Electronic Supporting Information (ESI) for

Highly efficient α -arylation of aryl ketones with aryl chlorides by using bulky imidazolylidene-ligated oxazoline palladacycle

Xian Wei, Kun Wang and Weiwei Fang*

Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037 (China)

E-mail: wwfang2020@njfu.edu.cn

Table of Contents

1.	General experimental details	3
2.	Optimization of reaction conditions	4
3.	Substrate scopes	10
4.	Control experiments and proposal mechanism	10
5.	General procedure for synthesis of substrates	12
6.	Date for arylation products	14

1. General experimental details

All reagents were commercially available unless otherwise noted. Precatalysts **Cat.1**-**Cat.12** were synthesized according to previously reported literatures.¹ All reactions were carried out under argon atmosphere in dried glassware. Air and moisture sensitive liquids and solutions were transferred *via* syringe. All solvents were dried and distilled by standard procedures. Solutions were concentrated under reduced pressure by rotary evaporation. Chromatographic purification of products was accomplished on silica gel Si 60® (300-400 mesh).

Nuclear magnetic resonance spectra were acquired on a Bruker AMX 400 (400 MHz, and 100 MHz for ¹H, and ¹³C respectively) and a Bruker DRX 600 (500 MHz, and 150 MHz for ¹H, and ¹³C respectively). All ¹H NMR spectra are reported in parts per million (ppm) downfield of TMS and were measured relative to the signals at 7.26 ppm (CDCl₃). All ¹³C NMR spectra were reported in ppm relative to CDCl₃ (77.16 ppm) were obtained with ¹H -decoupling. Data for ¹H-NMR are reported as follows: chemical shift (δ in ppm), multiplicity (s = singlet; brs = broad singlet; vbs = vary broad singlet; d = doublet; t= triplet; q = quartet; quint = quintet; sext = sextet; m = multiplet), coupling constant (Hz), integration. Data for ¹³C-NMR are reported in terms of chemical shift (δ in ppm), multiplicity, coupling constant (Hz). High-resolution mass spectra were obtained on a Finnigan MAT 8200 instrument.

2. Optimization of reaction conditions

2.1 α-Arylation of *p*-methylpropiophenone 2a with chlorobenzene 1a

Scheme S1 α -Arylation of chlorobenzene 1a and *p*-methylpropiophenone 2a

Entry	$H_2O/\mu L$	Yield/%
1	0	26
2	5	30
3	8	58
4	10	73
5	12	76
6	13	87
7	14	72
8	15	71
9	20	70
10	40	26
11	60	trace

Table S1^a Screening the amount of H₂O

^a Standard condition: 1a (1.0 mmol), 2a (1.2 mmol), dioxane (3 mL), Cat.1 (0.5 mol%), *t*BuONa (2.0 mmol), H₂O (x μL), 12 h, 100 °C. Isolated yield.

Entry	Solvent	Yield/%
1	dioxane	87
2	DME	83
3	THF	72
4	MTBE	77

Table S2^a Screening solvents

5	toluene	trace
6	ACN	51
7	EtOH	NR
8	CPME	62
9	DMF	32
10	DMSO	8

^{*a*} Standard condition: **1a** (1.0 mmol), **2a** (1.2 mmol), solvent (3 mL), **Cat.1** (0.5 mol%), *t*BuONa (2.0 mmol), H₂O (13 μ L), 12 h, 100 °C. Isolated yield. THF= terahydrofuran; MTBE =methyl *tert*-butyl ether; ACN = acetonitrile; DMF = dimethyl formamide; DMSO = dimethyl sulfoxide.

Entry	Base	Yield/%
1	tBuONa	87
2	tBuOK	28
3	<i>t</i> BuOLi	9
4	Cs_2CO_3	NR
5	Na ₂ CO ₃	NR
6	K ₃ PO ₄	NR
7	КОН	55
8	Et ₃ N	NR

 Table S3^a Screening bases

^{*a*} Standard condition: **1a** (1.0 mmol), **2a** (1.2 mmol), dioxane (3 mL), **Cat.1** (0.5 mol%), base (2.0 mmol), H₂O (13 μL), 12 h, 100 °C. Isolated yield.

Entry	n equiv.	Yield/%
1	1.0	34
2	1.2	31
3	1.5	66
4	1.8	64

Table S4^a Screening equiv. of tBuONa

5	2.0	87
6	2.2	65
7	2.5	18

^a Standard condition: 1a (1.0 mmol), 2a (1.2 mmol), dioxane (3 mL), Cat.1 (0.5 mol%), *t*BuONa (x mmol), H₂O (13 μL), 12 h, 100 °C. Isolated yield.

	a '		1 1 •
Tabla V54	Sorooning	ontolyct	looding
1 ADDE (5.)*	JULCETHIND.	Calarysi-	ioaumy.
I HOIC NO	Sereening	eater jot	lou anns

Entry	Cat./mol%	Yield/%
1	0.25	63
2	0.5	87

^a Standard condition: 1a (1.0 mmol), 2a (1.2 mmol), dioxane (3 mL), Cat.1 (x mol%), *t*BuONa (2.0 mmol), H₂O (13 μL), 12 h, 100 °C. Isolated yield.

