Electronic Supporting Information

Isolation of new compounds related to xyloketals biosynthesis

implies an alternative pathway for furan-fused-chromene

formation

Jia-Hua Huang, ‡^a Jian-Ming Lv, ‡^b Yan-Feng Xie, ^b Huan Zhao, ^c Liang-Yan Xiao, ^b Ping Dai, ^b Sheng-Ying Qin, ^d Dan Hu, *^{b,e} Hao Gao *^{a,b} and Xin-Sheng Yao *^{a,b}

^a School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang 110016, China. E-mail: tyaoxs@jnu.edu.cn

^b Institute of Traditional Chinese Medicine & Natural Products, College of Pharmacy / Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research / International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Ministry of Education (MOE) of China, Jinan University, Guangzhou 510632, China. E-mail: thudan@jnu.edu.cn; tghao@jnu.edu.cn

^c College of Traditional Chinese Medicine, Jinan University, Guangzhou 510632, China

Clinical Experimental Center, First Affiliated Hospital of Jinan University, Guangzhou 510630, China ^d Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China.

Table of Contents

Supplementary Tables1
Table S1. NMR data for compound 1 in CDCl31
Table S2. NMR data for compound 2 in CDCl32
Table S3. NMR data for compound 3 in CDCl33
Table S4. NMR data for compound 4 in CDCl34
Table S5. NMR data for compound 5 in CDCl ₃ 5
Table S6. Mean absolute error (MAE) values, R square (R ²) of the linear correlations, and DP4+ probability analysis of 5a and 5b6
Table S7. NMR data for compound 6 in CDCl37
Table S8. ¹ H and ¹³ C NMR data for Ac-5 in CDCl ₃ .
Table S9. ¹ H and ¹³ C NMR data for 7 in CDCl ₃ .
Table S10. ¹ H and ¹³ C NMR data for 8 in CD ₃ OD.
Table S11. ¹ H and ¹³ C NMR data for 9 in CD ₃ OD. 11
Table S12. ¹ H and ¹³ C NMR data for 10 in CDCl ₃ . 12
Table S13. ¹ H and ¹³ C NMR data for 11 in CDCl ₃ . 13
Table S14. ¹ H and ¹³ C NMR data for authentic <i>O</i> -methylorcinol14
Supplementary Figures15
Figure S1. Representative natural products containing furan-fused chromene units. 15
Figure S2. Most stable conformers of (1 <i>R</i> *, 6 <i>R</i> *)-5a and (1 <i>S</i> *, 6 <i>R</i> *) -5b16
Figure S3. Most stable conformers of (1 <i>R</i> , 6 <i>S</i>)-517
Figure S4. Cell viability of human cancer cells supplemented with the tested compound
Figure S5. ¹ H NMR spectrum of 1 in CDCl ₃ at 600 MHz19
Figure S6. ¹³ C NMR spectrum of 1 in CDCl ₃ at 150 MHz19
Figure S7. ¹ H- ¹ H COSY spectrum of 1 in CDCl ₃ at 600 MHz20
Figure S8. HSQC spectrum of 1 in CDCl ₃ at 600 MHz21
Figure S9. HMBC spectrum of 1 in CDCl ₃ at 600 MHz21
Figure S10. NOESY spectrum of 1 in CDCl ₃ at 600 MHz22
Figure S11. ¹ H NMR spectrum of 2 in CDCl ₃ at 400 MHz23
Figure S12. ¹³ C NMR spectrum of 2 in CDCl ₃ at 100 MHz23

