Electronic Supplementary Material (ESI) for Organic & Biomolecular Chemistry. This journal is © The Royal Society of Chemistry 2023

Supporting Information

Cycloaddition of *N*-arylnitrones with Donor-Acceptor Oxiranes via C–C Bond Cleavage to Construct 1,5,2-Dioxazinanes

Wenhui Li, Jianying Lin, Shuangping Huang, Qiang Liu, Wenlong Wei and Xing Li*

College of Biomedical Engineering, Taiyuan University of Technology, 79 West Yingze Street, Taiyuan 030024, People's Republic of China.

1. General information	S2
2. General procedure	S2
2.1 The procedure for Sc(OTf) ₃ -catalyzed cycloaddition of N-arylnitrones and	l donor-acceptor
oxiranes	S2
2.2. Operational procedure for 3.0 mmol-scale preparation of 3aa	S3
2.3. Operational procedure for the synthesis of compound 4	S3
3. Characterization data of products 3	S3
4. Characterization data of product 4	S16
5. References	S16
6. Crystal structure of compound 3ba (CCDC 2203061)	S17
7. ¹ H-, ¹³ C- and ¹⁹ F-NMR spectra of products 3	S19
8. ¹ H- and ¹³ C-NMR spectra of product 4	S50

1. General information

¹H NMR spectra were taken on a Bruker AVANCE III 600 or 400 MHz NMR spectrometer. The chemical shifts are reported in ppm downfield to the CDCl₃ resonance ($\delta = 7.27$) and CD₃OD ($\delta = 3.31$). Spectra are reported as follows: chemical shift (δ ppm), multiplicity (s = singlet, d = doublet, t = triplet, q = quartet, m = multiplet), coupling constants (Hz), integration, and assignment. ${}^{13}C{}^{1}H$ NMR data were collected at 150 and 100 MHz with complete proton decoupling. The chemical shifts are reported in ppm downfield to the central CDCl₃ resonance ($\delta = 77.0$). High-resolution mass spectra were performed on a microTOF-Q II instrument with an ESI source. Melting points were measured with a RD-II melting point apparatus and are uncorrected. Unless otherwise noted, all reagents and solvents obtained from commercial sources were used without further purification. Deuterated solvents were purchased from Sigma-Aldrich. Column chromatography was performed on silica gel (200-300 mesh) using petroleum ether /ethyl acetate. All yields were referred to isolated yields (average of two runs) of compounds. Starting materials such as Narylnitrones $(2a-2n)^1$ and donor-acceptor oxiranes 1^2 were separately synthesized according to the corresponding literature procedures.

2. General procedure

2.1 The procedure for Sc(OTf)₃-catalyzed cycloaddition of *N*-arylnitrones and donor-acceptor oxiranes

The mixture of donor-acceptor oxirane **1a** (0.14 mmol, 1.4 equiv), *N*-phenylnitrone **2a** (0.1 mmol), Sc(OTf)₃ (0.01 mmol, 10 mol%) and PhCl (0.8 mL) was stirred at 70 °C (oil bath) under air atmosphere. Subsequently, the reaction was monitored by TLC. Upon completion of the consumption of the *N*-phenylnitrone **2a**, the reaction mixture

was directly purified by silica gel column chromatography to give the cycloaddition product **3aa**.

2.2 Operational procedure for 3.0 mmol-scale preparation of 3aa

The mixture of donor-acceptor oxirane **1a** (4.2 mmol, 1.4 equiv), *N*-phenylnitrone **2a** (3 mmol), Sc(OTf)₃ (0.3 mmol, 10 mol%) and PhCl (25 mL) was stirred at 70 °C (oil bath) under air atmosphere. Subsequently, the reaction was monitored by TLC. Upon completion of the consumption of the *N*-phenylnitrone **2a**, the reaction mixture was directly purified by silica gel column chromatography to give the cycloaddition product **3aa** (1.148 g, 83% yield).

2.3 Operational procedure for the synthesis of compound 4

The reaction system of compound **3ga** (49.5 mg, 0.1 mmol) and KOH (0.15 mmol) in MeOH (1.0 mL) was stirred at 25 °C for 12 h. Finally, the reaction mixture was purified by silica gel column chromatography to produce the corresponding product **4** (36.8 mg, 90% yield).

3. Characterization data of products 3

Diethyl 2,3,6-triphenyl-1,5,2-dioxazinane-4,4-dicarboxylate (3aa)

White solid, mp 103–104 °C, 40 mg, yield: 87%. Eluent: petroleum ether/ethyl acetate = 30:1; ¹H NMR (400 MHz, CDCl₃): δ 7.76 (d, J = 6.7 Hz, 2H), 7.47–7.43 (m, 5H), 7.21–7.10 (m, 5H), 6.99 (d, J = 7.7 Hz, 2H), 6.91 (t, J = 7.3 Hz, 1H), 6.32 (s, 1H), 5.64 (s, 1H), 4.49–4.39 (m, 2H), 3.98–3.90 (m, 2H), 1.39 (t, J = 7.1 Hz, 3H), 0.85 (t, J = 7.1 Hz, 3H) ppm; ¹³C{¹H} NMR (100 MHz, CDCl₃): δ 167.4, 164.9, 147.9, 135.4, 132.5, 131.0, 129.8, 128.6, 128.5, 128.3, 127.6, 127.0, 123.1, 116.8,

100.6, 84.0, 67.2, 63.1, 62.3, 14.3, 13.5 ppm. **HRMS** (ESI) m/z: $[M + H]^+$ calcd for $C_{27}H_{28}NO_6^+$, 462.1911; found, 462.1910.