Entry	T/°C	Yield/%
1	60	78
2	70	84
3	80	81
4	90	88
5	100	87
6	110	56

 Table S6^a Screening temperature

^a Standard condition: 1a (1.0 mmol), 2a (1.2 mmol), dioxane (3 mL), Cat.1 (0.5 mol%), *t*BuONa (2.0 mmol), H₂O (13 μL), 12 h, T °C. Isolated yield.

Table S7^{*a*} Screening equiv. of *p*-methylphenylacetone 2a

Entry	n equiv.	Yield/%
1	1.0	83
2	1.2	88
3	1.3	88
4	1.4	91

5	1.5	93
6	1.6	83

^{*a*} Standard condition: **1a** (1.0 mmol), **2a** (x mmol), dioxane (3 mL), **Cat.1** (0.5 mol%), *t*BuONa (2.0 mmol), H₂O (13 μ L), 12 h, 90 °C. Isolated yield.

 Table S8^a Screening the volume of solvent

Entry	Volume/mL	Yield/%
1	2	87
2	3	93
3	4	86

^{*a*} Standard condition: **1a** (1.0 mmol), **2a** (1.5 mmol), dioxane (x mL), **Cat.1** (0.5 mol%), *t*BuONa (2.0 mmol), H₂O (13 μL), 12 h, 90 °C. Isolated yield.

Entry	Time/h	Yield/%
1	6	90
2	12	93
3	18	91
4	24	90

 Table S9^a Screening reaction time

^a Standard condition: 1a (1.0 mmol), 2a (1.5 mmol), dioxane (3 mL), Cat.1 (0.5 mol%), *t*BuONa (2.0 mmol), H₂O (13 μL), x h, 90 °C. Isolated yield.

Entry	Cat.	Yield/%
1	Cat.1	93
2	Cat.2	85
3	Cat.3	87
4	Cat.4	91
5	Cat.5	89
6	Cat.6	91

 Table S10^a Screening catalysts

7	Cat.7	92
8	Cat.8	85
9	Cat.9	92

^a Standard condition: 1a (1.0 mmol), 2a (1.5 mmol), dioxane (3 mL), Cat. (0.5 mol%), *t*BuONa (2.0 mmol), H₂O (13 μL), 12 h, 90 °C. Isolated yield.

2.2 α-Arylation of *p*-methylpropiophenone 2a with *p*-chloroanisole 1e

Scheme S2 α -Arylation of *p*-chloroanisole 1e and *p*-methylpropiophenone 2a

Entry	$H_2O/\mu L$	Yield/%
1	0	NR
2	8	63
3	10	64
4	13	61
5	15	44
6	18	44
7	20	NR

Table S11^a Screening the amount of H₂O

^{*a*} Standard condition: **1e** (1.0 mmol), **2a** (1.5 mmol), dioxane (3 mL), **Cat.1** (0.5 mol%), *t*BuONa (2.0 mmol), H₂O (x μL), 12 h, 90 °C. Isolated yield.

Entry	Cat.	Yield/%
1	Cat.1	64
2	Cat.2	81

 Table S12^a Screening catalysts

3	Cat.3	15
4	Cat.4	94/93 ^b
5	Cat.5	89
6	Cat.6	55
7	Cat.7	68
8	Cat.8	67
9	Cat.9	58
10	Cat.10	79
11	Cat.11	93
12	Cat.12	82

^a Standard condition: 1e (1.0 mmol), 2a (1.5 mmol), dioxane (3 mL), Cat. (0.5 mol%),
tBuONa (2.0 mmol), H₂O (10 μL), 12 h, 90 °C. Isolated yield. ^b D₂O (10 μL).

3. Substrate scopes

Scheme S3 Substrate scopes catalyzed by using Cat.1 according to standard condition A: Standard condition (Method A): 1 (1.0 mmol), 2 (1.5 mmol), Cat.1 (0.5 mol%), *t*BuONa (2.0 mmol), H₂O (13 μ L), dioxane (3 mL), 12 h, 90 °C. Isolated yield.

Scheme S4 Substrates tested with poor reactivity by using Cat.4 according to standard condition (Method B): 1 (1.0 mmol), 2 (1.5 mmol), Cat.4 (0.5 mol%), *t*BuONa (2.0 mmol), H₂O (10 μ L), dioxane (3 mL), 12 h, 90 °C. Isolated yield.

