 2H), 2.54 (td, J = 12.5 Hz, 7.3 Hz, 4H), 1.68-1.59 (m, 3H), 1.44(s, 9H), 1.20-1.13 (m, 2H); ¹³**C NMR** (100 MHz, CDCl₃) δ : 154.7, 154.3 (dd, J = 289.4 Hz, 285.6 Hz), 133.2, 132.4, 131.0 (t, J = 3.8 Hz), 128.2, 127.9, 127.6, 127.3 (t, J = 3.4 Hz), 126.3, 126.2, 126.0 (t, J = 3.4 Hz), 90.7 (dd, J = 22.0 Hz, 12.9 Hz), 79.3, 34.4, 34.2, 31.7, 28.4; ¹⁹**F NMR** (376 MHz, **CDCl**₃) δ : -90.17 (d, J = 41.9 Hz), -90.80 (d, J = 41.9 Hz). All data are in accordance with the literature.⁷

2-(1,1-difluoro-4,4-dimethylpent-1-en-2-yl)naphthalene

(3u) : According to Method C, the reaction was carried out with alcohol 1u (22.2 mg, 0.3 mmol), $KO^{t}Bu$ (37.0 mg, 0.33 mmol), dry THF (3.0 mL), CS_2 (54.1 µL, 0.9 mmol), and

then trifluoromethyl alkene **2a** (80.0 mg, 0.36 mmol), **PhPCy**₂ (98.8 mg, 0.36 mmol), **Acetone/MeCN** (5.4 mL/0.6 mL). The crude product was purified by flash column chromatography on silica gel (PE) to afford 47 mg (60% yield) of **3u** as a white solid: ¹**H NMR (400 MHz, CDCl**₃) δ : 7.84-7.79 (m, 4H), 7.50-7.44 (m, 3H), 2.46(m, 2H), 0.83 (s, 9H); ¹³**C NMR (100 MHz, CDCl**₃) δ : 154.6 (dd, J = 288.9 Hz, 286.5 Hz), 133.2, 133.1 (t, J = 4.3 Hz), 132.3, 127.8, 127.6, 127.4 (t, J = 2.9 Hz), 126.5 (t, J = 2.9Hz), 126.2, 125.9, 91.2 (dd, J = 21.6 Hz, 12.5 Hz), 41.2, 32.8, 29.7; ¹⁹**F NMR (376 MHz, CDCl**₃) δ : -89.16 (d, J = 40.4 Hz), -92.00 (d, J = 40.5 Hz). All data are in accordance with the literature.⁸

2-(1,1-difluoro-4,4-dimethyl-6-phenylhex-1-en-2-yl)napht halene (3v) : According to Method C, the reaction was carried out with alcohol **1v** (49.3 mg, 0.3 mmol), **KO^tBu** (37.0 mg, 0.33 mmol), **dry THF** (3.0 mL), **CS**₂ (54.1 μL, 0.9

mmol), and then trifluoromethyl alkene **2a** (80.0 mg, 0.36 mmol), **PhPCy**₂ (98.8 mg, 0.36 mmol), **Acetone/MeCN** (5.4 mL/0.6 mL). The crude product was purified by flash column chromatography on silica gel (PE) to afford 77 mg (73% yield) of **3v** as

a white solid: ¹H NMR (400 MHz, CDCl₃) δ : 7.86-7.82 (m, 4H), 7.52-7.47 (m, 3H), 7.17-7.09 (m, 3H), 6.88 (dd, J = 2.1 Hz, 1.7 Hz, 2H), 2.55 (t, J = 2.5 Hz, 2H), 2.50-2.45 (m, 2H), 1.50-1.46 (m, 2H), 0.89 (s, 6H); ¹³C NMR (100 MHz, CDCl₃) δ : 154.6 (dd, J = 288.5 Hz, 287.0 Hz), 142.9, 133.3, 133.0, 132.4, 128.2, 128.0, 127.8, 127.6, 127.5 (t, J = 2.9 Hz), 126.5 (t, J = 2.4 Hz), 126.3, 126.0, 125.5, 90.1 (dd, J =21.6 Hz, 13.4 Hz), 44.5, 39.1, 35.5, 30.6, 27.4; ¹⁹F NMR (376 MHz, CDCl₃) δ : -88.83 (d, J = 40.4 Hz), -91.45 (d, J = 39.0 Hz), HRMS m/z (ESI) calcd for C₂₄H₂₄F₂ (M+H)⁺ 351.1924, found 351.1925.

(54.1 μL, 0.9 mmol), and then trifluoromethyl alkene **2a** (80.0 mg, 0.36 mmol), **PhPCy**₂ (98.8 mg, 0.36 mmol), **Acetone/MeCN** (5.4 mL/0.6 mL). The crude product was purified by flash column chromatography on silica gel (PE) to afford 76 mg (84% yield) of **3w** as a white solid: ¹**H NMR** (**400 MHz**, **CDCl**₃) δ: 7.85-7.79 (m, 4H), 7.52-7.46 (m, 3H), 2.48 (t, J = 2.6 Hz, 2H), 1.43-1.29 (m, 5H), 1.24-1.16 (m, 5H), 0.80 (s, 3H); ¹³**C NMR** (**100 MHz**, **CDCl**₃) δ: 154.6 (dd, J = 288.5 Hz, 286.5 Hz), 133.3, 132.3, 127.9, 127.8, 127.6, 127.4 (t, J = 2.9 Hz), 126.6 (t, J = 2.4 Hz), 126.1, 125.9, 90.7 (dd, J = 21.6 Hz, 12.9 Hz), 40.4, 38.0, 35.2, 26.2, 24.6, 22.0; ¹⁹F NMR (**376 MHz**, **CDCl**₃) δ: -88.81 (d, J = 40.4 Hz), -91.76 (d, J = 40.4 Hz). All data are in accordance with the literature.⁹

(3**r**,5**r**,7**r**)-1-(3,3-difluoro-2-(naphthalen-2-yl)allyl)adama ntane (3**x**) : According to Method C, the reaction was carried out with alcohol 1**x** (45.7 mg, 0.3 mmol), **KO^tBu** (37.0 mg, 0.33 mmol), dry THF (3.0 mL), CS₂ (54.1 μL,

0.9 mmol), and then trifluoromethyl alkene **2a** (80.0 mg, 0.36 mmol), **PhPCy**₂ (98.8 mg, 0.36 mmol), **Acetone/MeCN** (5.4 mL/0.6 mL).. The crude product was purified by flash column chromatography on silica gel (PE) to afford 80 mg (79% yield) of **3x** as a white solid: ¹H NMR (400 MHz, CDCl₃) δ : 7.84-7.79 (m, 4H), 7.51-7.45 (m,

3H), 2.33 (t, J = 2.7 Hz, 2H), 1.89-1.82 (m, 3H), 1.64-1.51 (m, 6H), 1.44-1.38 (m, 6H); ¹³C NMR (100 MHz, CDCl₃) δ : 154.6 (dd, J = 289.4 Hz, 286.1 Hz), 133.4, 133.2, 132.3, 127.9, 127.8, 127.6, 127.2 (t, J = 3.4 Hz), 126.5 (t, J = 2.9 Hz), 126.1, 125.9, 89.9 (dd, J = 21.6 Hz, 12.5 Hz), 42.6, 42.0, 36.8, 34.7, 28.5; ¹⁹F NMR (376 MHz, CDCl₃) δ : -88.37 (d, J = 39.0 Hz), -91.70 (d, J = 40.5 Hz); HRMS m/z (ESI) calcd for C₂₃H₂₄F₂ (M+H)⁺ 339.1924, found 339.1921.

7,7-difluoro-6-(naphthalen-2-yl)hept-6-en-2-ol (**3y**) : According to Method C, the reaction was carried out with alcohol **1y** (27.0 mg, 0.3 mmol), **KO^tBu** (37.0 mg, 0.33 mmol), **dry THF** (3.0 mL), **CS**₂ (54.1 μ L, 0.9 mmol), and

then trifluoromethyl alkene **2a** (80.0 mg, 0.36 mmol), **PhPCy**₂ (98.8 mg, 0.36 mmol), **Acetone/MeCN** (5.4 mL/0.6 mL). The crude product was purified by flash column chromatography on silica gel (PE:EA = 5:1) to afford 37 mg (45% yield) of **3y** as a yellow oil: ¹H **NMR** (400 MHz, CDCl₃) δ : 7.85-7.78 (m, 4H), 7.51-7.43 (m, 3H), 3.73-3.72 (m, 1H), 2.56-2.51 (m, 2H), 1.52-1.41 (m, 4H), 1.51 (d, J = 6.2 Hz, 3H); ¹³C **NMR** (100 MHz, CDCl₃) δ : 153.8 (dd, *J* = 288.9 Hz, 285.6 Hz), 133.2, 132.4, 131.0 (t, *J* = 3.4 Hz), 128.0, 127.9, 127.6, 127.3 (t, *J* = 3.4 Hz), 126.3, 126.1, 92.3 (dd, *J* = 21.6 Hz, 12.9 Hz), 67.8, 38.4, 27.6, 23.9, 23.5; ¹⁹F **NMR** (376 MHz, CDCl₃) δ : -91.06 (d, *J* = 43.4 Hz), -91.36 (d, *J* = 43.3 Hz); **HRMS m/z (ESI)** calcd for C₁₇H₁₈F₂O (M+H)⁺ 277.1404, found 277.1405.