Diethyl 2,3-diphenyl-6-(o-tolyl)-1,5,2-dioxazinane-4,4-dicarboxylate (3ba)

Yellow solid, mp 79–80 °C, 26 mg, yield: 54%. Eluent: petroleum ether/ethyl acetate = 30:1; ¹H NMR (600 MHz, CDCl₃): δ 7.96–7.95 (m, 1H), 7.41–7.39 (m, 2H), 7.30–7.26 (m, 2H), 7.17–7.13 (m, 1H), 7.11–7.08 (m, 3H), 7.07–7.04 (m, 2H), 6.92–6.90 (m, 2H), 6.85–6.82 (m, 1H), 6.36 (s, 1H), 5.57 (s, 1H), 4.42–4.36 (m, 2H), 3.91–3.86 (m, 2H), 2.39 (s, 3H), 1.33 (t, *J* = 7.2 Hz, 3H), 0.78 (t, *J* = 7.2 Hz, 3H) ppm; ¹³C{¹H} NMR (150 MHz, CDCl₃): δ 166.7, 164.0, 147.1, 135.9, 132.6, 131.6, 130.1, 129.6, 128.7, 127.7, 126.7, 125.4, 125.3, 122.1, 115.6, 97.5, 83.1, 66.2, 62.1, 61.2, 18.1, 13.4, 12.6 ppm. **HRMS** (ESI) m/z: [M + H] ⁺ calcd for C₂₈H₃₀NO₆⁺, 476.2068; found, 476.2060.

Diethyl 2,3-diphenyl-6-(m-tolyl)-1,5,2-dioxazinane-4,4-dicarboxylate (3ca)

White solid, mp 79–81 °C, 37 mg, yield: 78%. Eluent: petroleum ether/ethyl acetate = 30:1; ¹H NMR (400 MHz, CDCl₃): δ 7.61 (d, J = 6.3 Hz, 2H), 7.53 (d, J = 6.8 Hz, 2H), 7.43 (t, J = 7.7 Hz, 1H), 7.32 (t, J = 7.5 Hz, 1H), 7.22–7.16 (m, 5H), 7.05 (d, J = 8.0 Hz, 2H), 6.98 (t, J = 7.3 Hz, 1H), 6.32 (s, 1H), 5.68 (s, 1H), 4.57–4.44 (m, 2H), 4.05–3.97 (m, 2H), 2.48 (s, 3H), 1.46 (t, J = 7.9 Hz, 3H), 0.91 (t, J = 7.1 Hz, 3H) ppm; ¹³C{¹H} NMR (100 MHz, CDCl₃): δ 167.5, 164.9, 147.9, 138.3, 135.3, 132.5, 131.0, 130.5, 128.6, 128.5, 128.3, 127.6, 126.5, 124.0, 123.1, 116.7, 100.7, 84.0, 67.0, 63.1, 62.3, 21.6, 14.3, 13.5 ppm. **HRMS** (ESI) m/z: [M + H] ⁺ calcd for C₂₈H₃₀NO₆⁺, 476.2068; found, 476.2070.

Diethyl 2,3-diphenyl-6-(p-tolyl)-1,5,2-dioxazinane-4,4-dicarboxylate (3da)

White solid, mp 79–80 °C, 40 mg, yield: 84%. Eluent: petroleum ether/ethyl acetate = 30:1; ¹H NMR (600 MHz, CDCl₃): δ 7.66 (d, J = 7.9 Hz, 2H), 7.48 (d, J = 8.0 Hz, 2H), 7.31 (d, J = 7.9 Hz, 2H), 7.20–7.13 (m, 5H), 7.00 (d, J = 8.4 Hz, 2H), 6.93 (t, J = 7.3 Hz, 1H), 6.29 (s, 1H), 5.63 (s, 1H), 4.52–4.42 (m, 2H), 4.00–3.94 (m, 2H), 2.42 (s, 3H), 1.42 (t, J = 7.1 Hz, 3H), 0.87 (t, J = 7.1 Hz, 3H) ppm; ¹³C{¹H} NMR (150 MHz, CDCl₃): δ 167.4, 164.8, 147.8, 139.6, 132.4, 132.3, 130.9, 129.1, 128.5, 128.2, 127.5, 126.8, 122.9, 116.6, 100.6, 83.9, 66.9, 62.9, 62.2, 21.4, 14.2, 13.4 ppm. **HRMS** (ESI) m/z: [M + H]⁺ calcd for C₂₈H₃₀NO₆⁺, 476.2068; found, 476.2064.

Diethyl 6-(2-chlorophenyl)-2,3-diphenyl-1,5,2-dioxazinane-4,4-dicarboxylate (3ea)

Light yellow solid, mp 139–141 °C, 33 mg, yield: 66%. Eluent: petroleum ether/ethyl acetate = 30:1; ¹H NMR (400 MHz, CDCl₃): δ 8.17 (d, *J* = 7.4 Hz, 1H), 7.54–7.42 (m, 5H), 7.23–7.19 (m, 5H), 7.05 (d, *J* = 8.2 Hz, 2H), 6.96 (t, *J* = 7.3 Hz, 1H), 6.66 (s, 1H), 5.73 (s, 1H), 4.58–4.41 (m, 2H), 4.05–3.97 (m, 2H), 1.45 (t, *J* = 7.1 Hz, 3H), 0.91 (t, *J* = 7.1 Hz, 3H) ppm; ¹³C{¹H} NMR (100 MHz, CDCl₃): δ 167.3, 164.8, 147.6, 133.8, 132.8, 132.5, 131.0, 130.9, 129.7, 128.6, 128.4, 127.7, 127.3, 122.8, 116.3, 97.9, 84.1, 66.4, 63.2, 62.4, 14.3, 13.5 ppm. **HRMS** (ESI) m/z: [M + H]⁺ calcd for C₂₇H₂₇ClNO₆⁺, 496.1521; found, 496.1520.