4. Control experiments and proposal mechanism

Scheme S5 α -Arylation of *p*-chloroanisole 1e and *p*-methylpropiophenone 2a in the presence of D₂O

Fig. S1 ¹H NMR (600 MHz, CDCl₃) spectrum of 3e' in the presence of D₂O

Fig. S2 ¹H NMR (600 MHz, CDCl₃) spectrum of 3e in the presence of H₂O

Scheme S6 Proposed reaction mechanism of α -arylation catalyzed by Cat.4

At the current stage, we suggested the presence of H_2O effected the keto-enol tautomerism equilibrium, however, its role in the activation of the precatalyst² could be excluded. We will carry out the DFT calculations with other groups to get a deep insight.

5. General procedure for synthesis of substrates

To a flame dried round bottom flask equipped with a magnetic stir bar, diisopropylamine (0.92 mL, 6.6 mmol) in dry THF (15 mL) was added at -78 °C. Then, *n*BuLi (2.64 mL, 6.6 mmol, 2.5 M in Hexane) was added dropwise, and the reaction mixture was stirred for 30 minutes. Then, acetophenone (0.70 mL, 6 mmol) was added and reacted for 30 minutes. Then, methyl iodide (0.45 mL, 7.2 mmol) in dry THF (15 mL) was added. After 4 h, the reaction was quenched with saturated ammonium chloride. The organic phase was separated, and the aqueous phase was washed with hexane (1×5 mL). The combined organic phases were washed with 1 M HCl (1×10 mL), dried over anhydrous sodium sulfate, filtered, and evaporated under reduced pressure. The crude products were further purified by column chromatography leading to desired products.

2q: Following the **General procedure**, **2q** was obtained as a yellow oil, 645.7 mg, yield = 27%.

¹H NMR (600 MHz, CDCl₃): δ = 7.98-7.95 (m, 2H), 7.57-7.54 (m, 1H), 7.48-7.44 (m, 2H), 3.01 (q, *J* = 7.2 Hz, 2H), 1.23 (t, *J* = 7.2 Hz, 3H). The data was the same to previous literature.³

2u: Following the General procedure, 2u was obtained as a white solid, 359.3 mg, yield = 28%.
¹H NMR (600 MHz, CDCl₃): δ = 8.06-8.03 (m, 2H), 7.70-7.67 (m, 2H), 7.64-7.62 (m, 2H), 7.49-7.46 (m, 2H), 7.46-7.38 (m, 1H), 3.04 (q, J = 7.2 Hz, 2H), 1.26 (t, J = 7.2 Hz, 2H)

3H). The data was the same to previous literature.⁴

2y: Following the **General procedure**, **2y** was obtained as a yellow oil, 325.8 mg, yield = 15%.

¹H NMR (400 MHz, CDCl₃): $\delta = 8.56$ (J = 8.5 Hz, 1H), 7.97 (d, J = 8.0 Hz, 1H), 7.98 (d, J = 8.0 Hz, 1H), 7.90-7.83 (dd, J = 7.5, 1.0 Hz, 2H), 7.62-7.47 (m, 3H), 3.08 (q, J = 7.0 Hz, 2H), 1.29 (t, J = 7.0 Hz, 3H). The data was the same to previous literature.⁵

6. Date for arylation products

3a: Pale yellow oil, 203.1 mg, yield: 91%.

¹H NMR (600 MHz, CDCl₃): δ = 7.86 (d, *J* = 8.2 Hz, 2H), 7.28-7.29 (d, *J* = 4.4 Hz, 4H), 7.22-7.16 (m, 3H), 4.67 (q, *J* = 6.8 Hz, 1H), 2.35 (s, 3H), 1.53 (d, *J* = 6.9 Hz, 3H). Data is consistent with that reported in the literature.⁶

Me Me Me new compound

3b: Pale yellow solid, 206.0 mg, yield: 86%.

¹H NMR (600 MHz, CDCl₃): δ = 7.74 (d, *J* = 8.2 Hz, 2H), 7.20 (d, *J* = 7.1 Hz, 1H), 7.15 (d, *J* = 8.0 Hz, 2H),7.12-7.06 (m, 2H), 7.04-7.02 (d, *J* = 7.4 Hz, 1H), 4.74 (q, *J* = 6.8 Hz, 1H), 2.49 (s, 3H), 2.34 (s, 3H), 1.47 (d, *J* = 6.8 Hz, 3H). ¹³C NMR (150 MHz, CDCl₃): δ = 200.6, 143.4, 140.4, 134.5, 134.1, 130.9, 129.2,

128.6, 127.0, 126.8, 126.7, 44.5, 21.5, 19.6, 18.0.

HR-MS (ESI, m/z): calcd for C₁₇H₁₈O [M+H] ⁺: 239.1430. found: 239.1426. m.p.: 63.4-66.7 °C.

