Electronic Supplementary Material (ESI) for Organic & Biomolecular Chemistry. This journal is © The Royal Society of Chemistry 2023

Intramolecular Buchwald-Hartwig N-Arylation of Bicyclic Hydrazines: Practical Access to Spiro[indoline-2,3'-piperidines]

Claire Fleurisson,^a Nessrine Graidia,^a Yann Foricher,^b Erica Benedetti,^{a,*} and Laurent Micouin^{a,*}

^a Université Paris Cité, CNRS, Laboratoire de Chimie et de Biochimie Pharmacologiques et Toxicologiques, F-75006 Paris, France ^b Sanofi R&D, Integrated Drug Discovery, F-94400 Vitry-sur-Seine, France

Supporting Information

Table of contents

General remarks							
Synthetic procedures and characterization data							
Synthesis of di-tert-Butyl 1-(2-bromobenzyl)-2,3-diazabicyclo[2.2.1]hept-5-ene-2,3-dicarboxylate							
Synthesis of di-tert-Butyl 1-(2-bromobenzyl)-5,6-dihydroxy-2,3-diazabicyclo[2.2.1]heptane-2,3-dicarboxylate							
General procedure A: Oxidative cleavage and reductive amination							
General procedure B: Deprotection and intramolecular Buchwald – Hartwig N-arylation							
General procedure C: Hydrogenolysis and Boc-protection of the free amino groups							
General procedure D: Boc-deprotection							
¹ H NMR and ¹³ C NMR spectra							
	List of abbreviations						
AcOH	Acetic acid						
Вос	oc Tert-Butyl carbamate						
Boc ₂ O	·						
DABD	·						
DCM	·						
DMSO							
ESI	Electrospray ionization						
Et ₂ O	Diethyl ether						
Et ₃ N	Triethylamine						
EtOAc	Ethyl acetate						
HPLC	High pressure liquid chromatography						
HRMS	High resolution mass spectrometry						
IR	Infrared						
MeOH	Methanol						
NaO ^t Bu	Sodium tert-butoxide						
<i>n</i> BuLi	n-Butyllithium						
NMO	N-Methylmorpholine N-oxide						
NMR	Nuclear magnetic resonance						
r.t.	Room temperature						
STAB	Sodium triacetoxyborohydride						
THF	tetrahydrofuran						
TLC	Thin layer chromatography						
TMEDA	, ,						
UV	Ultraviolet						

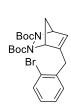
General Remarks

All reactions were carried out under inert atmosphere in oven-dried glassware, using dry solvents unless otherwise specified. Anhydrous solvents were bought from Merck Chemicals. Commercially available chemicals were purchased from Acros, Sigma-Aldrich, Alfa Aesar, VWR, StremChemicals, Enamine or Fluorochem and used as received. Analytical thin layer chromatography (TLC) was performed on silica gel plates (Merck 60F254) visualized with a UV lamp (254 nm) or permanganate, phosphomobyliden and ninhydrin stain solutions, followed by heating. Flash chromatography was performed on silica gel (60-230 mesh) unless otherwise stated. Organic extracts were dried over anhydrous MgSO₄. NMR spectra (¹H and ¹³C{¹H}) were recorded on Bruker Avancell 500 spectrometer, at 500 MHz (H value) in CDCl₃, DMSO-d₆, CD₃OD or D₂O. Spectra were referenced to residual nondeuterated solvent signal (chloroform: 7.26 ppm, 1 H; 77.0 ppm, 13 C{ 1 H}. DMSO- d_6 : 2.50 ppm, 1H; 39.52 ppm, 13C{1H}. CD₃OD: 3.31 ppm, ¹H; 49.00 ppm, ¹³C{¹H}. D₂O: 4.79 ppm, ¹H). Chemical shifts are reported in ppm, multiplicities are indicated by s (singlet), d (doublet), t (triplet), q (quartet), p (pentet), and m (multiplet or overlap of nonequivalent resonances), dd (doublet of doublet), td (triplet of doublet), and br (broad signal). Coupling constants, J, are reported in hertz (Hz). All NMR spectra were obtained at 300K unless otherwise specified. IR spectra were obtained using a spectrum one FT-IR spectrometer (Perkin Elmer). High Resolution mass spectra were recorded on a ThermoFischer Exactive Orbitrap spectrometer. HPLC analyses were performed on a Shimadzu chromatograph equipped with a diode array UV/VIS detector.

Synthetic procedures and characterization data

Synthesis of di-tert-Butyl 1-(2-bromobenzyl)-2,3-diazabicyclo[2.2.1]hept-5-ene-2,3-dicarboxylate

C₂₂H₂₉BrN₂O₄ 465,4 g/mol


To a solution of freshly distilled cyclopentadiene (0.05 mL, 0.59 mmol, 1.0 eq.) and TMEDA (0.09 mL, 0.59 mmol, 1.0 eq.) in ether (2 mL) was added dropwise *n*-BuLi (0.28 mL, 0.59 mmol, 1.0 eq, 2.15 M in hexane) at 0 °C. The mixture was stirred for 6h at r.t. then cooled down to 0 °C. 2-Bromobenzyl bromide (152 mg, 0.59 mmol, 1.0 eq.) dissolved in ether (1 mL) was added and the resulting solution was stirred at r.t. for 2h. The reaction mixture was then quenched with a saturated NH₄Cl solution. The aqueous phase was extracted with DCM (3x). The combined organic phases were dried over MgSO₄, filtered, and concentrated under reduced pressure at r.t. The residue was dissolved in DCM (1 mL) and DBAD (119 mg, 0.52 mmol, 0.9 eq.) was added. The resulting mixture was stirred overnight at r.t., and then concentrated *in vacuo*. The crude product was purified by silica gel column chromatography (eluent: cyclohexane/EtOAc, 95/5 to 92/8) to afford 2 (56 mg, 0.12 mmol, 20 %) and 2′ (67 mg, 0.14 mmol, 24 %) as white amorphous solids. This procedure was reproduced several times and successfully scaled up to 5 g of starting material.

¹**H NMR** (500 MHz, CDCl₃) δ (ppm) 7.53 (d, J = 8.0 Hz, 1H), 7.46 (d, J = 7.6 Hz, 1H), 7.23 (t, J = 7.5 Hz, 1H), 7.07 (t, J = 7.5 Hz, 1H), 6.73 (d, J = 5.4 Hz, 1H), 6.36 (dd, J = 5.4, 3.0 Hz, 1H), 5.03 (s, 1H), 3.96 (s, 2H), 1.60 (dd, J = 13.6, 4.8 Hz, 2H), 1.51 – 1.40 (m, 18H).

¹³C NMR (126 MHz, CDCl₃) δ (ppm) 159.1, 157.8, 142.7, 137.5, 133.8, 132.9, 132.5, 128.3, 127.3, 125.3, 81.7, 81.2, 79.0, 63.6, 52.4, 36.7, 28.7, 28.5, 28.4, 28.3, 28.2, 27.1.

HRMS (ESI+-Orbitrap) m/z: [M+H]+ Calcd for C₂₂H₃₀N₂O₄Br 465.1383, found 465.1382.

¹**H NMR** (300 MHz, DMSO- d_6 , 90 °C) δ (ppm) 7.59 (dd, J = 7.9, 1.2 Hz, 1H), 7.36 -7.23 (m, 2H), 7.22 – 7.14 (m, 1H), 5.89 (s, 1H), 4.89 (d, J = 13.7 Hz, 2H), 3.82 – 3.59 (m, 2H), 1.75 (d, J = 8.6 Hz, 1H), 1.53 (dt, J = 8.6, 1.7 Hz, 1H), 1.44 (s, 9H), 1.41 (s, 9H).

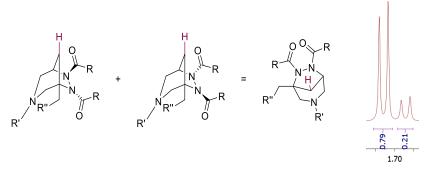
¹³C NMR (126 MHz, DMSO-*d*₆, 90°C) δ (ppm) 156.6, 156.2, 137.1, 132.1, 130.5, 128.0, 127.3, 123.4, 80.0, 79.8, 66.8, 64.9, 58.5, 47.3, 35.7, 33.6, 27.5, 27.4.

HRMS (ESI+-Orbitrap) m/z: $[M+H]^+$ Calcd for $C_{22}H_{30}N_2O_4Br$ 465.1383, found 465.1379.

Synthesis of di-tert-Butyl 1-(2-bromobenzyl)-5,6-dihydroxy-2,3-diazabicyclo[2.2.1]heptane-2,3-dicarboxylate

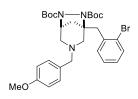
C₂₂H₃₁BrN₂O₆ 499,4 g/mol

To a solution of 2 (536 mg, 1.15 mmol, 1.0 eq.) in THF (10 mL) were added NMO (162 mg, 1.36 mmol, 1.2 eq.) in water (1 mL), and $K_2OsO_4.2H_2O$ (3 mg, 0.001 mmol, 0.008 eq). The resulting mixture was stirred at r.t. for 2 h. A solution of NaHSO₃ (15 % in water) was then added. The aqueous phase was extracted with ether (3x). The combined organic layers were washed with brine, dried over MgSO₄, filtered, and concentrated under reduced pressure. The crude residue was purified by silica gel column chromatography (eluent: pentane/EtOAc, 8/2 to 7/3) to afford product **3** (500 mg, 1.00 mmol, 87 %) as a white amorphous solid. This procedure was reproduced several times.


¹H NMR (500 MHz, CDCl₃) δ (ppm) 7.51 (m, 2H), 7.22 (t,
$$J$$
 = 7.5 Hz, 1H), 7.07 (t, J = 7.6 Hz, 1H), 4.21 – 4.10 (br s, 3H), 4.01 – 3.81 (br s, 1H), 3.70 – 3.61 (br m, 2H), 3.57 (br s, 1H), 2.14 (d, J = 11.4 Hz, 1H), 1.53 (s, 9H), 1.31 (s, 9H), 1.12 (d, J = 11.2 Hz, 1H). Br 13 C NMR (126 MHz, CDCl₃) δ (ppm) 157.4 (br s), 156.8 (br s), 137.5, 132.7, 128.1, 127.2, 125.6, 81.8, 75.7 (br s), 72.2, 71.5, 61.6 (br s), 35.6, 32.4, 28.5, 28.0.

HRMS (ESI+-Orbitrap) m/z: $[M-H]^{-}$ Calcd for $C_{22}H_{30}N_2O_6Br$ 497.1293, found 497.1294.

General procedure A: Oxidative cleavage and reductive amination


To a vigorously stirred solution of silica (column grade) in DCM (0.03 M), NaIO₄ (0.65 M, 1.4 eq.) in H_2O were added dropwise until formation of a flaky suspension was observed. A solution of diol **3** (1.0 eq.) in DCM (0.03 M) was then added. The mixture was monitored by TLC and kept under stirring until complete consumption of the starting material. The solution was then filtered through a sintered glass funnel packed with Na_2SO_4 and concentrated under reduced pressure. The resulting residue was dissolved in DCM (0.5 M) and the corresponding amine (1.1 eq.) was added followed by the reducing agent (3.0 eq.) and AcOH (1.8 eq.). The mixture was stirred for 16 h at r.t. before being quenched with a saturated aqueous $NaHCO_3$ solution. The aqueous phase was extracted with DCM (3x). The combined organic layers were dried over $MgSO_4$, filtered, and concentrated *in vacuo*. Flash chromatography over silica gel (eluent: cyclohexane/EtOAc) finally afforded the desired product.

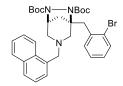
<u>Note:</u> Products **5a-h**, obtained after the reductive amination step, have all been isolated as mixture of rotamers or invertomers. Consequently, splitting of the signals are observed in ¹H and ¹³C NMR spectra.

di-tert-Butyl 1-(2-bromobenzyl)-3-(4-met dicarboxylate (5a)

1-(2-bromobenzyl)-3-(4-methoxybenzyl)-3,6,7-triazabicyclo[3.2.1]octane-6,7-

C₃₀H₄₀BrN₃O₅ 602.6 g/mol

Product **5a** was synthesized according to the general procedure A using Silica (1.4 g), NaIO₄ (200 mg, 0.93 mmol, 1.4 eq.), compound **3** (333 mg, 0.67 mmol, 1.0 eq.), 4-methoxybenzylamine (0.1 mL, 0.73 mmol, 1.1 eq.), tetra-butylammonium borohydride (515 mg, 2.00 mmol, 3.0 eq.), AcOH (0.1 mL, 1.20 mmol, 1.8 eq.), and DCM (25 mL, 2 mL). Flash chromatography over silica gel (Cyclohexane/EtOAc, 9/1) afforded the title compound (254 mg, 0.42 mmol, 63 %) as a white amorphous solid.

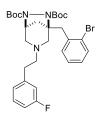

 $^{1}H \ NMR \ (500 \ MHz, CDCl_{3}) \ \delta \ (ppm) \ 7.54 - 7.43 \ (m, 2H), \ 7.26 - 7.21 \ (m, 3H), \\ 7.07 \ (m, 1H), \ 6.88 - 6.82 \ (m, 2H), \ 4.26 \ (m, 1H), \ 3.83 - 3.76 \ (m, 3.7H), \ 3.74 - 3.63 \ (m, 1H), \ 3.61 - 3.55 \\ (m, 1H), \ 3.48 \ (m, 1H), \ 3.38 - 3.33 \ (m, 0.3H), \ 3.20 \ (m, 1H), \ 3.07 \ (m, 1H), \ 2.27 - 2.15 \ (m, 1H), \ 2.10 - 2.05 \\ (m, 1H), \ 1.68 - 1.45 \ (m, 11H), \ 1.38 - 1.32 \ (m, 9H).$

¹³C NMR (126 MHz, CDCl₃) δ (ppm) 158.8, 158.8, 157.8, 155.7, 136.7, 136.4, 133.6, 133.1, 132.5, 132.4, 130.2, 130.1, 129.7, 129.5, 128.3, 128.1, 127.3, 126.2, 126.1, 113.9, 113.6, 81.0, 80.9, 80.8, 80.6, 67.8, 67.7, 61.0, 60.8, 60.5, 58.9, 55.4, 55.1, 54.6, 54.5, 40.4, 39.9, 38.2, 38.0, 28.7, 28.7, 28.2, 28.1, 27.1.

HRMS (ESI+-Orbitrap) m/z: [M+H]⁺ Calcd for C₃₀H₄₁N₃O₅Br 602.2224, found 602.2211.

• di-tert-Butyl 1-(2-bromobenzyl)-3-(naphthalen-1-ylmethyl)-3,6,7-triazabicyclo[3.2.1]octane-6,7-dicarboxylate (5b)

Product **5b** was synthesized according to the general procedure A using Silica (2.5 g), NaIO₄ (360 mg, 1.68 mmol, 1.4 eq.), compound **3** (600 mg, 1.20 mmol, 1.0 eq.), 1.1 eq.), tetra-butylammonium borohydride (927 mg, 3.60 mmol, 3.0 eq.), AcOH (0.12 mL, 2.10 mmol, 1.8 eq.), and DCM (40 mL, 4 mL). Flash chromatography over silica gel (eluent: cyclohexane/EtOAc, 9/1) afforded the title compound (588 mg, 0.94 mmol, 79 %) as a white amorphous solid.


 $C_{33}H_{40}BrN_3O_4$ 622.6 g/mol

¹H NMR (500 MHz, CDCl₃) δ (ppm) 8.16 (d, J = 8.4 Hz, 0.3H), 8.05 (d, J = 8.2 Hz, 0.5H), 7.84 (m, 1.2H), 7.74 (m, 1.5H), 7.57 – 7.42 (m, 5.7H), 7.25 – 7.22 (m, 0.8H), 7.12 – 7.02 (m, 1.2H), 4.58 (m, 0.1H), 4.31 (m, 1H), 4.12 (m, 1H), 3.95 (d, J = 13.5 Hz, 0.4H), 3.85 (d, J = 14.0 Hz, 0.6H), 3.75 (dd, J = 10.4, 1.3 Hz, 0.6H), 3.56 (d, J = 14.2 Hz, 0.4H), 3.44 (t, J = 9.8 Hz, 0.4H), 3.26 (m, 1.8H), 2.40 (d, J = 10.5 Hz, 0.6H), 2.33 (d, J = 10.6 Hz, 0.4H), 2.25 (d, J = 10.9 Hz, 0.4H), 2.19 – 2.13 (m, 0.6H), 1.71 (d, J = 11.3 Hz, 1H), 1.61 – 1.48 (m, 7.0H), 1.42 – 1.24 (m, 12.7H).

¹³C NMR (126 MHz, CDCl₃) δ (ppm) 159.7, 159.5, 156.9, 138.5, 138.3, 135.8, 135.7, 135.6, 135.4, 134.9, 134.8, 134.4, 134.3, 134.2, 133.9, 133.1, 132.4, 131.8, 131.6, 131.3, 130.7, 130.3, 130.1, 130.0, 129.7, 129.3, 129.2, 129.2, 128.4, 128.1, 128.0, 127.9, 127.6, 127.4, 127.3, 127.2, 126.3, 125.2, 123.6, 82.9, 82.8, 82.7, 82.6, 69.6, 69.1, 63.0, 61.8, 61.2, 59.5, 59.2, 58.0, 57.3, 56.5, 55.6, 42.3, 41.9, 40.1, 39.9, 30.4, 30.3, 30.1, 29.9, 28.9.

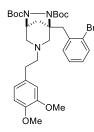
HRMS (ESI+-Orbitrap) m/z: $[M+H]^+$ Calcd for $C_{33}H_{41}N_3O_4Br$ 622.2275, found 622.2261.

• di-tert-Butyl 1-(2-bromobenzyl)-3-(3-Fluorophenethyl)-3,6,7-triazabicyclo[3.2.1]octane-6,7-dicarboxylate (*5c*)

Product **5c** was synthesized according to the general procedure A using Silica (2.1 g), NaIO₄ (300 mg, 1.40 mmol, 1.4 eq.), compound **3** (500 mg, 1.00 mmol, 1.0 eq.), fluorophenethylamine (0.14 mL, 1.10 mmol, 1.1 eq.), STAB (637 mg, 3.00 mmol, 3.0 eq.), AcOH (0.1 mL, 1.80 mmol, 1.8 eq.), and DCM (30 mL, 30 mL, 10 mL). Flash chromatography over silica gel (eluent: cyclohexane/EtOAc, 8/2) afforded the title compound (548 mg, 0.91 mmol, 91 %) as a white amorphous solid.