White solid, mp 134–136 °C, 39 mg, yield: 79%. Eluent: petroleum ether/ethyl acetate = 30:1; ¹H NMR (600 MHz, CDCl₃): δ 7.75 (s, 1H), 7.65 (d, *J* = 7.3 Hz, 1H), 7.45–7.40 (m, 4H), 7.21–7.13 (m, 5H), 6.98 (d, *J* = 8.6 Hz, 2H), 6.96 (t, *J* = 7.3 Hz, 1H), 6.29 (s, 1H), 5.61 (s, 1H), 4.52–4.43 (m, 2H), 4.02–3.93 (m, 2H), 1.43 (t, *J* = 7.1 Hz, 3H), 0.86 (t, *J* = 7.1 Hz, 3H) ppm; ¹³C{¹H} NMR (150 MHz, CDCl₃): δ 167.1, 164.6, 147.6, 137.1, 134.4, 132.1, 130.8, 129.8, 129.2, 128.5, 128.3, 127.6, 127.0, 125.0, 123.2, 116.7, 99.5, 83.8, 67.2, 63.1, 62.3, 14.2, 13.4 ppm. **HRMS** (ESI) m/z: [M + H]⁺ calcd for C₂₇H₂₇ClNO₆⁺, 496.1521; found, 496.1523.

Diethyl 6-(4-chlorophenyl)-2,3-diphenyl-1,5,2-dioxazinane-4,4-dicarboxylate (3ga)

White solid, mp 137–139 °C, 41 mg, yield: 82%. Eluent: petroleum ether/ethyl acetate = 30:1; ¹H NMR (600 MHz, CDCl₃): δ 7.70 (d, J = 8.4 Hz, 2H), 7.46 (d, J = 8.4 Hz, 2H), 7.41 (d, J = 7.2 Hz, 2H), 7.20–7.17 (m, 3H), 7.14–7.11 (m, 2H), 6.97–6.93 (m, 3H), 6.29 (s, 1H), 5.60 (s, 1H), 4.50–4.44 (m, 2H), 4.00–3.94 (m, 2H), 1.41 (t, J = 7.2 Hz, 3H), 0.85 (t, J = 6.6 Hz, 3H) ppm; ¹³C{¹H} NMR (150 MHz, CDCl₃): δ 167.2, 164.7, 147.7, 135.6, 133.8, 132.2, 130.8, 128.7, 128.6, 128.3, 128.2, 127.6, 123.2, 116.8, 99.7, 83.9, 67.2, 63.1, 62.3, 14.3, 13.4 ppm. **HRMS** (ESI) m/z: [M + H]⁺ calcd for C₂₇H₂₇ClNO₆⁺, 496.1521; found, 496.1518.

Diethyl 6-(2-fluorophenyl)-2,3-diphenyl-1,5,2-dioxazinane-4,4-dicarboxylate (3ha)

White solid, mp 121–123 °C, 31 mg, yield: 64%. Eluent: petroleum ether/ethyl acetate = 30:1; ¹H NMR (600 MHz, CDCl₃): δ 8.03 (t, J = 7.4 Hz, 1H), 7.51 (d, J = 7.1 Hz, 2H), 7.47–7.44 (m, 1H), 7.33 (t, J = 7.5 Hz, 1H), 7.20–7.16 (m, 5H), 7.15 (t, J = 9.2 Hz, 1H), 6.99 (d, J = 8.6 Hz, 2H), 6.93 (t, J = 7.4 Hz, 1H), 6.61 (s, 1H), 5.68 (s, 1H), 4.55–4.50 (m, 1H), 4.45–4.39 (m, 1H), 4.02–3.93 (m, 2H), 1.43 (t, J = 7.1 Hz, 3H), 0.87 (t, J = 7.1 Hz, 3H) ppm; ¹³C{¹H} NMR (150 MHz, CDCl₃): δ 165.9 (d, J = 381.6 Hz), 160.6 (d, J = 249.5 Hz), 147.5, 132.3, 131.6, 131.5, 130.8, 128.5, 128.3, 127.6, 124.4, 124.4, 123.0, 116.5, 95.6, 84.0, 66.8, 63.1, 62.3, 14.1, 13.4 ppm. ¹⁹F NMR (564 MHz, CDCl₃) δ -112.68 ppm; HRMS (ESI) m/z: [M + H] + calcd for C₂₇H₂₇FNO₆⁺, 480.1817; found, 480.1816.

Diethyl 6-(3-fluorophenyl)-2,3-diphenyl-1,5,2-dioxazinane-4,4-dicarboxylate (3ia)

White solid, mp 101–102 °C, 36 mg, yield: 75%. Eluent: petroleum ether/ethyl acetate = 30:1; ¹H NMR (600 MHz, CDCl₃): δ 7.54–7.48 (m, 2H), 7.47–7.44 (m, 1H), 7.42 (d, *J* = 7.8 Hz, 2H), 7.21–7.17 (m, 3H), 7.16–7.13 (m, 3H), 6.98 (d, *J* = 7.8 Hz, 2H), 6.94 (t, *J* = 7.2 Hz, 1H), 6.31 (s, 1H), 5.62 (s, 1H), 4.52–4.43 (m, 2H), 4.02–3.93 (m, 2H), 1.42 (t, *J* = 7.2 Hz, 3H), 0.86 (t, *J* = 6.6 Hz, 3H) ppm; ¹³C{¹H} NMR (150 MHz, CDCl₃): δ 165.9 (d, *J* = 381.9 Hz), 162.8 (d, *J* = 244.8 Hz), 147.7, 137.6, 137.5, 132.2, 130.8, 130.2, 130.1, 130.1, 128.6, 128.3, 127.6, 123.2, 122.6, 122.5, 116.8, 116.7, 116.6, 116.5, 114.0, 113.9, 99.6, 99.5, 83.9, 67.3, 63.1, 62.3, 14.2, 13.4 ppm. ¹⁹F NMR (564 MHz, CDCl₃) δ -112.40 ppm; HRMS (ESI) m/z: [M + H] + calcd for C₂₇H₂₇FNO₆⁺, 480.1817; found, 280.1814.