Figure S13. ¹ H - ¹ H COSY spectrum of 2 in CDCl ₃ at 400 MHz24
Figure S14. HSQC spectrum of 2 in CDCl ₃ at 400 MHz25
Figure S15. HMBC spectrum of 2 in CDCl ₃ at 400 MHz25
Figure S16. NOESY spectrum of 2 in CDCl ₃ at 400 MHz26
Figure S17. ¹ H NMR spectrum of 3 in CDCl ₃ at 400 MHz27
Figure S18. ¹³ C NMR spectrum of 3 in CDCl ₃ at 100 MHz27
Figure S19. ¹ H - ¹ H COSY spectrum of 3 in CDCl ₃ at 400 MHz28
Figure S20. HSQC spectrum of 3 in CDCl ₃ at 600 MHz29
Figure S21. HMBC spectrum of 3 in CDCl ₃ at 600 MHz29
Figure S22. NOESY spectrum of 3 in CDCl ₃ at 600 MHz30
Figure S23. ¹ H NMR spectrum of 4 in CDCl ₃ at 400 MHz31
Figure S24. ¹³ C NMR spectrum of 4 in CDCl ₃ at 100 MHz31
Figure S25. ¹ H- ¹ H COSY spectrum of 4 in CDCl ₃ at 400 MHz32
Figure S26. HSQC NMR spectrum of 4 in CDCl ₃ at 400 MHz33
Figure S27. HMBC spectrum of 4 in CDCl ₃ at 400 MHz33
Figure S28. ROESY spectrum of 4 in CDCl ₃ at 400 MHz34
Figure S29. ¹ H NMR spectrum of 5 in CDCl ₃ at 600 MHz35
Figure S30. ¹³ C NMR spectrum of 5 in CDCl ₃ at 100 MHz35
Figure S31. ¹ H- ¹ H COSY spectrum of 5 in CDCl ₃ at 600 MHz
Figure S32. HSQC spectrum of 5 in CDCl ₃ at 600 MHz37
Figure S33. HMBC spectrum of 5 in CDCl ₃ at 600 MHz37
Figure S34. NOESY spectrum of 5 in CDCl ₃ at 600 MHz
Figure S35. ¹ H NMR spectrum of 6 in CDCl ₃ at 400 MHz
Figure S36. ¹³ C NMR spectrum of 6 in CDCl ₃ at 100 MHz
Figure S37. ¹ H - ¹ H COSY spectrum of 6 in CDCl ₃ at 400 MHz40
Figure S38. HSQC spectrum of 6 in CDCl ₃ at 400 MHz41
Figure S39. HMBC spectrum of 6 in CDCl ₃ at 400 MHz41
Figure S40. NOESY spectrum of 6 in CDCl ₃ at 600 MHz42
Figure S41. ¹ H NMR spectrum of 7 in CDCl ₃ at 600 MHz43
Figure S42. ¹³ C NMR spectrum of 7 in CDCl ₃ at 150 MHz43
Figure S43. ECD spectra of 4 and 744
Figure S44. ¹ H NMR spectrum of 8 in CD ₃ OD at 400 MHz45

Figure S45. ¹³ C NMR spectrum of 8 in CD ₃ OD at 100 MHz	45
Figure S46. ¹ H NMR spectrum of 9 in CD ₃ OD at 400 MHz	46
Figure S47. ¹³ C NMR spectrum of 9 in CD ₃ OD at 100 MHz	46
Figure S48. ¹ H NMR spectrum of authentic <i>O</i> -methylorcinol in CD ₃ OD at 400 M	Hz.
	47
Figure S49. ¹³ C NMR spectrum of authentic <i>O</i> -methylorcinol in CD ₃ OD at 400 M	[Hz.
	47
Figure S50. ¹ H NMR spectrum of 10 in CDCl ₃ at 400 MHz	48
Figure S51. ¹³ C NMR spectrum of 10 in CDCl ₃ at 100 MHz	48
Figure S52. ¹ H NMR spectrum of 11 in CDCl ₃ at 600 MHz	49
Figure S53. ¹³ C NMR spectrum of 11 in CDCl ₃ at 150 MHz	49
Figure S54. ¹ H NMR spectrum of Ac-5 in CDCl ₃ at 400 MHz	50
Figure S55. ¹³ C NMR spectrum of Ac-5 in CDCl ₃ at 100 MHz	50

Supplementary Tables

Table S1. NMR data for compound 1 in CDCl₃.