C₃₀H₃₉BrFN₃O₄ 604.6 g/mol

¹H NMR (500 MHz, CDCl₃) δ (ppm) 7.54 – 7.48 (m, 1H), 7.46 (t, J = 8.0 Hz, 1H), 7.24 (m, 2H), 7.07 (q, J = 8.4 Hz, 1H), 6.93 (d, J = 7.6 Hz, 1H), 6.87 (dd, J = 15.8, 9.1 Hz, 2H), 4.32 (d, J = 3.4 Hz, 1H), 3.78 (d, J = 14.1 Hz, 0.6H), 3.64 (d, J = 10.2


Hz, 0.6H), 3.60 (d, J = 14.2 Hz, 0.4H), 3.43 (d, J = 10.4 Hz, 0.4H), 3.27 – 3.18 (m, 1.4H), 3.14 (d, J = 8.5 Hz, 0.6H), 2.81 – 2.73 (m, 2H), 2.73 – 2.64 (m, 2H), 2.35 – 2.23 (m, 1.4H), 2.17 (d, J = 10.4 Hz, 0.6H), 1.68 (d, J = 11.4 Hz, 1H), 1.60 (s, 4H), 1.54 (s, 6H), 1.37 (s, 3H), 1.36 (s, 3H).

¹³C NMR (126 MHz, CDCl₃) δ (ppm) 163.1 (d, J = 245.6 Hz), 158.0, 157.6, 156.9, 155.7, 143.1 (d, J = 7.3 Hz), 142.9 (d, J = 7.2 Hz), 136.7, 136.4, 133.6, 133.1, 132.6, 132.4, 130.0 (d, J = 8.3 Hz), 130.0 (d, J = 8.4 Hz), 128.3, 128.1, 127.3, 127.3, 126.2, 126.1, 124.4 (d, J = 2.7 Hz), 124.4 (d, J = 2.7 Hz), 115.6 (d, J = 20.9 Hz), 113.0 (d, J = 21.1 Hz), 81.1, 81.0, 80.8, 80.3, 67.7, 67.4, 60.5, 60.4, 58.8, 58.5, 55.8, 55.6, 54.5, 53.7, 40.4, 40.0, 38.2, 38.1, 33.8, 33.5, 28.8, 28.6, 28.2, 28.1.

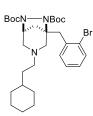
¹⁹**F NMR** (471 MHz, CDCl₃) δ (ppm) -113.6.

HRMS (ESI+-Orbitrap) m/z: $[M+H]^+$ Calcd for $C_{30}H_{40}N_3O_4BrF$ 604.2181, found 604.2174.

• di-tert-Butyl 1-(2-bromobenzyl)-3-(3,4-dimethoxyphenethyl)-3,6,7-triazabicyclo[3.2.1]octane-6,7-dicarboxylate (5d)

 $C_{32}H_{44}BrN_3O_6$ 646.6 g/mol

Product **5d** was synthesized according to the general procedure A using Silica (1.4 g), NalO₄ (200 mg, 0.93 mmol, 1.4 eq.), compound **3** (333 mg, 0.67 mmol, 1.0 eq.), 3,4-dimethoxyphenethylamine (0.12 mL, 0.73 mmol, 1.1 eq.), tetrabutylammonium borohydride (515 mg, 2.00 mmol, 3.0 eq.), AcOH (0.1 mL, 1.20 mmol, 1.8 eq.), and DCM (25 mL, 2 mL). Flash chromatography over silica gel (eluent: cyclohexane/EtOAc, 9/1 to 8/2) afforded the title compound (264 mg, 0.40 mmol, 61 %) as a white amorphous solid.


646.6 g/mol
¹H NMR (500 MHz, CDCl₃) δ (ppm) 7.54 – 7.48 (m, 1H), 7.48 – 7.43 (m, 1H), 7.25 – 7.22 (m, 1H), 7.07 (ddd, J = 9.4, 8.7, 1.7 Hz, 1H), 6.79 (dd, J = 6.6, 3.0 Hz, 1H), 6.69 (ddd, J = 7.6, 4.6, 1.7 Hz, 2H), 4.32 (s, 1H), 3.89 – 3.83 (m, 6H), 3.78 (d, J = 14.1 Hz, 0.7H), 3.67 – 3.57 (m, 1H), 3.45 (d, J = 9.3 Hz, 0.3H), 3.27 – 3.14 (m, 2H), 2.79 – 2.58 (m, 4H), 2.35 – 2.16 (m, 2H),

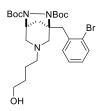
¹³C NMR (126 MHz, CDCl₃) δ (ppm) 169.9, 158.0, 157.6, 156.8, 155.7, 149.0, 147.4, 136.6, 136.4, 133.6, 133.2, 133.1, 132.5, 132.4, 128.3, 128.1, 127.3, 127.3, 126.1, 120.6, 112.1, 112.0, 111.4, 81.1, 80.9, 80.8, 80.3, 79.3, 67.8, 67.3, 60.3, 59.4, 59.0, 58.5, 56.1, 56.0, 55.5, 54.4, 53.7, 40.4, 39.9, 38.1, 38.0, 33.8, 33.3, 28.7, 28.6, 28.2, 28.1.

HRMS (ESI+-Orbitrap) m/z: $[M+H]^+$ Calcd for $C_{32}H_{45}N_3O_6Br$ 646.2486, found 646.2472.

1.69 (d, J = 11.3 Hz, 1H), 1.62 - 1.51 (m, 10H), 1.36 (d, J = 7.1 Hz, 9H).

• di-tert-Butyl 1-(2-bromobenzyl)-3-(2-cyclohexylethyl)-3,6,7-triazabicyclo[3.2.1]octane-6,7-dicarboxylate (5e)

C₃₀H₄₆N₃O₄Br 591.6 g/mol


Product **5e** was synthesized according to the general procedure A using Silica (4.2 g), NaIO₄ (0.6 g, 2.80 mmol, 1.4 eq.), compound **3** (1.0 g, 2.00 mmol, 1.0 eq.), 2-cyclohexyl-ethylamine (0.31 mL, 2.20 mmol, 1.1 eq.), tetra-butylammonium borohydride (1.6 g, 6.00 mmol, 3.0 eq.), AcOH (0.21 mL, 3.60 mmol, 1.8 eq.), and DCM (66 mL, 6 mL). Flash chromatography over silica gel (eluent: cyclohexane/EtOAc, 9/1 to 8/2) afforded the title compound (490 mg, 0.83 mmol, 41 %) as a white amorphous solid.

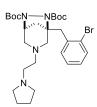
¹H NMR (500 MHz, CDCl₃) δ (ppm) 7.53 – 7.48 (m, 1H), 7.47 – 7.43 (m, 1H), 7.26 – 7.20 (m, 1H), 7.10 – 7.04 (m, 1H), 4.28 (d, J = 3.5 Hz, 1H), 3.76 (d, J = 14.1 Hz, 0.7H), 3.61 – 3.50 (m, 1H), 3.35 (dd, J = 10.5, 1.5 Hz, 0.3H), 3.25 – 3.14 (m, 1.3H), 3.08 (dd, J = 10.9, 3.1 Hz, 0.7H), 2.48 – 2.34 (m, 2H), 2.19 – 2.02 (m, 2H), 1.71 – 1.45 (m, 15H), 1.39 – 1.30 (m, 11H), 1.25 – 1.12 (m, 4H), 0.94 – 0.81 (dd, J = 22.3, 11.0 Hz, 2H).

¹³C NMR (126 MHz, CDCl₃) δ (ppm) 158.0, 157.6, 157.0, 155.6, 136.8, 136.5, 133.6, 133.1, 132.5, 132.3, 128.2, 128.0, 127.3, 127.2, 126.2, 126.1, 80.9, 80.8, 80.7, 80.2, 67.8, 67.3, 60.5, 58.8, 56.0, 55.7, 55.2, 55.0, 54.5, 53.8, 40.5, 40.0, 38.2, 38.0, 36.5, 36.2, 34.7, 34.6, 33.7, 33.7, 33.6, 33.6, 28.7, 28.6, 28.2, 28.1, 27.1, 26.7, 26.4.

HRMS (ESI+-Orbitrap) m/z: $[M+H]^+$ Calcd for $C_{30}H_{47}N_3O_4Br$ 579.2540, found 592.2744.

• di-tert-Butyl 1-(2-bromobenzyl)-3-(4-hydroxybutyl)-3,6,7-triazabicyclo[3.2.1]octane-6,7-dicarboxylate (*5f*)

C₂₆H₄₀BrN₃O₅ 554.5 g/mol


Product **5f** was synthesized according to the general procedure B using Silica (1.5 g), NaIO₄ (210 mg, 0.98 mmol, 1.4 eq.), compound **3** (350 mg, 0.70 mmol, 1.0 eq.), butanolamine (0.07 mL, 0.77 mmol, 1.1 eq.), tetra-butylammonium borohydride (541 mg, 2.10 mmol, 3.0 eq.), AcOH (0.1 mL, 1.26 mmol, 1.8 eq.), and DCM (25 mL, 2 mL). Flash chromatography over silica gel (eluent: cyclohexane/EtOAc, 7/3) afforded the title compound (304 mg, 0.55 mmol, 78 %) as a white amorphous solid.

¹H NMR (500 MHz, CDCl₃) δ (ppm) 7.54 – 7.47 (m, 1H), 7.44 (m, 1H), 7.25 – 7.21 (m, 1H), 7.10 – 7.03 (m, 1H), 4.29 (s, 1H), 3.77 (d, J = 14.1 Hz, 0.7H), 3.65 – 3.54 (m, 3H), 3.33 – 3.07 (m, 4.3H), 2.47 – 2.41 (m, 2H), 2.16 (m, 1H), 2.11 – 2.03 (m, 1H), 1.68 – 1.63 (m, 3H), 1.59 – 1.51 (m, 12H), 1.34 (d, J = 6.0 Hz, 9H).

¹³C NMR (126 MHz, CDCl₃) δ (ppm) 157.8, 155.8, 136.7, 136.4, 133.5, 133.0, 132.5, 132.4, 128.3, 128.1, 127.3, 126.2, 126.1, 81.2, 80.9, 80.9, 80.5, 67.6, 67.5, 63.0, 62.9, 61.2, 60.6, 58.7, 56.9, 56.7, 55.5, 55.1, 54.6, 53.6, 40.4, 40.1, 38.2, 38.0, 30.6, 30.4, 28.8, 28.6, 28.2, 28.1, 23.2, 23.1.

HRMS (ESI+-Orbitrap) m/z: $[M+H]^+$ Calcd for $C_{30}H_{41}N_3O_5Br$ 554.2224, found 554.2211.

• di-tert-Butyl 1-(2-bromobenzyl)-3-(2-(pyrrolidin-1-yl)ethyl)-3,6,7-triazabicyclo[3.2.1]octane-6,7-dicarboxylate (**5g**)

C₂₈H₄₃BrN₄O₄ 579.6 g/mol

Product **5g** was synthesized according to the general procedure A using Silica (4.2 g), NalO₄ (0.6 g, 2.80 mmol, 1.4 eq.), compound **3** (1.0 g, 2.00 mmol, 1.0 eq.), N-(2-aminoethyl)pyrrolidine (0.28 mL, 2.20 mmol, 1.1 eq.), tetrabutylammonium borohydride (1.55 g, 6.00 mmol, 3.0 eq.), AcOH (0.21 mL, 3.6 mmol, 1.8 eq.), and DCM (66 mL, 8 mL). Flash chromatography over silica gel (eluent: cyclohexane/EtOAc, 8/2 to 7/3) afforded the title compound (499 mg, 0.86 mmol, 43 %) as a white amorphous solid.

¹**H NMR** (500 MHz, CDCl₃) δ (ppm) 7.51 (t, J = 8.7 Hz, 1H), 7.45 – 7.39 (m, 1H), 7.26 – 7.22 (m, 1H), 7.12 – 7.05 (m, 1H), 4.30 (d, J = 3.5 Hz, 1H) 3.74 (d, J = 14.1 Hz, 0.6H), 3.58 (d, J = 13.5 Hz, 1H), 3.40 – 3.05 (m, 4.7H), 2.98 – 2.85 (m, 3.2H), 2.81 – 2.62 (m, 2.4H), 2.37 – 2.29 (m, 1H), 2.28 – 2.09 (m, 3.3H), 1.92 – 1.83 (m, 2H), 1.68 (d, J = 11.3 Hz, 1.3H), 1.60 (s, 4.5H), 1.57 – 1.48 (m, 6H), 1.35 (d, J = 5.1 Hz, 9H).

¹³C NMR (126 MHz, CDCl₃) δ (ppm) 169.9, 157.7, 157.5, 156.9, 155.6, 136.4, 136.2, 133.5, 133.0, 132.6, 132.5, 128.3, 128.2, 127.3, 126.2, 126.1, 81.3, 81.1, 81.0, 80.4, 79.3, 67.4, 67.4, 62.4, 62.3, 61.8, 61.7, 61.4, 61.3, 58.6, 56.4, 56.0, 54.6, 53.6, 52.6, 52.1, 40.3, 40.0, 38.1, 37.9, 28.7, 28.6, 28.2, 28.1, 22.9, 22.8, 22.8, 22.7.

HRMS (ESI+-Orbitrap) m/z: [M+H]⁺ Calcd for C₂₈H₄₄N₄O₄Br 579.2540, found 579.2521.

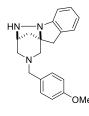
• di-tert-Butyl 1-(2-bromobenzyl)-3-isopropyl-3,6,7-triazabicyclo[3.2.1]octane-6,7-dicarboxylate (5h)

C₂₅H₃₈BrN₃O₄ 524.5 g/mol

Product **5h** was synthesized according to the general procedure A using Silica (2.5 g), NaIO₄ (360 mg, 1.68 mmol, 1.4 eq.), compound **3** (600 mg, 1.20 mmol, 1.0 eq.), isopropyl amine (0.11 mL, 1.32 mmol, 1.1 eq.), tetrabutylammonium borohydride (927 mg, 3.60 mmol, 3.0 eq.), AcOH (0.12 mL, 2.10 mmol, 1.8 eq.), and DCM (40 mL, 4 mL). Flash chromatography over silica gel (eluent: cyclohexane/EtOAc, 95/5 to 9/1) afforded the title compound (269 mg, 0.51 mmol, 43 %) as a white amorphous solid.

¹H NMR (500 MHz, CDCl₃) δ (ppm) 7.53 – 7.42 (m, 2H), 7.26 – 7.21 (m, 1H), 7.10 – 7.03 (m, 1H), 4.30 (t, J = 3.6 Hz, 1H), 3.78 (d, J = 14.1 Hz, 0.7H), 3.59 (d, J = 14.2 Hz, 0.3H), 3.48 (d, J = 10.4, 0.7H), 3.27 – 3.14 (m, 1.3H), 3.06 – 3.00 (dd, J = 10.7, 3.5 Hz, 1H), 2.86 – 2.73 (m, 1H), 2.41 (d, J = 10.8 Hz, 0.3H), 2.36 – 2.28 (m, 1H), 2.24 – 2.15 (m, 0.7H), 1.66 – 1.61 (m, 1H), 1.61 – 1.57 (m, 3H), 1.53 (s, 6H), 1.51 – 1.41 (m, 1H), 1.33 – 1.38 (m, 9H), 1.06 – 0.98 (m, 6H).

¹³C NMR (126 MHz, CDCl₃) δ (ppm) 157.9, 157.8, 155.6, 136.8, 136.6, 133.6, 133.1, 132.5, 132.3, 128.2, 128.0, 127.3, 127.2, 126.2, 126.1, 81.0, 80.8, 80.7, 80.2, 67.9, 67.5, 55.7, 54.9, 54.6, 53.8, 53.4, 53.2, 40.5, 40.1, 38.3, 38.0, 28.7, 28.6, 28.2, 28.1, 27.1, 19.3, 18.3, 18.1, 18.0.

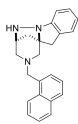

HRMS (ESI+-Orbitrap) m/z: $[M+H]^+$ Calcd for $C_{25}H_{39}N_3O_4Br$ 524.2118, found 254.2107.

General procedure B: Deprotection and intramolecular Buchwald – Hartwig N-arylation

Substrate **5a-h** (1.0 eq) were dissolved in a 1.5 M solution of HCl in methanol. The resulting mixture was tired overnight at r.t., and then concentrated under reduced pressure. The residue was dissolved in 1,4-dioxane (0.04 M). NaO^tBu (3.5 eq.) and RuPhos Pd G3 (0.02 eq.) were added, and the resulting solution was stirred for 2h at reflux. The reaction mixture was then cooled back to r.t. and filtered through a pad of Celite® (eluent: DCM/MeOH, 8/2). The filtrate was collected and concentrated *in vacuo*. Flash chromatography over silica gel (eluent: pentane/EtOAc, 9/1 to 8/2) finally afforded products **6a-h**.

• 4-(4-Methoxybenzyl)-2,3,4,5-tetrahydro-1H,6H-2,5a-methano[1,2,5]triazepino[1,7-a]indole (6a)

Product **6a** was synthesized according to the general procedure B using HCl (1.5 M, 5 mL), compound **5a** (311 mg, 0.52 mmol, 1.0 eq.), 1,4-dioxane (13 mL), NaO^tBu (175 mg, 1.82 mmol, 3.5 eq.), and RuPhos Pd G3 (9 mg, 0.01 mmol, 0.02 eq.). Flash chromatography over silica gel (eluent pentane/EtOAc, 8/2) afforded the title compound (139 mg, 0.43 mmol, 83 %) as a colorless oil.


¹H NMR (500 MHz, CDCl₃) δ 7.52 (dd, J = 8.0, 0.9 Hz, 1H), 7.46 (dd, J = 7.7, 1.6 Hz, 1H), 7.25 - 7.20 (m, 1H), 7.12 (d, J = 8.5 Hz, 2H), 7.07 (td, J = 7.8, 1.6 Hz, 1H), 6.84 -6.80 (m, 2H), 4.94 – 4.89 (m, 1H), 3.82 – 3.77 (m, 4H), 3.50 – 3.45 (m, 3H), 2.92 (dd, J = 11.0, 3.6 Hz, 1H), 2.85 (dd, J = 11.1, 1.9 Hz, 1H), 2.07 (dd, J = 11.0, 1.0 Hz, 1H),1.95 (d, J = 11.2 Hz, 1H), 1.36 (ddd, J = 9.6, 4.9, 3.0 Hz, 1H), 1.27 - 1.23 (m, 1H).

 $C_{20}H_{23}N_3O$ 321.4 g/mol

¹³C NMR (126 MHz, CDCl₃) δ 158.9, 136.4, 132.8, 132.7, 130.1, 129.4, 128.5, 127.7, 125.7, 113.8, 85.2, 78.2, 60.0, 55.4, 53.9, 48.3, 39.4, 38.2.

HRMS (ESI+-Orbitrap) m/z: $[M+H]^+$ Calcd for $C_{20}H_{24}N_3O$ 322.1914, found 322.1905.

4-(Naphthalen-1-ylmethyl)-2,3,4,5-tetrahydro-1H,6H-2,5a-methano[1,2,5]triazepino[1,7-a]indole (6b)

Product **6b** was synthesized according to the general procedure B using HCl (1.5 M, 5 mL), compound **5b** (300 mg, 0.48 mmol, 1.0 eq.), 1,4-dioxane (12 mL), NaO^tBu (162 mg, 1.68 mmol, 3.5 eq.), and RuPhos Pd G3 (8 mg, 0.01 mmol, 0.02 eq.). Flash chromatography over silica gel (eluent: pentane/EtOAc, 9/1 to 8/2 to DCM/MeOH 10/0 to 9/1) afforded the title compound (106 mg, 0.31 mmol, 65 %) as a white amorphous.