Diethyl 6-(4-fluorophenyl)-2,3-diphenyl-1,5,2-dioxazinane-4,4-dicarboxylate (3ja)

White solid, mp 98–100 °C, 38 mg, yield: 80%. Eluent: petroleum ether/ethyl acetate = 30:1; ¹H NMR (600 MHz, CDCl₃): δ 7.76–7.74 (m, 2H), 7.45 (d, *J* = 7.1Hz, 2H), 7.20–7.13 (m, 7H), 6.98 (d, *J* = 8.6 Hz, 2H), 6.95 (t, *J* = 7.4 Hz, 1H), 6.30 (s, 1H), 5.63 (s, 1H), 4.52–4.43 (m, 2H), 4.02–3.93 (m, 2H), 1.42 (t, *J* = 7.1 Hz, 3H), 0.87 (t, *J* = 7.1 Hz, 3H) ppm; ¹³C{¹H} NMR (150 MHz, CDCl₃): δ 165.9 (d, *J* = 381.8 Hz), 163.5 (d, *J* = 246.8 Hz), 147.7, 137.5, 132.2, 130.8, 130.2, 128.9, 128.8, 128.5, 128.3, 127.5, 123.1, 116.7, 115.5, 115.4, 99.9, 83.9, 67.0, 63.0, 62.3, 14.2, 13.4 ppm. ¹⁹F NMR (564 MHz, CDCl₃) δ -112.52 ppm; HRMS (ESI) m/z: [M + H] ⁺ calcd for C₂₇H₂₇FNO₆⁺, 480.1817; found, 480.1818.

Diethyl 6-(naphthalen-1-yl)-2,3-diphenyl-1,5,2-dioxazinane-4,4-dicarboxylate (3ka)

White solid, mp 122–123 °C, 42 mg, yield: 81%. Eluent: petroleum ether/ethyl acetate = 30:1; ¹H NMR (600 MHz, CDCl₃): δ 8.34–8.32 (m, 2H), 8.00 (d, *J* = 8.2 Hz, 1H), 7.94–7.92 (m, 1H), 7.68 (t, *J* = 7.4 Hz, 1H), 7.57–7.52 (m, 4H), 7.23–7.15 (m, 5H), 7.07 (d, *J* = 8.6 Hz, 2H), 7.01 (s, 1H), 6.97 (t, *J* = 7.3 Hz, 1H), 5.77 (s, 1H), 4.58–4.50 (m, 2H), 4.06–3.98 (m, 2H), 1.47 (t, *J* = 7.1 Hz, 3H), 0.91 (t, *J* = 7.1 Hz, 3H) ppm; ¹³C{¹H} NMR (150 MHz, CDCl₃): δ 167.5, 164.9, 147. 9, 133.6, 132.3, 131.1, 130.9, 130.7, 130.2, 128.6, 128.5, 128.3, 127.6, 126.6, 125.8, 125.3, 124.3, 123.8, 122.9, 116.4, 97.9, 84.1, 67.1, 63.2, 62.3, 14.3, 13.4 ppm. **HRMS** (ESI) m/z: [M + H] + calcd for C₃₁H₃₀NO₆+, 512.2068; found, 512.2070.

Diethyl 6-(naphthalen-2-yl)-2,3-diphenyl-1,5,2-dioxazinane-4,4-dicarboxylate

(**3la**)

White solid, mp 118–119 °C, 41 mg, yield: 80%. Eluent: petroleum ether/ethyl acetate = 30:1; ¹H NMR (600 MHz, CDCl₃): δ 8.30 (s, 1H), 8.00–7.97 (m, 2H), 7.92–7.91 (m, 1H), 7.88 (dd, J = 8.5, 1.5 Hz, 1H), 7.57–7.55 (m, 2H), 7.54 (d, J = 7.0 Hz, 2H), 7.24–7.15 (m, 5H), 7.06 (d, J = 7.7 Hz, 2H), 6.97 (t, J = 7.3 Hz, 1H), 6.52 (s, 1H), 5.70 (s, 1H), 4.56–4.47 (m, 2H), 4.06–3.97 (m, 2H), 1.46 (t, J = 7.1 Hz, 3H), 0.90 (t, J = 7.1 Hz, 2H) ppm; ¹³C{¹H} NMR (150 MHz, CDCl₃): δ 167.4, 164.8, 147.8, 133.9, 132.9, 132.6, 132.3, 130.9, 128.6, 128.3, 128.3, 127.7, 127.6, 126.7, 126.5, 126.3, 124.0, 123.1, 116.7, 100.5, 84.0, 67.2, 63.0, 62.3, 14.3, 13.4 ppm. **HRMS** (ESI) m/z: [M + H] + calcd for C₃₁H₃₀NO₆⁺, 512.2068; found, 512.2065.

Diethyl 2,6-diphenyl-3-(o-tolyl)-1,5,2-dioxazinane-4,4-dicarboxylate (3ab)

White solid, mp 99–100 °C, 30 mg, yield: 62%. Eluent: petroleum ether/ethyl acetate = 30:1; ¹H NMR (600 MHz, CDCl₃): δ 7.67 (d, *J* = 7.8 Hz, 2H), 7.48 (d, *J* = 7.8 Hz, 2H), 7.31–7.29 (m, 2H), 7.20–7.13 (m, 5H), 7.00–6.99 (m, 2H), 6.94–6.91 (t, *J* = 7.2 Hz, 1H), 6.29 (s, 1H), 5.64 (s, 1H), 4.51–4.43 (m, 2H), 4.00–3.95 (m, 2H), 2.43 (s, 3H), 1.41 (t, *J* = 6.6 Hz, 3H), 0.86 (t, *J* = 6.6 Hz, 3H) ppm. ¹³C{¹H} NMR (150 MHz, CDCl₃): δ 167.4, 164.8, 147.8, 139.6, 132.4, 132.3, 130.9, 129.1, 128.5, 128.2, 127.5, 126.8, 122.9, 116.6, 100.6, 83.9, 66.9, 62.9, 62.2, 21.4, 14.2, 13.4 ppm. **HRMS** (ESI) m/z: [M + H]⁺ calcd for C₂₈H₃₀NO₆⁺, 476.2068; found, 476.2066.

