Electronic Supplementary Material (ESI) for Organic & Biomolecular Chemistry. This journal is © The Royal Society of Chemistry 2023

Supplementary information for

Direct pathway cloning and expression of the radiosumin biosynthetic gene cluster

Xiaodan Ouyang,^a Paul M. D'Agostino,^b Matti Wahlsten,^a Endrews Delbaje,^c Jouni Jokela,^a Perttu Permi,^{d,e} Greta Gaiani,^a Antti Poso,^f Piia Bartos,^f Tobias A. M. Gulder,^b Hannu Koistinen,^g David P. Fewer^{a,*}

a. Department of Microbiology, University of Helsinki, Viikinkaari 9, FI-00014 Helsinki, Finland

b. Chair of Technical Biochemistry, Technical University of Dresden, Bergstraße 66, 01069 Dresden, Germany

c. Center for Nuclear Energy in Agriculture, University of São Paulo, Avenida Centenário 303, Piracicaba 13400-970, São Paulo, Brazil

d. Department of Chemistry, University of Jyväskylä, Finland

e. Department of Biological and Environmental Science, Nanoscience Center, University of Jyväskylä, Finland f. Kuopio Campus, School of Pharmacy, University of Eastern Finland

g. Department of Clinical Chemistry and Haematology, Faculty of Medicine, University of Helsinki and Helsinki University Hospital, Helsinki FIN-00014, Finland

* Corresponding author

E-mail address: david.fewer@helsinki.fi

Figure S1 Ultra-performance liquid chromatograph with quadrupole time-of-flight (UPLC-QTOF) spectrometry analysis of radiosumin C (3) from *Anabaena cylindrica* PCC 7122 and radiosumin A (1) from *Plectonema radiosum* NIES-515. (A) Extracted ion chromatogram (m/z 431.22 [M +H]⁺) or (m/z 433.24 [M +H]⁺). (B) Secondary mass (MS²) spectra (parent ion m/z 431.22 or m/z 433.24) of the 5.91 min or 5.67 min peak from m/z 50 to 450. (C) Table of annotated ions from MS² with the difference (Δ) of experimental (Exp) m/z value to calculated (Calc) m/z value and relative ion intensities (RI). (D) Structure of radiosumin C (3) or radiosumin A (1).

Figure S2 Bioinformatic analysis of radiosumin biosynthetic pathways. (A) Identification and comparison of the radiosumin (*rad*) biosynthetic gene cluster from 13 strains of cyanobacteria. (B) Organization of catalytic domains in the RadH non-ribosomal peptide synthetase.

Figure S3 Maximum likelihood phylogenomic tree based on concatenated alignment of 120 bacterial single-copy conserved marker genes from 75 cyanobacterial genomes. Cyanobacteria that encode a radiosumin biosynthetic gene cluster are marked in bold. Radiosumin producers are marked in bold and with a blue box.

Figure S4 UPLC-QTOF spectrometry analysis of molecule m/z 445.24 from three strains. (A) MS² (m/z 445.24) chromatograms of methanol extracts from *Dolichospermum planctonicum* UHCC 0167, *Dolichospermum flos-aquae* UHCC 0037, and *Aphanizomenon* sp. UHCC 0183. (C) MS² spectra of the 5.56 min peaks (m/z 445.24) from 50 to 450 of extracts from *Dolichospermum planctonicum* UHCC 0167, *Dolichospermum flos-aquae* UHCC 0037 and *Aphanizomenon* sp. UHCC 0183. (C) MS² spectra 0167, *Dolichospermum flos-aquae* UHCC 0037 and *Aphanizomenon* sp. UHCC 0167, *Dolichospermum flos-aquae* UHCC 0037 and *Aphanizomenon* sp. UHCC 0183.

Figure S5 MS² spectra of protonated molecules m/z 445.24 and table of annotated product ions with differences (Δ) of experimental (Exp) m/z values to calculated (Calc) m/z values).

