Electronic Supplementary Material (ESI) for Organic & Biomolecular Chemistry. This journal is © The Royal Society of Chemistry 2023

Supplementary Information

Exactly Controlled Linear CO Liberation:

A- and B-Ring Simultaneously Extended Flavonol-Based

Red Fluorescent PhotoCORM

Table of Contents

Experimental Section

Materials and Instruments.

Spectral Properties.

CO Photo-releasing Reaction Kinetics and Their Products Analysis

Photo-release of CO in HeLa Cells

Synthesis of Nbp-flaH.

Table Caption

Table S1. Comparison of the flavonol based photoCORMs.

Figure Caption

- Figure S1. Spectral features of Nbp-flaH in various solvents.
- Figure S2. (a) Absorption and (b) fluorescence spectra of Nbp-flaH. (c) The photos of the corresponding solution color under ambient light (left) and 365 nm light (right).
- Figure S3. The time-dependent spectral change and time traces (insets) of Nbp-flaH under N₂ and dark.

Figure S4. The HPLC–MS spectra for the photo-reaction organic products of Nbp-flaH.

- Figure S5. (a) The calibration curve of the CO concentration analysis by GC analysis. (b) GC spectrum for the photo-reaction gas product CO from Nbp-flaH.
- Figure S6. (a) Cyclic voltammograms of Nbp-flaH (2 mM in DMF) under N₂ (red), subsequently under air (black) at rt. (b) Absorption spectra of Nbp-flaH (0.4 mM in DMF) in the absence (under N₂, black) and presence of NBT (0.4 mM in DMF) under N₂ (red) and O₂ (blue) at rt.
- Figure S7. Plots of the cell viability *vs*. analyte concentration. (a) Nbp-flaH, (b) the Nbp-flaH photolysis products.
- Figure S8. The confocal fluorescence images of before and after the Nbp-flaH-treated HeLa cells were irradiated by visible light or sun light in air at rt.
- Figure S9. FT–IR spectra of Nbp-flaH
- Figure S10. ¹H NMR spectrum of Nbp-flaH.
- Figure S11. ¹³C NMR spectrum of Nbp-flaH.
- Figure S12. HRMS spectrum of Nbp-flaH.

Experimental Section

Materials and Instruments.

The chemicals and reagents used in this experiment are of analytical grade or chromatographic grade and further purified by the standard method if necessary. FT-IR spectra were recorded with a Nicolet 6700 spectrophotometer. ¹H NMR and ¹³C NMR spectra were recorded on a Bruker 400 WB and 500 WB, respectively (TMS as the internal standard). UV-vis spectra were measured using an Agilent Technologies HP8453 diode array spectrophotometer. The fluorescence spectra were recorded on an FL 6500 fluorescence spectrophotometer (Perkin Elmer Co., Ltd.). ESI-MS (electrospray ionization mass spectra) measurements were performed on Agilent Technologies HP1100LC-MSD. The organic reaction products analysis was performed on a Thermo Fisher Scientific LTQ Orbitrap XLHPLC-MS. The CO concentration was determined using a GC (Techcomp 7900, Shanghai Jingke). The cytotoxicity assay was accomplished using the MTT method with a microplate reader (Infinite M200 Pro). The Cell images were performed with a confocal laser scanning microscope (LEICA TCS SP5 II, Germany). Cyclic voltammetry data was collected using a CHI620b system. All CV data were obtained under N₂ in DMF with an Nbp-flaH concentration of 2 mM and KClO₄ (0.1 M) as the supporting electrolyte. The scan rate was 50 mV s^{-1} . The experimental setup consisted of a glassy carbon working electrode, a silver reference electrode, and a platinum wire auxiliary electrode. All potentials are reported vs. SCE.

Spectral Properties.

The stock solutions of **Nbp-flaH** (1 mM) were prepared in DMSO. For typical absorption and fluorescence spectra measurements, **Nbp-flaH** was diluted to 10 μ M in DMSO-PBS buffer (1:1, V/V, 10 mM, pH 7.4). 3.0 mL of the resulting solution was placed in a 10 mm path-length quartz cell. Then the UV-vis and the fluorescence spectra in different solvents were recorded at 37 °C. The fluorescence spectra collection conditions were optimized as the excitation wavelength $\lambda_{ex} = 405$

nm, slit width: $d_{ex} = d_{em} = 10$ nm.