7,7-difluoro-2-methyl-6-(naphthalen-2-yl)hept-6-en-2-o l (3z) : According to Method C, the reaction was carried out with alcohol **1z** (31.2 mg, 0.3 mmol), **KO^tBu** (37.0 mg, 0.33 mmol), **dry THF** (3.0 mL), **CS**₂ (54.1 μL, 0.9

mmol), and then trifluoromethyl alkene **2a** (80.0 mg, 0.36 mmol), **PhPCy**₂ (98.8 mg, 0.36 mmol), **Acetone/MeCN** (5.4 mL/0.6 mL). The crude product was purified by flash column chromatography on silica gel (PE:EA = 5:1) to afford 58 mg (67% yield) of **3z** as a yellow solid: ¹H **NMR (400 MHz, CDCl**₃) δ : 7.84-7.77 (m, 4H), 7.51-7.43 (m, 3H), 2.54-2.50 (m, 2H), 1.54-1.43 (m, 4H), 1.14 (s, 6H); ¹³C **NMR (100 MHz, CDCl**₃) δ : 153.8 (dd, *J* = 289.4 Hz, 285.1 Hz), 133.2, 132.4, 131.0 (t, *J* = 3.8 Hz),

128.1, 127.9, 127.6, 127.3 (t, J = 3.4 Hz), 126.2, 126.1 (t, J = 3.4 Hz), 126.0, 92.4 (dd, J = 21.6 Hz, 12.9 Hz), 70.8, 43.0, 29.2, 28.1, 22.1; ¹⁹F NMR (376 MHz, CDCl₃) δ : -91.06 (d, J = 43.3 Hz), -91.40 (d, J = 43.4 Hz); HRMS m/z (ESI) calcd for C₁₈H₂₀F₂O (M+Na)⁺ 313.1380, found 313.1384.

7,7-difluoro-2,4-dimethyl-6-(naphthalen-2-yl)hept-6-en -2-ol (3aa) : According to Method C, the reaction was carried out with alcohol **1aa** (35.5 mg, 0.3 mmol), **KO^tBu** (37.0 mg, 0.33 mmol), **dry THF** (3.0 mL), **CS**₂ (54.1 μL,

0.9 mmol), and then trifluoromethyl alkene **2a** (80.0 mg, 0.36 mmol), **PhPCy**₂ (98.8 mg, 0.36 mmol), **Acetone/MeCN** (5.4 mL/0.6 mL). The crude product was purified by flash column chromatography on silica gel (PE:EA = 5:1) to afford 47 mg (52% yield) of **3aa** as a yellow oil: **¹H NMR (400 MHz, CDCl**₃) δ : 7.85-7.80 (m, 4H), 7.52-7.46 (m, 3H), 2.70-2.64 (m, 1H), 2.37-2.31 (m, 1H), 1.70-1.54 (m, 2H), 1.40-1.34 (m, 1H), 1.14 (d, *J* = 4.9 Hz, 6H), 0.99 (d, *J* = 6.5 Hz, 3H); ¹³C **NMR (100 MHz, CDCl**₃) δ : 154.4 (dd, *J* = 289.4 Hz, 284.6 Hz), 133.3, 133.2, 133.0, 132.7, 132.4, 131.1 (t, *J* = 3.8 Hz), 129.0, 128.7, 128.4, 128.0, 127.9, 127.6, 127.4 (t, *J* = 3.4 Hz), 126.5, 126.3, 126.2, 126.1 (t, *J* = 3.4 Hz), 126.0, 91.7 (dd, *J* = 21.6 Hz, 12.5 Hz), 71.4, 71.2, 51.0, 49.8, 49.3, 37.9, 36.2, 30.2, 30.0, 29.9, 29.8, 27.7, 26.6, 25.8, 23.2, 21.4, 20.6; ¹⁹F **NMR (376 MHz, CDCl**₃) δ : -69.14 (d, *J* = 10.1 Hz), -90.59 (d, *J* = 41.9 Hz), -91.35 (d, *J* = 41.9 Hz); **HRMS m/z (ESI)** calcd for C₁₉H₂₂F₂O (M+Na)⁺ 327.1536, found 327.1538.

1-chloro-4-(1,1-difluoro-6-phenylhex-1-en-2-yl)benzene

(3ab) : According to Method C, the reaction was carried out with alcohol 1a (40.9 mg, 0.3 mmol), $KO^{t}Bu$ (37.0 mg, 0.33 mmol), dry THF (3.0 mL), CS_2 (54.1 µL, 0.9 mmol), and

then trifluoromethyl alkene **2b** (74.2 mg, 0.36 mmol), **PhPCy**₂ (98.8 mg, 0.36 mmol), **Acetone/MeCN** (5.4 mL/0.6 mL). The crude product was purified by flash column chromatography on silica gel (PE) to afford 42 mg (46% yield) of **3ab** as a colorless oil: ¹**H NMR (400 MHz, CDCl**₃) δ : 7.34-7.26 (m, 4H), 7.23-7.13 (m, 5H), 2.58 (t, *J* = 7.8 Hz, 2H), 2.44-2.39 (m, 2H), 1.67-1.59 (m, 2H), 1.44-1.37 (m, 2H); ¹³**C NMR (100** **MHz, CDCl₃**) δ : 153.6 (dd, J = 288.5 Hz, 286.1 Hz), 142.2, 133.0, 132.1, 129.5 (t, J = 3.4 Hz), 128.6, 128.3, 128.2, 125.7, 91.5 (dd, J = 20.1 Hz, 14.9 Hz), 35.5, 30.6, 27.2, 27.1; ¹⁹F **NMR (376 MHz, CDCl₃)** δ : -90.82, -90.84. All data are in accordance with the literature.¹⁰

1-bromo-4-(1,1-difluoro-6-phenylhex-1-en-2-yl)benzene (**3ac**) : According to Method C, the reaction was carried out with alcohol **1a** (40.9 mg, 0.3 mmol), **KO^tBu** (37.0 mg, 0.33 mmol), **dry THF** (3.0 mL), **CS**₂ (54.1 μL, 0.9 mmol),

and then trifluoromethyl alkene **2c** (90.0 mg, 0.36 mmol), **PhPCy**₂ (98.8 mg, 0.36 mmol), **Acetone/MeCN** (5.4 mL/0.6 mL). The crude product was purified by flash column chromatography on silica gel (PE) to afford 52 mg (50% yield) of **3ac** as a colorless oil: ¹**H NMR (400 MHz, CDCl**₃) δ : 7.49 (d, J = 8.6 Hz, 2H), 7.27 (t, J = 7.2 Hz, 2H), 7.20-7.12 (m, 5H), 2.58 (t, J = 7.5 Hz, 2H), 2.43-2.38 (m, 2H), 1.66-1.58 (m, 2H), 1.43-1.36 (m, 2H); ¹³**C NMR (100 MHz, CDCl**₃) δ : 153.5 (dd, J = 288.5 Hz, 286.5 Hz), 142.2, 132.6, 131.6, 129.9 (t, J = 3.4 Hz), 128.3, 128.2, 125.7, 121.1, 91.5 (dd, J = 21.6 Hz, 13.9 Hz), 35.4, 30.6, 27.2, 27.1; ¹⁹F **NMR (376 MHz, CDCl**₃) δ : -90.67 (d, J = 43.3 Hz), -90.83 (d, J = 43.3 Hz); **HRMS m/z (ESI)** calcd for C_{18H17}BrF₂ (M+Na)⁺ 373.0379, found 373.0381.

Methyl 4-(1,1-difluoro-6-phenylhex-1-en-2-yl) benzoate (3ad): According to Method C, the reaction was carried out with alcohol 1a (40.9 mg, 0.3 mmol), KO^tBu (37.0 mg, 0.33 mmol), dry THF (3.0 mL), CS₂ (54.1 μL, 0.9 mmol),

and then trifluoromethyl alkene **2d** (82.8 mg, 0.36 mmol), **PhPCy**₂ (98.8 mg, 0.36 mmol), **Acetone/MeCN** (5.4 mL/0.6 mL). The crude product was purified by flash column chromatography on silica gel (PE:EA = 20:1) to afford 79 mg (80% yield) of **3ad** as a colorless oil: ¹**H NMR (400 MHz, CDCl**₃) δ : 8.04 (d, *J* = 8.6 Hz, 2H), 7.38 (d, *J* = 8.7 Hz, 2H), 7.29-7.25 (m, 2H), 7.18 (td, *J* = 7.2 Hz, 6.8 Hz, 3H), 3.93 (s, 3H), 2.58 (t, *J* = 7.9 Hz, 2H), 2.49-2.44 (m, 2H), 1.67-1.60 (m, 2H), 1.45-1.38 (m, 2H); ¹³**C NMR (100 MHz, CDCl**₃) δ : 166.7, 153.8 (dd, *J* = 290.9 Hz, 286.6 Hz), 142.2, 138.5 (t, *J* = 3.8 Hz), 129.7, 128.8, 128.3, 128.2, 128.1 (t, *J* = 3.4 Hz), 125.7, 92.0 (dd, *J* =

22.0 Hz, 12.5 Hz), 52.1, 35.4, 30.6, 27.2, 27.0; ¹⁹F NMR (376 MHz, CDCl₃) δ : -89.28 (d, J = 39.0 Hz), -89.52 (d, J = 39.0 Hz); HRMS m/z (ESI) calcd for C₂₀H₂₀F₂ (M+H)⁺ 331.1510, found 331.1509.

4-(1,1-difluoro-6-phenylhex-1-en-2-yl)benzaldehyde

(**3ae**) : According to Method C, the reaction was carried out with alcohol **1a** (40.9 mg, 0.3 mmol), **KO^tBu** (37.0 mg, 0.33 mmol), **dry THF** (3.0 mL), **CS**₂ (54.1 μL, 0.9 mmol),

and then trifluoromethyl alkene **2e** (72.0 mg, 0.36 mmol), **PhPCy₂** (98.8 mg, 0.36 mmol), **Acetone/MeCN** (5.4 mL/0.6 mL). The crude product was purified by flash column chromatography on silica gel (PE:EA = 10:1) to afford 43 mg (43% yield) of **3ae** as a yellow oil: ¹**H NMR** (400 MHz, CDCl₃) δ : 10.01 (s, 1H), 7.87-7.85 (d, J = 8.3 Hz, 2H), 7.47 (d, J = 6.9 Hz, 2H), 7.28-7.24 (m, 2H), 7.19-7.12 (m, 3H), 2.58 (t, J = 7.8 Hz, 2H), 2.50-2.45 (m, 2H), 1.68-1.60 (m, 2H), 1.46-1.38 (m, 2H); ¹³**C NMR** (100 MHz, CDCl₃) δ : 191.6, 153.9 (dd, J = 291.3 Hz, 287.5 Hz), 142.1, 140.2 (t, J = 4.3 Hz), 135.1, 129.8, 128.7 (t, J = 3.4 Hz), 128.3, 125.8, 92.1 (dd, J = 22.5 Hz, 11.5 Hz), 35.4, 30.6, 27.2, 27.0; ¹⁹F NMR (376 MHz, CDCl₃) δ : -88.36 (d, J = 37.6 Hz), -88.74 (d, J = 36.1 Hz); **HRMS m/z (ESI)** calcd for C₁₉H₁₈F₂O (M+H)⁺ 301.1404, found 301.1407.