 $C_{23}H_{23}N_3$ 341.5 g/mol

11.4 Hz, 1H).

¹H NMR (500 MHz, CDCl₃) δ (ppm) 8.08 (d, J = 8.2 Hz, 1H), 7.82 (d, J = 8.9 Hz, 1H), 7.76 (d, J = 7.7 Hz, 1H), 7.54 - 7.41 (m, 4H), 7.40 - 7.33 (m, 2H), 7.20 (d, J = 7.4 Hz, 1.41 Hz)1H), 7.06 (td, J = 7.6, 1.4 Hz, 1H), 4.90 (t, J = 4.6 Hz, 1H), 3.96 (s, 2H), 3.78 (d, J = 14.2Hz, 1H), 3.48 (d, J = 14.2 Hz, 1H), 2.97 (dd, J = 11.2, 3.6 Hz, 1H), 2.92 (dd, J = 11.1, 1.7 Hz, 1H), 2.18 (d, J = 11.1 Hz, 1H), 2.05 (d, J = 11.3 Hz, 1H), 1.38 (dd, J = 11.4, 5.5 Hz, 1H), 1.32 (d, J = 11.4)

¹³C NMR (126 MHz, CDCl₃) δ (ppm) 136.4, 133.9, 133.1, 132.8, 132.7, 132.5, 128.5, 128.4, 128.3, 127.7, 127.2, 126.2, 125.9, 125.7, 125.2, 124.5, 85.2, 78.1, 59.1, 54.4, 48.7, 39.4, 38.1.

HRMS (ESI+-Orbitrap) m/z: $[M+H]^+$ Calcd for $C_{23}H_{24}N_3$ 342.1965, found 342.1956.

Note: A diazo derivative (50 mg, 0.12 mmol, 25 %) arising from the oxidation of hydrazine 5b was isolated as a by-product after the reaction.

4-(3-Fluorophenethyl)-2,3,4,5-tetrahydro-1H,6H-2,5a-methano[1,2,5]triazepino[1,7-a]indole (6c)

Product 6c was synthesized according to the general procedure B using HCl (1.5 M, 2 mL), compound **5c** (500 mg, 0.83 mmol, 1.0 eq.), 1,4-dioxane (20 mL), NaO^tBu (275 mg, 2.86 mmol, 3.5 eq.), and RuPhos Pd G3 (14 mg, 0.02 mmol, 0.02 eq.). Flash chromatography over silica gel (eluent: pentane/EtOAc, 9/1 to 8/2) afforded the desired product (230 mg, 0.71 mmol, 87 %) as a colorless oil.

 $C_{20}H_{22}FN_3$

¹**H NMR** (500 MHz, CDCl₃) δ (ppm) 7.54 (dd, J = 8.0, 1.0 Hz, 1H), 7.49 (dt, <math>J = 8.1, 4.1323.4 g/mol Hz, 1H), 7.25 - 7.17 (m, 2H), 7.09 (td, J = 7.8, 1.7 Hz, 1H), 6.92 - 6.82 (m, 3H), 4.97(dd, J = 10.5, 5.9 Hz, 1H), 3.81 (d, J = 14.2 Hz, 1H), 3.54 (d, J = 14.0 Hz, 1H), 3.07 - 2.99 (m, 1H), 2.94(dd, J = 11.0, 1.9 Hz, 1H), 2.72 - 2.62 (m, 2H), 2.64 - 2.54 (m, 2H), 2.12 (dd, J = 11.0, 1.1 Hz, 1H), 2.06-2.01 (m, 1H), 1.41 (ddd, J = 21.4, 10.7, 6.6 Hz, 1H), 1.32 -1.21 (m, 1H).

¹³C NMR (126 MHz, CDCl₃) δ (ppm) 163.0 (d, J = 245.4 Hz), 142.8 (d, J = 7.2 Hz), 136.4, 132.9, 132.7, 129.9 (d, J = 8.3 Hz), 128.6, 127.7, 125.7, 124.4, 115.6 (d, J = 20.9 Hz), 113.1 (d, J = 21.0 Hz), 85.2, 78.1, 58.0, 54.0, 48.5, 39.5, 38.2, 33.0.

¹⁹**F NMR** (471 MHz, CDCl₃) δ (ppm) -113.7 (dd, J = 15.2, 9.1 Hz).

HRMS (ESI+-Orbitrap) m/z: $[M+H]^+$ Calcd for $C_{20}H_{23}N_3F$ 324.1871, found 324.1862.

4-(4-Methoxyphenethyl)-2,3,4,5-tetrahydro-1H,6H-2,5a-methano[1,2,5]triazepino[1,7-a]indole (6d)

Product 6d was synthesized according to the general procedure B using HCl (1.5 M, 5 mL), compound **5d** (300 mg, 0.46 mmol, 1.0 eq.), 1,4-dioxane (10 mL), NaO^tBu (148 mg, 1.54 mmol, 3.5 eq.), and RuPhos Pd G3 (7 mg, 0.01 mmol, 0.02 eq.). Flash chromatography over silica gel (eluent: pentane/EtOAc, 9/1 to 8/2 to DCM/MeOH 10/0 to 9/1) afforded the title compound (110 mg, 0.35 mmol, 76 %) as a white amorphous solid.

¹**H NMR** (500 MHz, CD₃OD) δ (ppm) 7.57 (dd, J = 8.0, 1.2 Hz, 1H), 7.47 (dd, J = 7.7, 1.7 Hz, 1H), 7.31 - 7.26 (m, 1H), 7.14 (td, J = 7.8, 1.7 Hz, 1H), 6.81 (d, J = 8.2 Hz, 1H), 6.78 (t, J = 2.6 Hz, 1H), 6.68 (dd, J = 8.1, 2.0 Hz, 1H), 4.96 (t, J = 4.4 Hz, 1H), 3.80 (s, 3H), 3.78 (s, 3H), 3.74 (d, J = 14.2 Hz, 1H), 3.56 (d, J = 14.2 Hz, 1H), 2.98 (dd, J = 10.9, 3.5 Hz, 1H), 2.92 (dd, J = 11.2, 1.8 Hz, 1H), 2.65 - 2.54 (m, 4H), 2.16-2.11 (m, 1H), 2.08 (d, J = 11.3 Hz, 1H), 1.47 - 1.41 (m, 1H), 1.39 (d, J = 11.5 Hz, 1H).

 $C_{22}H_{27}N_3O_2$ 365.5 g/mol

¹³C NMR (126 MHz, CD₃OD) δ (ppm) 150.3, 148.8, 137.6, 134.6, 134.0, 133.7, 129.8, 128.6, 126.6, 121.9, 113.8, 113.0, 86.5, 79.4, 59.4, 56.5, 56.4, 54.7, 49.2, 40.3, 39.3, 33.2.

HRMS (ESI+-Orbitrap) m/z: $[M+H]^+$ Calcd for $C_{22}H_{28}N_3O_2$ 366.2176, found 366.2165.

Note: A diazo derivative (40 mg, 0.09 mmol, 20 %) arising from the oxidation of hydrazine 5d was isolated as a by-product after the reaction.

4-(2-Cyclohexylethyl)-2,3,4,5-tetrahydro-1H,6H-2,5a-methano[1,2,5]triazepino[1,7-a]indole (6e)

Product 6e was synthesized according to the general procedure B using HCl (1.5 M, 5 mL), compound **5e** (189 mg, 0.32 mmol, 1.0 eq.), 14-dioxane (8 mL), NaO^tBu (107 mg, 1.12 mmol, 3.5 eq.), and RuPhos Pd G3 (5 mg, 0.01 mmol, 0.02 eq.). Flash chromatography over silica gel (eluent: pentane/EtOAc, 9/1 to 7/3) afforded the title compound (73 mg, 0.23 mmol, 73 %) as a white amorphous solid.

 $C_{20}H_{29}N_3$

¹**H NMR** (500 MHz, CDCl₃) δ 7.53 (dd, J = 8.0, 1.1 Hz, 1H), 7.48 (dd, J = 7.7, 1.6 Hz, 311.5 g/mol 1H), 7.25 - 7.21 (m, 1H), 7.07 (td, J = 7.8, 1.7 Hz, 1H), 4.92 (t, J = 4.6 Hz, 1H), 3.81(d, J = 14.2 Hz, 1H), 3.52 (d, J = 14.2 Hz, 1H), 2.97 (dd, J = 11.1, 3.9 Hz, 1H), 2.88 (dd, J = 11.1, 2.0 Hz, 1Hz)1H), 2.36 (dd, J = 8.7, 6.8 Hz, 2H), 2.00 (dd, J = 11.0, 1.1 Hz, 1H), 1.89 (d, J = 11.2 Hz, 1H), 1.69 – 1.58 (m, 4H), 1.40 - 1.34 (m, 1H), 1.30 - 1.07 (m, 8H), 0.82 - 0.76 (m 2H).

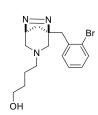
 $^{13}\textbf{C NMR} \ (126 \ \text{MHz}, \text{CDCl}_3) \ \delta \ 136.5, \ 132.8, \ 132.7, \ 128.5, \ 127.7, \ 125.7, \ 85.2, \ 78.2, \ 54.5, \ 54.3, \ 48.6, \ 39.5, \ 127.7, \ 128.5, \ 128.$ 38.3, 35.9, 33.9, 33.5, 26.7, 26.4.

HRMS (ESI+-Orbitrap) m/z: $[M+H]^+$ Calcd for $C_{20}H_{30}N_3$ 312.2434, found 312.2418.

• 4-(2,3-Dihydro-1H,6H-2,5a-methano[1,2,5]triazepino[1,7-a]indol-4(5H)-yl)butan-1-ol (6f)

Product **6f** was synthesized according to the general procedure B using HCl (1.5 M, 6), compound **5f** (151 mg, 0.27 mmol, 1.0 eq.), 1,4-dioxane (7 mL), NaO $^{\rm t}$ Bu (89 mg, 0.93 mmol, 3.5 eq.), and RuPhos Pd G3 (5 mg, 0.01 mmol, 0.02 eq.). Flash chromatography over silica gel (eluent: DCM/MeOH, 100/0 to 92/8) afforded the title compound (36 mg, 0.13 mmol, 50 %) as a colorless oil.

 $C_{16}H_{23}N_3O$ 273.4 g/mol


¹**H NMR** (500 MHz, CDCl₃) δ (ppm) 7.52 (dd, J = 8.0, 0.9 Hz, 1H), 7.49 (dd, J = 7.7, 1.5 Hz, 1H), 7.25 -7.20 (m, 1H) 7.08 (td, J = 7.8, 1.6 Hz, 1H), 4.99 – 4.94 (m, 1H),

3.83 (d, J = 14.2 Hz, 3H), 3.06 – 2.99 (m, 1H), 2.93 (dd, J = 11.2, 1.9 Hz, 1H), 2.44 – 2.35 (m, 2H), 2.03 (d, J = 11.1 Hz, 1H), 1.94 – 1.86 (m, 1H), 1.58 – 1.45 (m, 4H), 1.39 (dd, J = 11.5, 5.6 Hz, 1H), 1.29 (d, J = 11.5 Hz, 1H).

¹³C NMR (126 MHz, CDCl₃) δ (ppm) 136.4, 132.8 (2C), 130.2, 128.5, 125.7, 85.2, 78.0, 62.7, 56.7, 54.2, 48.6, 39.4, 38.1, 31.4, 23.7.

HRMS (ESI+-Orbitrap) m/z: $[M+H]^+$ Calcd for $C_{16}H_{24}N_3O$ 274.1914, found 274.1906.

An inseparable diazo derivative **6'f** (22 mg, 0.06 mmol, 23%) arising from the oxidation of hydrazine **5f** was also obtained as a by-product after the reaction.

¹H NMR (500 MHz, CDCl₃) δ 7.31 – 7.20 (m, 4H), 4.99 – 4.94 (m, 1H), 3.59 – 3.50 (m, 3H), 3.29 (d, J = 13.9 Hz, 1H), 3.06 – 2.99 (m, 1H), 2.87 (dd, J = 11.3, 1.9 Hz, 1H), 2.44 – 2.35 (m, 2H), 1.94 – 1.86 (m, 2H), 1.58 – 1.45 (m, 5H), 1.13 (d, J = 11.3 Hz, 1H).

¹³C NMR (126 MHz, CDCl₃) δ (ppm) 136.2, 129.0, 127.7, 126.8, 85.4, 77.8, 62.7, 56.7, 54.1, 48.6, 40.9, 38.5, 31.4, 23.7.

 $C_{16}H_{22}N_3O$ 352.3 g/mol

HRMS (ESI+-Orbitrap) m/z : $[M+H]^+$ Calcd for $C_{16}H_{23}N_3OBr$ 352.1019, found 352.1008.

• 4-(2-(Pyrrolidin-1-yl)ethyl)-2,3,4,5-tetrahydro-1H,6H-2,5a-methano[1,2,5]triazepino[1,7-a]indole (6g)

Product **6g** was synthesized according to the general procedure B using HCl (1.5 M, 5 mL), compound 5g (211 mg, 0.36 mmol, 1.0 eq.), 1,4-dioxane (9 mL), NaO $^{\rm t}$ Bu (121 mg, 1.26 mmol, 3.5 eq.), and RuPhos Pd G3 (6 mg, 0.01 mmol, 0.02 eq.). Flash chromatography over silica gel (DCM/MeOH/NH $_4$ OH, 95/5/0 to 90/5/5) afforded the title compound (139 mg, 0.13 mmol, 36 %) as a colorless oil.

 $C_{18}H_{26}N_4$ 298.7 g/mol

¹H NMR (500 MHz, CDCl₃) δ (ppm) 7.54 (dd, J = 8.0, 1.0 Hz, 1H), 7.44 (dd, J = 7.7, 1.6 Hz, 1H), 7.24 (td, J = 7.6, 1.1 Hz, 1H), 7.10 (td, J = 7.8, 1.7 Hz, 1H), 5.01 – 4.94 (m, 1H), 3.82 (d, J = 14.2 Hz, 1H), 3.74 (s, 1H) 3.54 (d, J = 14.2 Hz, 1H), 3.12 – 2.94

(m, 7H), 2.22 - 2.16 (m, 1H), 2.13 - 2.02 (m, 6H), 1.41 (dd, J = 11.7, 5.7 Hz, 2H), 1.33 (d, J = 11.7 Hz, 2H).

¹³C NMR (126 MHz, CDCl₃) δ (ppm) 135.9, 133.0, 132.6, 128.8, 127.8, 125.7, 85.4, 78.0, 54.7, 54.0, 52.0, 51.8, 48.5, 39.3, 37.9, 23.3.

HRMS (ESI+-Orbitrap) m/z: $[M+H]^+$ Calcd for $C_{18}H_{27}N_4$ 299.2230, found 299.2214.

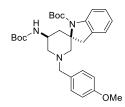
4-Isopropyl-2,3,4,5-tetrahydro-1H,6H-2,5a-methano[1,2,5]triazepino[1,7-a]indole (6h)

Product 6h was synthesized according to the general procedure B using HCI (1.5 M, 12 mL), compound **5h** (311 mg, 0.59 mmol, 1.0 eq.), 1,4-dioxane (15 mL), NaO^tBu (199 mg, 2.1 mmol, 3.5 eq.), and RuPhos Pd G3 (10 mg, 0.01 mmol, 0.02 eq.). Flash chromatography over silica gel (Pentane/EtOAc, 85/15 to 7/3) afforded the title compound (129 mg, 0.53 mmol, 90 %) as a white amorphous solid.

 $C_{15}H_{21}N_3$ 243.4 g/mol

¹H NMR (500 MHz, CDCl₃) δ (ppm) 7.53 (dd, J = 8.0, 1.1 Hz, 1H), 7.48 (dd, J = 7.7, 1.6 Hz, 1H), 7.25 - 7.20 (m, 1H), 7.10 - 7.04 (m, 1H), 4.92 (t, J = 4.4 Hz, 1H), 3.81 (d, J = 14.1 Hz, 1H), 3.51 (d, J = 14.2 Hz, 1H), 2.94 – 2.87 (m, 1H), 2.81 (dd, J = 10.9, 2.0Hz, 1H), 2.73 - 2.63 (m, 1H), 2.19 (dd, J = 10.9, 1.6 Hz, 1H), 2.12 - 2.07 (m, 1H), 1.39 - 1.30 (m, 1H), 1.30 – 1.19 (m, 1H), 1.00 – 0.91 (m, 6H).

 $^{13}\textbf{C NMR} \ (126 \ \text{MHz}, \ \text{CDCl}_3) \ \delta \ (\text{ppm}) \ 136.6, \ 132.8, \ 132.8, \ 128.5, \ 127.7 \ (2C), \ 85.1, \ 78.1, \ 52.9, \ 50.2, \ 44.1, \ 128.5, \ 127.7 \ (2C), \ 85.1, \ 78.1, \ 128.5$ 39.6, 38.2, 18.5, 18.2.

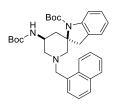

HRMS (ESI+-Orbitrap) m/z: $[M+H]^+$ Calcd for $C_{15}H_{22}N_3$ 244.1808, found 244.1800.

General procedure C: Hydrogenolysis and Boc-protection of the free amino groups

Continuous flow hydrogenolysis was performed using a H-CUBE® reactor. Substrates 6a-h (1.0 eq.) were dissolved in methanol (0.0025M). The resulting solutions were eluted through the reactor which was equipped with Raney nickel CatCart® (flow rate: 1 mL/min). The reactions were performed under a H₂ atmosphere (30 bars) at 35 °C. After the hydrogenolysis, the solutions were concentrated. The resulting residues were dissolved in DCM. Boc₂O (2.2 eq.) was added followed by triethylamine (2.2 eq.). The resulting mixtures were stirred overnight at r.t, and then concentrated under reduced pressure. Flash chromatography over silica gel (eluent: pentane/EtOAc) finally afforded the desired product **7a-h**.

 tert-Butyl 5'-((tert-butoxycarbonyl)amino)-1'-(4-methoxybenzyl)spiro[indoline-2,3'-piperidine]-1carboxylate (**7a**)

Product 7a was synthesized according to the general the procedure C using compound 6a (80 mg, 0.25 mmol, 1.0 eq.), methanol (100 mL), DCM (5 mL), Boc₂O (0.12 mL, 0.55 mmol, 2.2 eq.), and triethylamine (0.08 mL, 0.55 mmol, 2.2 eq.). Flash chromatography over silica gel (eluent: pentane/EtOAc, 9/1 to 8/2) afforded the title compound (45 mg, 0.11 mmol, 45 %) as a white solid.

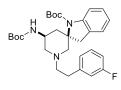

 $C_{30}H_{41}N_3O_5$ 523.7 g/mol

¹H NMR (500 MHz, CDCl₃) δ (ppm) 7.54 (d, J = 7.9 Hz, 1H), 7.22 – 7.13 (m, 4H), 7.10 - 7.04 (m, 1H), 6.84 (d, J = 8.5 Hz, 2H), 5.16 (s, 1H), 4.86 - 4.84 (br m, 1H), 3.95 (br s, 1H), 3.82 - 3.75 (m, 3H), 3.53 - 3.35 (m, 3H), 3.10 (d, J = 13.7 Hz, 1H), 2.67 – 2.12 (m, 5H), 1.50 (s, 9H), 1.42 (s, 9H).