No.	$\delta_{\rm C}{}^a$, type	$\delta_{\mathrm{H}} (J \mathrm{in} \mathrm{Hz})^{b, c}$	¹ H– ¹ H COSY ^b	HMBC ^b	NOESY ^b
2	107.3, C				
4	73.9, CH ₂	a: 4.16, t (8.4)	4b, 5	2, 5, 6, 11	11
		b: 3.52, t (8.4)	4a, 5	2, 5, 11	6,11
5	35.5, CH	2.11	4a, 4b, 6, 11	4, 6, 7, 11	
6	48.1, CH	1.93, ddd (10.8, 6.0, 1.8)	5, 7a, 7b	8	4b, 10, 11
7	21.9, CH ₂	a: 2.71, dd (16.8, 6.0)	6, 7b	2, 5, 6, 8, 9, 12	11
		b: 2.67, dd (16.8, 1.8)	6, 7a	2, 5, 6, 8, 9, 12	10
8	109.1, C				
9	151.2, C				
10	23.2, CH ₃	1.51, s		2,6	6, 7b
11	16.1, CH ₃	1.06, d (6.6)	5	4, 5, 6	4a, 4b, 6, 7a
2'	106.9, C				
4′	74.0, CH ₂	a: 4.17, t (8.4)	4′b, 5′	2', 5', 6', 11'	11'
		b: 3.51, t (8.4)	4'a, 5'	2', 5', 11'	6', 11'
5'	35.5, CH	2.11	4'a, 4'b, 6', 11'	4', 6', 7', 11'	
6'	47.6, CH	1.88, br dd (10.8, 6.0)	5′, 7′a, 7′b	2', 5', 7', 8', 10', 11'	4′b, 10′, 11′
7′	19.1, CH ₂	a: 2.88, br d (18.0)	6′, 7′b	2', 5', 6', 8', 9'	11'
		b: 2.66, dd (18.0, 6.0)	6′, 7′a	2', 5', 6', 8', 9'	10'
8'	104.8, C				
9′	151.7, C				
10′	22.5, CH ₃	1.48, s		2', 6'	6′, 7′b
11′	15.9, CH ₃	1.04, d (6.6)	5'	4', 5', 6'	4'a, 4'b, 6', 7'a
12	135.4, C				
13	110.5, CH	6.31, s		8, 8', 9', 14	14
14	19.2, CH ₃	2.16, s		8, 12, 13	13

^a The data were measured at 150 MHz.

^b The data were measured at 600 MHz.

Table S2. NMR data for compound 2 in CDCl₃.

		11'	14 1	1		
No.	$\delta_{\mathrm{C}}{}^{a}$, type	$\delta_{\mathrm{H}} (J \mathrm{in} \mathrm{Hz})^{b, c}$	¹ H– ¹ H COSY ^b	HMBC ^b	NOESY ^b	
2	106.7, C					
4	73.9, CH ₂	a: 4.17, t (8.4)	4b, 5	2, 5, 6, 11		
		b: 3.50, t (8.4)	4a, 5	2, 5, 11	6, 11	
5	35.4, CH	2.13	4a, 4b, 6, 11	4		
6	48.2, CH	1.91	5, 7a, 7b	8, 11	4b, 11	
7	22.4, CH ₂	a: 2.76	6, 7b	2, 5, 6, 8, 9, 12		
		b: 2.72	6, 7a	2, 5, 6, 8, 9, 12		
8	110.0, C					
9	152.3, C					
10	22.7, CH ₃	1.49, s		2, 6		
11	16.0, CH ₃	1.05, d (6.4)	5	4, 5, 6	4b, 6	
2'	106.7, C					
4′	73.9, CH ₂	a: 4.17, t (8.4)	4′b, 5′	2', 5', 6', 11'		
		b: 3.50, t (8.4)	4'a, 5'	2', 5', 11'	6', 11'	
5'	35.4, CH	2.13	4'a, 4'b, 6', 11'	4'		
6'	48.2, CH	1.91	5′, 7′a, 7′b	8', 11'	4′b, 11′	
7'	22.4, CH ₂	a: 2.76	6′, 7′b	2', 5', 6', 8', 9', 12		
		b: 2.72	6′, 7′a	2', 5', 6', 8', 9', 12		
8'	110.0, C					
9′	152.3, C					
10'	22.7, CH ₃	1.49, s		2', 6'		
11′	16.0, CH ₃	1.05, d (6.4)	5'	4', 5', 6'	4′b, 6′	
12	135.1, C					
13	103.1, CH	6.25, s		8, 8', 9, 9'		
14	14.8, CH ₃	2.13, s		8, 8', 12		

^a The data were measured at 100 MHz.