CO Photo-releasing Reaction Kinetics and Their Products Analysis

CO Photo-releasing Reaction Kinetics: The Nbp-flaH (10 µM in 3 mL DMSO-PBS buffer (1:1,

V/V, 10 mM, pH 7.4)) solution was irradiated by visible light (intensity = 5.33×10^3 lx) under O₂ with stirring at rt. The absorption and fluorescence spectra were recorded in 1–10 min time intervals until the reaction was finished. The reaction process was monitored by the disappearance of the 420 nm absorbance or the 610 nm fluorescence intensity (accompanying the red fluorescence quenching). Gas Product Analysis: The O₂ saturated solution of Nbp-flaH (the desired concentration (20-60 μ M) in 1 mL ethanol) in a fixed volume flask was sealed. The solution was irradiated by visible light (intensity = $0.23-2.89 \times 10^3$ lx) for the desired time with stirring at rt. The photoreaction process was followed by monitoring the disappearance of the bright red fluorescence using a 365 nm UV lamp. After Nbp-flaH was decomposed completely, the irradiation was stopped. After finishing the visible light irradiation, the reaction solution was stirred for 12 minutes. Then the headspace gas (1 mL), including released CO, was injected into a Gas Chromatography with an FID (flame ionization detector) (CO was reduced to methane by translation stove) (5A column (TDX-01: 4 mm \times 3 m, Column number: TL0686)). The GC spectra were recorded, and the concentration and yield of the released CO were calculated using the standard calibration curve.

Organic Product Analysis: After the photo-reaction in ethanol (4.5% DMF), the reaction solution was concentrated by evaporation and the remaining residue was dissolved in 5 mL of ethanol (total 0.5 mM). The reaction mixture was injected into HPLC–MS for organic products analysis with an online DAD detector (λ : 254 nm) at rt. The analysis conditions are as follows. Column: Hypersil GOLD C 18 column, Thermo Fisher Scientific 150 mm × 2.1 mm, 5 μ m; Mobile phase: MeOH and HOAc-NH₄OAc buffer solution (5 mM, pH = 3) with some gradient; Flow rate: 0.5 mL min⁻¹.

Photo-release of CO in HeLa cells

Cell Culture and Cytotoxicity Assay: Cytotoxicity was investigated by the MTT [3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2H-tetrazolium bromide] method. HeLa cells were seeded in a 96-well culture plate with a Dulbecco's Modified Eagle's Medium (DMEM, 10% FBS (fetal bovine serum), 100 mg/mL penicillin and 100 μ g/mL streptomycin) and cultured in a 5% CO₂, humidified incubator for 24 h at 37 °C. The cells were treated in quintuplicate wells with each concentration of neat test compounds (final concentration of 1, 5, 10 and 15 μ M in DMEM (DMSO = 0.2%, including a vehicle control)) and then incubated for 24 h in the dark. After removing the medium, the cells were washed 3 times with isotonic saline solution and then incubated with MTT (0.5 mg/mL in isotonic saline solution, 100 μ L each well) for 4 h. After removing the medium, 200 μ L DMSO was added to each well to dissolve the formazan crystals. Then the 490 nm and 750 nm (reference wavelength) absorbance were measured by a microplate reader.

The cell viability was calculated as follows:

Cell viability (%) = (average absorbance of treatment group - average absorbance of the blank group)/ (average absorbance of the control group - average absorbance of the blank group)