Diethyl 2,6-diphenyl-3-(m-tolyl)-1,5,2-dioxazinane-4,4-dicarboxylate (3ac)

White solid, mp 102–104 °C, 39 mg, yield: 81%. Eluent: petroleum ether/ethyl acetate = 30:1; ¹H NMR (600 MHz, CDCl₃): δ 7.78 (d, J = 6.8 Hz, 2H), 7.51–7.47 (m, 3H), 7.35 (d, J = 7.7 Hz, 1H), 7.28 (s, 1H), 7.21 (t, J = 7.8Hz, 2H), 7.06–6.99 (m, 4H), 6.94 (t, J = 7.3 Hz, 1H), 6.32 (s, 1H), 5.63 (s, 1H), 4.52–4.42 (m, 2H), 4.01 (q, J = 7.1 Hz, 2H), 2.21 (s, 3H), 1.43 (t, J = 7.1 Hz, 3H), 0.90 (t, J = 7.1 Hz, 3H) ppm; ¹³C{¹H} NMR (150 MHz, CDCl₃): δ 167.4, 164.8, 147.8, 136.7, 135.3, 132.2, 131.7, 129.7, 128.9, 128.5, 127.9, 127.4, 126.9, 122.9, 116.6, 100.6, 84.0, 66.8, 62.9, 62.2, 21.3, 14.2, 13.4 ppm. **HRMS** (ESI) m/z: [M + H]⁺ calcd for C₂₈H₃₀NO₆⁺, 476.2068; found, 476.2068.

Diethyl 2,6-diphenyl-3-(p-tolyl)-1,5,2-dioxazinane-4,4-dicarboxylate (3ad)

White solid, mp 131–133 °C, 42 mg, yield: 87%. Eluent: petroleum ether/ethyl acetate = 30:1; ¹H NMR (600 MHz, CDCl₃): δ 7.79 (d, *J* = 7.7 Hz, 2H), 7.51–7.47 (m, 3H), 7.39 (d, *J* = 6.6 Hz, 2H), 7.21 (t, *J* = 7.7 Hz, 2H), 7.03 (d, *J* = 8.1 Hz, 2H), 6.97–6.92 (m, 3H), 6.32 (s, 1H), 5.64 (s, 1H), 4.52–4.43 (m, 2H), 4.01 (q, *J* = 7.1 Hz, 2H), 2.22 (s, 3H), 1.43 (t, *J* = 7.2 Hz, 3H), 0.93 (t, *J* = 7.1 Hz, 3H) ppm; ¹³C{¹H} NMR (150 MHz, CDCl₃): δ 167.4, 164.8, 147.8, 137.8, 135.3, 130.7, 129.6, 129.3, 128.5, 128.4, 128.3, 126.9, 122.9, 116.5, 100.5, 84.0, 66.7, 62.9, 62.2, 21.1, 14.2, 13.5 ppm. **HRMS** (ESI) m/z: [M + H]⁺ calcd for C₂₈H₃₀NO₆⁺, 476.2068; found, 476.2069.

Diethyl 3-(2-fluorophenyl)-2,6-diphenyl-1,5,2-dioxazinane-4,4-dicarboxylate (3ae)

White solid, mp 100–102 °C, 32 mg, yield: 66%. Eluent: petroleum ether/ethyl acetate = 30:1; ¹H NMR (600 MHz, CDCl₃): δ 8.16–8.14 (m, 1H), 7.78–7.77 (m, 2H), 7.52–7.48 (m, 3H), 7.21–7.17 (m, 3H), 7.06–7.05 (m, 3H), 6.94 (t, *J* = 7.2 Hz, 1H), 6.72 (t, *J* = 9.0 Hz, 1H), 6.34 (s, 1H), 6.21 (s, 1H), 4.49–4.44 (m, 2H), 4.00–3.97 (m, 2H), 1.40 (t, *J* = 7.2 Hz, 3H), 0.92 (t, *J* = 6.6 Hz, 3H) ppm; ¹³C{¹H} NMR (150 MHz, CDCl₃): δ 165.6 (d, *J* = 378.2 Hz), 161.1 (d, *J* = 246.2 Hz), 147.5, 135.2, 132.1, 130.1, 129.9, 129.7, 128.5, 128.4, 127.9, 127.0, 126.7, 123.7, 123.2, 123.0, 120.3, 120.2, 116.4, 114.5, 114.3, 100.4, 63.0, 62.3, 57.3, 14.2, 13.3 ppm. ¹⁹F NMR (564 MHz, CDCl₃) d -115.2 ppm; **HRMS** (ESI) m/z: [M + H]⁺ calcd for C₂₇H₂₇FNO₆⁺, 480.1817; found, 480.1813.