¹³C NMR (126 MHz, CDCl₃) δ (ppm) 159.0, 155.4, 154.6, 136.8, 133.0, 130.5, 129.1, 128.3, 127.2, 126.1, 113.8, 79.4, 79.2, 61.9, 60.9, 57.9, 55.7, 55.4, 45.1, 41.2, 35.7, 28.7, 28.6.

HRMS (ESI+-Orbitrap) m/z: $[M+H]^+$ Calcd for $C_{30}H_{42}N_3O_5$ 524.3119, found 524.3110.

 tert-Butyl 5'-((tert-butoxycarbonyl)amino)-1'-(naphthalen-1-ylmethyl)spiro[indoline-2,3'piperidine]-1-carboxylate (7b)


C₃₃H₄₁N₃O₄ 543.7 g/mol Product 7b was synthesized according to the general procedure C using compound **6b** (58 mg, 0.17 mmol, 1.0 eq.), methanol (69 mL), DCM (5 mL), Boc₂O (0.08 mL, 0.37 mmol, 2.2 eq.), and triethylamine (0.05 mL, 0.37 mmol, 2.2 eq.). Flash chromatography over silica gel (eluent: pentane/EtOAc, 95/5 to 8/2) afforded the title compound (36 mg, 0.06 mmol, 36 %) as a white solid.

¹**H NMR** (500 MHz, CDCl₃) δ (ppm) 8.25 (d, J = 8.2 Hz, 1H), 7.85 (d, J = 8.1 Hz, 1H), 7.78 (t, J = 8.8 Hz, 1H), 7.55 - 7.45 (m, 3H), 7.39 - 7.35 (m, 1H), 7.31 (d, J = 6.7 Hz, 1.75 - 1.75 (m, 1.75 - 1.75 (m, 1.75 (1H), 7.14 - 6.98 (m, 3H), 5.07 (s, 1H), 4.62 (s, 1H), 4.03 - 3.81 (m, 3H), 3.21 (dd, J = 32.3, 13.7 Hz, 2H), 2.80 – 2.58 (m, 2H), 2.48 – 2.24 (br m, 3H), 1.71 – 1.59 (br s, 1H), 1.45 (s, 9H), 1.34 (s, 9H).

¹³C NMR (126 MHz, CDCl₃) δ (ppm) 155.4, 154.5, 136.6, 134.2, 133.6, 133.0, 132.4, 130.6, 128.8, 128.5, 128.2, 128.0, 127.1, 126.0, 126.0, 125.8, 125.2, 124.8, 79.2, 79.0, 60.9, 58.4, 55.7, 45.3, 41.3, 35.5, 28.6, 28.5.

HRMS (ESI+-Orbitrap) m/z: $[M+H]^+$ Calcd for $C_{33}H_{42}N_3O_4$ 544.3170, found 544.3160.

 tert-Butyl 5'-((tert-butoxycarbonyl)amino)-1'-(3-fluorophenethyl)spiro[indoline-2,3'-piperidine]-1carboxylate (**7c**)

 $C_{30}H_{40}FN_3O_4$ 525.7 g/mol Product 7c was synthesized according to the general procedure C using compound (100 mg, 0.31 mmol, 1.0 eq.), methanol (120 mL), DCM (1 mL), Boc₂O (0.15 mL, 0.68 mmol, 2.2 eq.), and triethylamine (0.10 mL, 0.68 mmol, 2.2 eq.). Flash chromatography over silica gel (eluent: pentane/EtOAc, 9/1 to 8/2) afforded the title compound (80 mg, 0.15 mmol, 49 %) as a white solid.

¹**H NMR** (500 MHz, CDCl₃) δ (ppm) 7.53 (d, J = 8.0 Hz, 1H), 7.24 – 7.19 (m, 3H), 7.12 - 7.06 (m, 1H), 6.94 - 6.77 (m, 3H), 4.54 (s, 1H), 3.98 (s, 1H), 3.44 (d, J =13.6 Hz, 1H), 3.06 (d, J = 13.8 Hz, 1H), 2.79 (br s, 1H), 2.76 – 2.64 (m, 2H), 2.64 – 2.53 (m, 2H), 2.53 – 2.46 (m, 2H), 2.31 (m, 2H), 1.49 (m, 10H,), 1.45 (s, 9H).

¹³C NMR (126 MHz, CDCl₃) δ (ppm) 163.0 (d, J = 245.6 Hz), 155.4, 154.6, 142.9, 136.7, 133.0, 130.0, 128.3, 127.2, 126.1, 124.5, 115.7 (d, J = 20.9 Hz), 113.1 (d, J = 20.9 Hz), 79.3, 79.3, 61.7, 58.6, 58.2, 55.6, 45.2, 41.0, 35.5, 33.1, 28.6, 28.6.

¹⁹**F NMR** (471 MHz, CDCl₃) δ (ppm) -113.3 (dd, J = 14.7, 8.3 Hz).

HRMS (ESI+-Orbitrap) m/z: $[M+H]^+$ Calcd for $C_{30}H_{41}N_3FO_4$ 526.3076, found 526.3077.

• tert-Butyl 5'-((tert-butoxycarbonyl)amino)-1'-(3,4-dimethoxyphenethyl)spiro[indoline-2,3'-piperidine]-1-carboxylate (**7d**)

C₃₂H₄₅N₃O₆ 567.7 g/mol

Product **7d** was synthesized according to the general procedure C using compound **6d** (56 mg, 0.15 mmol, 1.0 eq.), methanol (62 mL), DCM (5 mL), Boc₂O (0.07 mL, 0.34 mmol, 2.2 eq.), and triethylamine (0.05 mL, 0.34 mmol, 2.2 eq.). Flash chromatography over silica gel (eluent: pentane/EtOAc, 9/1 to 8/2) afforded the title compound (37 mg, 0.06 mmol, 37 %) as a white solid.

¹H NMR (500 MHz, CDCl₃) δ (ppm) 7.54 (d, J = 7.9 Hz, 1H), 7.24 – 7.18 (m, 2H), 7.12 – 7.06 (m, 1H), 6.76 (d, J = 8.5 Hz, 1H), 6.68 – 6.64 (m, 2H), 5.18 (br

s, 1H), 4.68 (br s, 1H), 4.06 - 3.96 (br s, 1H), 3.85 (dd, J = 10.2, 5.7 Hz, 6H), 3.46 (d, J = 13.4 Hz, 1H), 3.07 (d, J = 13.8 Hz, 1H), 2.79 (br s, 1H), 2.72 - 2.45 (m, 6H), 2.35 - 2.25 (br m, 2H), 1.48 (s, 9H), 1.45 (s, 9H).

¹³C NMR (126 MHz, CDCl₃) δ (ppm) 155.4, 154.6, 149.0, 147.4, 136.7, 133.0, 132.8, 128.2, 127.1, 126.1, 120.7, 111.8, 111.2, 79.3, 61.5, 59.6, 58.6, 56.0, 55.6, 45.2, 41.1, 35.6, 32.9, 29.9, 28.7, 28.6.

HRMS (ESI+-Orbitrap) m/z: $[M+H]^+$ Calcd for $C_{32}H_{46}N_3O_6$ 568.3381, found 568.3371.

• tert-Butyl 5'-((tert-butoxycarbonyl)amino)-1'-(2-cyclohexylethyl)spiro[indoline-2,3'-piperidine]-1-carboxylate (**7e**)

Product **7e** was synthesized according to the general procedure C using compound 6e (40 mg, 0.13 mmol, 1.0 eq.), methanol (52 mL), DCM (5 mL), Boc₂O (0.06 mL, 0.28 mmol, 2.2 eq.), and triethylamine (0.04 mL, 0.28 mmol, 2.2 eq.). Flash chromatography over silica gel (eluent: pentane/EtOAc, 95/5 to 8/2) afforded the title compound (17 mg, 0.03 mmol, 26 %) as a white solid. Note: Products **7e** was isolated as mixture of rotamers.

C₃₀H₄₇N₃O₄ 513.7 g/mol ¹H NMR (500 MHz, CDCl₃) δ 7.54 – 7.42 (m, 2H), 7.24 (m, 3H), 7.10 – 7.04 (m, 1H), 6.89 – 6.81 (m, 2H), 5.73 (s, 0.3H), 4.26 (d, J = 3.2 Hz, 1H), 3.83 – 3.76 (m, 3H), 3.71 (d, J = 13.5 Hz, 0.6H), 3.65 (d, J = 13.1 Hz, 0.3H), 3.62 – 3.52 (m, 1H), 3.48 (dd, J = 13.3, 5.9 Hz, 1H), 3.36 (d, J = 10.1 Hz, 0.3H), 3.22 (d, J = 14.2 Hz, 0.3H), 3.19 (t,

J = 11.1 Hz, 0.6H), 3.07 (ddd, J = 18.7, 11.0, 2.9 Hz, 1H), 2.24 (d, J = 10.6 Hz, 0.3H), 2.18 (d, J = 10.5 Hz, 0.6H), 2.10 - 2.03 (m, 1H), 1.64 (dd, J = 11.2, 5.7 Hz, 1H), 1.58 (s, 9H), 1.48 (ddd, J = 7.0, 4.1, 2.2 Hz, 1H), 1.35 (d, J = 3.7 Hz, 9H).

¹³C NMR (126 MHz, CDCl₃) δ 169.7, 158.6, 158.6, 157.6, 155.5, 136.5, 136.3, 133.4, 132.9, 132.4, 132.2, 130.0, 129.9, 129.9, 129.9, 129.9, 129.5, 129.4, 128.1, 127.9, 127.1, 126.0, 125.9, 113.7, 113.5, 113.4 (2C), 80.8, 80.7, 80.7, 80.4, 79.1, 67.6, 67.5, 60.9, 60.7, 60.4, 58.7, 55.2, 54.9, 54.4, 54.3, 53.4, 40.2, 39.7, 38.0, 28.6, 28.5, 28.1, 27.9.

HRMS (ESI+-Orbitrap) m/z: $[M+H]^+$ Calcd for $C_{30}H_{48}N_3O_4$ 514.3639, found 514.3777.

 tert-Butyl 5'-((tert-butoxycarbonyl)amino)-1'-(4-hydroxybutyl)spiro[indoline-2,3'-piperidine]-1carboxylate (7f)

Product 7f was synthesized according to the general procedure C using compound 6f (51 mg, 0.12 mmol, 1.0 eq., 63 %), methanol (70 mL), DCM (5 mL), Boc₂O (0.09 mL, 0.40 mmol, 3.5 eq.), and triethylamine (0.06 mL, 0.40 mmol, 3.5 eq.). Flash chromatography over silica gel (eluent: pentane/EtOAc, 9/1 to 8/2) afforded the title compound (12 mg, 0.02 mmol, 17 %) as a white solid.

 $C_{26}H_{41}N_3O_5$ 475.6 g/mol

¹**H NMR** (500 MHz, CDCl₃) δ (ppm) 7.54 (d, J = 8.0 Hz, 1H), 7.26 – 7.20 (m, 2H), 7.11 - 7.06 (m, 1H), 4.85 (s, 1H), 4.00 (s, 1H), 3.61 (d, J = 5.5 Hz, 2H), 3.42 (d, J =

13.3 Hz, 1H), 3.10 (d, J = 13.8 Hz, 1H), 2.85 - 2.60 (m, 2H), 2.46 (br s, 1H), 2.38 - 2.15 (m, 4H), 1.68 - 2.60 (m, 2H)1.17 (m, 23H).

¹³C NMR (126 MHz, CDCl₃) δ (ppm) 155.5, 154.7, 136.7, 133.0, 132.9, 128.3, 127.2, 126.1, 79.5, 79.3, 62.7, 61.7, 58.4, 58.2, 55.6, 45.1, 41.2, 35.7, 31.2, 29.9, 28.7, 28.6, 23.7.

HRMS (ESI+-Orbitrap) m/z: $[M+H]^+$ Calcd for $C_{26}H_{42}N_3O_5$ 476.3119, found 476.3104.

5'-((tert-butoxycarbonyl)amino)-1'-(2-(pyrrolidin-1-yl)ethyl)spiro[indoline-2,3'- tert-Butyl piperidine]-1-carboxylate (7g)

Product 7g was synthesized according to the general procedure C using compound 6g (35 mg, 0.12 mmol, 1.0 eq.), methanol (47 mL), DCM (5 mL), Boc₂O (0.06 mL, 0.26 mmol, 2.2 eq.), and triethylamine (0.04 mL, 0.26 mmol, 2.2 eq.). Flash chromatography over silica gel (eluent: DCM/MeOH/NH₄OH, 95/5/0 to 90/5/5) afforded the title compound (9 mg, 0.02 mmol, 15 %) as a white solid.

 $C_{28}H_{44}N_4O_4$ 500.7 g/mol

¹**H NMR** (500 MHz, CDCl₃) δ (ppm) 7.53 (d, J = 7.8 Hz, 1H), 7.25 – 7.20 (m, 2H), 7.10 - 7.05 (m, 1H), 5.43 (s, 2H), 3.92 (br s, 1H), 3.41 (br d, J = 13.0 Hz, 1H), 3.10(d, J = 13.7 Hz, 1H), 2.84 - 2.45 (m, 11H), 2.38 - 2.23 (m, 2H), 1.85 (s, 4H), 1.59 -1.46 (m, 9H), 1.43 (s, 9H).

¹³C NMR (126 MHz, CDCl₃) δ (ppm) 155.5, 154.9, 136.7, 133.0, 132.9, 128.2, 127.1, 126.1, 79.1, 60.6, 58.5, 55.7, 54.3, 53.1, 45.6, 41.2, 35.4, 28.7, 28.6, 23.4.

HRMS (ESI+-Orbitrap) m/z: $[M+H]^+$ Calcd for $C_{28}H_{44}N_4O_4$ 501.3435, found 501.3418.

 tert-Butyl 5'-((tert-butoxycarbonyl)amino)-1'-isopropylspiro[indoline-2,3'-piperidine]-1carboxylate (7h)

 $C_{25}H_{39}N_3O_4$ 445.6 g/mol

Product 7h was synthesized according to the general procedure C using compound 6h (80 mg, 0.33 mmol, 1.0 eq.), methanol (130 mL), DCM (5 mL), Boc₂O (0.15 mL, 0.72 mmol, 2.2 eq.), and triethylamine (0.10 mL, 0.72 mmol, 2.2 eq.). Flash chromatography over silica gel (Pentane/EtOAc, 95/5 to 8/2) afforded the title compound (49 mg, 0.1 mmol, 33 %) as a white solid.

¹**H NMR** (500 MHz, CDCl₃) δ (ppm) 7.54 (d, J = 7.9 Hz, 1H), 7.29 – 7.24 (m, 1H), 7.22 (t, J = 7.4 Hz, 1H), 7.07 (td, J = 8.0, 1.8 Hz, 1H), 5.21 (s, 1H), 4.88 – 4.59 (m,

1H), 3.97 (s, 1H), 3.47 (d, J = 13.5 Hz, 1H), 3.07 (d, J = 13.8 Hz, 1H), 2.75 - 2.59 (m, 2H), 2.56 - 2.32 (m, 4H), 1.51 (s, 9H), 1.44 (s, 9H), 0.99 - 0.90 (m, 6H).

¹³C NMR (126 MHz, CDCl₃) δ (ppm) 155.4, 154.7, 136.9, 133.0, 133.0, 128.2, 127.1, 126.1, 79.2, 57.4, 55.5, 54.6, 54.2, 45.2, 41.2, 36.0, 28.7, 28.6, 18.3, 17.8.

HRMS (ESI+-Orbitrap) m/z: $[M+H]^+$ Calcd for $C_{25}H_{40}N_3O_4$ 446.3013, found 446.3004.

General procedure D: Boc-deprotection

Compound **7a-h** (1.0 eq.) were dissolved in a hydrogen chloride solution (3 M in MeOH). The resulting mixture was stirred at r.t. overnight. Concentration under reduced pressure finally afforded the desired product **8a-h** in quantitative yields.

• 1'-(4-Methoxybenzyl)spiro[indoline-2,3'-piperidin]-5'-amine (8a)

H₂N n HCl

 $C_{20}H_{25}N_3O$ 323.4 g/mol

Compound **8a** (28 mg, 0.05 mmol, 1.0 eq.) was synthesized according to the general procedure D, using an HCl solution (1 mL, 1.5 M in MeOH). The title compound (24 mg, 0.05 mmol, quantitative) was isolated as a white powder.

¹H NMR (500 MHz, D₂O) δ (ppm) 7.63 (d, J = 8.0 Hz, 1H), 7.36 (d, J = 8.4 Hz, 2H), 7.18 (t, J = 7.7 Hz, 1H), 7.09 (t, J = 7.5 Hz, 1H), 7.02 (d, J = 8.5 Hz, 2H), 6.91 (d, J = 7.5 Hz, 1H), 3.86 – 3.80 (m, 5H), 3.63 (d, J = 12.8 Hz, 1H), 3.38 – 3.33 (m, 1H), 3.32 – 3.25 (m, 2H), 3.07 (d, J = 11.8 Hz, 1H), 2.46 (d, J = 10.5 Hz, 1H), 2.38 – 2.30 (m, 1H), 2.17 (d, J = 11.4 Hz, 1H), 1.73 (t, J = 12.1 Hz, 1H).

¹³C NMR (126 MHz, D_2O) δ (ppm) 159.8, 134.6, 133.7, 133.7, 132.6, 130.9, 128.9, 126.1, 115.1, 61.6, 56.9, 56.6, 56.4, 55.7, 45.5, 39.6, 37.2.

HRMS (ESI+-Orbitrap) m/z: $[M+H]^+$ Calcd for $C_{20}H_{26}N_3O$ 324.2070, found 324.2062.

• 1'-(Naphthalen-1-ylmethyl)spiro[indoline-2,3'-piperidin]-5'-amine (8b)

H₂N HN n HCl

 $C_{23}H_{25}N_3$ 343.5 g/mol Compound **8b** (32 mg, 0.06 mmol, 1.0 eq.) was synthesized according to the general procedure D, using an HCl solution (1 mL, 1.5 M in MeOH). The title compound (18 mg, 0.06 mmol, quantitative) was isolated as a white powder.

¹**H NMR** (500 MHz, CD₃OD) δ (ppm) 8.25 (d, J = 8.4 Hz, 1H), 7.87 (d, J = 7.6 Hz, 1H), 7.85 – 7.82 (m, 1H), 7.52 – 7.47 (m, 1H), 7.47 – 7.42 (m, 1H), 7.37 – 7.30 (m, 2H), 7.03 (t, J = 7.5 Hz, 1H), 6.89 – 6.84 (m, 2H), 6.49 – 6.44 (m, 2H), 4.32 (d, J = 12.6 Hz, 1H), 3.78 (d, J = 12.6 Hz, 1H), 3.70 – 3.61 (m, 1H), 3.44 (dd, J = 10.6, 4.3 Hz, 1H), 2.94 (d, J = 14.3 Hz, 1H), 2.85 (d, J = 11.2 Hz, 1H), 2.75 (d, J = 14.2 Hz, 1H), 2.29 –

2.23 (m, 1H), 2.20 (t, J = 10.8 Hz, 1H), 1.97 (d, J = 11.3 Hz, 1H), 1.65 (t, J = 12.2 Hz, 1H).