3c: Pale yellow oil, 215.8 mg, yield: 91%.

¹H NMR (600 MHz, CDCl₃): δ = 7.86 (d, *J* = 8.2 Hz, 2H), 7.20-7.15 (m, 3H), 7.08 (d, *J* = 1.8 Hz, 2H), 6.98 (d, *J* = 7.5 Hz, 1H), 4.62 (q, *J* = 6.8 Hz, 1H), 2.35 (s, 3H), 2.30 (s, 3H), 1.50 (d, *J* = 6.8 Hz, 3H). Data is consistent with that reported in the literature.⁷

3d: Pale yellow oil, 219.0 mg, yield: 92%.

¹H NMR (600 MHz, CDCl₃): δ = 7.86 (d, *J* = 8.2 Hz, 2H), 7.17 (d, *J* = 8.1 Hz, 4H), 7.08 (d, *J* = 7.9 Hz, 2H), 4.63 (q, *J* = 6.8 Hz, 1H), 2.35 (s, 3H), 2.28 (s, 3H), 1.50 (d, *J* = 6.8 Hz, 3H). Data is consistent with that reported in the literature.⁷

3e: Pale yellow oil, 239.6 mg, yield: 94%.

¹H NMR (600 MHz, CDCl₃): δ = 7.85 (d, *J* = 8.2 Hz, 2H), 7.21-7.16 (m, 4H), 6.83-6.81 (dt, *J* = 8.2, 2.6 Hz, 2H), 4.62 (q, *J* = 6.8 Hz, 1H), 3.75 (s, 3H), 2.35 (s, 3H), 1.49 (d, *J* = 6.8 Hz, 3H). Data is consistent with that reported in the literature.⁸

new compound

3f: Pale yellow solid, 253.8 mg, yield: 91%.

¹H NMR (600 MHz, CDCl₃): δ = 7.88 (d, *J* = 8.2 Hz, 2H), 7.29 (td, *J* = 8.4, 2.0 Hz, 2H), 7.22-7.18 (m, 4H), 4.66 (q, *J* = 6.8 Hz, 1H), 2.35 (s, 3H), 1.51 (d, *J* = 6.6 Hz, 3H), 1.27 (s, 9H).

¹³C NMR (150 MHz, CDCl₃): δ = 200.2, 149.6, 143.5, 138.5, 134.1, 129.2, 129.0, 127.4, 125.8, 47.1, 34.4, 31.3, 21.6, 19.5.

HR-MS (ESI, m/z): calcd for C₂₀H₂₄O [M+H] ⁺: 281.1900. found: 281.1894. m.p.: 73.8-75.9 °C.

new compound

3g: White solid, 270.4 mg, yield: 90%.

¹H NMR (600 MHz, CDCl₃): δ = 7.90 (dt, *J* = 8.2 Hz, 2H), 7.55-7.51 (dd, *J* = 7.4, 8.2 Hz, 4H), 7.41 (t, *J* = 7.7 Hz, 2H), 7.35 (d, *J* = 8.2 Hz, 2H), 7.33-7.30 (t, *J* = 7.4 Hz, 1H), 7.20 (d, *J* = 8.0 Hz, 2H), 4.72 (q, *J* = 6.8 Hz, 1H), 2.36 (s, 3H), 1.56 (d, *J* = 6.8 Hz, 3H). ¹³C NMR (150 MHz, CDCl₃): δ = 200.0, 143.7, 140.8, 140.7, 139.8, 134.0, 129.3, 129.0, 128.8, 128.2, 127.7, 127.3, 127.0, 47.4, 21.6, 19.5.

HR-MS (ESI, m/z): calcd for C₂₂H₂₀O [M+H] ⁺: 301.1587. found: 301.1583. m.p.: 140.8-143.2 °C.

3h: Pale yellow oil, 234.0 mg, yield: 96%.

¹H NMR (600 MHz, CDCl₃): δ = 7.84 (d, *J* = 8.2 Hz, 2H), 7.25-7.23 (m, 2H), 7.19 (d, *J* = 8.0 Hz, 2H), 6.99-6.95 (tt, *J* = 8.7, 1.83 Hz, 2H), 4.66 (q, *J* = 6.9 Hz, 1H), 2.36 (s, 3H), 1.50 (d, *J* = 6.8 Hz, 3H). Data is consistent with that reported in the literature.⁸

3i: Pale yellow oil, 160.8 mg, yield: 55%.

¹H NMR (600 MHz, CDCl₃): δ = 7.85 (d, *J* = 8.2 Hz, 2H), 7.56 (s, 1H), 7.47 (t, *J* = 7.4 Hz, 2H), 7.40 (t, *J* = 7.7 Hz, 1H), 7.21 (d, *J* = 8.0 Hz, 2H), 4.75 (q, *J* = 6.9 Hz, 1H), 2.37 (s, 3H), 1.55 (d, *J* = 6.9 Hz, 3H). Data is consistent with that reported in the literature.⁸

3j: Pale yellow oil, 113.5 mg, yield: 44%.