4-(1,1-difluoro-6-phenylhex-1-en-2-yl)benzonitrile (3af) : According to Method C, the reaction was carried out with alcohol **1a** (40.9 mg, 0.3 mmol), **KO^tBu** (37.0 mg, 0.33 mmol), **dry THF** (3.0 mL), **CS**₂ (54.1 μL, 0.9 mmol), and

then trifluoromethyl alkene **2f** (71.0 mg, 0.36 mmol), **PhPCy**₂ (98.8 mg, 0.36 mmol), **Acetone/MeCN** (5.4 mL/0.6 mL). The crude product was purified by flash column chromatography on silica gel (PE:EA = 20:1) to afford 44 mg (49% yield) of **3af** as a colorless oil: ¹**H NMR (400 MHz, CDCl**₃) δ : 7.64 (d, *J* = 8.4 Hz, 2H), 7.39 (d, *J* = 8.2 Hz, 2H), 7.08-7.25 (m, 2H), 7.18 (t, *J* = 7.1 Hz, 1H), 7.13 (d, *J* = 6.8 Hz, 2H), 2.58 (t, *J* = 7.8 Hz, 2H), 2.47-2.42 (m, 2H), 1.66-1.59 (m, 2H), 1.43-1.36 (m, 2H); ¹³**C NMR (100 MHz, CDCl**₃) δ : 153.9 (dd, *J* = 291.3 Hz, 287.8 Hz), 142.0, 138.7, 132.2, 128.8 (t, *J* = 3.4 Hz), 128.3, 125.8, 118.7, 110.9, 91.7 (dd, *J* = 23.0 Hz, 11.5 Hz), 35.4, 30.5, 27.1, 26.9; ¹⁹F NMR (376 MHz, CDCl₃) δ : -87.94 (d, J = 36.1 Hz), -88.49 (d, J = 36.1 Hz); HRMS m/z (ESI) calcd for C₁₉H₁₇F₂N (M+H)⁺ 298.1407, found 298.1408.

1-(1,1-difluoro-6-phenylhex-1-en-2-yl)-4-(trifluoromethyl) benzene (3ag) : According to Method C, the reaction was carried out with alcohol **1a** (40.9 mg, 0.3 mmol), **KO^tBu** (37.0 mg, 0.33 mmol), **dry THF** (3.0 mL), **CS**₂ (54.1 μL, 0.9

mmol), and then trifluoromethyl alkene **2g** (70.9 mg, 0.36 mmol), **PhPCy**₂ (98.8 mg, 0.36 mmol), **Acetone/MeCN** (5.4 mL/0.6 mL).The crude product was purified by flash column chromatography on silica gel (PE) to afford 65 mg (64% yield) of **3ag** as a colorless oil: ¹**H NMR (400 MHz, CDCl**₃) δ : 7.62 (d, *J* = 8.4 Hz, 2H), 7.41 (d, *J* = 8.3 Hz, 2H), 7.32-7.25 (m, 3H), 7.20-7.12 (m, 3H), 2.58 (t, *J* = 7.9 Hz, 2H), 2.48-2.43 (m, 2H), 1.67-1.59 (m, 2H), 1.44-1.37 (m, 2H); ¹³**C NMR (100 MHz, CDCl**₃) δ : 153.8 (t, *J* = 287.9 Hz), 142.1, 137.5, 129.4 (q, *J* = 32.6 Hz), 128.5, 128.3, 125.8, 125.4, 122.7, 91.7 (dd, *J* = 22.0 Hz, 12.5 Hz), 35.4, 30.6, 27.1; ¹⁹**F NMR (376 MHz, CDCl**₃) δ : -62.51, -89.55 (d, *J* = 40.5 Hz), -89.95 (d, *J* = 39.0 Hz); **HRMS m/z (ESI)** calcd for C₁₉H₁₇F₅ (M+H)⁺ 341.1329, found 341.1330.

3-(1,1-difluoro-6-phenylhex-1-en-2-yl)pyridine (**3ah**) : According to Method C, the reaction was carried out with alcohol **1a** (40.9 mg, 0.3 mmol), **KO'Bu** (37.0 mg, 0.33 mmol), **dry THF** (3.0 mL), **CS**₂ (54.1 μL, 0.9 mmol), and then trifluoromethyl

alkene **2h** (62.3 mg, 0.36 mmol), **PhPCy**₂ (98.8 mg, 0.36 mmol), **Acetone/MeCN** (5.4 mL/0.6 mL). The crude product was purified by flash column chromatography on silica gel (PE:EA = 10:1) to afford 58 mg (71% yield) of **3ah** as a yellow oil: ¹**H NMR (400 MHz, CDCl**₃) δ : 8.56-8.51 (m, 2H), 7.59 (d, *J* = 8.0 Hz, 1H), 7.30-7.10 (m, 6H), 2.58 (t, *J* = 7.8 Hz, 2H), 2.46-2.41 (m, 2H), 1.67-1.59 (m, 2H), 1.45-1.38 (m, 2H); ¹³**C NMR (100 MHz, CDCl**₃) δ : 153.8 (dd, *J* = 289.9 Hz, 287.0 Hz), 149.2 (t, *J* = 3.8 Hz), 148.3, 142.1, 135.5, 129.7, 128.3, 125.7, 123.3, 89.7 (dd, *J* = 24.0 Hz, 12.5 Hz), 35.4, 30.6, 27.1, 27.0; ¹⁹**F NMR (376 MHz, CDCl**₃) δ : -89.42 (d, *J* = 40.4 Hz), -90.14 (d, *J* = 40.5 Hz); **HRMS m/z (ESI)** calcd for C₁₇H₁₇F₂N (M+H)⁺ 274.1407,

3-(1,1-difluoro-6-phenylhex-1-en-2-yl)quinoline (3ai) : According to Method C, the reaction was carried out with alcohol 1a (40.9 mg, 0.3 mmol), KO^tBu (37.0 mg, 0.33 mmol), dry THF (3.0 mL), CS₂ (54.1 μ L, 0.9 mmol), and

then trifluoromethyl alkene **2i** (80.3 mg, 0.36 mmol), **PhPCy**₂ (98.8 mg, 0.36 mmol), **Acetone/MeCN** (5.4 mL/0.6 mL). The crude product was purified by flash column chromatography on silica gel (PE:EA = 10:1) to afford 75 mg (76% yield) of **3ai** as a yellow oil: ¹**H NMR** (**400 MHz, CDCl**₃) δ : 8.88 (t, J = 2.0 Hz, 1H), 8.13-8.03 (m, 2H), 7.81-7.71 (m, 2H), 7.58 (t, J = 8.2 Hz, 1H), 7.26-7.11 (m, 5H), 2.60-2.53 (m, 4H), 1.70-1.63 (m, 2H), 1.50-1.42 (m, 2H); ¹³**C NMR** (**100 MHz, CDCl**₃) δ : 154.1 (dd, J = 290.4 Hz, 287.5 Hz), 150.1, 146.8, 142.1, 135.0, 129.7, 129.1, 128.3, 127.7, 127.6, 127.1, 126.9 (t, J = 4.3 Hz), 125.8, 89.9 (dd, J = 23.5 Hz, 12.9 Hz), 35.4, 30.6, 27.1; ¹⁹**F NMR** (**376 MHz, CDCl**₃) δ : -89.01 (d, J = 39.0 Hz), -89.85 (d, J = 40.4 Hz); **HRMS m/z (ESI)** calcd for C₂₁H₁₉F₂N (M+H)⁺ 324.1564, found 324.1567.

5-(1,1-difluoro-6-phenylhex-1-en-2-yl)pyrimidine (**3aj**) : According to Method C, the reaction was carried out with alcohol **1a** (40.9 mg, 0.3 mmol), **KO'Bu** (37.0 mg, 0.33 mmol), **dry THF** (3.0 mL), **CS**₂ (54.1 μL, 0.9 mmol), and then

trifluoromethyl alkene **2j** (62.7 mg, 0.36 mmol), **PhPCy**₂ (98.8 mg, 0.36 mmol), **Acetone/MeCN** (5.4 mL/0.6 mL). The crude product was purified by flash column chromatography on silica gel (PE:EA = 20:1) to afford 38 mg (46% yield) of **3aj** as a yellow oil: ¹**H NMR (400 MHz, CDCl**₃) δ : 9.12 (s, 1H), 8.68 (s, 1H), 7.27 (t, *J* = 7.6 Hz, 2H), 7.19-7.12 (m, 3H), 2.59 (t, *J* = 7.7 Hz, 2H), 2.47-2.43 (m, 2H), 1.68-1.60 (m, 2H), 1.47-1.39 (m, 2H); ¹³**C NMR (100 MHz, CDCl**₃) δ : 157.1, 155.8 (t, *J* = 3.8 Hz), 154.2 (dd, *J* = 293.2 Hz, 288.9 Hz), 141.8, 128.3, 128.2, 128.0 (t, *J* = 4.3 Hz), 125.9, 87.2 (dd, *J* = 26.9 Hz, 12.5 Hz), 35.4, 30.5, 27.0, 26.3; ¹⁹**F NMR (376 MHz, CDCl**₃) δ : -86.79 (d, *J* = 36.1 Hz), -87.95 (d, *J* = 36.1 Hz); **HRMS m/z (ESI)** calcd for C₁₆H₁₆F₂N₂ (M+H)⁺ 275.1360, found 275.1363.