¹³C NMR (126 MHz, CD₃OD) δ (ppm) 134.4, 132.7, 132.6, 132.2, 130.1, 128.8, 128.6, 128.4, 127.4, 126.0, 125.8, 124.9, 124.4, 59.9, 56.1, 56.0, 54.7, 44.7, 39.0, 37.1.

HRMS (ESI+-Orbitrap) m/z: [M+H]⁺ Calcd for C₂₃H₂₅N₃ 344.2121, found 344.2127

• 1'-(3-Fluorophenethyl)spiro[indoline-2,3'-piperidin]-5'-amine (8c)

H₂N n HCl

Compound **8c** (20 mg, 0.04 mmol, 1.0 eq.) was synthesized according to the general procedure D, using an HCl solution (0.5 mL, 1.5 M in MeOH). The title compound (18 mg, 0.04 mmol, quantitative) was isolated as a white powder.

¹H NMR (500 MHz, D₂O) δ (ppm) 7.75 – 7.69 (m, 1H), 7.42 (dd, J = 14.2, 7.7 Hz, 1H), 7.33 – 7.27 (m, 2H), 7.22 (d, J = 7.6 Hz, 1H), 7.17 (d, J = 10.0 Hz, 1H), 7.03 (dd, J = 11.9, 5.2 Hz, 1H), 6.79 (d, J = 3.6 Hz, 1H), 3.88 (dd, J = 12.9, 8.9 Hz, 1H), 3.63 (d, J = 7.5 Hz, 1H), 3.25 (s, 2H), 3.07 – 2.91 (m, 5H), 2.51 (d, J = 9.9 Hz, 1H), 2.41 (d, J = 11.7 Hz, 1H), 2.36 (t, J = 10.7 Hz, 1H), 1.79 (t, J = 12.2 Hz, 1H).

 $C_{20}H_{24}FN_3$ 325.4 g/mol

¹³C NMR (126 MHz, D₂O) δ (ppm) 163.8 (d, J = 243.2 Hz), 143.8 (d, J = 7.2 Hz), 134.6, 133.9, 133.8, 131.2 (d, J = 8.5 Hz), 131.0, 129.1, 126.0 (d, J = 4.0 Hz), 116.7 (d, J = 20.9 Hz), 114.1 (d, J = 20.8 Hz), 59.0, 58.5, 57.0, 54.5, 45.7, 39.4, 37.0, 32.7.

¹⁹**F NMR** (471 MHz, D₂O) δ (ppm) -114.2.

HRMS (ESI+-Orbitrap) m/z: $[M+H]^+$ Calcd for $C_{20}H_{25}N_3F$ 326.2027, found 326.2021.

• 1'-(3,4-Dimethoxyphenethyl)spiro[indoline-2,3'-piperidin]-5'-amine (8d)

H₂N HN n HCl

C₂₂H₂₉N₃O₂ 367.5 g/mol Compound **8d** (23 mg, 0.05 mmol, 1.0 eq.) was synthesized according to the general procedure D, using an HCl solution (1 mL, 1.5 M in MeOH). The title compound (18 mg, 0.05 mmol, quantitative) was isolated as a white powder.

¹H NMR (500 MHz, D₂O) δ (ppm) 7.53 (d, J = 7.9 Hz, 1H), 7.11 (t, J = 7.6 Hz, 1H), 7.06 (t, J = 7.4 Hz, 1H), 6.93 – 6.87 (m, 2H), 6.82 (d, J = 8.2 Hz, 1H), 6.48 (d, J = 6.7 Hz, 1H), 3.77 – 3.67 (m, 4H), 3.62 (s, 3H), 3.42 (d, J = 8.0 Hz, 1H), 3.10 – 3.00 (m, 2H), 2.84 – 2.68 (m, 5H), 2.32 (d, J = 9.5 Hz, 1H), 2.24

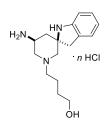
-2.14 (m, 2H), 1.59 (t, J = 12.1 Hz, 1H).

¹³C NMR (126 MHz, D₂O) δ (ppm) 149.3, 147.8, 134.9, 134.6, 134.1, 133.9, 131.1, 129.1, 126.2, 123.1, 114.0, 113.3, 59.4, 58.8, 57.2, 56.9, 54.7, 45.9, 39.7, 37.2, 32.8.

HRMS (ESI+-Orbitrap) m/z: $[M+H]^+$ Calcd for $C_{22}H_{30}N_3O_2$ 368.2333, found 368.2322.

• 1'-(2-Cyclohexylethyl)spiro[indoline-2,3'-piperidin]-5'-amine (8e)

Compound **8d** (42 mg, 0.08 mmol, 1.0 eq.) was synthesized according to the general procedure D, using an HCl solution (1 mL, 1.5 M in MeOH). The title compound (10 mg, 0.03 mmol, quantitative) was isolated as a white powder.


¹H NMR (500 MHz, D₂O) δ (ppm) 7.73 – 7.67 (m, 1H), 7.44 – 7.37 (br m, 1H), 7.35 – 7.31 (br m, 1H), 7.30 – 7.24 (br m, 1H), 3.96 (br s, 1H), 3.48 (br s, 1H), 3.42 – 3.21 (m, 3H), 2.95 (s, 2H), 2.74 (s, 2H), 2.45 – 2.36 (br m, 1H), 1.85 – 1.75 (br m, 1H), 1.70 – 1.47 (m, 8H), 1.31 (s, 1H), 1.24 – 1.06 (m, 4H), 1.00 – 0.85 (m, 2H).

¹³C NMR (126 MHz, D₂O) δ (ppm) 134.8, 133.9, 133.7, 131.1, 129.2, 126.1, 58.2, 57.2, 55.8, 54.5, 45.1, 36.2, 35.2, 33.6, 33.5, 32.6, 27.0, 26.7.

 $C_{20}H_{31}N_3$ 313.5 g/mol

HRMS (ESI+-Orbitrap) m/z: [M+H]⁺ Calcd for C₂₀H₃₂N₃ 314.2591, found 314.2578.

• 4-(5'-Aminospiro[indoline-2,3'-piperidin]-1'-yl)butan-1-ol (8f)

Compound **8f** (6 mg, 0.01 mmol, 1.0 eq.) was synthesized according to the general procedure D, using an HCl solution (1 mL, 1.5 M in MeOH). The title compound (5 mg, 0.01 mmol, quantitative) was isolated as a white powder.

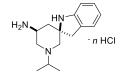
C₁₆H₂₅N₃O 275.4 g/mol ¹**H NMR** (500 MHz, D₂O) δ (ppm) 7.69 (d, J = 8.1 Hz, 1H), 7.40 (t, J = 7.5 Hz, 1H), 7.33 (d, J = 7.7 Hz, 1H), 7.27 (t, J = 7.7 Hz, 1H), 4.01 – 3.92 (m, 1H), 3.60 (t, J = 6.3 Hz, 2H), 3.48 (d, J = 8.5 Hz, 1H), 3.40 – 3.24 (m, 3H), 2.91 – 2.85 (m, 2H), 2.65 (d, J = 9.2 Hz, 2H), 2.43 (d, J = 11.6 Hz, 1H), 1.72 (ddd, J = 24.2, 19.9, 10.5 Hz, 3H), 1.61 – 1.54 (m, 2H).

 ^{13}C NMR (126 MHz, $D_2\text{O})$ δ (ppm) 134.8, 133.9, 133.6, 131.2, 129.3, 126.1, 62.1, 58.5, 58.3, 56.2, 54.5, 45.1, 40.4, 35.4, 29.8, 22.2.

HRMS (ESI+-Orbitrap) m/z: $[M+H]^+$ Calcd for $C_{16}H_{26}N_3O$ 276.2070, found 276.2062.

• 1'-(2-(Pyrrolidin-1-yl)ethyl)spiro[indoline-2,3'-piperidin]-5'-amine (8g)

Compound **8g** (4 mg, 0.01 mmol, 1.0 eq.) was synthesized according to the general procedure D, using an HCl solution (1 mL, 1.5 M in MeOH). The title compound (4 mg, 0.01 mmol, quantitative) was isolated as a white powder.

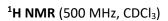

C₁₈H₂₈N₄ 300.5 g/mol ¹H NMR (500 MHz, D_2O) δ (ppm) 7.70 (d, J = 8.0 Hz, 1H), 7.40 (t, J = 7.5 Hz, 1H), 7.33 – 7.24 (m, 2H), 4.04 – 3.97 (m, 1H), 3.73 – 3.60 (m, 2H), 3.56 – 3.47 (m, 2H), 3.37 – 3.24 (m, 3H), 3.13 (t, J = 10.0 Hz, 3H), 3.00 – 2.93 (m, 1H), 2.87 – 2.80 (m, 1H), 2.44 (d, J = 11.5 Hz, 1H), 2.41 – 2.37 (m, 1H), 2.21 (t, J = 10.8 Hz, 1H), 2.16 – 2.06 (m, 2H), 2.04 – 1.92 (m, 2H), 1.57 (t, J = 12.4 Hz, 1H).

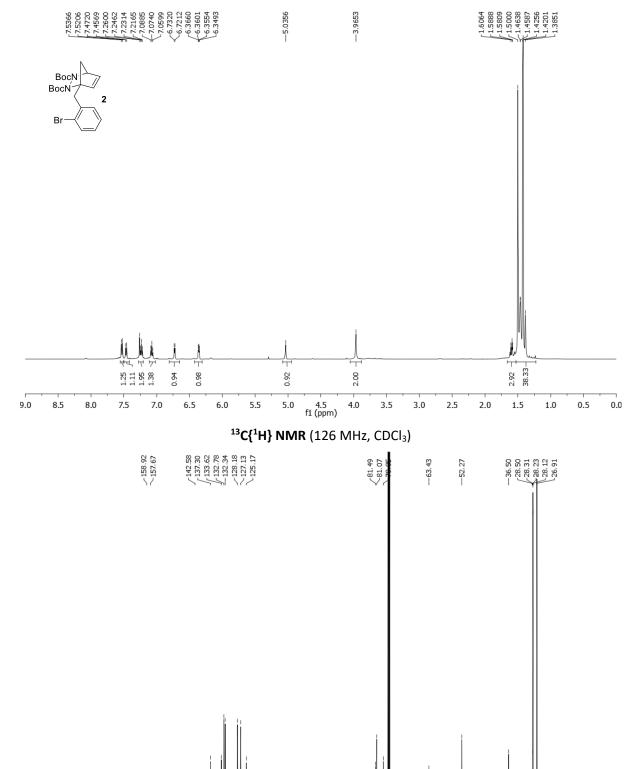
¹³C NMR (126 MHz, D₂O) δ (ppm) 134.9, 134.0, 133.7, 131.2, 129.3, 126.2, 60.6, 57.0, 56.0, 54.9, 54.8, 53.4, 52.4, 45.5, 39.6, 35.2, 23.6, 23.5.

HRMS (ESI+-Orbitrap) m/z: $[M+H]^+$ Calcd for $C_{18}H_{29}N_4$ 301.2387, found 301.2380.

• 1'-Isopropylspiro[indoline-2,3'-piperidin]-5'-amine (8h)

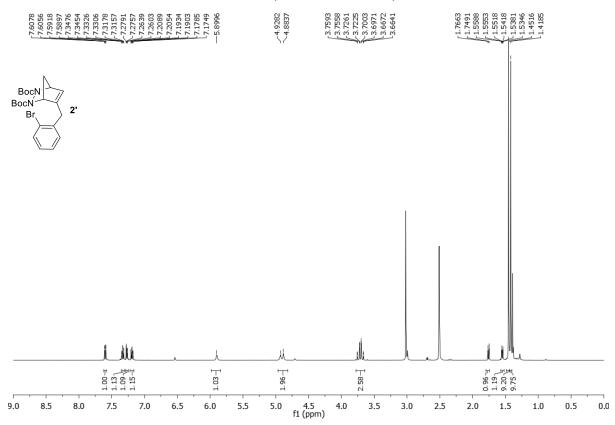
Compound **8h** (40 mg, 0.09 mmol, 1.0 eq.) was synthesized according to the general procedure D, using an HCl solution (1 mL, 1.5 M in MeOH). The title compound (34 mg, 0.09 mmol, quantitative) was isolated as a white powder.

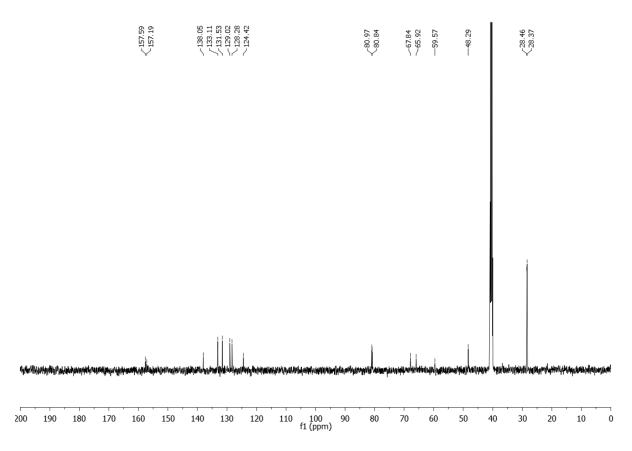

¹**H NMR** (500 MHz, D₂O) δ (ppm) 7.66 (d, J = 7.9 Hz, 1H), 7.36 (t, J = 7.0 Hz, 1H), 7.30 (d, J = 7.4 Hz, 1H), 7.24 (t, J = 7.4 Hz, 1H), 3.96 (s, 1H), 3.53 – 3.17 (m, 5H), 2.90 (s, 2H), 2.37 (d, J = 10.8 Hz, 1H), 1.79 (d, J = 10.7 Hz, 1H), 1.21 (t, J = 6.8 Hz, 6H).

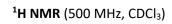

 $C_{15}H_{23}N_3$ 245.4 g/mol

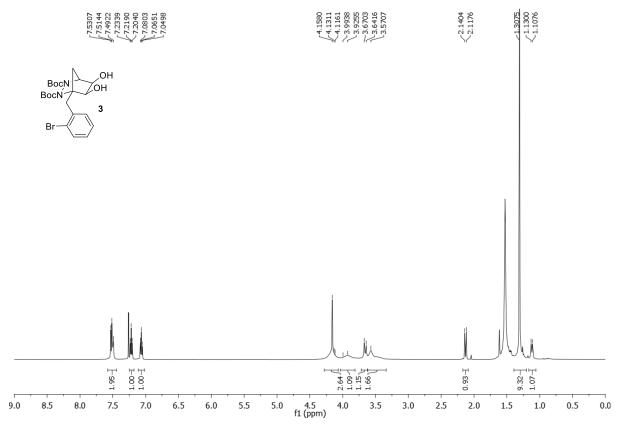
 ^{13}C NMR (126 MHz, D₂O) δ (ppm) 134.8, 134.0, 133.7, 131.1, 129.2, 126.2, 59.3, 55.8, 54.4, 50.8, 45.3, 35.0, 17.5, 17.0.

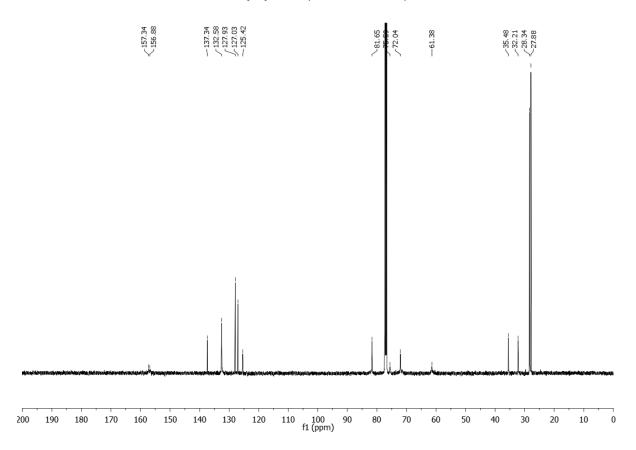
HRMS (ESI+-Orbitrap) m/z: [M+H]⁺ Calcd for C₁₅H₂₃N₃ 246.1965, found 246.1954.