¹H NMR (600 MHz, CDCl₃): δ = 7.83 (d, J = 8.2 Hz, 2H), 7.41-7.39 (m, 1H), 7.18 (d,

J = 8.0 Hz, 2H), 7.15-7.13 (m, 3H), 5.12 (q, *J* = 6.8 Hz, 1H), 2.35 (s, 3H), 1.48 (d, *J* = 6.8 Hz, 3H).

¹³C NMR (150 MHz, CDCl₃): δ = 199.7, 143.8, 139.5, 133.6, 132.9, 129.8, 129.3, 128.7, 128.6, 128.2, 127.5, 44.1, 21.6, 17.8.

HR-MS (ESI, m/z): calcd for C₁₆H₁₅ONaCl [M+Na] ⁺: 287.0704. found: 287.0711.

3k: Pale yellow solid, 194.6 mg, yield: 77%.

¹H NMR (600 MHz, CDCl₃): δ = 7.60 (d, *J* = 8.2 Hz, 2H), 7.07 (d, *J* = 8.0 Hz, 2H),

7.02-6.95 (m, 3H), 4.50 (q, *J* = 6.8 Hz, 1H), 2.30 (s, 9H), 1.50 (d, *J* = 6.8 Hz, 3H).

¹³C NMR (150 MHz, CDCl₃): δ = 201.9, 143.2, 140.1, 135.6, 134.3, 129.5, 129.0, 128.3, 126.6, 46.1, 21.5, 20.6, 14.9.

HR-MS (ESI, m/z): calcd for $C_{18}H_{20}O$ [M+H] ⁺: 253.1587. found: 253.1584.

m.p.: 74.8-78.9 °C.

31: Pale yellow solid, 247.3 mg, yield: 90%.

¹H NMR (600 MHz, CDCl₃): $\delta = 8.25$ (d, J = 8.5 Hz, 1H), 7.90 (d, J = 8.2 Hz, 1H), 7.77 (d, J = 8.2 Hz, 2H), 7.72 (d, J = 8.2 Hz, 1H), 7.64-7.61 (m, 1H), 7.55-7.52 (m, 1H), 7.33 (t, J = 7.9 Hz, 1H), 7.21 (dd, J = 6.6 Hz, 0.6 Hz, 1H), 7.07 (t, J = 8.1 Hz, 2H), 5.36 (q, J = 6.8 Hz, 1H), 2.29 (s, 3H), 1.63 (d, J = 6.8 Hz, 3H). ¹³C NMR (150 MHz, CDCl₃): $\delta = 200.4$, 143.5, 138.3, 134.4, 133.9, 130.7, 129.3, 129.2, 128.7, 127.5, 126.7, 125.9, 125.8, 125.0, 122.6, 43.6, 21.5, 18.6. HR-MS (ESI, m/z): calcd for C₂₀H₁₈O [M+H] ⁺: 275.1430. found: 275.1427. m.p.: 116.8-120.8 °C.

3m: Pale yellow oil, 257.7 mg, yield: 94%.

¹H NMR (600 MHz, CDCl₃): δ = 7.90 (d, *J* = 8.3 Hz, 2H), 7.78 (t, *J* = 8.2 Hz, 3H), 7.72 (t, *J* = 1.2 Hz, 1H), 7.46-7.40 (m, 3H), 7.16 (d, *J* = 8.0 Hz, 2H), 4.83 (q, *J* = 6.8 Hz, 1H), 2.33 (s, 3H), 1.61 (d, *J* = 6.8 Hz, 3H). Data is consistent with that reported in the literature.⁸

new compound

3n: Pale yellow solid, 287.6 mg, yield: 81%.

¹H NMR (600 MHz, CDCl₃): δ = 7.82 (d, *J* = 8.3 Hz, 2H), 7.56 (d, *J* = 8.1 Hz, 1H), 7.28-7.26 (m, 3H), 7.16 (s, 1H), 7.10 (d, *J* = 8.1 Hz, 2H), 7.08-7.05 (m, 4H), 6.47 (d, *J* = 3.0 Hz, 1H), 5.26 (d, *J* = 3.4 Hz, 2H), 4.71 (q, *J* = 6.8 Hz, 1H), 2.32 (s, 3H), 1.54 (d, *J* = 6.8 Hz, 3H).

¹³C NMR (150 MHz, CDCl₃): δ = 200.0, 143.6, 140.2, 138.3, 138.0, 127.0, 124.4, 123.8, 123.0, 122.6, 47.6, 29.8, 21.6, 19.9.