Diethyl 3-(3-fluorophenyl)-2,6-diphenyl-1,5,2-dioxazinane-4,4-dicarboxylate (3af)

White solid, mp 103–105 °C, 39 mg, yield: 81%. Eluent: petroleum ether/ethyl acetate = 30:1; ¹H NMR (600 MHz, CDCl₃): δ 7.75–7.74 (m, 2H), 7.50–7.49 (m, 3H), 7.30–7.28 (m, 1H), 7.21–7.18 (m, 3H), 7.12–7.08 (m, 1H), 7.00–6.96 (m, 2H), 6.95 (t, J = 1.8 Hz, 1H), 6.89 (td, J = 8.7, 1.8 Hz, 1H), 6.30 (s, 1H), 5.62 (s, 1H), 4.51–4.44 (m, 2H), 4.01 (q, J = 7.2Hz, 2H), 1.41 (t, J = 7.2 Hz, 3H), 0.92 (t, J = 7.2 Hz, 3H) ppm; ¹³C{¹H} NMR (150 MHz, CDCl₃): δ 165.9 (d, J = 368.6 Hz), 161.9 (d, J = 244.1 Hz), 147.6, 135.1, 134.8, 134.7, 129.8, 128.9, 128.8, 128.7, 128.6, 128.5, 126.8, 126.7, 126.7, 123.3, 118.0, 117.8, 116.7, 116.6, 115.3, 115.2, 100.6, 83.7, 66.6, 63.1, 62.4, 14.2, 13.5ppm. ¹⁹F NMR (564 MHz, CDCl₃) δ -113.26 ppm; HRMS (ESI) m/z: [M + H] ⁺ calcd for C₂₇H₂₇FNO₆⁺, 480.1817; found, 480.1816.

Diethyl 3-(4-fluorophenyl)-2,6-diphenyl-1,5,2-dioxazinane-4,4-dicarboxylate (3ag)

White solid, mp 117–119 °C, 41 mg, yield: 86%. Eluent: petroleum ether/ethyl acetate = 30:1; ¹H NMR (600 MHz, CDCl₃): δ 7.75–7.74 (m, 2H), 7.51–7.44 (m, 5H), 7.21–7.19 (m, 2H), 6.98–6.94 (m, 3H), 6.84 (t, *J* = 8.4 Hz, 2H), 6.31 (s, 1H), 5.61 (s, 1H), 4.51–4.44 (m, 2H), 4.02–3.97 (m, 2H), 1.41 (t, *J* = 7.2 Hz, 3H), 0.91 (t, *J* = 7.2 Hz, 3H) ppm; ¹³C{¹H} NMR (150 MHz, CDCl₃): δ 166.0 (d, *J* = 371.6 Hz), 162.6 (d, *J* = 245.9 Hz), 147.7, 135.2, 132.6, 132.5, 129.7, 128.6, 128.5, 128.3, 128.2, 126.8, 123.3, 123.2, 116.7, 114.6, 114.5, 100.6, 100.5, 83.8, 66.5, 63.0, 62.3, 14.2, 13.5 ppm. ¹⁹F NMR (564 MHz, CDCl₃) δ -113.39 ppm; HRMS (ESI) m/z: [M + H] ⁺ calcd for C₂₇H₂₇FNO₆⁺, 480.1817; found, 480.1814.

Diethyl 3-(naphthalen-1-yl)-2,6-diphenyl-1,5,2-dioxazinane-4,4dicarboxylate(3ah)

White solid, mp 123–125°C, 38 mg, yield: 74%. Eluent: petroleum ether/ethyl acetate = 30:1; ¹H NMR (600 MHz, CDCl₃): δ 8.53 (dd, J = 7.4, 1.0 Hz, 1H), 8.03 (d, J = 8.6 Hz, 1H), 7.86 (d, J = 7.0 Hz, 2H), 7.72 (d, J = 8.2 Hz, 1H), 7.70 (d, J = 7.4 Hz, 1H), 7.55–7.49 (m, 3H), 7.44 (t, J = 7.8 Hz, 1H), 7.40–7.37 (m, 1H), 7.35–7.32 (m, 1H), 7.22–7.15 (m, 1H), 7.05–7.00 (m, 3H), 6.79–6.76 (m, 1H), 6.73 (s, 1H), 6.42 (s, 1H), 4.59–4.48 (m, 2H), 3.71–3.65 (m, 1H), 3.63–3.58 (m, 1H), 1.47 (t, J = 7.14 Hz, 3H), 0.42 (t, J = 7.1 Hz, 3H) ppm; ¹³C{¹H} NMR (150 MHz, CDCl₃): δ 167.8, 164.5, 147.7, 135.4, 133.1, 132.9, 130.9, 129.7, 129.2, 128.9, 128.8, 128.5, 128.4, 128.3,

127.5, 126.9, 125.8, 125.0, 124.9, 123.5, 123.1, 117.5, 116.7, 100.6, 84.2, 63.1, 62.0, 59.0, 14.3, 12.9 ppm. **HRMS** (ESI) m/z: [M + H] ⁺ calcd for C₃₁H₃₀NO₆⁺, 512.2068; found, 512.2066.

Diethyl 3-(naphthalen-2-yl)-2,6-diphenyl-1,5,2-dioxazinane-4,4-dicarboxylate (3ai)

White solid, mp 113–115 °C, 39 mg, yield: 76%. Eluent: petroleum ether/ethyl acetate = 30:1; ¹H NMR (600 MHz, CDCl₃): δ 8.05 (s, 1H), 7.87 (d, *J* = 6.8 Hz, 2H), 7.75–7.73 (m, 2H), 7.64 (s, 2H), 7.56–7.50 (m, 3H), 7.43–7.41 (m, 2H), 7.20 (t, *J* = 8.5 Hz, 2H), 7.07 (d, *J* = 7.7 Hz, 2H), 6.93 (t, *J* = 7.3Hz, 1H), 6.42 (s, 1H), 5.87 (s, 1H), 4.57–4.47 (m, 2H), 3.97–3.89 (m, 2H), 1.47 (t, *J* = 7.1 Hz, 3H), 0.81 (t, *J* = 7.1 Hz, 3H) ppm; ¹³C{¹H} NMR (150 MHz, CDCl₃): δ 167.4, 164.8, 147.8, 135.3, 132.9, 132.5, 130.6, 130.1, 129.8, 128.6, 128.6, 128.5, 128.3, 127.4, 127.0, 126.9, 126.1, 125.7, 123.1, 116.6, 100.7, 84.1, 67.1, 63.0, 62.3, 14.3, 13.4 ppm. **HRMS** (ESI) m/z: [M + H]⁺ calcd for C₃₁H₃₀NO₆⁺, 512.2068; found, 512.2067.