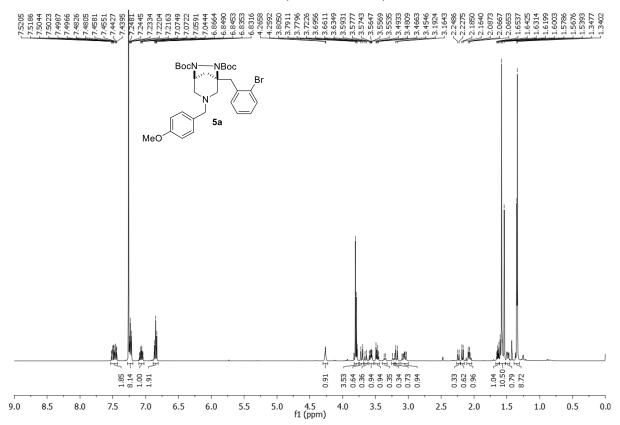

Copies of ¹H NMR and ¹³C NMR spectra



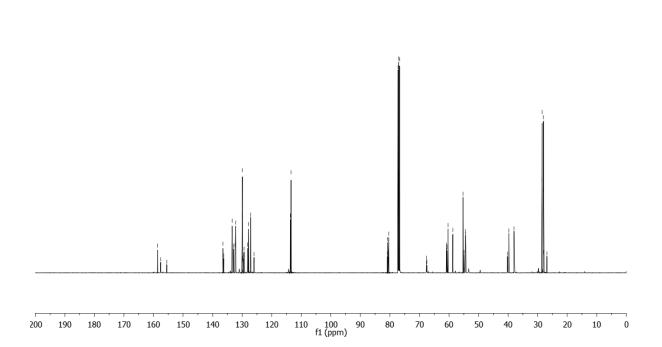

110 100 90 f1 (ppm)

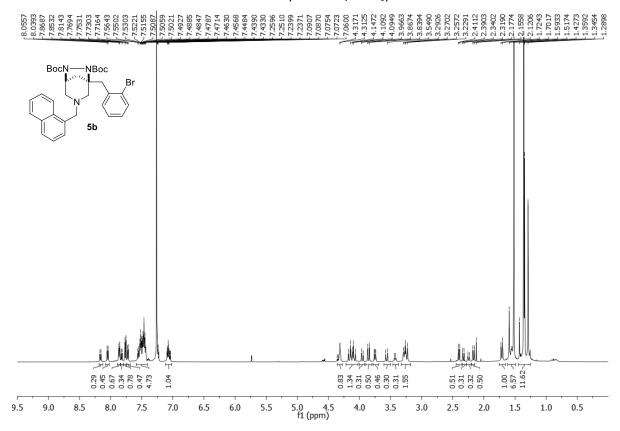



¹³C{¹H} NMR (126 MHz, DMSO-d₆)



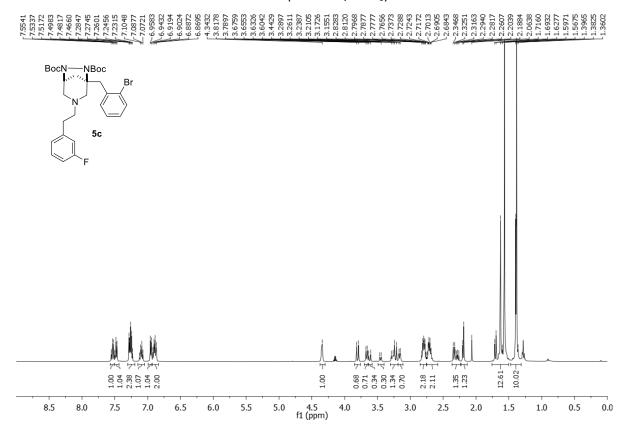
¹³C{¹H} NMR (126 MHz, CDCl₃)

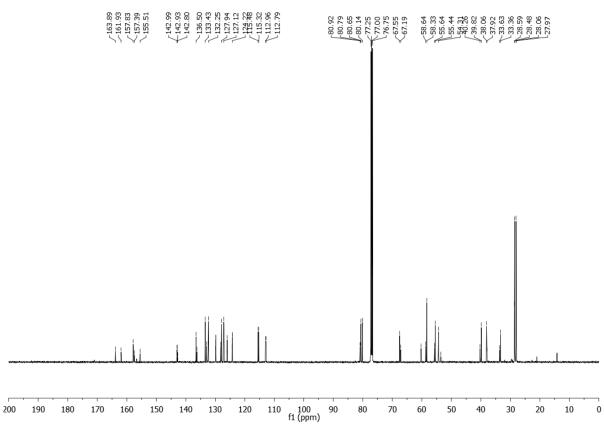




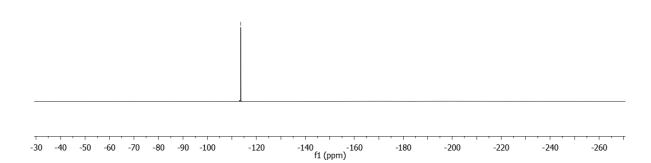
¹³C{¹H} NMR (126 MHz, CDCl₃)

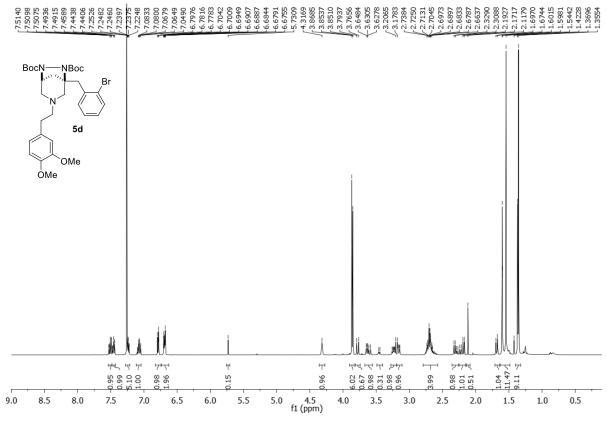

138.49 133.41 132.93 132.36 132.36 132.30 130.03 122.91 122.91 122.91 122.91 122.91 123.44


158.64 158.61 157.61 155.52

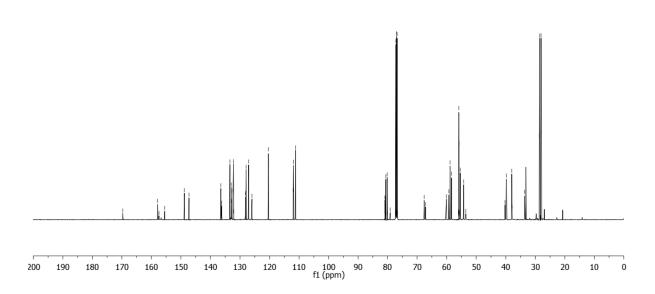


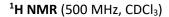
¹³C{¹H} NMR (126 MHz, CDCl₃)

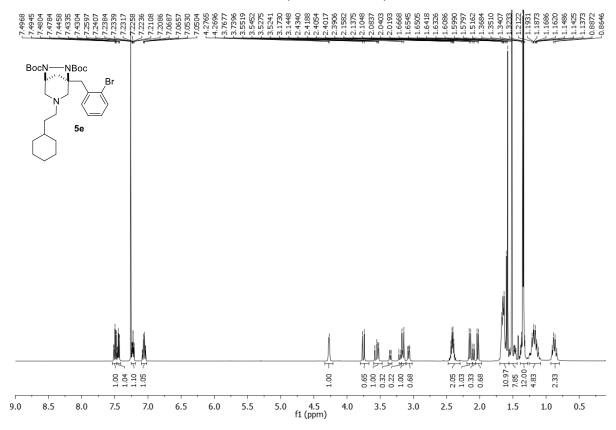



¹³C{¹H} NMR (126 MHz, CDCl₃)

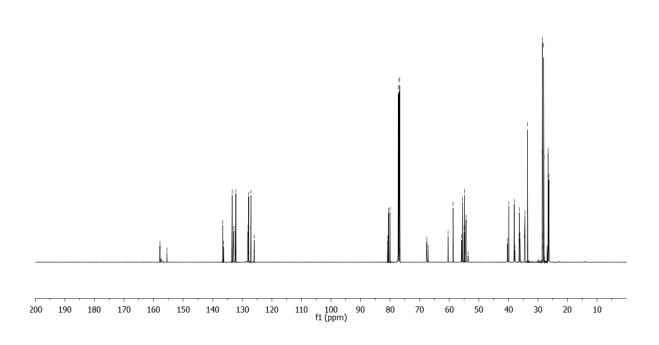
¹⁹F{¹³C} NMR (471 MHz, CDCl₃)

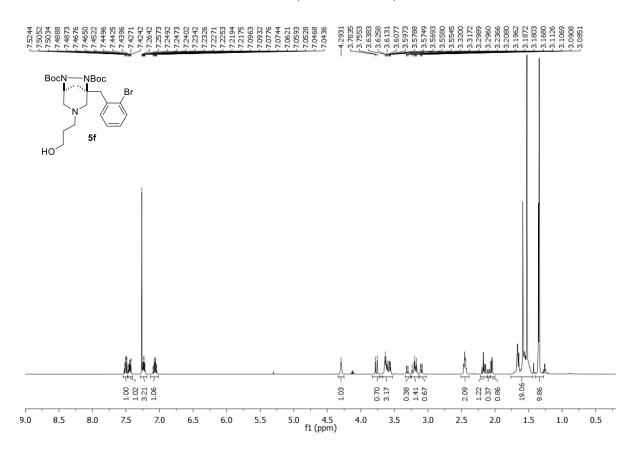

-113.63



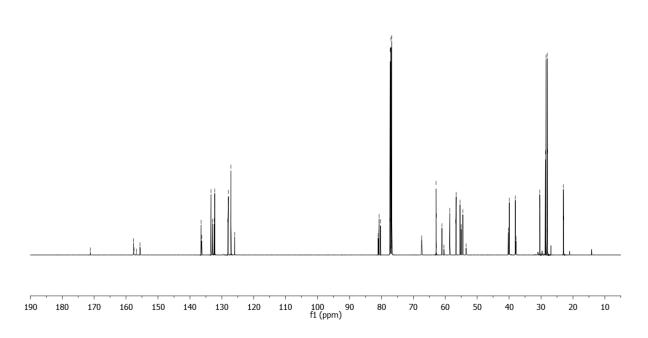


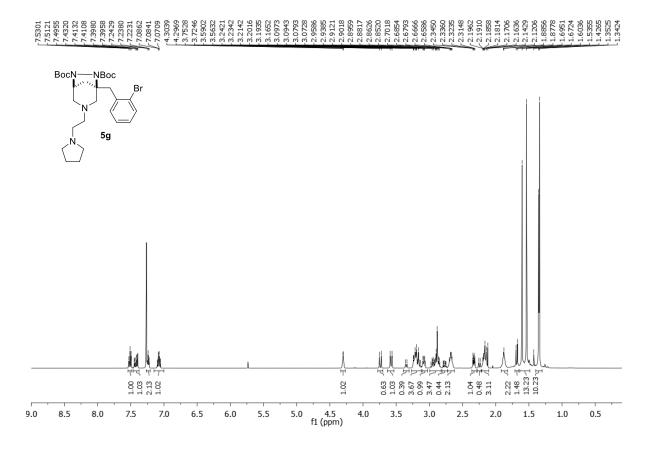
¹³C{¹H} NMR (126 MHz, CDCl₃)

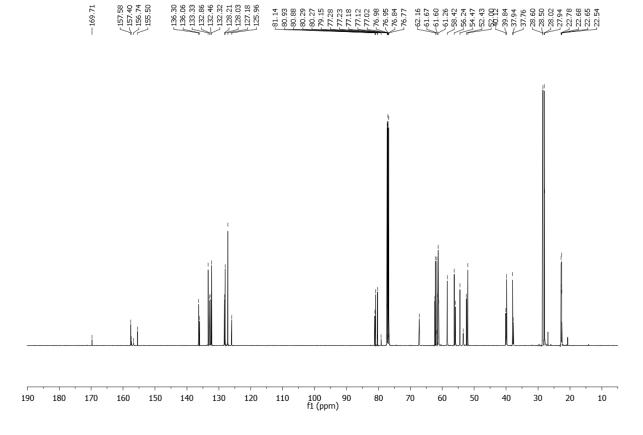


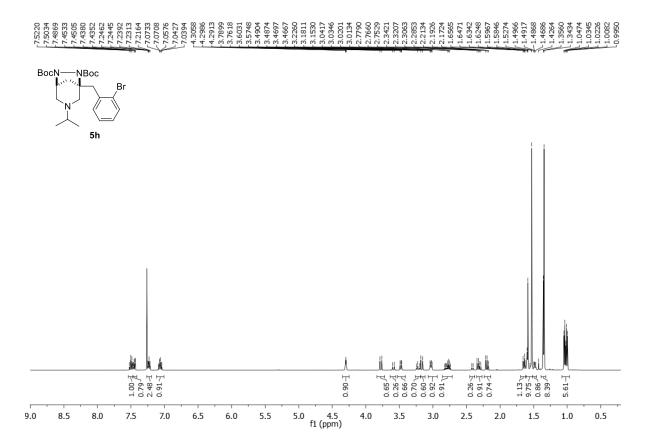


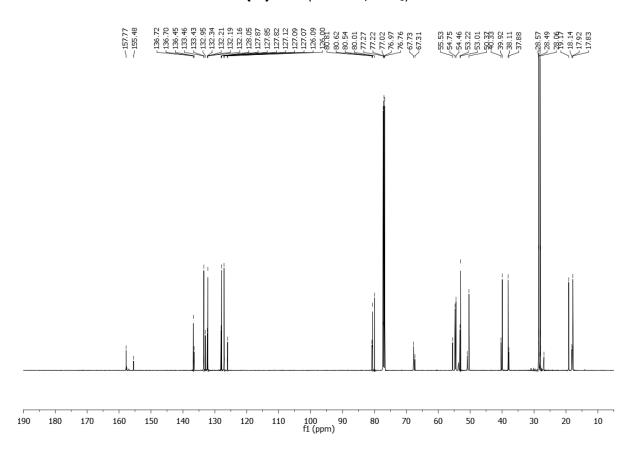
¹³C{¹H} NMR (126 MHz, CDCl₃)

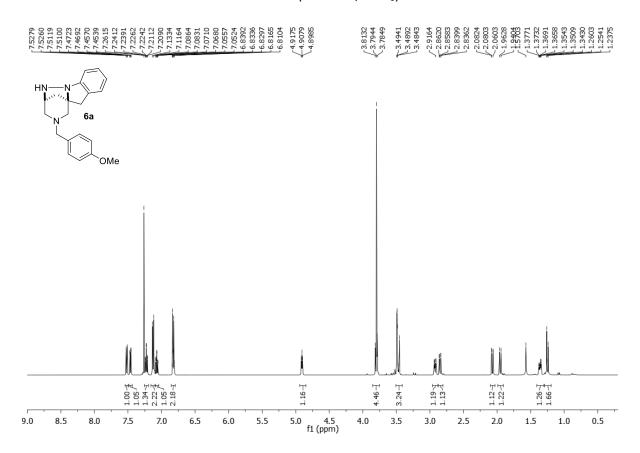


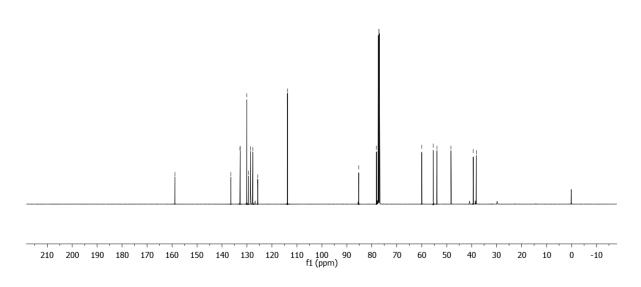


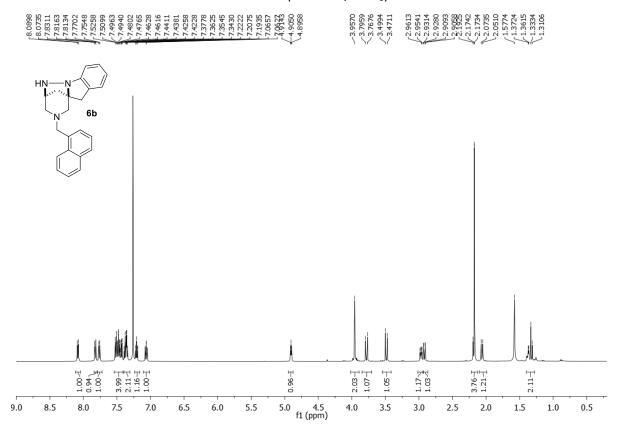

¹³C{¹H} NMR (126 MHz, CDCl₃)



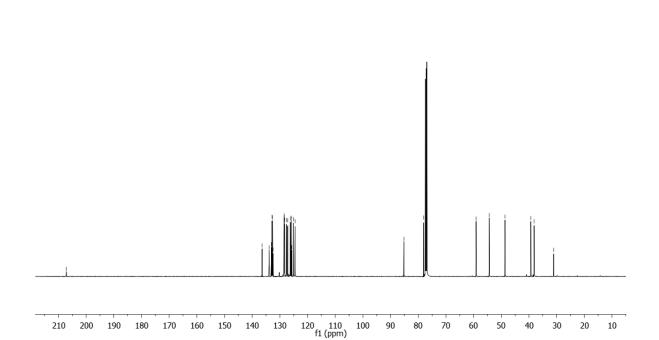


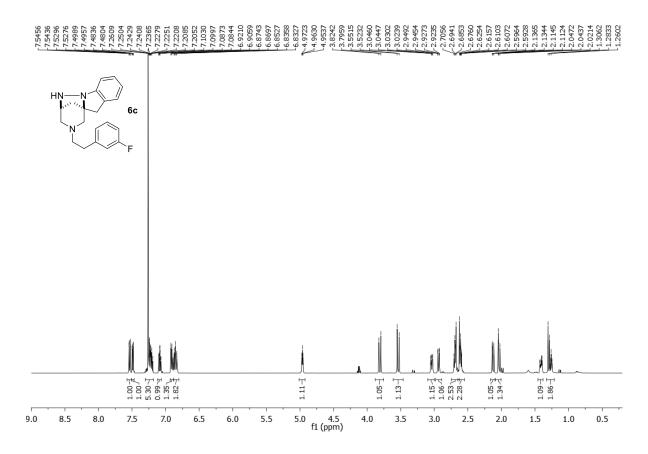

¹³C{¹H} NMR (126 MHz, CDCl₃)


¹³C{¹H} NMR (126 MHz, CDCl₃)



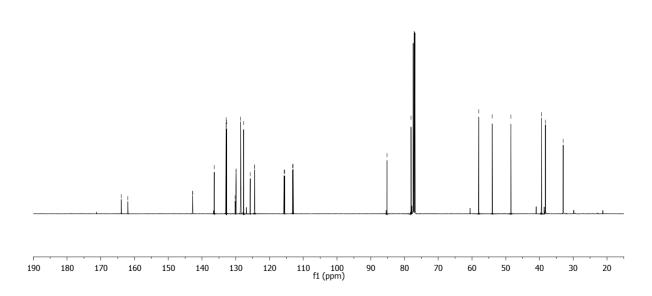
¹³C{¹H} NMR (126 MHz, CDCl₃)

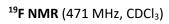

¹³C{¹H} NMR (126 MHz, CDCl₃)


-85.18

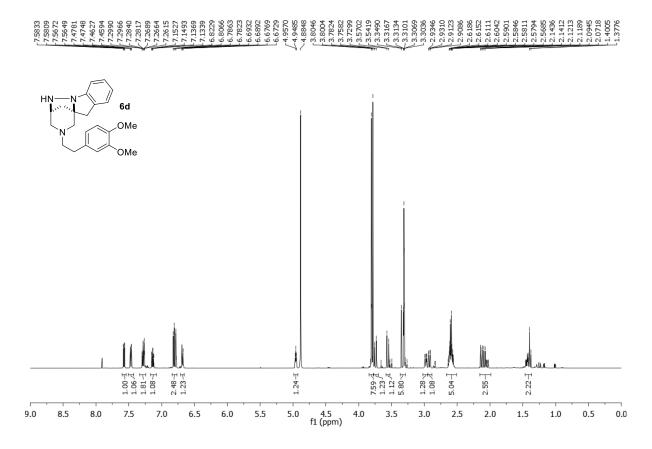
_59.10 _54.35 _48.68

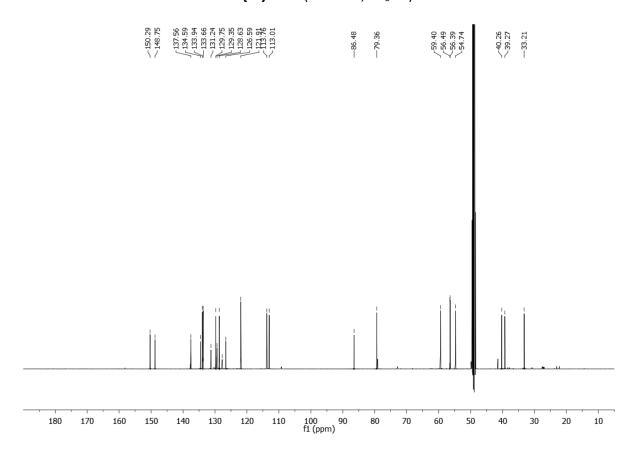
133.40 133.88 133.07 132.67 132.67 132.85 132.85 128.50 128.28 127.56 127.56 127.50 12