HR-MS (ESI, m/z): calcd for C₂₅H₂₃NO [M+H] ⁺: 354.1852. found: 354.1845. m.p.: 97.2-99.3 °C.

30: Pale yellow solid, 266.9 mg, yield: 95%.

¹H NMR (600 MHz, CDCl₃): δ = 7.88 (d, *J* = 8.3 Hz, 2H), 7.80 (d, *J* = 8.3 Hz, 1H), 7.72 (d, *J* = 1.5 Hz, 1H), 7.41-7.40 (d, *J* = 5.4 Hz, 1H), 7.30-7.28 (dd, *J* = 1.6, 6.7 Hz, 1H), 7.27 (s, 1H), 7.16 (d, *J* = 8.1 Hz, 2H), 4.79 (d, *J* = 6.8 Hz, 1H), 2.33 (s, 3H), 1.58 (d, *J* = 6.8 Hz, 3H).

¹³C NMR (150 MHz, CDCl₃): δ = 200.0, 143.6, 140.7, 137.7, 136.8, 133.9, 129.2, 128.8, 127.0, 124.8, 123.0, 121.3, 121.2, 46.0, 21.6, 18.5.
HR-MS (ESI, m/z): calcd for C₁₈H₁₆SO [M+H] ⁺: 281.0995. found: 281.0985.
m.p.: 71.4-74.8 °C.

3p: Pale yellow solid, 257.8.9 mg, yield: 92%.

¹H NMR (600 MHz, CDCl₃): δ = 7.80 (d, *J* = 8.3 Hz, 2H), 7.74 (d, *J* = 8.0 Hz, 1H), 7.60 (d, *J* = 5.5 Hz, 1H), 7.53 (d, *J* = 5.5 Hz, 1H), 7.25-7.22 (t, *J* = 7.7 Hz, 1H), 7.15 (d, *J* = 7.3 Hz, 1H), 7.11 (d, *J* = 8.0 Hz, 2H), 5.10 (d, *J* = 6.8 Hz, 1H), 2.30 (s, 3H), 1.62 (d, *J* = 6.8 Hz, 3H).

¹³C NMR (150 MHz, CDCl₃): δ = 200.4, 143.5, 138.3, 134.4, 133.8, 130.6, 129.3, 129.2, 128.7, 127.5, 126.7, 125.9, 125.8, 125.0, 122.6, 43.6, 21.6, 18.6.

HR-MS (ESI, m/z): calcd for C₁₈H₁₆SO [M+H]⁺: 281.0995. found: 281.0984. m.p.: 84.0-86.4 °C.

3q: Pale yellow oil, 196.6 mg, yield: 93%.

¹H NMR (600 MHz, CDCl₃): δ = 7.95 (d, *J* = 7.3 Hz, 2H), 7.47 (t, *J* = 6.8 Hz, 1H), 7.38 (t, *J* = 7.4 Hz, 2H), 7.30-7.25 (m, 4H), 7.20 (m, 1H), 4.69 (q, *J* = 6.7 Hz, 1H), 1.53 (d, *J* = 6.8 Hz, 3H). Data is consistent with that reported in the literature.⁶

3r: Pale yellow oil, 215.6 mg, yield: 96%.

¹H NMR (600 MHz, CDCl₃): δ = 7.97-7.95 (m, 2H), 7.49-7.46 (m, 1H), 7.40-7.37 (m,

2H), 7.32-7.27 (m, 4H), 7.22-7.19 (m, 1H), 4.45 (t, J = 7.3 Hz, 1H), 2.24-2.17 (m, 1H), 1.90-1.83 (m, 1H), 0.91 (t, J = 7.4 Hz, 3H). Data is consistent with that reported in the literature.⁶

3s: Pale yellow oil, 217.0mg, yield: 91%.

¹H NMR (600 MHz, CDCl₃): δ = 7.97-7.95 (m, 2H), 7.49-7.46 (m, 1H), 7.40-7.38 (t, *J* = 7.7 Hz, 2H), 7.32-7.27 (m, 4H), 7.21-7.18 (m, 1H), 4.56 (t, *J* = 7.3 Hz, 1H), 2.19-2.13 (m, 1H), 1.85-1.79 (m, 1H), 1.38-1.25 (m, 2H), 0.92 (t, *J* = 7.5 Hz, 3H). Data is consistent with that reported in the literature.⁹

3t: Pale yellow oil, 237.0 mg, yield: 96%.

¹H NMR (600 MHz, CDCl₃): δ = 7.95 (d, *J* = 8.8 Hz, 2H), 7.30-7.28 (m, 4H), 7.22-7.18 (m, 1H), 6.85 (d, *J* = 8.8 Hz, 2H), 4.64 (q, *J* = 6.8 Hz, 1H), 3.81 (s, 3H), 1.51 (d, *J* = 6.8 Hz, 3H). Data is consistent with that reported in the literature.⁸

3u: Pale yellow oil, 218.7 mg, yield: 76%.