Figure S6 UPLC-QTOF spectrometry analysis of compound **4** in methanol extracts from blooms GG20 and GG68, using *Aphanizomenon* sp. UHCC 0183 and *Dolichospermum planctonicum* UHCC 0167 as controls. (A) Extracted ion chromatograms of methanol extracts from blooms GG20, GG68 and *Aphanizomenon* sp. UHCC 0183 and *Dolichospermum planctonicum* UHCC 0167. (B) MS² spectra from m/z 50 to 465 of peaks eluting from 5.77 min showed diagnostic product ions for **4** (Figure S5).

Figure S7 Estimated production levels of compound **4** in *E. coli* BAP1strains, harbouring pET28b-ptetO-*radHABCDEFG-GFP* (-RadI) or pET28b-ptetO-*radHABCDEFGI-GFP* (+RadI). Production levels were calculated by using peak area divided by dry cell weight. Data are representative of triplicate determinations. Error bars indicate standard deviations.

Figure S13 Extracted negative ion $(m/z 356.08; [M-H]^{-})$ chromatograms of Marfey derivative (1-fluoro-2,4-dinitrophenyl-5-L-alanine) radiosumin D (4) hydrolysate and L- and D-Ser reference amino acid Marfey derivatives.

Figure S14 (A) Inhibition of human trypsin-isoenzymes by purified radiosumin D (4) sample (B) UPLC-QTOF spectrometry analysis of purified sample from *Aphanizomenon* sp. UHCC 0183.

Table S1. Stachelhaus 10-residue specificity code for RadH adenylation domains predicted by NRPS predicitor 2 as implemented in antiSMASH6.0. 1

Strains	Accession number	Accession number (protein)	Module1	Module2
Dolichospermum planctonicum UHCC 0167	VILE02	WP_265915766	DAEMAGGVLK	DAETSGGVLK
Aphanizomenon sp. UHCC 0183	VILC01	WP_168465319		
Dolichospermum flos-aquae UHCC 0037	VILF01	WP_168636709		
Aphanizomenon flos-aquae MDT14a	LJOX01	OBQ31167		
Aphanizomenon flos-aquae 2012 KM1 D3	JSDP01	QSV71108		
Anabaena sp. AL93	LJOU01	OBQ20459		M
Aphanizomenon flos-aquae LD13	LJOY01	OBQ27227		M
Aphanizomenon flos-aquae UKL13 PB	LTEC02	MBO1043034		M
Anabaena sp. UBA12330	DQEB01	HCQ23020		M
Dolichospermum sp. UHCC 0315A	CP043056	WP_246863057 WP_148760648		M
Dolichospermum flos-aquae CCAP 1403 13F	CP051206	WP_168696234		M
Anabaena cylindrica PCC 7122	CP003659	WP_015215721	S	M
Plectonema radiosum NIES-515	JAOWRF01	WP_015215720 WP_263746364 WP_263746366	S	SIA

Strains	Description	Reference or source
E. coli BAP1	Host strain for expression	3
	BL21(DE3) Δ <i>prp</i> RBCD ::T7prom- <i>sfp</i> ,T7prom- <i>prpE</i>	
Plasmids	Description	
pET28b-ptetO-GFPv2	Tetracycline inducible expression plasmid, ColE1, Kan ^R , addition of <i>GFP</i>	4
pET28b-ptetO- <i>radH-GFP</i>	Tetracycline inducible expression plasmid, ColE1, Kan ^R , addition of <i>GFP</i> , habouring bimodular NRPS protein gene <i>radH</i>	This study
pET28b-ptetO-radH- radABCDEFG-GFP	Built using pET28b-ptetO- <i>radH-GFP</i> as the vector and <i>radABCDEFG</i> single piece nucleotide insert.	This study
pET28b-ptetO-radH- radABCDEFGI-GFP	<i>radI</i> inserted into the pET28b-ptetO- <i>radH</i> - <i>radABCDEFG-GFP</i> vector	This study

Table S2. Strains and plasmids used in this study.