Diethyl 3-(furan-2-yl)-2,6-diphenyl-1,5,2-dioxazinane-4,4-dicarboxylate (3aj)

White solid, mp 130–132 °C, 29 mg, yield: 65%. Eluent: petroleum ether/ethyl acetate = 30:1; ¹H NMR (600 MHz, CDCl₃): δ 7.80–7.79 (m, 2H), 7.55–7.51 (m, 3H), 7.33–7.28 (m, 3H), 7.26 (s, 1H), 7.06 (t, J = 7.2 Hz, 2H), 6.66–6.60 (m, 1H), 6.34 (s, 1H), 5.90 (s, 1H), 4.55–4.48 (m, 2H), 4.25–4.13 (m, 2H), 1.47 (t, J = 7.2 Hz, 3H), 1.11 (t, J = 7.2 Hz, 3H) ppm; ¹³C{¹H} NMR (150 MHz, CDCl₃): δ 166.6, 164.4, 147.8, 147.2, 141.8, 135.1, 129.7, 128.6, 128.4, 127.0, 123.4, 116.5, 111.8, 110.4, 100.4, 83.1, 63.0, 62.4, 61.5, 14.2, 13.8 ppm. **HRMS** (ESI) m/z: [M + H] + calcd for

 $C_{25}H_{26}NO_7^+$, 452.1704; found, 452.1700.

Diethyl 2,6-diphenyl-3-(thiophen-2-yl)-1,5,2-dioxazinane-4,4-dicarboxylate (3ak)

White solid, mp 139–140 °C, 36 mg, yield: 76%. Eluent: petroleum ether/ethyl acetate = 30:1; ¹H NMR (600 MHz, CDCl₃): δ 7.85 (d, *J* = 7.8 Hz, 2H), 7.53–7.50 (m, 3H), 7.25 (t, *J* = 7.6 Hz, 2H), 7.21 (d, *J* = 5.0 Hz, 1H), 7.08 (d, *J* = 8.6 Hz, 2H), 7.04 (d, *J* = 3.5 Hz, 1H), 6.99 (t, *J* = 6.7 Hz, 1H), 6.86–6.84 (m, 1H), 6.31 (s, 1H), 6.01 (s, 1H), 4.54–4.45 (m, 2H), 4.13–4.03 (m, 2H), 1.45 (t, *J* = 7.1 Hz, 3H), 1.05 (t, *J* = 7.1 Hz, 3H) ppm; ¹³C{¹H} NMR (150 MHz, CDCl₃): δ 166.8, 164.4, 147.6, 134.9, 131.9, 129.8, 129.8, 128.6, 128.4, 127.3, 127.2, 125.2, 123.2, 116.4, 100.8, 84.1, 63.8, 63.0, 62.4, 14.2, 13.6 ppm. **HRMS** (ESI) m/z: [M + H]⁺ calcd for C₂₅H₂₆NO₆S⁺, 468.1475; found, 468.1474.

Diethyl 3,6-diphenyl-2-(m-tolyl)-1,5,2-dioxazinane-4,4-dicarboxylate (3al)

White solid, mp 114–115 °C, 36 mg, yield: 76%. Eluent: petroleum ether/ethyl acetate = 30:1; ¹H NMR (600 MHz, CDCl₃): δ 7.80 (d, J = 7.6 Hz, 2H), 7.54–7.50 (m, 5H), 7.22–7.17 (m, 3H), 7.11 (t, J = 7.8 Hz, 1H), 6.85 (s, 1H), 6.82 (d, J = 8.1 Hz, 1H), 6.78 (d, J = 7.4 Hz, 1H), 6.33 (s, 1H), 5.66 (s, 1H), 4.55–4.45 (m, 2H), 4.04–3.96 (m, 2H), 2.27 (s, 3H), 1.45 (t, J = 7.2 Hz, 3H), 0.90 (t, J = 7.1 Hz, 3H) ppm; ¹³C{¹H} NMR (150 MHz, CDCl₃): δ 167.4, 164.8, 147.7, 138.3, 135.3, 132.4, 130.9, 129.6, 128.5, 128.3, 128.2, 127.5, 126.9, 123.8, 117.2, 113.7, 100.6, 83.9, 66.9, 63.0, 62.2, 21.5, 14.2, 13.4 ppm. **HRMS** (ESI) m/z: [M + H] + calcd for C₂₈H₃₀NO₆⁺, 476.2068; found, 476.2065.

Diethyl 3,6-diphenyl-2-(p-tolyl)-1,5,2-dioxazinane-4,4-dicarboxylate (3am)

White solid, mp 117–119 °C, 43 mg, yield: 90%. Eluent: petroleum ether/ethyl acetate = 30:1; ¹H NMR (600 MHz, CDCl₃): δ 7.76–7.75 (m, 2H), 7.49–7.46 (m, 5H), 7.20–7.12 (m, 3H), 6.98–6.96 (m, 2H), 6.86–6.85 (m, 2H), 6.31 (s, 1H), 5.56 (s, 1H), 4.47–4.43 (m, 2H), 3.99–3.94 (m, 2H), 2.22 (s, 3H), 1.40 (t, *J* = 7.2 Hz, 3H), 0.86 (t, *J* = 7.2 Hz, 3H)ppm. ¹³C{¹H} NMR (150 MHz, CDCl₃): δ 167.6, 165.0, 145.6, 135.6, 132.7, 132.6, 131.2, 129.2, 128.3, 127.7, 127.1, 117.0, 100.7, 84.1, 67.4, 63.1, 62.4, 20.8, 14.4, 13.6 ppm. **HRMS** (ESI) m/z: [M + H] ⁺ calcd for C₂₈H₃₀NO₆⁺, 476.2068; found, 476.2069.