¹H NMR (600 MHz, CDCl₃): δ = 8.02 (d, *J* = 7.8 Hz, 2H), 7.60 (dd, *J* = 11.7, 8.0 Hz, 4H), 7.44 (d, *J* = 7.3 Hz, 2H), 7.38 (d, *J* = 6.9 Hz, 1H), 7.32-7.31 (m, 4H), 7.24-7.20 (m, 1H), 4.72 (q, *J* = 6.8 Hz, 1H), 1.56 (d, *J* = 6.9 Hz, 3H). Data is consistent with that reported in the literature.⁶

3v: Pale yellow oil, 225.2 mg, yield: 80%. ¹H NMR (600 MHz, CDCl₃): $\delta = 8.02$ (d, J = 8.1 Hz, 2H), 7.63 (d, J = 7.2, 8.2 Hz, 2H), 7.32-7.29 (m, 2H), 7.26-7.24 (m, 2H), 7.23-7.20 (m, 1H), 4.65 (q, J = 6.8 Hz, 1H), 1.55 (d, J = 6.9 Hz, 3H). Data is consistent with that reported in the literature.⁸

3w: Pale yellow oil, 190.4 mg, yield: 83%.

¹H NMR (400 MHz, CDCl₃): δ = 7.98-7.95 (m, 2H), 7.32-7.26 (m, 4H), 7.22-7.20(m, 1H), 7.06-7.02 (m, 2H), 4.62 (q, J = 6.8 Hz, 1H), 1.52 (d, J = 6.9 Hz, 3H). Data is consistent with that reported in the literature.¹⁰

3w: Pale yellow oil, 164.7 mg, yield: 72%. ¹H NMR (400 MHz, CDCl₃): δ = 7.71 (d, J = 7.8 Hz, 1H), 7.62 (dt, J = 9.6, 4.2 Hz, 1H), 7.37-7.26(m, 5H), 7.24-7.14 (m, 2H), 4.62 (q, J = 6.8 Hz, 1H), 1.53 (d, J = 6.8 Hz, 3H). Data is consistent with that reported in the literature.⁷

3y: Pale yellow oil, 85.0 mg, yield: 32%.

¹H NMR (600 MHz, CDCl₃): δ = 7.90 (d, J = 8.2 Hz, 1H), 7.82 (d, J = 7.9 Hz, 1H), 7.75 (d, J = 7.1 Hz, 1H), 7.70 (d, J = 7.7 Hz, 1H), 7.54-7.48 (m, 2H), 7.43-7.40 (m, 1H), 7.31-7.29 (m, 2H), 7.27-7.24 (m, 2H), 7.17 (t, *J* = 7.1 Hz, 1H), 4.70 (q, *J* = 6.8 Hz, 1H), 1.64 (d, *J* = 6.9 Hz, 3H). Data is consistent with that reported in the literature.¹¹

3z: Pale yellow oil, 39.3 mg, yield: 18%.

¹H NMR (600 MHz, CDCl₃): δ = 8.10 (dd, *J* = 0.9, 7.8 Hz, 1H), 7.50 (td, *J* = 1.4, 7.5 Hz, 1H), 7.36-7.33 (m, 3H), 7.30-7.27 (m, 2H), 7.21-7.19 (m, 2H), 3.81 (dd, *J* = 2.8, 6.5 Hz, 1H), 3.15-3.04 (m, 2H), 2.46-2.42 (m, 2H). Data is consistent with that reported in the literature.¹²

References

(a) K. Wang, H. Yang, F. Bauer, B. Breit and W. Fang, *Chem. Eur. J.*, 2023, e202300719; (b) T. Tu,
 W. Fang and J. Jiang, *Chem. Commun.*, 2011, **47**, 12358-12360; (c) S. Ghorai, S. U. Rehman, W. Xu,
 W. Huang and C. Li, *Org. Lett.*, 2020, **22**, 3519-3523; (d) Q. Deng, Y. Zhang, H. Zhu and T. Tu, *Chem. Asian J.*, 2017, **12**, 2364-2368; (e) W. Fang, Q. Deng, M. Xu and T. Tu, *Org. Lett.*, 2013, **15**, 3678-3681.
 O. Navarro, N. Marion, Y. Oonishi, R. A. Kelly, 3rd and S. P. Nolan, *J. Org. Chem.*, 2006, **71**, 685-692.