Imaging of the CO Photo-releasing in HeLa cells: HeLa cells were seeded in the petri dish with a DMEM medium and cultured in a 5% CO₂, humidified incubator for 24 h at 37 °C and allowed to adhere to the petri dish. To track the CO photo-releasing process of **Nbp-flaH**, HeLa cells were incubated with **Nbp-flaH** (10 μ M in isotonic saline solution with 0.2% DMSO, 30 min) at 37°C. After the HeLa cells were washed with isotonic saline solution 3 times, then imaged by confocal fluorescence microscope in the red channel ($\lambda_{ex} = 405$ nm, $\lambda_{em} = 598-618$ nm). Then, the COreleasing process of **Nbp-flaH** in HeLa cells was imaged (1.5 s interval time) and tracked in situ *via* continuous irradiation by 405 nm laser (0.83 mW, 91% laser power) in the air at rt. To demonstrate that **Nbp-flaH** can also be photo-released by visible light or sunlight in living HeLa cells, after imaging **Nbp-flaH**-treated HeLa cells, 1 mL DMEM medium was added to HeLa cells. Then, HeLa cells were irradiated by visible light (intensity = 5.6×10^2 lx, 10 min) or sun light (17 °C, 1 h) in the air at rt. Wash HeLa cells with isotonic saline solution three times and then image them.

Synthesis of Nbp-flaH.

Nbp-flaH was synthesized according to the following procedure (Scheme S1)¹ and characterized by FT-IR, ¹H NMR, ¹³C NMR and HRMS (Figure S5– Figure S8).

Scheme S1. The synthesis procedure of Nbp-flaH

The mixture of [1,1'-biphenyl]-4-carbaldehyde (0.40 g, 2.15 mmol) and sodium hydroxide (0.24 g, 6 mmol) in 100 mL anhydrous methanol was stirred and refluxed at 66°C. Then 1-(3hydroxynaphthalen-2-yl) ethan-1-one (0.39 g, 2.15 mmol, dissolved in 2.5 mL methanol and 1.5 mL dichloromethane) was slowly added. After 4 hours of reaction, lower the reaction temperature to room temperature. Then 0.5 mL of hydrogen peroxide was slowly added dropwise at 0°C, Precipitation gradually appeared in the reaction solution, after 5 hours of reaction, a large amount of precipitation appeared, pour into crushed ice water, stir, filter with suction, wash with ice water. The obtained crude product (yellow solid) was purified by column chromatography ($R_f = 0.57$, dichloromethane:petroleum ether = 2:1). Finally got yellow solid pure product (0.55 g, 70 %), The molecular formula is C₂₅H₁₆O₃. HRMS (ESI): m/z (pos.): calculated for [M + H]⁺: 365.1166, [M + Na]⁺: 387.0986, [2M + Na]⁺: 751.2085, Found for [M + H]⁺: 365.1166, [M + Na]⁺: 387.0986, [2M + Na]⁺: 751.2085. ¹H NMR (400 MHz, DMSO– d_6): δ (ppm) = 9.73 (s, 1H), 8.86, (s, 1H), 8.42–8.40 (m, 2H), 8.35 (s, 1H), 8.27 (d, J = 4 Hz, 1H), 8.10 (d, J = 2 Hz, 1H), 7.93 (d, J = 4 Hz, 2H), 7.81 (d, J = 4 Hz, 2H), 7.69 (t, J = 6 Hz, 1H), 7.60–7.52 (m, 3H), 7.44 (t, J = 6 Hz, 1H). ¹³C NMR (125 MHz, DMSO– d_6): δ (ppm) = 174.37, 151.37, 146.16, 141.87, 139.60, 138.44, 135.88, 130.98, 129.88, 129.56, 129.28, 128.91, 128.58, 127.68, 127.29, 127.20, 126.37, 121.39, 114.67 (19 signals expected and observed). IR: v (cm⁻¹) = 3186 (s), 1640 (s), 1597 (s), 1467 (s), 1281 (s). **Refrences**