2-(1,1-difluoro-6-phenylhex-1-en-2-yl)dibenzo[b,d]furan (**3ak**) : According to Method C, the reaction was carried out with alcohol **1a** (40.9 mg, 0.3 mmol), **KO^tBu** (37.0 mg, 0.33 mmol), **dry THF** (3.0 mL), **CS**₂ (54.1 μL, 0.9 mmol),

and then trifluoromethyl alkene **2k** (94.3 mg, 0.36 mmol), **PhPCy**₂ (98.8 mg, 0.36 mmol), **Acetone/MeCN** (5.4 mL/0.6 mL). The crude product was purified by flash column chromatography on silica gel (PE:EA = 10:1) to afford 75 mg (71% yield) of **3ak** as a yellow oil: ¹**H NMR (400 MHz, CDCl**₃) δ : 8.00 (d, *J* = 7.6 Hz, 1H), 7.94 (dd, *J* = 2.3 Hz, 2.4 Hz, 1H), 7.63 (d, *J* = 8.2 Hz, 1H), 7.53-7.48 (m, 1H), 7.41-7.35 (m, 3H), 7.23 (t, *J* = 7.6 Hz, 2H), 7.18-7.11 (m, 3H), 2.69-2.64 (m, 2H), 2.57 (t, *J* = 7.8Hz, 2H), 1.73-1.65 (m, 2H), 1.47-1.39 (m, 2H); ¹³**C NMR (100 MHz, CDCl**₃) δ : 156.0, 153.9, 153.5 (dd, *J* = 288.5 Hz, 286.1 Hz), 142.4, 128.3, 128.2, 127.8, 127.3, 125.6, 124.5, 124.1, 122.8, 122.7, 120.7, 120.0, 118.3 (d, *J* = 5.3 Hz), 111.8, 88.1 (dd, *J* = 24.9 Hz, 14.9 Hz), 35.5, 30.6, 27.3, 27.2; ¹⁹**F NMR (376 MHz, CDCl**₃) δ : -88.12 (d, *J* = 40.4 Hz), -91.63 (d, *J* = 40.4 Hz); **HRMS m/z (ESI)** calcd for C₂₄H₂₀F₂O (M+Na)⁺ 385.1380, found 385.1382.

1-(1,1-difluoro-6-phenylhex-1-en-2-yl)-4-methylbenzene

(3al) : According to Method C, the reaction was carried out with alcohol 1a (40.9 mg, 0.3 mmol), KO^tBu (37.0 mg, 0.33 mmol), dry THF (3.0 mL), CS₂ (54.1 μ L, 0.9 mmol), and

then trifluoromethyl alkene **2l** (67.0 mg, 0.36 mmol), **PhPCy**₂ (98.8 mg, 0.36 mmol), **Acetone/MeCN** (5.4 mL/0.6 mL), **[Ir(dtbbPy)(PPy)**₂](**PF**₆) (4.1 mg, 0.0045 mmol). The crude product was purified by flash column chromatography on silica gel (PE) to afford 65 mg (76% yield) of **3al** as a colorless oil: ¹**H NMR (400 MHz, CDCl**₃) δ : 7.29 (t, *J* = 7.7 Hz, 2H), 7.24-7.15 (m, 7H), 2.60 (t, *J* = 7.8 Hz, 2H), 2.46-2.41 (m, 2H), 2.38 (s, 3H), 1.69-1.61 (m, 2H), 1.48-1.41 (m, 2H); ¹³**C NMR (100 MHz, CDCl**₃) δ : 153.5 (dd, *J* = 287.5 Hz, 285.1 Hz), 142.4, 136.9, 130.6, 129.1, 128.3, 128.2, 128.1 (t, *J* = 3.4 Hz), 125.7, 92.0 (dd, *J* = 20.1 Hz, 14.4 Hz), 35.5, 30.7, 27.4, 27.2, 21.1; ¹⁹**F NMR (376 MHz, CDCl**₃) δ : -92.07, -92.10; **HRMS m/z (ESI)** calcd for C₁₉H₂₀F₂ (M+H)⁺ 287.1611, found 287.1613.

1-(1,1-difluoro-6-phenylhex-1-en-2-yl)-4-methoxybenzen e (3am) : According to Method C, the reaction was carried out with alcohol **1a** (40.9 mg, 0.3 mmol), **KO^tBu** (37.0 mg, 0.33 mmol), **dry THF** (3.0 mL), **CS**₂ (54.1 μL, 0.9 mmol),

and then trifluoromethyl alkene **2m** (72.7 mg, 0.36 mmol), **PhPCy₂** (98.8 mg, 0.36 mmol), **Acetone/MeCN** (5.4 mL/0.6 mL), **[Ir(dtbbPy)(PPy)₂](PF₆)** (4.1 mg, 0.0045 mmol). The crude product was purified by flash column chromatography on silica gel (PE) to afford 60 mg (66% yield) of **3am** as a colorless oil: ¹**H NMR (400 MHz, CDCl₃)** δ : 7.31-7.16 (m, 7H), 6.94-6.90 (m, 2H), 3.84(s, 3H), 2.60 (t, *J* = 7.6 Hz, 2H), 2.44-2.40 (m, 2H), 1.69-1.61 (m, 2H), 1.48-1.40 (m, 2H); ¹³**C NMR (100 MHz, CDCl₃)** δ : 158.6, 153.4 (t, *J* = 285.6 Hz), 142.4, 129.3 (t, *J* = 3.4 Hz), 128.3, 128.2, 125.8, 125.7, 113.8, 91.6 (dd, *J* = 18.7 Hz, 15.8 Hz), 55.2, 35.5, 30.7, 27.4. 27.2; ¹⁹**F NMR (376 MHz, CDCl₃)** δ : -92.59; **HRMS m/z (ESI)** calcd for C₁₉H₂₀F₂O (M+H)⁺ 303.1560, found 303.1562.

1-(1,1-difluoro-6-phenylhex-1-en-2-yl)-3-methylbenzene (**3an):** According to Method C, the reaction was carried out with alcohol **1a** (40.9 mg, 0.3 mmol), **KO**^t**Bu** (37.0 mg, 0.33 mmol), **dry THF** (3.0 mL), **CS**₂ (54.1 μL, 0.9 mmol),

and then trifluoromethyl alkene **2** (67.0 mg, 0.36 mmol), **PhPCy**₂ (98.8 mg, 0.36 mmol), **Acetone/MeCN** (5.4 mL/0.6 mL), **[Ir(dtbbPy)(PPy)**₂](**PF**₆) (4.1 mg, 0.0045 mmol). The crude product was purified by flash column chromatography on silica gel (PE) to afford 49 mg (57% yield) of **3an** as a colorless oil: ¹**H NMR (400 MHz, CDCl**₃) δ : 7.30-7.23 (m, 3H), 7.23-7.18 (m, 1H), 7.15-7.08 (m, 5H), 2.58 (t, *J* = 7.9 Hz, 2H), 2.44-2.36 (m, 5H), 1.67-1.60 (m, 2H), 1.46-1.38 (m, 2H); ¹³**C NMR (100 MHz, CDCl**₃) δ : 153.5 (dd, *J* = 288.5 Hz, 284.6 Hz), 142.4, 138.0, 133.6 (t, *J* = 2.4 Hz), 128.9 (t, *J* = 2.9 Hz), 128.3, 128.2, 128.0, 125.7, 125.3 (t, *J* = 2.9 Hz), 92.3 (dd, *J* = 21.1 Hz, 13.4 Hz), 35.5, 30.7, 27.5, 27.2, 21.4; ¹⁹**F NMR (376 MHz, CDCl**₃) δ : -91.72 (d, *J* = 44.8 Hz), -91.95 (d, *J* = 46.2 Hz); **HRMS m/z (ESI)** calcd for C₁₉H₂₀F₂Na (M+Na)⁺ 309.1431, found 309.1433.

1-(1,1-difluoro-4-phenylbut-1-en-2-yl)-2-methylbenzene (3ao): According to Method C, the reaction was carried out with alcohol 1a (40.9 mg, 0.3 mmol), KO^tBu (37.0 mg, 0.33 mmol), dry THF (3.0 mL), CS₂ (54.1 μ L, 0.9 mmol), and then

trifluoromethyl alkene 2 (67.0 mg, 0.36 mmol), PhPCy₂ (98.8 mg, 0.36 mmol), Acetone/MeCN (5.4 mL/0.6 mL), [Ir(dtbbPy)(PPy)₂](PF₆) (4.1 mg, 0.0045 mmol). The crude product was purified by flash column chromatography on silica gel (PE) to afford 31 mg (36% yield) of **3ao** as a colorless oil: ¹H NMR (400 MHz, CDCl₃) δ : 7.30-7.14 (m, 8H), 7.11-7.09 (d, J = 7.8 Hz, 1H), 7.15-7.08 (m, 5H), 2.59 (t, J = 7.9Hz, 2H), 2.36-2.28 (m, 5H), 1.68-1.61 (m, 2H), 1.44-1.36 (m, 2H); ¹³C NMR (100 MHz, CDCl₃) δ : 152.5 (dd, J = 286.5 Hz, 285.1 Hz), 142.4, 136.8, 133.2, 130.2, 129.6, 128.3, 128.2. 125.7, 90.9 (dd, J = 21.1 Hz, 17.3 Hz), 35.6, 31.7, 28.7, 27.0, 19.4; ¹⁹F NMR (376 MHz, CDCl₃) δ : -89.83 (d, J = 47.7 Hz), -94.69 (d, J = 46.2 Hz); HRMS m/z (ESI) calcd for C₁₉H₂₀F₂Na (M+Na)⁺ 309.1431, found 309.1430.