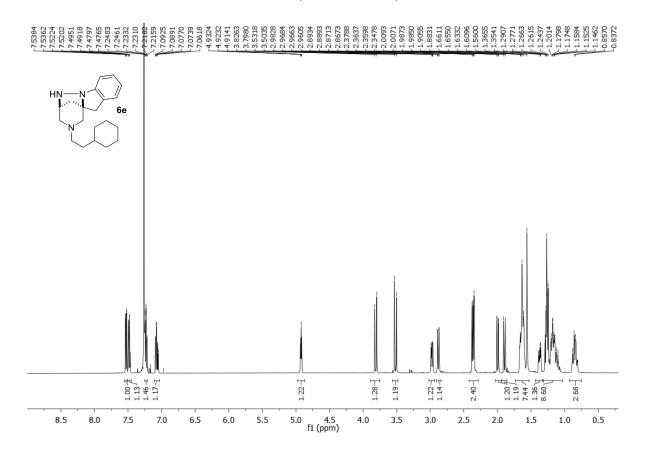

-207.18

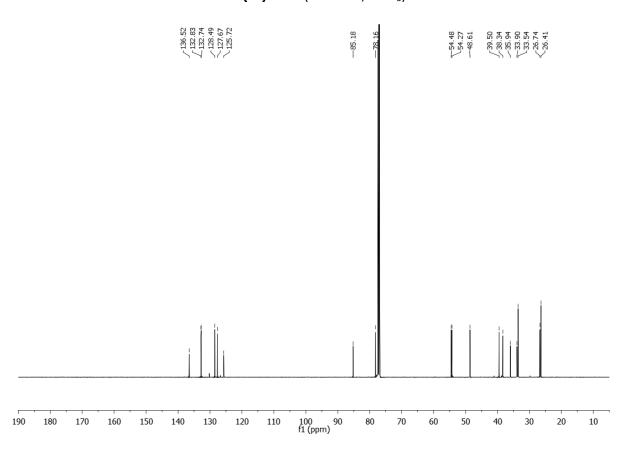


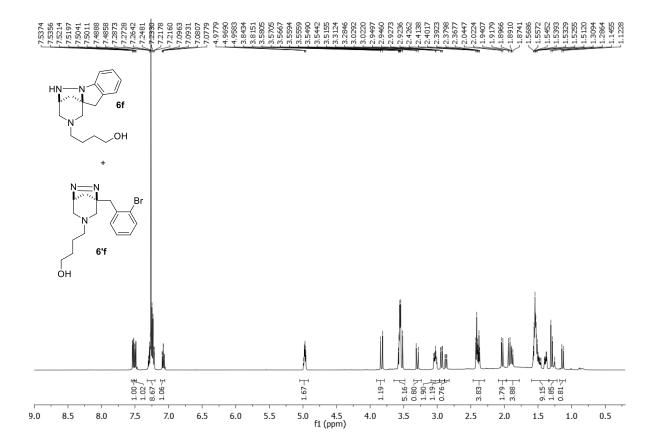
¹³C{¹H} NMR (126 MHz, CDCl₃)

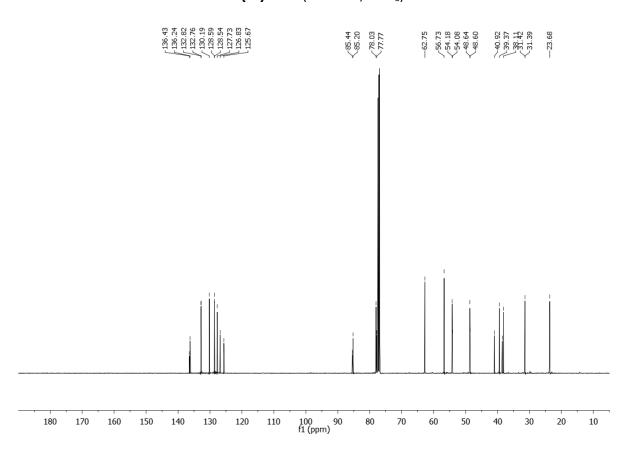

92	3.83	8 8 5 5 5 6 7 4 4 5 6 5 5 5 6 6 6 6 6 6 6 6 6 6 6 6 6	6	ω	66	8	8	9 2 2 6
163 161	54 54	55 55 55 57 57 57 57 57 57 57 57 57 57 5	35.1	78.0	57.9	54.0	85	98.89
\ /	Y	1411111	Ĩ	T	Ĩ	Ĩ.	Ĭ	12.1

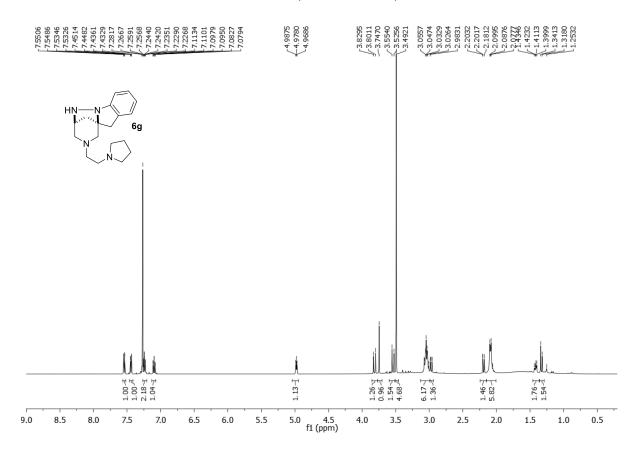


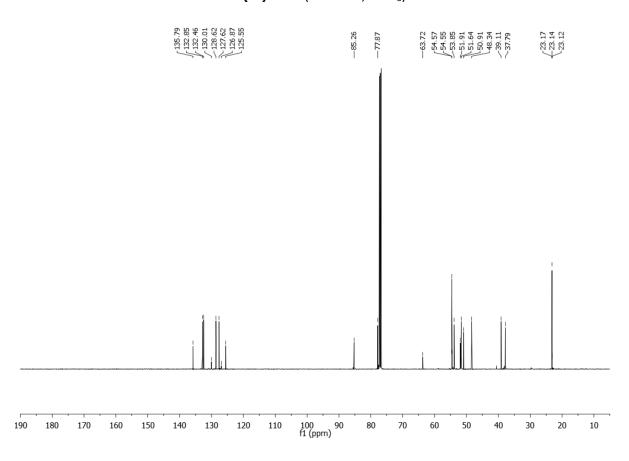


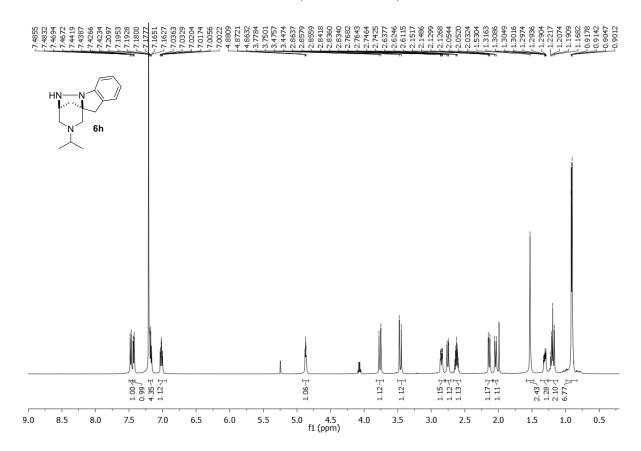


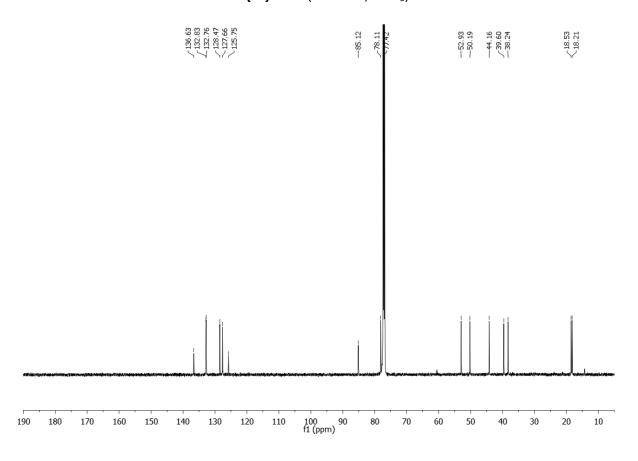


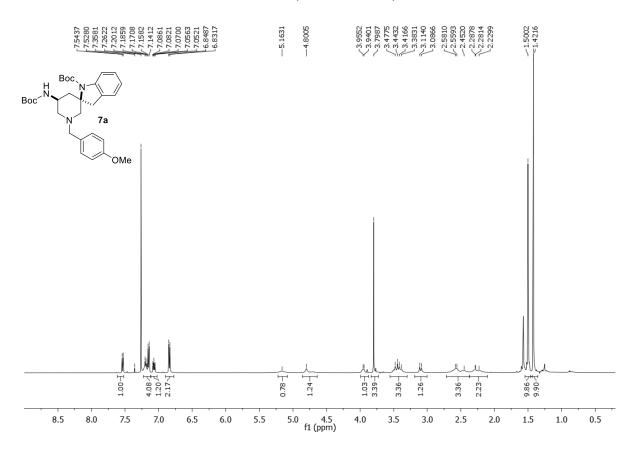


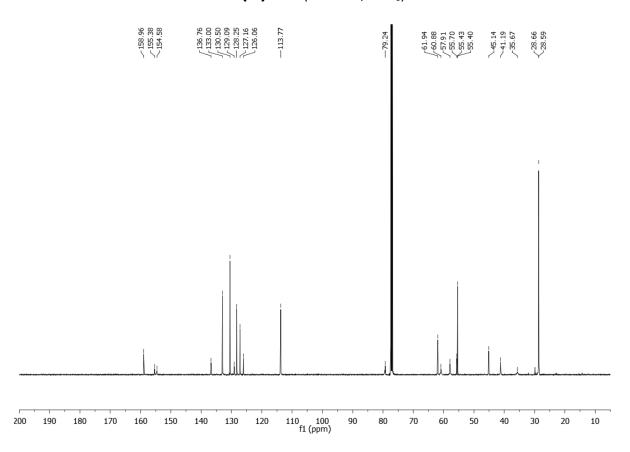


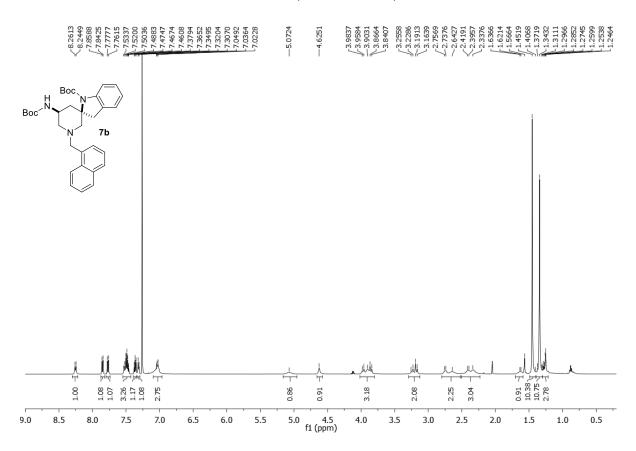


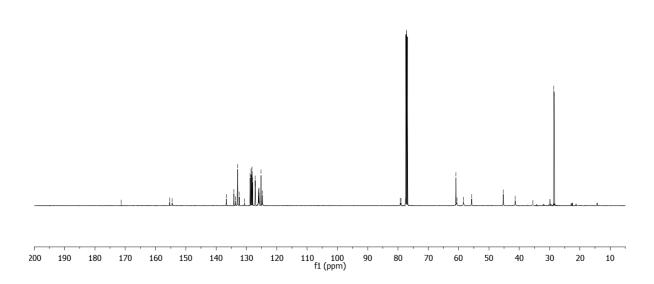


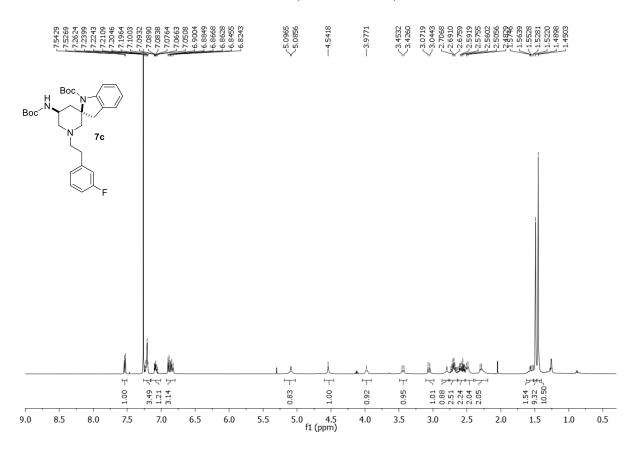


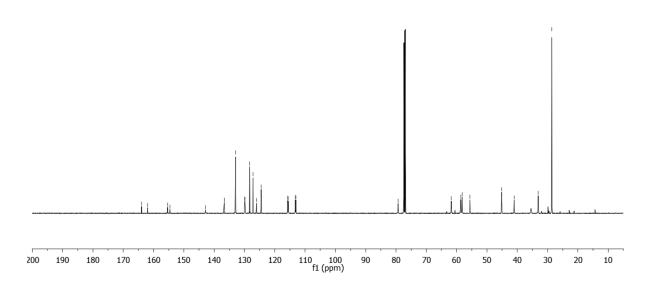


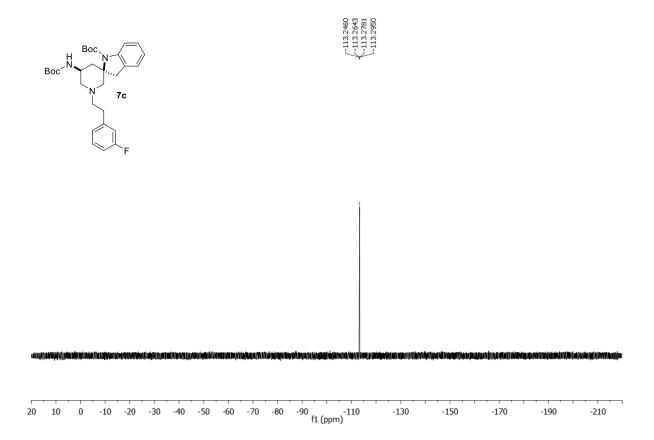


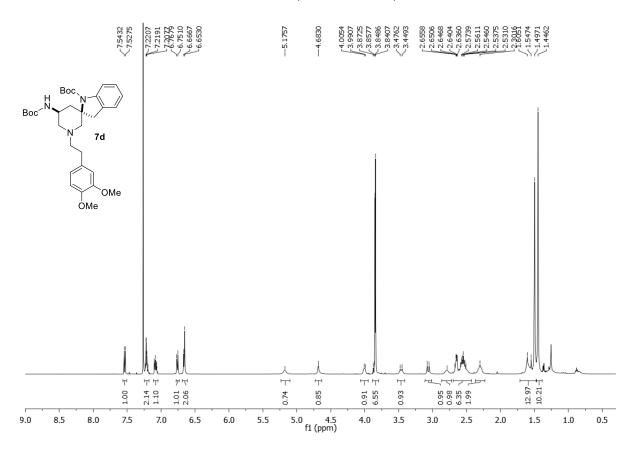


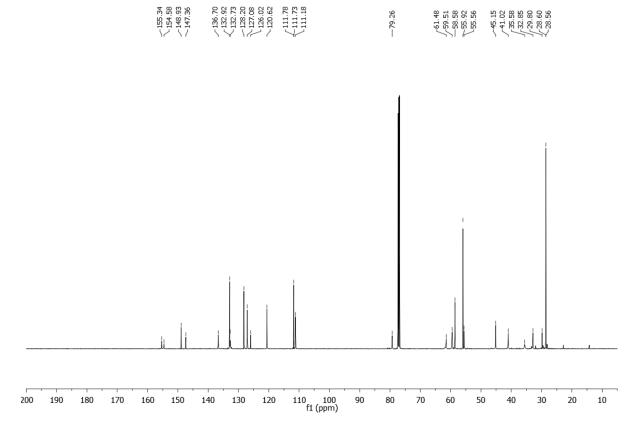


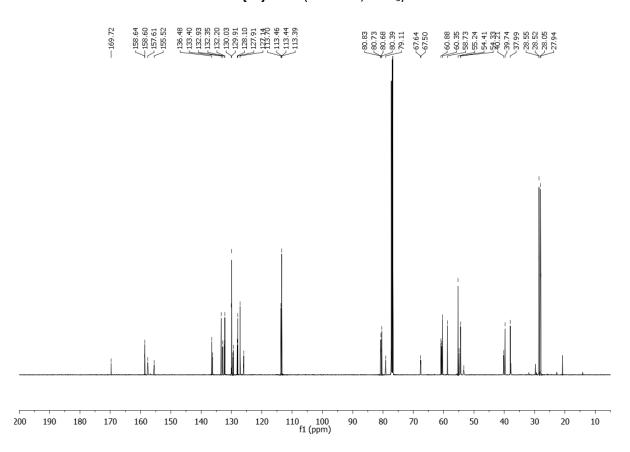


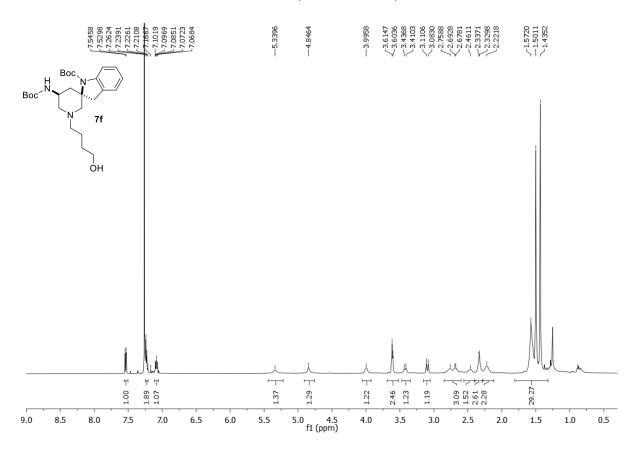


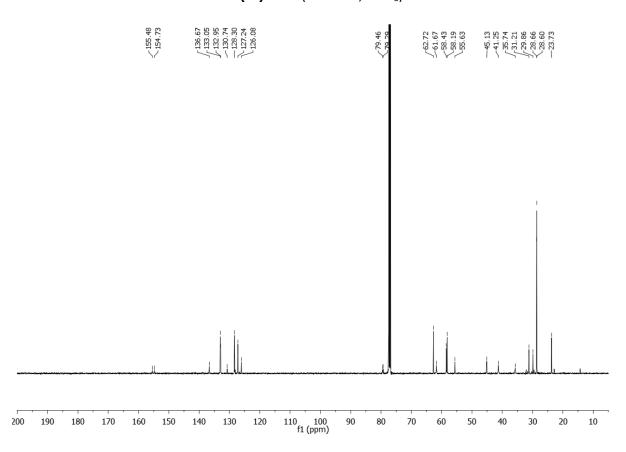


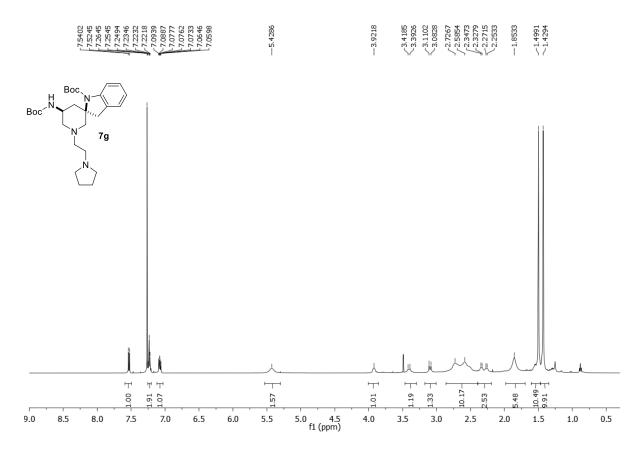


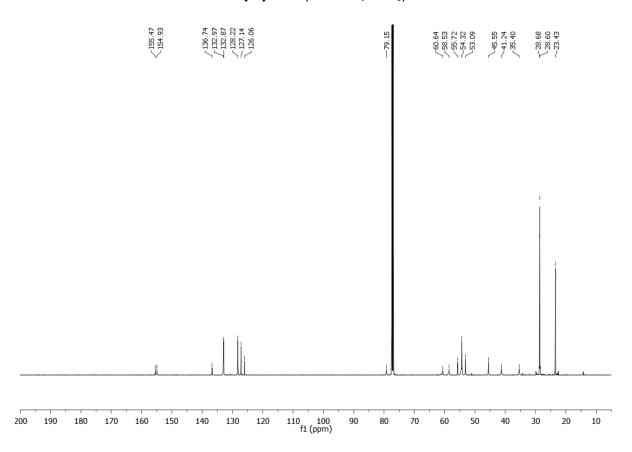

86.08	.87	ខ្ ខ្ នេស ដ ដ ដ្ឋ នេស ខ	88	52 63 65	15	8 e1 28 E1
163 162 155 154	142	55 55 55 55 55 55 55 55 55 55 55 55 55	62	58.6	45.1	8 8 8
17 17	- 1	\\/		7777	ΙÍ	1