1. M. Rode, R. C. Gupta, B. K. Karale and S. S. Rindhe, J. Heterocycl. Chem., 2008, 45, 1597–1602.

	2	2	Stokes	С	CO release			
Compounds	$\lambda_{abs.}$ (nm)	$\lambda_{\rm em}$ (nm)	shift (nm)	(µM)	$\lambda_{\rm ir}$ (nm)	t _{ir} (min)	Yield (%)	Reference
	354 393 412	445 614	202	10	Visible light	13	> 90	This work
	360	546	122/ 186	20	Visible light	24	> 90	J. Mater. Chem. B 2021 , 9, 8263–8271.
	359	544	155	15	Visible light	60	82	New J. Chem. 2022 , 46, 16151–16160.
CTOTOH OH	397	464	67	10	Visible light	30	> 90	Analyst 2022 , 147, 3360–3369.
ССССО	410	575	165	25	419	~8	96	J. Am. Chem. Soc. 2017 , 139, 9435–9438.
	401- 455	576- 622	138 - 209	5-100	405/45 0 /460		50±4 – 95±5	J. Org. Chem. 2022 , 87, 4750–4763.
OH NEt2	445	550	105	5	419	23	99	<i>ACS Med. Chem. Lett.</i> 2022 , <i>13</i> (2), 236–242.
a: $R = H$ b: $R = NEt_2$ $R = NEt_2$ $R = NEt_2$ $R = NEt_2$	480/5 50	570/ 625	90/75	50	419, > 546	24 h	100	ChemistryOpen 2015 , 4, 590–594
0 3 он 1 г ² ге Соон	472	572	100	5	808	48 h	100	<i>Adv. Healthcare Mater.</i> 2021 , 10, 2001728
	410	575	165	25	419	~8	96	Chempluschem 2017 , 82, 1408–1412.
	410	480 610	200	50	419		100	J. Med. Chem. 2019 , 62 (21), 9990–9995.
	410	480 603	193	50	419	~24 h	98-100	ACS Chem. Biol. 2018 , 13, 2220–2228.
СССТРАНИИ СТ	449	500 600	149	2	419	90	84	J. Am. Chem. Soc. 2018, 140, 9721–9729.
СССТ Н СЛ	449	500 600	149	0.66 mM	419	12	90	<i>RSC Adv.</i> , 2022 , 12, 2751–2758.
CCC I CH	410	575	165	10	405	10	96	Angew. Chemie - Int. Ed. 2018 , 57, 12415– 12419.
CCC OF CON	440	568	128	50 μg/mL	Xenon lamp	23	~100	Chem. Eng. J., 2023 , 463, 142371.
	445	555	110	10	460	20	99	<i>Chem. Commun.</i> 2019 , <i>55</i> , 8987–8990.

 Table S1. Comparison of the flavonol based photoCORMs.

$ \begin{array}{c} \begin{array}{c} \begin{array}{c} \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$	791/7 93	815/ 819	24/26	4	770/ 820	~180	125±1 5/ 131±6	<i>Chem A Eur. J.</i> 2020 , <i>26</i> (58), 13184–13190.
e polar groups	749- 755	779- 783	28-33	10	770	120	50±2 - 78±3	<i>Chem. Commun.</i> , 2022 , 58, 8958-8961.
	360	490	130	10	365	10	55	<i>Chem. Commun.</i> 2019 , <i>55</i> , 6301–6304.
جن میں میں کو کو	426 517 554 591 650	652 717	67	5	440	240	330	<i>chemRxiv</i> 10.26434/chemrxiv- 2022-b5611
	356	532	176	0.1 g/L	650 365	90	69/ 58	Angew. Chemie Int. Ed. 2021 , 60 (24), 13513– 13520.
NEt ₂ OH	540	620 680	140	30 µg/mL	290– 800	2.5	~100	Nano Res. 2023 s12274-023-5458-8
A for the second	245 321	475 607	286	0.1 g/L	410	200	63.3	Polymers., 2022 , 14, 2416
	410	603	193	100µg/ mL	410	120	~40	Angew. Chem. Int. Ed. 2022 , 61 (3), e202112782.
PDA NO Inhalat	270, 334	600	266	0.1 g/L	410	40	35.1	Angew. Chemie - Int. Ed. 2020 , 59 (49), 21864–21869.
	270 336 385	606	221	0.1 g/L	410	180	96	Chem. Sci. 2020 , 11 (17), 4499–4507.
PECA-PCOR-PEGO CO-Releasing Trableck Copyinger V C Lagranger (CORTC)	272 338 391	497 609	218	0.1 g/L	410	120	31.1	Macromol. Rapid Commun. 2020 , 41, 2000323–2000331.
H ₂ O ₂ the CO Release light O CO Release light CO ROS ↓ Fla ↓ O O O O O O O O O O O O O O O O O O	409	577	168	0.1 mM	410	8	58	<i>iScience</i> 2020 , <i>23</i> (9), 101483–101493.
СССС	334			10 mM	980	15	93	Chem. Commun., 2022, 58, 8512-8515.