2-(1,1-difluoro-3-((2S,5S)-2-isopropyl-5-methylcyclohex yl)prop-1-en-2-yl)naphthalene (3aq) : According to Method C, the reaction was carried out with alcohol 1ab (31.3 mg, 0.2 mmol), KO^tBu (24.7 mg, 0.22 mmol), dry

THF (2.0 mL), **CS**₂ (36.0 µL, 0.6 mmol), and then trifluoromethyl alkene **2a** (53.3 mg, 0.24 mmol), **PhPCy**₂ (65.9 mg, 0.24 mmol), **Acetone/MeCN** (3.6 mL/0.4 mL). The crude product was purified by flash column chromatography on silica gel (PE) to afford 52 mg (76% yield, dr = 3:1) of **3aq** as a colorless oil. Data of one isomer: ¹H **NMR (400 MHz, CDCl₃)** δ : 7.87-7.79 (m, 4H), 7.5-7.44 (m, 3H), 2.93-2.87 (m, 1H), 2.16-2.05 (m, 1H), 1.83-1.58 (m, 3H), 1.31-1.08 (m, 2H), 1.02-0.94 (m, 1H), 0.92-0.89 (m, 3H), 0.86 (d, *J* = 6.5 Hz, 3H), 0.82-0.72 (m, 3H), 0.67 (d, *J* = 6.8 Hz, 2H), 0.64-0.56 (m, 2H); ¹³C **NMR (100 MHz, CDCl₃)** δ : 154.1 (dd, *J* = 288.5 Hz, 284.6 Hz), 133.3, 132.4, 131.3 (t, J = 3.8 Hz), 127.9, 127.6, 127.3 (t, *J* = 3.4 Hz), 126.2, 126.0, 91.4 (dd, *J* = 21.1 Hz, 13.4 Hz), 47.6, 40.5, 36.8, 35.2, 32.4, 31.2, 26.6, 24.1, 22.8, 21.5, 15.2; ¹⁹F **NMR (376 MHz, CDCl₃)** δ : -91.01 (d, *J* = 43.3 Hz), -91.25 (d, *J* = 43.3 Hz). Data of the other isomer: ¹H **NMR (400 MHz, CDCl₃)** δ : 7.87-7.79 (m, 4H), 7.5-7.44 (m, 3H), 2.93-2.87 (m, 1H), 2.16-2.05 (m, 1H), 1.83-1.58 (m, 3H), 1.31-1.08 (m, 2H), 1.02-0.94 (m, 1H), 0.92-0.89 (m, 3H), 0.86 (d, *J* = 6.5 Hz, 3H), 0.82-0.75 (m, 1H), 1.83-1.58 (m, 3H), 1.31-1.08 (m, 2H), 1.02-0.94 (m, 1H), 0.92-0.89 (m, 3H), 0.86 (d, *J* = 6.5 Hz, 3H),
0.82-0.72 (m, 3H), 0.67 (d, J = 6.8 Hz, 2H), 0.64-0.56 (m, 2H); ¹³C NMR (100 MHz, CDCl₃) δ : 154.0 (dd, J = 288.5 Hz, 284.6 Hz), 133.2, 132.5, 127.8, 127.6, 126.3, 91.8 (dd, J = 22.0 Hz ,13.6 Hz), 45.0, 37.8, 35.8, 32.8, 29.3, 26.0, 25.1, 23.7, 21.7, 20.6; ¹⁹F NMR (376 MHz, CDCl₃) δ : -91.88 (d, J = 44.8 Hz), -92.24 (d, J = 44.8 Hz); HRMS m/z (ESI) calcd for C₂₃H₂₈F₂ (M+H)⁺ 343.2237, found 343.2239.

(S)-2-(1,1-difluoro-5-(4-isobutylphenyl)hex-1 -en-2-yl)naphthalene (3ar) : According to Method C, the reaction was carried out with alcohol 1ac (38.4 mg, 0.2 mmol), KO^tBu (24.7

mg, 0.22 mmol), **dry THF** (2.0 mL), **CS**₂ (36.0 μL, 0.6 mmol), and then trifluoromethyl alkene **2a** (53.3 mg, 0.24 mmol), **PhPCy**₂ (65.9 mg, 0.24 mmol), **Acetone/MeCN** (3.6 mL/0.4 mL). The crude product was purified by flash column chromatography on silica gel (PE) to afford 56 mg (74% yield) of **3ar** as a colorless oil: ¹**H NMR (400 MHz, CDCl**₃) δ: 7.86-7.79 (m, 3H), 7.68 (s, 1H), 7.53-7.48 (m, 2H), 7.40 (tt, J = 1.7 Hz, 1.8 Hz, 1H), 7.08 (d, J = 4.7 Hz, 4H), 2.74-2.69 (m, 1H), 2.49 (d, J = 7.2 Hz, 3H), 2.45-2.35 (m, 2H), 1.92-1.86 (m, 1H), 1.73-1.66 (m, 2H), 1.24 (d, J = 7.0 Hz, 3H), 0.95 (d, J = 6.5 Hz, 6H); ¹³**C NMR (100 MHz, CDCl**₃) δ: 153.6 (dd, J = 289.4 Hz, 285.6 Hz), 144.0, 139.3, 133.2, 132.4, 131.0 (t, J = 3.8 Hz), 129.1, 127.9, 127.5, 127.1 (t, J = 3.4Hz), 126.7, 126.2, 126.1 (t, J = 3.4 Hz), 126.0, 92.5 (dd, J = 21.6 Hz, 12.5 Hz), 45.0, 39.2, 36.3, 30.2, 25.8, 22.4, 22.3; ¹⁹**F NMR (376 MHz, CDCl**₃) δ: -90.78 (d, J = 41.9 Hz), -91.29 (d, J = 43.3 Hz); **HRMS m/z (ESI)** calcd for C₂₆H₂₈F₂ (M+H)⁺ 379.2237, found 379.2240.

mL), CS_2 (36.0 µL, 0.6 mmol), and then trifluoromethyl alkene 2a (53.3 mg, 0.24 mmol), $PhPCy_2$ (65.9 mg, 0.24 mmol), Acetone/MeCN (3.6 mL/0.4 mL). The crude product was purified by flash column chromatography on silica gel (PE) to afford 40

mg (47% yield) of **3as** as a colorless oil: ¹H NMR (400 MHz, CDCl₃) δ : 7.87-7.80 (m, 4H), 7.52-7.46 (m, 3H), 7.05 (d, J = 7.4 Hz, 1H), 6.70-6.65 (m, 2H), 3.93 (t, J = 6.3 Hz, 2H), 2.53-2.47 (m, 2H), 2.34 (s, 3H), 2.21 (s, 3H), 1.76-1.68 (m, 2H), 1.44-1.35 (m, 4H), 0.94 (s, 6H); ¹³C NMR (100 MHz, CDCl₃) δ : 157.1, 153.5 (dd, J = 288.9 Hz, 285.6 Hz), 136.4, 133.3, 132.4, 131.2 (t, J = 3.4 Hz), 130.3, 128.0, 127.9, 127.6, 127.1 (t, J = 3.4 Hz), 126.2, 126.0, 126.0 (t, J = 3.4 Hz), 123.5, 120.6, 111.9, 93.1 (dd, J = 21.1 Hz, 12.9 Hz), 68.4, 39.8, 37.6, 32.5, 27.0, 24.2, 22.6, 21.4, 15.8; ¹⁹F NMR (376 MHz, CDCl₃) δ : -91.32 (d, J = 43.3 Hz), -91.54 (d, J = 43.4 Hz); HRMS m/z (ESI) calcd for C₂₈H₃₂F₂O (M+H)⁺ 423.2499, found 423.2498.

3-(1,1-difluoro-6-phenylhex-1-en-2-yl)phen yl-2-(1-(4-chlorobenzoyl)-5-methoxy-2-met hyl-1H-indol-3-yl)acetate (3at) : According to Method C, the reaction was carried out with alcohol **1a** (27.2 mg, 0.2 mmol), **KO^tBu** (24.7

mg, 0.22 mmol), **dry THF** (2.0 mL), **CS**₂ (36.0 µL, 0.6 mmol), and then trifluoromethyl alkene **2q** (126.5 mg, 0.24 mmol), **PhPCy**₂ (65.9 mg, 0.24 mmol), **Acetone/MeCN** (3.6 mL/0.4 mL). The crude product was purified by flash column chromatography on silica gel (PE:EA = 5:1) to afford 83 mg (66% yield) of **3at** as a green oil: ¹**H NMR (400 MHz, CDCl**₃) δ : 7.70 (d, *J* = 8.6 Hz, 2H), 7.49 (d, *J* = 8.6 Hz, 2H), 7.36-7.30 (m, 1H), 7.28-7.24 (m, 2H), 7.19-7.12 (m, 4H), 7.08-6.99 (m, 3H), 6.92 (d, *J* = 9.0 Hz, 1H), 6.72 (d, *J* = 2.6 Hz, 1H), 3.93 (s, 2H), 3.84 (s, 3H), 2.57 (t, *J* = 7.8 Hz, 2H), 2.47 (s, 3H), 2.43-2.38 (m, 2H), 1.66-1.58 (m, 2H), 1.45-1.38 (m, 2H); ¹³C NMR (100 MHz, CDCl₃) δ : 169.2, 168.3, 156.1, 153.7 (dd, *J* = 291.2 Hz, 286.5 Hz), 150.7, 142.3, 139.3, 136.2, 135.2, 133.8, 131.2, 130.8, 130.5, 129.3, 129.1, 128.3, 128.2, 125.8, 125.7, 121.2 (t, *J* = 3.8 Hz), 120.2, 115.0, 111.9, 111.8, 101.2, 91.7 (dd, *J* = 20.6 Hz, 13.9 Hz), 55.1, 35.4, 30.6, 30.5, 27.2, 13.4; ¹⁹F NMR (376 MHz, CDCl₃) δ : -90.33, -90.36; HRMS m/z (ESI) calcd for C₃₇H₃₂ClF₂NO₄ (M+H)⁺ 628.2066, found 628.2062.

2-(4-(4-chlorobenzoyl)phenoxy)-N-(3-(1,1-difluoro-6-phenylhex-1-en-2-yl)phenyl)-2-methylpropanami de (3au) : According to Method C, the reaction was carried out with alcohol **1a** (27.2 mg, 0.2 mmol), **KO^tBu** (24.7 mg, 0.22 mmol), **dry THF** (2.0 mL), **CS**₂ (36.0 μL, 0.6 mmol), and then trifluoromethyl alkene **2r** (120.0 mg, 0.24 mmol), **PhPCy**₂ (65.9 mg,

0.24 mmol), **Acetone/MeCN** (3.6 mL/0.4 mL). The crude product was purified by flash column chromatography on silica gel (PE:EA = 5:1) to afford 90 mg (79% yield) of **3au** as a green solid: ¹**H NMR (400 MHz, CDCl₃)** δ : 8.32 (s, 1H), 7.77 (dd, J = 8.8 Hz, 8.7 Hz, 4H), 7.51-7.44 (m, 4H), 7.32 (t, J = 8.0 Hz, 1H), 7.27-7.23 (m, 2H), 7.17-7.11 (m, 3H), 7.08 (d, J = 8.8 Hz, 3H), 2.57 (t, J = 7.8 Hz, 2H), 2.44-2.39 (m, 2H), 1.69 (s, 6H), 1.66-1.58 (m, 2H), 1.45-1.38 (m, 2H); ¹³C NMR (100 MHz, **CDCl₃)** δ : 194.1, 172.2, 158.1, 153.6 (dd, J = 289.0 Hz, 285.6 Hz), 142.3, 138.7, 137.4, 135.9, 134.7 (t, J = 2.9 Hz), 132.1, 131.9, 131.2, 129.1, 128.6, 128.3, 128.2, 125.6, 124.6 (t, J = 3.4 Hz), 120.2, 119.7 (t, J = 3.4 Hz), 118.8, 92.0 (dd, J = 22.0 Hz, 12.9 Hz), 82.4, 35.4, 3.6, 27.3, 27.1, 25.0; ¹⁹F NMR (376 MHz, CDCl₃) δ : -90.94 (d, J = 43.4 Hz), -91.19 (d, J = 43.3 Hz); **HRMS m/z (ESI)** calcd for C₃₅H₃₂ClF₂NO₃ (M+H)⁺ 588.2117, found 588.2114.