3 T. J. Malinski and D. E. Bergbreiter, Tetrahedron Lett., 2018, 59, 3926-3929.

4 S. Mao, Z. Chen, L. Wang, D. B. Khadka, M. Xin, P. Li and S. Zhang, J. Org. Chem., 2019, 84, 463-471.

5 M. Sai, Eur. J. Org. Chem., 2022, 2022, e202200052.

6 J. Templ and M. Schnürch, J. Org. Chem., 2022, 87, 4305-4315.

7 F. Liu, Y. Hu, D. Li, Q. Zhou and J. Lu, Tetrahedron, 2018, 74, 5683-5690.

8 M. Escudero-Casao, G. Licini and M. Orlandi, J. Am. Chem. Soc., 2021, 143, 3289-3294.

9 R. Kulasekharan, M. V. S. N. Maddipatla, A. Parthasarathy and V. Ramamurthy, *J. Org. Chem.*, 2013, 78, 942-949.

10 J. Templ and M. Schnurch, J. Org. Chem., 2022, 87, 4305-4315.

11 G. M. Badger, J. Chem. Soc., 1941, 535-538.

12 H. Y. Yin, X. L. Lin, S. W. Li and L. X. Shao, Org. Biomol. Chem., 2015, 13, 9012-9021.

7. NMR and HR-MS (ESI) spectra

¹H NMR (600 MHz, CDCl₃) spectrum of **2q**.

¹H NMR (600 MHz, CDCl₃) spectrum of **2u**.

¹H NMR (400 MHz, CDCl₃) spectrum of 2y.

¹H NMR (600 MHz, CDCl₃) spectrum of **3a**.

¹H NMR (600 MHz, CDCl₃) spectrum of $\mathbf{3b}$.

¹³C NMR (CDCl₃, 150 MHz) spectrum of **3b**.

HR-MS (ESI) spectra of 3b.

¹H NMR (600 MHz, CDCl₃) spectrum of **3c**.

¹H NMR (600 MHz, CDCl₃) spectrum of 3d.

¹H NMR (600 MHz, CDCl₃) spectrum of **3e**.

¹H NMR (600 MHz, CDCl₃) spectrum of **3f**.

¹³C NMR (CDCl₃, 150 MHz) spectrum of **3f**.

HR-MS (ESI) spectra of 3f.

¹H NMR (600 MHz, CDCl₃) spectrum of **3g**.

¹³C NMR (CDCl₃, 150 MHz) spectrum of **3g**.

HR-MS (ESI) spectra of 3g.

 1 H NMR (400 MHz, CDCl₃) spectrum of **3h**.

¹H NMR (600 MHz, CDCl₃) spectrum of 3i.

¹H NMR (600 MHz, CDCl₃) spectrum of **3**j.

¹³C NMR (CDCl₃, 150 MHz) spectrum of **3j**.

Single Mass Analysis Tolerance = 20.0 PPM / DBE: min = -1.5, max = 50.0 Element prediction: Off Number of isotope peaks used for i-FIT = 3

1: TOF MS ES+ 3.52e+006

HR-MS (ESI) spectra of 3j.

¹H NMR (600 MHz, CDCl₃) spectrum of **3**k.

 ^{13}C NMR (CDCl₃, 150 MHz) spectrum of **3k**.

HR-MS (ESI) spectra of 3k.

¹H NMR (600 MHz, CDCl₃) spectrum of **3**l.

¹³C NMR (CDCl₃, 150 MHz) spectrum of **3l**.

HR-MS (ESI) spectra of 3l.

¹H NMR (600 MHz, CDCl₃) spectrum of **3m**.

¹H NMR (600 MHz, CDCl₃) spectrum of 3n.

¹³C NMR (CDCl₃, 150 MHz) spectrum of **3n**.

HR-MS (ESI) spectra of **3n**.

¹H NMR (600 MHz, CDCl₃) spectrum of **30**.

 ^{13}C NMR (CDCl₃, 150 MHz) spectrum of **30**.

HR-MS (ESI) spectra of 30.

¹H NMR (600 MHz, CDCl₃) spectrum of **3p**.

¹³C NMR (CDCl₃, 150 MHz) spectrum of **3p**.

HR-MS (ESI) spectra of **3p**.

¹H NMR (400 MHz, CDCl₃) spectrum of **3q**.

¹H NMR (600 MHz, CDCl₃) spectrum of 3r.

¹H NMR (600 MHz, CDCl₃) spectrum of **3s**.

¹H NMR (600 MHz, CDCl₃) spectrum of **3t**.

¹H NMR (600 MHz, CDCl₃) spectrum of 3u.

¹H NMR (600 MHz, CDCl₃) spectrum of 3v.

¹H NMR (600 MHz, CDCl₃) spectrum of **3w**.

¹H NMR (600 MHz, CDCl₃) spectrum of 3x.

¹H NMR (600 MHz, CDCl₃) spectrum of **3y**.

¹H NMR (600 MHz, CDCl₃) spectrum of 3z.