Figure S1. Spectral features of Nbp-flaH in various solvents (1% DMSO) at 37 °C. (a) absorption spectra. Fluorescence spectra (b) in polar and/or protic solvents, (c) in non-polar and non-protic solvents. (10 μ M, $\lambda_{ex} = 405$ nm, slit width: $d_{ex}/d_{em} = 10$ nm)

Figure S2. (a) Absorption and (b) fluorescence spectra of **Nbp-flaH**. (c) The photos of the corresponding solution color under ambient light (left) and 365 nm light (right). Conditions: 10 μ M in 3 mL DMSO-PBS buffer (1:1, V/V, 10 mM, pH 7.4), $\lambda_{ex} = 405$ nm, slit width: $d_{ex}/d_{em} = 10$ nm.

Figure S3. The time-dependent spectral change and time traces (insets) of **Nbp-flaH** under N₂ and dark. (a) absorption and (b) emission spectra under N₂; Insets: (a) A_{420 nm} and (b) I_{610 nm}; (c) absorption and (d) emission spectra under dark; Insets: (c) A_{420 nm} and (d) I_{610 nm}. Conditions: **Nbp-flaH** 10 μ M in DMSO-PBS buffer (1:1, V/V, 10 mM, pH 7.4), $\lambda_{ex} = 405$ nm, slit width: $d_{ex}/d_{em} = 10$ nm.

Figure S4. HPLC–MS spectra for the photo-reaction organic products from **Nbp-flaH**. (a) HPLC spectrum. MS spectra of (b) **Nbp-flaH-HObs** (m/z (neg.): 367.1 (M–H)[–]), (c) 3-hydroxy-2-naphthoic acid (m/z (neg.): 187.1.1 (M–H)[–]), (d) [1,1'-biphenyl]-4-carboxylic acid (m/z (neg.): 197.1 (M–H)[–]).

Figure S5. (a) The calibration curve of the CO concentration analysis by GC analysis. (b) GC spectrum for the photo-reaction gas product CO from **Nbp-flaH** (30 μ M in ethanol with 1% DMSO) irradiated by sunlight (17°C, 3 h). "A" represents the peak area.

Figure S6. (a) Cyclic voltammograms of **Nbp-flaH** (2 mM in DMF) under N₂ (red), subsequently under air (black) at rt. (b) Absorption spectra of **Nbp-flaH** (0.4 mM in DMF) in the absence (under N₂, black) and presence of NBT (0.4 mM in DMF) under N₂ (red) and O₂ (blue) at rt.

Figure S7. Plots of the cell viability *vs.* analyte concentration (a) **Nbp-flaH**, (b) the **Nbp-flaH** photolysis products (incubation time: 24 h). Error bars in column represent standard deviations of three independent measurements.

Figure S8. The confocal fluorescence images of before and after the **Nbp-flaH**-treated HeLa cells were irradiated by visible light or sun light in air at rt. (a) control, visible light (b) 0 min and (c) 10 min, sun light (d) 0 min and (e) 1 h. First row: red channel; second row: bright field; third row: merged. Conditions: 10 μ M in isotonic saline solution with 0.2% DMSO, 30 min; visible light intensity = 5.6× 10² lx; sun light: 17 °C.

Figure S9. FT-IR spectrum of Nbp-flaH

Figure S10. ¹H NMR (400 MHz) spectrum of **Nbp-flaH** in DMSO- d_6 at ambient temperature. The * indicates the signal from residual DMSO in the solvent. The ^{α} indicates the signal from the residual water in the solvent.

Figure S11. ¹³C NMR (125 MHz) spectrum of Nbp-flaH in DMSO-*d*₆ at ambient temperature.

The * indicates the signal from residual DMSO in the solvent.

Figure S12. HRMS spectrum of Nbp-flaH in ethanol.