2-(3-cyano-4-isobutoxyphenyl)-N-(3-(1,1difluoro-6-phenylhex-1-en-2-yl)phenyl)-4methylthiazole-5-carboxamide (3av) : According to Method C, the reaction was carried out with alcohol 1a (27.2 mg, 0.2 mmol), KO^tBu (24.7 mg, 0.22 mmol), dry

THF (2.0 mL), **CS**₂ (36.0 µL, 0.6 mmol), and then trifluoromethyl alkene **2s** (116.4 mg, 0.24 mmol), **PhPCy**₂ (65.9 mg, 0.24 mmol), **Acetone/MeCN** (3.6 mL/0.4 mL). The crude product was purified by flash column chromatography on silica gel (PE:EA = 3:1) to afford 70 mg (60% yield) of **3av** as a yellow solid: ¹H **NMR (400 MHz, CDCl**₃) δ : 8.12 (d, *J* = 2.3 Hz, 1H), 8.06 (dd, *J* = 2.4 Hz, 2.5 Hz, 1H), 7.64(s, 1H), 7.54 (d, *J* = 6.6 Hz, 2H), 7.35 (t, *J* = 8.8 Hz, 1H), 7.26 (t, *J* = 7.6 Hz, 2H), 7.18-7.09 (m, 4H), 7.02 (d, *J* = 8.9 Hz, 1H), 3.90 (d, *J* = 6.5 Hz, 2H), 2.78 (s, 3H), 2.58 (t, *J* =

7.8 Hz, 2H), 2.46-2.41 (m, 2H), 2.23-2.16 (m, 1H), 1.67-1.59 (m, 3H), 1.47-1.39 (m, 2H), 1.10 (d, J = 6.8 Hz, 6H); ¹³C NMR (100 MHz, CDCl₃) δ : 164.9, 162.4, 159.8, 157.1, 153.6 (dd, J = 288.9 Hz, 285.6 Hz), 142.3, 137.5, 134.8, 132.5, 131.9, 129.2, 128.3, 128.2, 125.7, 125.6, 124.9, 120.1, 119.3, 115.4, 112.6, 102.8, 92.0 (dd, J = 22.1 Hz, 12.9 Hz), 75.7, 35.4, 30.6, 28.1, 27.3, 27.2, 19.0, 17.5; ¹⁹F NMR (376 MHz, CDCl₃) δ : -90.78 (d, J = 43.3 Hz), -91.03 (d, J = 41.9 Hz); HRMS m/z (ESI) calcd for C₃₄H₃₃F₂N₃O₂S (M+H)⁺ 586.2340, found 586.2343.

(R)-2-(4-(4-chlorobenzoyl)phenoxy)-N-(3-(1,1difluoro-5-(6-methoxynaphthalen-2-yl)hex-1-e n-2-yl)phenyl)-2-methylpropanamide (3aw) : According to Method C, the reaction was carried out with alcohol 1ae (43.2 mg, 0.2 mmol), KO^tBu (24.7 mg, 0.22 mmol), dry THF (2.0 mL), CS₂ (36.0 μL, 0.6 mmol), and then

trifluoromethyl alkene **2r** (120.0 mg, 0.24 mmol), **PhPCy**₂ (65.9 mg, 0.24 mmol), **Acetone/MeCN** (3.6 mL/0.4 mL). The crude product was purified by flash column chromatography on silica gel (PE:EA = 10:1) to afford 47 mg (35% yield) of **3aw** as a colorless oil: ¹**H NMR (400 MHz, CDCl**₃) δ : 8.30 (s, 1H), 7.78 (d, *J* = 8.8 Hz, 2H), 7.72 (d, *J* = 8.5 Hz, 2H), 7.66 (dd, *J* = 2.5 Hz, 2.6 Hz, 2H), 7.50-7.43 (m, 5H), 7.29 (t, *J* = 7.9 Hz, 1H), 7.25 (dd, *J* = 1.8 Hz, 1.8 Hz, 1H), 7.13-7.05 (m, 4H), 7.00 (d, *J* = 8.1 Hz, 1H), 3.90 (s, 3H), 2.84-2.79 (m, 1H), 2.38-2.23 (m, 2H), 1.77-1.70 (m, 2H), 1.68 (s, 6H), 1.28 (d, *J* = 7.0 Hz, 3H); ¹³**C NMR (100 MHz, CDCl**₃) δ : 194.2, 172.2, 158.1, 157.2, 156.3, 153.4 (t, *J* = 287.0 Hz), 141.8, 138.7, 137.4, 135.9, 134.7, 133.2, 132.2, 132.0, 131.2, 129.1, 129.0, 128.6, 126.9, 126.0, 125.1, 124.5, 120.2, 119.7 (t, *J* = 3.4 Hz), 118.8, 118.6, 105.6, 92.1 (t, *J* = 17.3 Hz), 82.4, 55.3, 39.4, 36.0, 25.9, 25.0, 22.0; ¹⁹**F NMR (376 MHz, CDCl**₃) δ : -90.77; **HRMS m/z (ESI)** calcd for C₄₀H₃₆ClF₂NO4 (M+H)⁺ 668.2379, found 668.2377.

(R)-2-(3-cyano-4-isobutoxyphenyl)-N-(3-(1,1-difluoro-5-(4-isobutylphenyl)hex-1en-2-yl)phenyl)-4-methylthiazole-5-carb oxamide (3ax) : According to Method C, the reaction was carried out with alcohol 1ac (38.4 mg, 0.2 mmol), KO^tBu (24.7 mg, 0.22 mmol), dry THF (2.0 mL), CS₂ (36.0

µL, 0.6 mmol), and then trifluoromethyl alkene **2s** (116.4 mg, 0.24 mmol), **PhPCy**₂ (65.9 mg, 0.24 mmol), **Acetone/MeCN** (3.6 mL/0.4 mL). The crude product was purified by flash column chromatography on silica gel (PE:EA = 5:1) to afford 58 mg (45% yield) of **3ax** as a white solid: ¹**H NMR (400 MHz, CDCl**₃) δ: 8.12 (m, 2H), 7.64-7.53 (m, 2H), 7.44 (s, 1H), 7.32 (t, J = 8.0 Hz, 1H), 7.04-7.00 (m, 6H), 3.91 (d, J = 6.5 Hz, 2H), 2.78 (s, 3H), 2.68-2.63 (m, 1H), 2.42 (d, J = 7.2 Hz, 2H), 2.36-2.17 (m, 3H), 1.86-1.79 (m, 1H), 1.67-1.60 (m, 2H), 1.22 (d, J = 6.9 Hz, 3H), 1.10 (d, J = 6.8 Hz, 6H), 0.89 (d, J = 6.6 Hz, 6H); ¹³C **NMR (100 MHz, CDCl**₃) δ: 164.9, 162.5, 159.7, 156.9, 153.4 (t, J = 287.0 Hz), 143.9, 139.3, 137.5, 134.7, 132.5, 131.9, 129.1, 129.0, 126.6, 125.7, 125.6, 124.8, 120.1, 119.2, 115.4, 112.6, 102.9, 92.1 (dd, J = 18.7 Hz, 15.8 Hz), 45.0, 39.1, 36.2, 30.2, 28.1, 25.7, 22.3, 22.2, 19.0, 17.5; ¹⁹F **NMR (376 MHz, CDCl**₃) δ: -90.66; **HRMS m/z (ESI)** calcd for C₃₈H₄₁F₂N₃O₂S (M+H)+ 642.2966, found 642.2964.

6. Gram Scale Reaction

Figure S2. An over-dried 150 mL pressure tubing (left). Photoreaction setup (right).

In a N₂-filled glovebox, an oven-dried 150.0 mL pressure tubing equipped with a magnetic stir bar was charged sequentially with alcohol **1c** (950 mg, 4.0 mmol), **KO'Bu** (494.0 mg, 4.4 mmol), and **dry THF** (40.0 mL). After being sealed with a septum cap and transferred out of the glovebox, the reaction mixture was stirred at room temperature for 30 minutes, followed by the addition of **CS**₂ (722.0 μ L, 12.0 mmol) via microsyringe at 0°C and continued to be stirred for 3 hours at 0°C before removing the solvent in vacuo. The system was transferred into the glovebox, then **2a** (1.07 g, 4.8 mmol), **PhPCy**₂ (1.32 g, 4.8 mmol), and the mixed solvents of **Acetone/MeCN** (72 mL/8 mL) were added. The vial was sealed with a septum cap and transferred out of the glovebox. The reaction mixture was stirred at room temperature under blue LEDs (456 nm, the light intensity is 100%) irradiation for 12 h (the reaction tube placed approximately ~ 6 cm from the bulbs and using a fan to keep at room temperature). The solvent was removed in vacuo and the residue was

purified by flash column chromatography on silica gel (PE:EA = 20:1) to afford 1.24 g (73% yield) of 3c.

7. Cyclic voltammetry of 2l and 2m

Figure S3. Cyclic voltammetry of 1-methyl-4-(3,3,3-trifluoroprop-1-en-2-yl)benzene

Figure S4. Cyclic voltammetry of 1-methoxy-4-(3,3,3-trifluoroprop-1-en-2-yl)benzene

Cyclic voltammetry of alkenes in DMF. Test conditions: A cyclic voltammograms in solvent (10 mL) by using glassy carbon as the working electrode, Pt wire as the counter electrode and Ag/AgCl as the reference electrode under N_2 at room temperature. 10 mL of DMF containing 0.1 M TEAB was poured into the electro chemical cell in all experiments. The scan rate is 0.1 V/s. The reduction potential of 1-methyl-4-(3,3,3-trifluoroprop-1-en-2-yl)benzene was observed at -2.41 V. The reduction potential of 1-methoxy-4-(3,3,3-trifluoroprop-1-en-2-yl)benzene was observed at -2.45 V.