Name	Sequence (5'-3')	Description
gib_ptetO_radH1_F	TCAGTGATAGAGAAGAGGATCGACCATGCAGGGCAATTCTTCTTTG	Amplification of <i>radH</i> with 25
		bp homology sequence
gib_ptetO_radH2_R	CAGTTCTTCACCTTTGCTAACCATGCACGTGTTATCCATAAACTCTATCTTTTAAG	Amplification of <i>radH</i> with 25
		bp homology sequence
C-GFP_for_1	CATGGTTAGCAAAGGTGA	Amplification of pET-28b-ptetO backbone for subsequent cloning of <i>radH</i>
spec-ptet-R	GGTCGATCCTCTTCTCTATC	Amplification of pET-28b-ptetO backbone for subsequent cloning of <i>radH</i>
screen_0167radH2_F	TCAGGTTTCTGTAGGAGTTATTTC	Colony screening and sequencing primer
screen_GFP_R	TTACCGTTGGTCGCATCACC	Colony screening and sequencing primer
C-GFP_for_2	CATGGTTAGCAAAGGTGAAGAACTGT	Amplification of pET-28b-ptetO- <i>radH</i> backbone for subsequent cloning of <i>radABCDEFG</i>
spec_radH2-R	GTGTTATCCATAAACTCTATCTTTTAAGATTTCAACAT	Amplification of pET-28b-ptetO- <i>radH</i> backbone for subsequent cloning of <i>radABCDEFG</i>
gib_radH2_radA-F	AAAAGATAGAGTTTATGGATAACACATGAAAAACCCTGATTATTGACAAC	Amplification of <i>radABCDEFG</i> with 22 bp homology sequence
gib_GFP_radG-R	CAGTTCTTCACCTTTGCTAACCATGCACGTGTCAATGCCTGCC	Amplification of <i>radABCDEFG</i> with 25 bp homology sequence

Table S3. List of oligonucleotide primers used for cloning and screening procedures.

radI-fwd	AGGATTATGGCAGGCATTGACACATGAACCCAACACTCACAAATAAG	Amplification of <i>radI</i> with 25 bp homology sequence
radI-rev	TTCTTCACCTTTGCTAACCATGCACGTGCTATATGCGCCTGTTTTC	Amplification of <i>radI</i> with 25 bp homology sequence

Homology arms are marked in bold

Table S5. Ligand contact histograms of amino acids of trypsin-1, trypsin-2 and trypsin-3 that are in contact with radiosumin C (3) and radiosumin D (4) in MD simulation. Red = ionic interaction, green = H bond interaction, blue = water bridge interaction, purple = hydrophobic interaction.

Experiment	SW F ₁ [Hz]	SW F ₂ [Hz]	t _{1,max} [ms]	t ₂ [ms]	$\tau_m [ms]$	NS
¹ H with pre-saturation	-	12820	-	51280	-	16
TOCSY	8002	8012	256	2048	90	8
DQF-COSY	8800	8800	1024	4096	-	8
ROESY	8800	8800	200	1024	200	8
¹³ C HSQC	36226	8012	256	1024	-	8
¹³ C HSQC-TOCSY	36226	8012	256	900	90	24
¹³ C HMBC	40256	8012	512	900	-	64
¹⁵ N HMBC	8112	8012	128	900	-	24

Table S6. Experimental parameters used in NMR experiments

- 1. K. Blin, S. Shaw, A. M. Kloosterman, Z. Charlop-Powers, G. P. van Wezel, M. H. Medema and T. Weber, *Nucleic Acids Res.*, 2021, **49**, W29-W35.
- 2. M. Rottig, M. H. Medema, K. Blin, T. Weber, C. Rausch and O. Kohlbacher, *Nucleic Acids Res.* 2011, **39**, W362-367.
- 3. B. A. Pfeifer, S. J. Admiraal, H. Gramajo, D. E. Cane and C. Khosla, *Sci.*, 2001, **291**, 1790-1792.
- 4. E. R. Duell, P. M. D'Agostino, N. Shapiro, T. Woyke, T. M. Fuchs and T. A. M. Gulder, *Microb Cell Fact.*, 2019, **18**, 1-11.