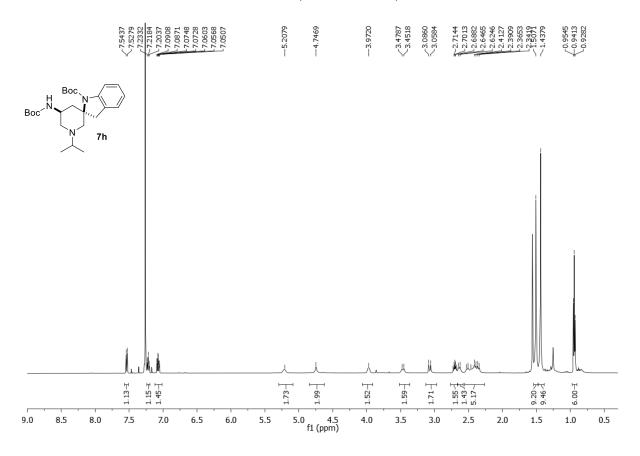


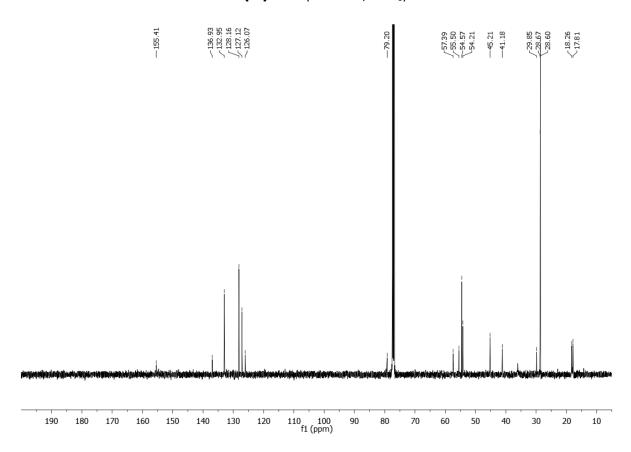


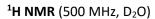

¹³C{¹H} NMR (126 MHz, CDCl₃)

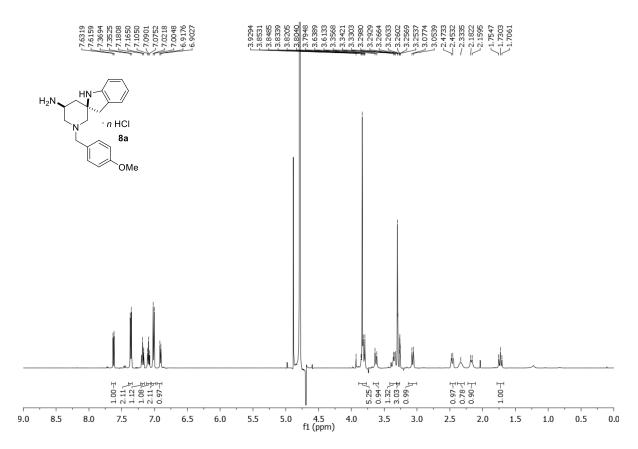


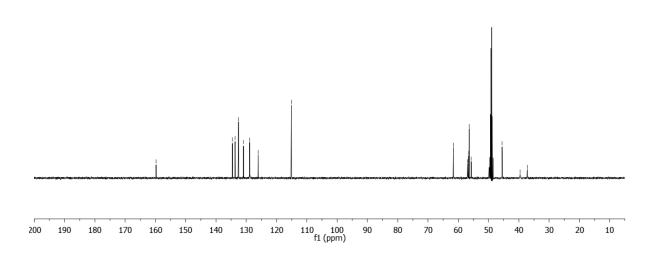


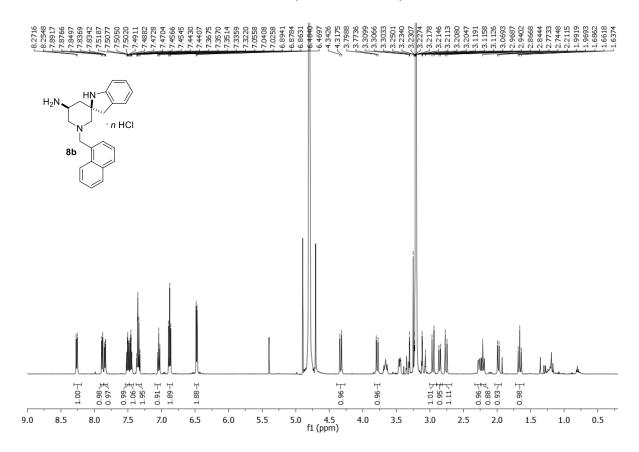


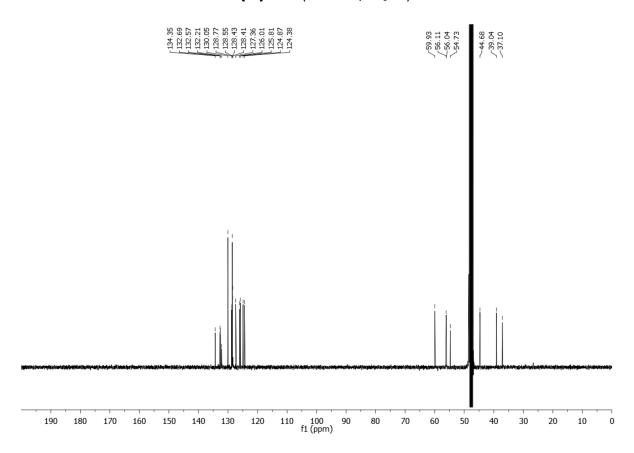


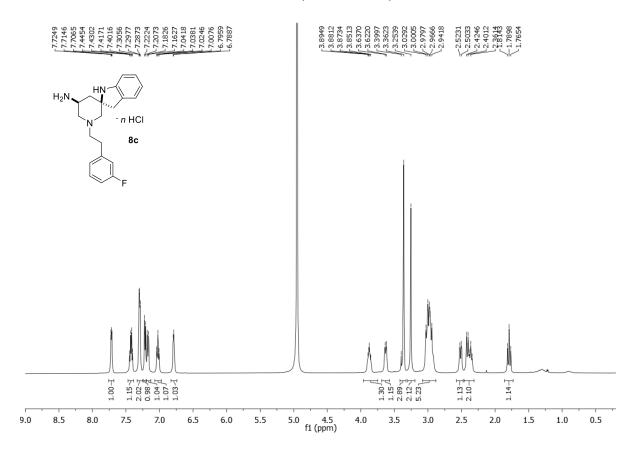


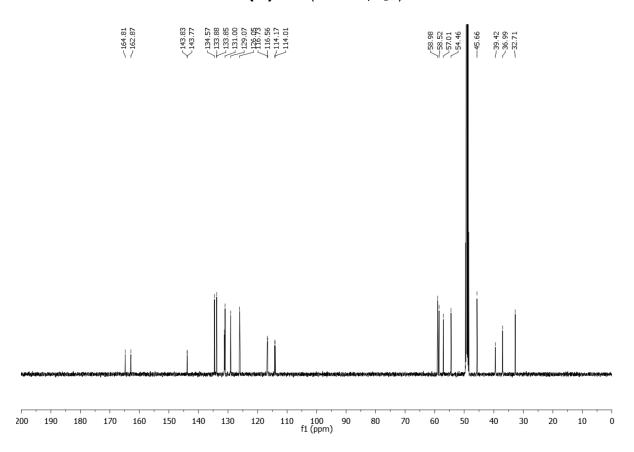


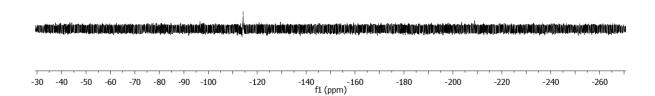


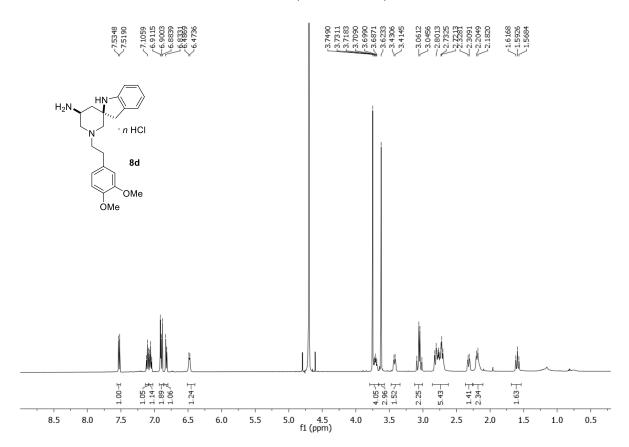




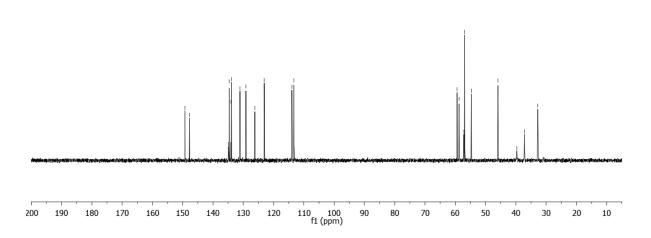


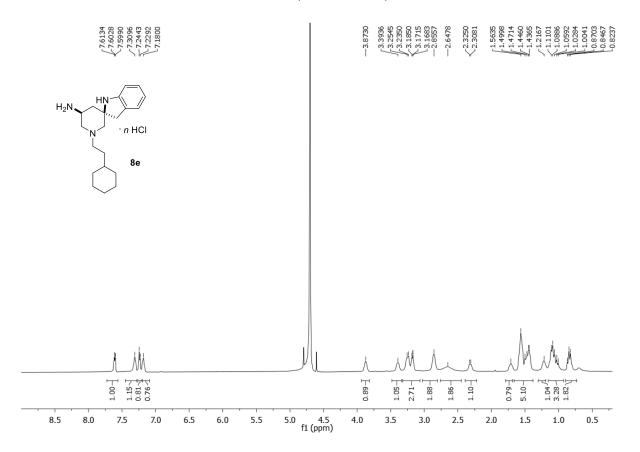



¹³C{¹H} NMR (126 MHz, CD₃OD)

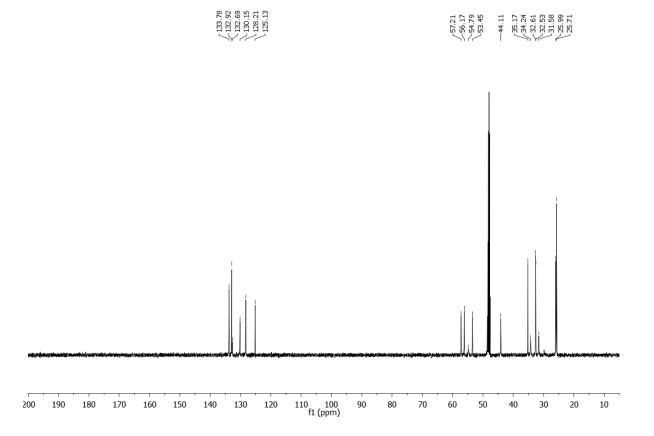


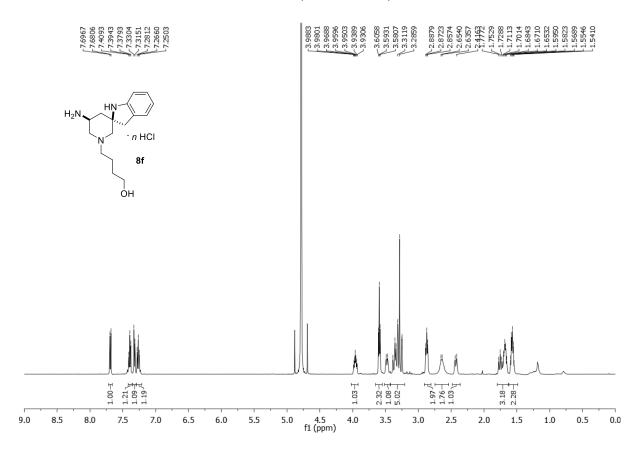
¹⁹**F NMR** (471 MHz, D₂O)

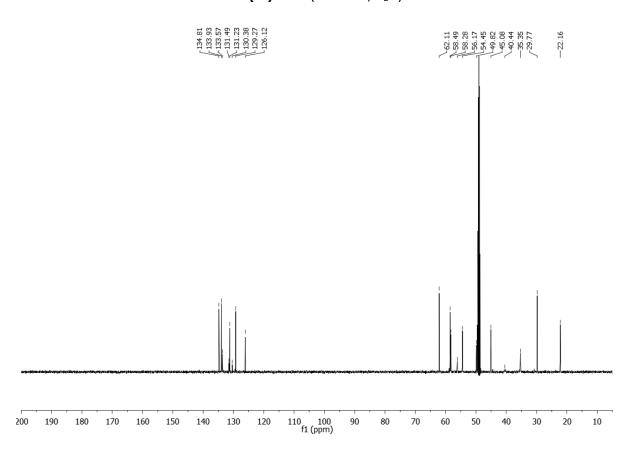


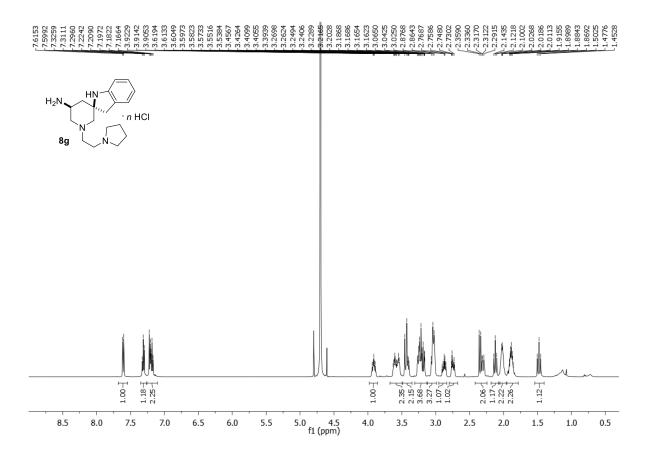


¹³C{¹H} NMR (126 MHz, D₂O)

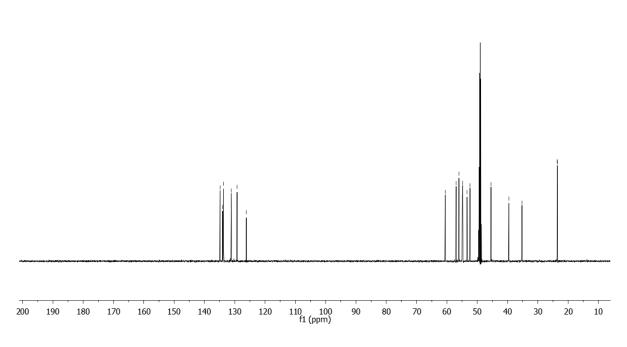

149.25 147.82 134.68 134.63 134.63 133.94 131.10 129.12 126.18 113.98

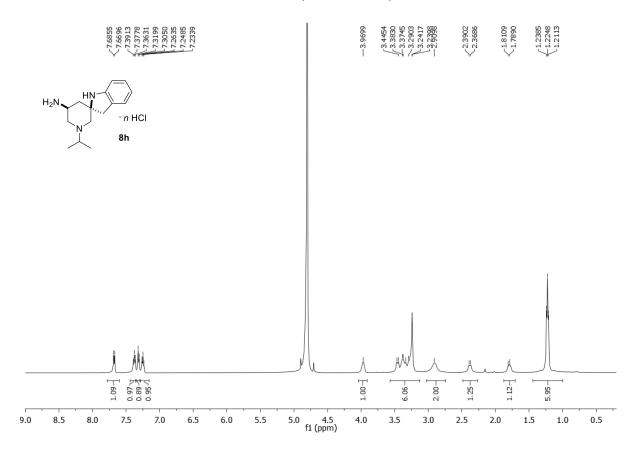

59.40 58.76 57.17 56.88 —45.89 —39.68

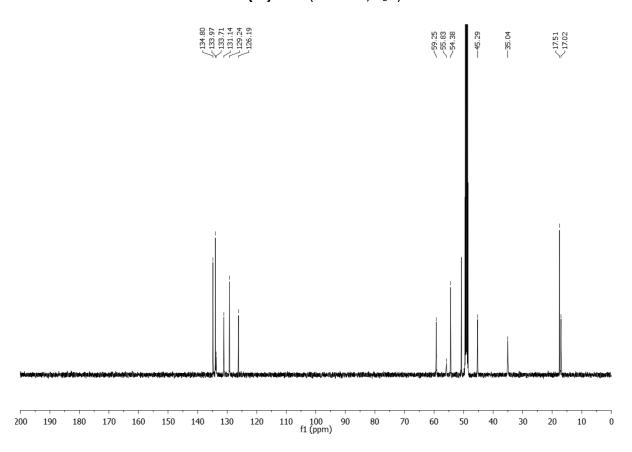




¹³C{¹H} NMR (126 MHz, D₂O)




¹³C{¹H} NMR (126 MHz, D₂O)


134.85 134.02 133.74 131.16 129.25 126.15

60.57 56.96 55.04 55.04 55.33 52.33 45.46 739.57