8. Mechanistic Studies

Radical trapping experiment

In a nitrogen-filled glovebox, over-dried 20.0 mL vial with a stirring bar was added, with alcohol **1a** (27.2 mg, 0.2 mmol), **KO'Bu** (24.7 mg, 0.22 mmol), and **dry THF** (2.0 mL). After being sealed with a septum cap and transferred out of the glovebox, the reaction mixture was stirred at room temperature for 30 minutes, followed by the addition of **CS**₂ (36.1 µL, 0.6 mmol) via microsyringe at 0°C and continued to be stirred for 3 hours at 0°C before removing the solvent in vacuo. The system was transferred into the glovebox, then the reaction bottle was added **olefin 2a** (53.3 mg, 0.24 mmol), **PhPCy**₂ (65.9 mg, 0.24 mmol), **TEMPO** (93.8 mg, 0.6 mmol) and **Acetone/MeCN** = 3.6/0.4 (mL). The resulting mixture was stirred at room temperature under blue LEDs (λ = 456 nm, I = 25%) irradiation for 12 h. After this time, the reaction mixture was concentrated under reduced pressure. The yield of **3a** was 0% determined by ¹⁹F NMR using 1, 4-Difluorobenzene as an internal standard.

Radical clock experiment

In a N₂-filled glovebox, an oven-dried 20 mL glass vial equipped with a magnetic stir bar was charged sequentially with **cyclopropylmethanol** (21.6 mg, 0.3 mmol), **KO^tBu** (37.0 mg, 0.33 mmol), and **dry THF** (3.0 mL). After being sealed with a septum cap and transferred out of the glovebox, the reaction mixture was stirred at room temperature for 30 minutes, followed by the addition of **CS**₂ (54.1 μ L, 0.9 mmol) via microsyringe at 0°C and continued to be stirred for 3 hours at 0°C before

removing the solvent in vacuo. The system was transferred into the glovebox, then **2a** (80.0 mg, 0.36 mmol), **PhPCy**₂ (98.8 mg, 0.36 mmol), and the mixed solvents of **Acetone/MeCN** (5.4 mL/0.6 mL) were added. The resulting mixture was stirred at room temperature under blue LEDs ($\lambda = 456$ nm, I = 25%) irradiation for 12 h. The solvent was removed in vacuo and the residue was purified by flash column chromatography on silica gel (PE) to afford 50 mg (64% yield) of **3ay** as a colorless oil. ¹**H NMR** (**400 MHz**, **CDCl**₃) δ : 7.86-7.79 (m, 4H), 7.53-7.45 (m, 3H), 5.84-5.74 (m, 1H), 5.05-4.96 (m, 2H), 2.57-2.52 (m, 2H), 2.11 (q, *J* = 7.1 Hz, 2H), 1.56-1.49 (m, 2H); ¹³**C NMR** (**100 MHz**, **CDCl**₃) δ : 153.8 (dd, *J* = 288.9 Hz, 285.6 Hz), 138.1, 133.3, 132.4, 131.1 (t, *J* = 3.4 Hz), 128.0, 127.9, 127.6, 127.3 (t, *J* = 3.4 Hz), 126.2, 126.1 (t, *J* = 2.9 Hz), 126.1, 114.9, 92.4 (dd, *J* = 21.6 Hz, 12.9 Hz), 33.0, 27.1, 27.0; ¹⁹**F NMR** (**376 MHz**, **CDCl**₃) δ : -91.05 (d, *J* = 43.3 Hz), -91.33 (d, *J* = 43.3 Hz). All data are in accordance with the literature.¹⁰

Byproduct

2,2'-(1,1,6,6-tetrafluorohexa-1,5-diene-2,5-diyl)din aphthalene (3a"): White solid. ¹H NMR (400 MHz, CDCl₃) δ : 7.82 (dd, J = 7.0 Hz, 8.6 Hz, 4H), 7.67 (d, J = 7.1 Hz, 2H), 7.57 (s, 2H), 7.50-7.46 (m, 4H), 7.34

(d, J = 8.6 Hz, 2H), 2.62 (s, 4H); ¹³C NMR (100 MHz, CDCl₃) δ : 153.9 (dd, J = 289.9 Hz, 286.6 Hz), 133.2, 132.4, 130.4, 128.0, 127.9, 127.6, 127.3, 126.3, 126.2. 126.0, 91.7 (dd, J = 21.6 Hz, 13.4 Hz), 26.3; ¹⁹F NMR (376 MHz, CDCl₃) δ : -89.97 (d, J = 40.5 Hz), -90.63 (d, J = 40.5 Hz); HRMS m/z (ESI) calcd for C₂₆H₁₈F₄ (M+H)⁺ 407.1423, found 407.1421.

Figure S5. UV/Vis absorption spectra of single reaction component and combined ones

The UV-Vis absorption spectra of all solution were introduced to a 1 cm path length quartz cuvette and analyzed using a Shimadzu UV/Vis spectrophotometer UV-3600plus. **1a'**: 10^{-3} M in **Acetone/MeCN**. Olefin (**2a**): 1.2×10^{-3} M in **Acetone/MeCN**. PhPCy₂ (**P**): 1.5×10^{-3} M in **Acetone/MeCN**. These results indicated that an EDA complex is not formed.

9. References

- 1. Guo, H.-M., He, B.-Q. & Wu, X, Org. Lett. 2022, 24, 3199-3204.
- Cai, Z., Gu, R., Si, W., Xiang, Y., Sun, J., Jiao, Y., Zhang, X., Green Chem. 2022, 24, 6830–6835.
- 3. Chen, F., Xu, X., He, Y., Huang, G. & Zhu, S., *Angew. Chem. Int. Ed.* **2020**, 59, 5398–5402.
- 4. Schäfer, M.; Stünkel, T.; Daniliuc, C. G.; Gilmour, R., *Angew. Chem. Int. Ed.* **2022**, 61, e202205508.
- 5. Xia, P.-J.; Song, D.; Ye, Z.-P.; Hu, Y.-Z.; Xiao, J.-A.; Xiang, H.-Y.; Chen, X.-Q.; Yang, H., *Angew. Chem. Int. Ed.* **2020**, 59, 6706-6710.
- Qiu, J.; Wang, C.; Zhou, L.; Lou, Y.; Yang, K.; Song, Q., Org. Lett. 2022, 24, 2446-2451.
- Zhu, C., Zhang, Y.-F., Liu, Z.-Y., Zhou, L., Liu, H., Feng, C. Chem. Sci. 2019, 10, 6721–6726.
- Supranovich, V. I., Levin, V. V., Kokorekin, V. A. & Dilman, A. D, Adv. Synth. Catal. 2021, 363, 2888–2892.
- Lu, X., Wang, X.-X., Gong, T.-J., Pi, J.-J., He, S.-J., Fu, Y., Chem. Sci. 2019, 10, 809–814.
- Gladkov, A. A., Chernov, G. N., Levin, V. V., Kokorekin, V. A. & Dilman, A. D, Org. Lett. 2021, 23, 9645–9648.

10. Copies of NMR Spectra

¹H NMR (400 MHz, DMSO-D6)

-6.05

 $\begin{array}{c} 7.98\\ 7.97\\ 7.97\\ 7.54\\ 7.54\\ 7.52\\ 7.52\\ 7.52\\ 7.53\\ 7.52\\ 7.53\\ 7.53\\ 7.53\\ 7.33\\ 7.33\\ 7.35\\$

¹H NMR (400 MHz, CDCl₃)

 $\begin{array}{c} 7.87 \\ 7.85 \\ 7.85 \\ 7.85 \\ 7.54 \\ 7.53 \\ 7.53 \\ 7.52 \\ 7.51 \\ 7.52 \\ 7.$

-91.01 -91.13 -91.28 -91.40

-5 -10 -15 -20 -25 -30 -35 -40 -45 -50 -55 -60 -65 -70 -75 -80 -85 -90 -95 -100 -105 -110 -115 -120 -125 -130 -135 -140 -145 -1

-90.75 -90.86 -91.08

-5 -10 -15 -20 -25 -30 -35 -40 -45 -50 -55 -60 -65 -70 -75 -80 -85 -90 -95 -100 -105 -110 -115 -120 -125 -130 -135 -140 -145 -1

¹H NMR (400 MHz, CDCl₃)

2.61 2.59 2.55 2.55 2.55 1.74 1.74 1.72 1.68 1.68 1.68

--90.73 --90.85 --91.06 --91.17

-5 -10 -15 -20 -25 -30 -35 -40 -45 -50 -55 -60 -65 -70 -75 -80 -85 -90 -95 -100 -105 -110 -115 -120 -125 -130 -135 -140 -145 -1

 $\begin{array}{c} -2.61\\ -2.55\\ -2.55\\ -2.55\\ -2.55\\ -2.55\\ -2.55\\ -1.73\\ -1$

¹H NMR (400 MHz, CDCl₃)

-5 -10 -15 -20 -25 -30 -35 -40 -45 -50 -55 -60 -65 -70 -75 -80 -85 -90 -95 -100 -105 -110 -115 -120 -125 -130 -135 -140 -145 -1

$\begin{array}{c} 7,7,84\\ 7,7,71\\ 7,84\\ 7,751\\ 7,751\\ 7,751\\ 7,748\\ 7,748\\ 7,730\\ 7,748\\ 7,730\\ 7$

-89.92 -90.03 -90.23 -90.34

-5 -10 -15 -20 -25 -30 -35 -40 -45 -50 -55 -60 -65 -70 -75 -80 -85 -90 -95 -100 -105 -110 -115 -120 -125 -130 -135 -140 -145 -1

¹H NMR (400 MHz, CDCl₃)

 $\begin{bmatrix} 7.85\\ 7.84\\ 7.84\\ 7.82\\ 7.82\\ 7.50\\ 7.51\\ 7.51\\ 7.51\\ 7.51\\ 7.51\\ 7.51\\ 7.50\\ 7.51\\ 7.50\\ 7.$