Diethyl 2-(3-chlorophenyl)-3,6-diphenyl-1,5,2-dioxazinane-4,4-dicarboxylate (3an)

White solid, mp 139–141 °C, 37 mg, yield: 74%. Eluent: petroleum ether/ethyl acetate = 30:1; ¹H NMR (600 MHz, CDCl₃): δ 7.77 (d, *J* = 8.0 Hz, 2H), 7.52–7.48 (m, 5H), 7.21–7.16 (m, 3H), 7.13 (t, *J* = 8.1Hz, 1H), 7.01 (t, *J* = 2.0 Hz, 1H), 6.91–6.89 (m, 2H), 6.28 (s, 1H). 5.64 (s, 1H), 4.52–4.42 (m, 2H), 4.02–3.94 (m, 2H), 1.42 (t, *J* = 7.1Hz, 3H), 0.88 (t, *J* = 7.1 Hz, 3H) ppm; ¹³C{¹H} NMR (150 MHz, CDCl₃): δ 167.2, 164.5, 148.9, 134.9, 134.5, 132.0, 130.8, 129.8, 129.6, 128.5, 128.4, 127.7, 126.9, 122.9, 116.2, 114.5, 100.7, 83.8, 66.6, 63.1, 62.3, 14.2, 13.4 ppm. **HRMS** (ESI) m/z: [M + H] + calcd for C₂₇H₂₇ClNO₆⁺, 496.1521; found, 496.1522.

4. Characterization data of product 4

Dark brown solid, mp 117–119 °C, 36.8 mg, yield: 90%. Silica gel TLC $R_f = 0.15$ (EA:CH₃OH = 9:1); ¹H NMR (600 MHz, CD₃OD) δ 7.81–7.80 (m, 2H), 7.53–7.48 (m, 5H), 7.17–7.15 (m, 2H), 7.08–7.05 (m, 3H), 6.94–6.93 (m, 2H), 6.90–6.87 (m, 1H), 6.18 (s, 1H), 5.72 (s, 1H), 3.92 (s, 1H) ppm; ¹³C{¹H} NMR (150 MHz, CD₃OD) δ 172.2, 150.0, 136.5, 136.4, 135.4, 132.6, 130.1, 129.7, 129.5, 128.7, 128.2, 123.7, 117.8, 101.3, 87.5, 68.9 ppm. HRMS (ESI) m/z: [M + H] + calcd for C₂₃H₂₁ClNO₄⁺, 410.1154; found, 410.1151.

5. References

- [1] L. Zheng, F. Gao, C. Yang, G.-L. Gao, Y. Zhao, Y. Gao, W. Xia, Org. Lett. 2017, 19, 5086–5089.
- [2] G. V. Kryshtal, G. M. Zhdankina, S. G. Zlotin, Mendeleev Commun. 2013, 1, 24–25.

6. Crystal structure of compound 3ba (CCDC 2203061)

CCDC number	2203061
Identification code	3ba
Empirical formula	$\mathrm{C}_{28}\mathrm{H}_{29}\mathrm{NO}_{6}$
Formula weight	475.52
Temperature/K	293
Crystal system	orthorhombic
Space group	Pbca
a/Å	9.66800(10)
b/Å	16.9490(2)
c/Å	30.1249(4)
$\alpha/^{\circ}$	90
β/°	90

$\gamma/^{\circ}$	90
Volume/Å ³	4936.36(10)
Z	8
$\rho_{calc}g/cm^3$	1.280
µ/mm ⁻¹	0.735
F(000)	2016.0
Crystal size/mm ³	$0.13 \times 0.07 \times 0.06$
Radiation	$CuK\alpha (\lambda = 1.54184)$
2Θ range for data collection/°	10.438 to 143.05
Index ranges	$-11 \le h \le 11, -20 \le k \le 20, -35 \le l \le 37$
Reflections collected	37505
Independent reflections	4780 [$R_{int} = 0.0245, R_{sigma} = 0.0127$]
Data/restraints/parameters	4780/0/319
Goodness-of-fit on F ²	1.055
Final R indexes [I>= 2σ (I)]	$R_1 = 0.0484, wR_2 = 0.1281$
Final R indexes [all data]	$R_1 = 0.0542, wR_2 = 0.1331$
Largest diff. peak/hole / e Å ⁻³	0.25/-0.19

7. ¹H-, ¹³C- and ¹⁹F-NMR spectra of products 3

S21

3ea

3fa

2.00-1 2.00-1

4.5

4.0 3.5 3.0 2.5 2.0

3.00-

1.5

1.0 0.5 0.0 -0.5

2.00

9.5 9.0 8.5 8.0 7.5 7.0 6.5 6.0

11.5

10.5

1.00

90,

5.5 5.0 fl (ppm)

3ga

S25

3ha

-40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 fl (ppm)

S34

3ad

S37

--115.199

-65 -70 -75 -80 -85 -90 -95 -100 -105 -110 -115 -120 -125 -130 -135 -140 -145 -150 -155 fl (ppm)

S40

-55 -60 -65 -70 -75 -80 -85 -90 -95 -105 -115 -125 -135 -145 -155 -165 fl (ppm)

S43

S44

S45

ppm

 Diff
 0.0500000 Sec

 =====
 CHANNEL fl

 NUC1
 13C

 P1
 15.64 usec

 SF
 127.68

 SF
 150.9153956 MHz

 WDW
 EM

 SSE
 0

 LB
 1.00 Hz

 GB
 0

 PC
 1.40

3al

S47