 $\begin{array}{c} 2.82\\ -2.58\\ -2.58\\ -2.58\\ -2.55\\ -2.55\\ -2.55\\ -2.55\\ -2.58\\ -2.$

-90.93 -91.05 -91.21 -91.32

-5 -10 -15 -20 -25 -30 -35 -40 -45 -50 -55 -60 -65 -70 -75 -80 -85 -90 -95 -100 -105 -110 -115 -120 -125 -130 -135 -140 -145 -1

$\begin{array}{c} 2.57\\ 2.55\\ 2.55\\ 2.55\\ 2.55\\ 2.55\\ 2.55\\ 2.55\\ 2.55\\ 2.55\\ 2.55\\ 1.69\\ 1.69\\ 1.69\\ 1.61\\$

¹³C NMR (100 MHz, CDCl₃)

-90.92 -91.04 -91.12 -91.23

¹H NMR (400 MHz, CDCl₃)

7.26 7.79 7.71 7.51 7.51 7.51 7.49 7.45 7.45 7.45 7.45 7.45 7.45

¹⁹F NMR (376 MHz, CDCl₃)

-5 -10 -15 -20 -25 -30 -35 -40 -45 -50 -55 -60 -65 -70 -75 -80 -85 -90 -95 -100 -105 -110 -115 -120 -125 -130 -135 -140 -145 -1

¹³C NMR (100 MHz, CDCl₃)

-91.27 -91.39 -91.49 -91.61

¹³C NMR (100 MHz, CDCl₃)

 $\left\{\begin{array}{c} -90.98\\ -91.10\\ -91.22\\ -91.34\end{array}\right.$

$\begin{array}{c} 2.87\\ 2.86\\ 2.85\\ 2.85\\ 2.84\\ 2.83\\ 2.82\\ 2.82\\ 2.82\\ 2.82\\ 2.82\\ 2.73\\ 2.73\\ 2.71\\ 2.71\end{array}$

¹³C NMR (100 MHz, CDCl₃)

-90.31 -90.42 -90.95 -91.06

-5 -10 -15 -20 -25 -30 -35 -40 -45 -50 -55 -60 -65 -70 -75 -80 -85 -90 -95 -100 -105 -110 -115 -120 -125 -130 -135 -140 -145 -1

¹H NMR (400 MHz, CDCl₃)

-5 -10 -15 -20 -25 -30 -35 -40 -45 -50 -55 -60 -65 -70 -75 -80 -85 -90 -95 -100 -105 -110 -115 -120 -125 -130 -135 -140 -145 -1

7.85 7.77 7.52 7.52 7.50 7.49 7.49 7.48 7.45

¹³C NMR (100 MHz, CDCl₃)

5.0

4.5

4.0

3.5

3.0

2.5

1.5

2.0

1.0

0.5

0

7.5

7.0

6.5

6.0

5.5

8.0

).0 9.5

9.0

8.5

-90.71 -90.82 -91.42 -91.53

¹³C NMR (100 MHz, CDCl₃)

-91.02 -91.13 -91.56 -91.67

-5 -10 -15 -20 -25 -30 -35 -40 -45 -50 -55 -60 -65 -70 -75 -80 -85 -90 -95 -100 -105 -110 -115 -120 -125 -130 -135 -140 -145 -1

¹H NMR (400 MHz, CDCl₃)

-5 -10 -15 -20 -25 -30 -35 -40 -45 -50 -55 -60 -65 -70 -75 -80 -85 -90 -95 -100 -105 -110 -115 -120 -125 -130 -135 -140 -145 -1

¹H NMR (400 MHz, CDCl₃)

¹³C NMR (100 MHz, CDCl₃)

∠ -88.72 ∠ -88.83 ∑ -91.35

-5 -10 -15 -20 -25 -30 -35 -40 -45 -50 -55 -60 -65 -70 -75 -80 -85 -90 -95 -100 -105 -110 -115 -120 -125 -130 -135 -140 -145 -1

¹H NMR (400 MHz, CDCl₃)

$\begin{array}{c} 2.49\\ 2.48\\ 2.48\\ 2.48\\ 1.42\\ 1.42\\ 1.42\\ 1.33\\ 1.33\\ 1.33\\ 1.33\\ 1.33\\ 1.33\\ 1.33\\ 1.33\\ 1.23\\ 1.33\\ 1.33\\ 1.23\\ 1.23\\ 1.33\\ 1.23\\$

¹⁹F NMR (376 MHz, CDCl₃)

∠ -88.71 ∠ -88.81 ≺ -91.66

L -88.26 -88.37 -91.60 -91.70

-5 -10 -15 -20 -25 -30 -35 -40 -45 -50 -55 -60 -65 -70 -75 -80 -85 -90 -95 -100 -105 -110 -115 -120 -125 -130 -135 -140 -145 -1

¹H NMR (400 MHz, CDCl₃)

 $\begin{array}{c} 7.85\\ 7.84\\ 7.83\\ 7.83\\ 7.83\\ 7.83\\ 7.83\\ 7.82\\ 7.82\\ 7.84$

-90.94 -91.06 -91.29 -91.40

-5 -10 -15 -20 -25 -30 -35 -40 -45 -50 -55 -60 -65 -70 -75 -80 -85 -90 -95 -100 -105 -110 -115 -120 -125 -130 -135 -140 -145 -1

¹H NMR (400 MHz, CDCl₃)

7.7.85 7.7.87 7.7.82 7.7.92 7.

¹³C NMR (100 MHz, CDCl₃)

¹H NMR (400 MHz, CDCl₃)

¹³C NMR (100 MHz, CDCl₃)

-89.18 -89.28 -89.42 -89.52

¹³C NMR (100 MHz, CDCl₃)

7.64 7.62 7.40 7.40 7.28 7.28 7.25 7.25 7.25 7.25 7.13 7.13 7.13 7.13 7.13

¹³C NMR (100 MHz, CDCl₃)

-87.84 -87.94 -88.39 -88.49

-5 -10 -15 -20 -25 -30 -35 -40 -45 -50 -55 -60 -65 -70 -75 -80 -85 -90 -95 -100 -105 -110 -115 -120 -125 -130 -135 -140 -145 -1

¹H NMR (400 MHz, CDCl₃)

¹³C NMR (100 MHz, CDCl₃)

2,60 2,258 2,256 2,246 2,245 2,245 2,245 2,245 1,65 1,165 1,

¹³C NMR (100 MHz, CDCl₃)

¹³C NMR (100 MHz, CDCl₃)

L -86.70 L -86.79 L -87.95 L -87.95

¹³C NMR (100 MHz, CDCl₃)

¹H NMR (400 MHz, CDCl₃)

^{-5 -10 -15 -20 -25 -30 -35 -40 -45 -50 -55 -60 -65 -70 -75 -80 -85 -90 -95 -100 -105 -110 -115 -120 -125 -130 -135 -140 -145 -1}

¹³C NMR (100 MHz, CDCl₃)

-91.72 -91.83 -91.95 -92.07

-5 -10 -15 -20 -25 -30 -35 -40 -45 -50 -55 -60 -65 -70 -75 -80 -85 -90 -95 -100 -105 -110 -115 -120 -125 -130 -135 -140 -145 -1

¹H NMR (400 MHz, CDCl₃)

¹³C NMR (100 MHz, CDCl₃)

¹⁹F NMR (376 MHz, CDCl₃)

¹³C NMR (100 MHz, CDCl₃)

 $\left(\begin{array}{c} -90.89\\ -91.01\\ -91.13\\ -91.25\\ -91.26\\ -91.88\\ -91.88\\ -92.12\\ -92.12\end{array}\right)$

¹H NMR (400 MHz, CDCl₃)

7.7.38 7.2.84 7.2.84 7.7.85 7.7.95

- -90.67 - -90.78 - -91.17 - -91.29

$\begin{array}{c} 7.86\\ 7.85\\ 7.86\\ 7.88\\ 7.88\\ 7.84\\ 7.84\\ 7.89\\ 7.78\\ 7.80\\ 7.78\\ 7.78\\ 7.78\\ 7.78\\ 7.74\\ 7.74\\ 7.74\\ 7.74\\ 6.68\\ 7.73\\ 6.68\\ 6.68\\ 6.68\\ 7.7\\ 7.75\\$

- 3.94 - 3.94 - 3.95 - 2.55 -

¹³C NMR (100 MHz, CDCl₃)

$\begin{bmatrix} 157,06\\ 153,30\\ 153,30\\ 153,30\\ 133,25\\ 131,26\\ 131,29\\ 131,29\\ 131,29\\ 131,29\\ 131,29\\ 131,29\\ 127,90\\ 127,19\\ 127,19\\ 127,19\\ 127,19\\ 127,19\\ 127,19\\ 127,19\\ 127,19\\ 127,19\\ 127,19\\ 127,19\\ 127,19\\ 127,19\\ 127,19\\ 127,19\\ 127,10\\ 12$

-91.21 -91.32 -91.43 -91.54

¹H NMR (400 MHz, CDCl₃)

$\begin{array}{c} -3.33\\ -3.34\\ -3.34\\ -3.34\\ -2.55\\ -2.55\\ -2.55\\ -2.55\\ -2.55\\ -2.55\\ -2.54\\ -2.43\\ -2$

¹³C NMR (100 MHz, CDCl₃)

-90.82 -90.94 -91.07 -91.19

¹H NMR (400 MHz, CDCl₃)

¹³C NMR (100 MHz, CDCl₃)

- 194.15 - 172.21 - 172.21 - 172.21 - 172.21 - 172.21 - 172.21 - 123.42 - 131.20 - 131.20 - 131.20 - 131.20 - 131.20 - 131.20 - 132.19 - 132.19 - 132.19 - 125.88 - 233.68 - 233.68 - 233.68 - 233.68 - 233.68 - 233.68 - 233.68 - 233.68 - 233.68 - 233.68 - 125.88 - 233.68 - 235.58 - 255.58 - 235.

8 9 8 9

---90.66

¹⁹F NMR (376 MHz, CDCl₃)

7.78 7.77 7.79 7.79 7.79 7.79 7.79 7.79 7.75 7.55

¹³C NMR (100 MHz, CDCl₃)

--90.94 --91.05 --91.22 --91.33

¹H NMR (400 MHz, CDCl₃)