^b The data were measured at 400 MHz.

Table S3. NMR data for compound 3 in CDCl₃.

	5' = 7' 8' 12 7 H 5					
		11'	14 1	1		
No.	$\delta_{\rm C}{}^a$, type	$\delta_{\mathrm{H}} (J \mathrm{in} \mathrm{Hz})^{b, d}$	¹ H– ¹ H COSY ^b	HMBC ^c	NOESY ^c	
2	106.6, C					
4	73.9, CH ₂	a: 4.17, t (8.4)	4b, 5	2, 5, 6, 11		
		b: 3.51, t (8.4)	4a, 5	2, 5, 11	6, 11	
5	35.4, CH	2.14	4a, 4b, 6, 11	4, 6, 7		
6	48.3, CH	1.91, ddd (10.8, 6.0, 2.4)	5, 7a, 7b	2, 5, 8, 10, 11	4b, 10, 11	
7	22.4, CH ₂	a: 2.76, dd (16.0, 5.6)	6, 7b	2, 5, 6, 8, 9, 12		
		b: 2.71, dd (16.0, 2.4)	6, 7a	2, 5, 6, 8, 9, 12		
8	109.9, C					
9	152.3, C					
10	22.6, CH ₃	1.49, s		2, 6	6	
11	16.0, CH ₃	1.05, d (6.8)	5	4, 5, 6	4b, 6	
2'	106.6, C					
4′	73.9, CH ₂	a: 4.17, t (8.4)	4′b, 5′	2', 5', 6', 11'		
		b: 3.51, t (8.4)	4'a, 5'	2', 5', 11'	6', 11'	
5'	35.4, CH	2.14	4'a, 4'b, 6', 11'	4', 6', 7'		
6'	48.3, CH	1.91, ddd (10.8, 6.0, 2.4)	5′, 7′a, 7′b	2', 5', 8', 10', 11'	4′b, 10′, 11′	
7'	22.4, CH ₂	a: 2.76, dd (16.0, 5.6)	6′, 7′b	2', 5', 6', 8', 9', 12		
		b: 2.71, dd (16.0, 2.4)	6′, 7′a	2', 5', 6', 8', 9', 12		
8'	109.9, C					
9′	152.3, C					
10′	22.6, CH ₃	1.49, s		2', 6'	6'	
11′	16.0, CH ₃	1.05, d (6.8)	5'	4', 5', 6'	4′b, 6′	
12	135.1, C					
13	103.1, CH	6.25, s		8, 8', 9, 9'		
14	14.8, CH ₃	2.12, s		8, 8', 12		

^a The data were measured at 100 MHz.

^b The data were measured at 400 MHz.

^c The data were measured at 600 MHz.

Table S4. NMR data for compound 4 in CDCl₃.

No.	$\delta_{\rm C}{}^a$, type	$\delta_{\mathrm{H}} (J \mathrm{in} \mathrm{Hz})^{b, c}$	¹ H– ¹ H COSY ^b	HMBC ^b	ROESY ^b
2	107.1, C				
4	74.0, CH ₂	a: 4.18, t (8.0)	4b, 5	2, 5, 6, 11	
		b: 3.52, t (8.0)	4a, 5	2, 5, 11	6, 11
5	35.4, CH	2.13	4a, 4b, 6, 11		
6	48.2, CH	1.93, ddd (10.8, 5.6, 2.0)	5, 7a, 7b	5, 8	4b, 10, 11
7	21.6, CH ₂	a: 2.73, dd (16.8, 5.6)	6, 7b	2, 5, 6, 8, 9, 12	
		b: 2.68, dd (16.8, 2.0)	6, 7a	2, 5, 6, 8, 9, 12	10
8	109.4, C				
9	153.8, C				
10	22.8, CH ₃	1.51, s		2,6	6, 7b
11	15.9, CH ₃	1.06, d (6.4)	5	4, 5, 6	4b, 6
12	137.9, C				
13	109.2, CH	6.36, d (2.4)	15	8, 14, 15, 16	17
14	158.8, C				
15	99.6, CH	6.28, d (2.4)	13	8, 9, 13, 14	17
16	19.5, CH ₃	2.21, s		8, 12, 13	
17	55.1, CH ₃	3.73, s		14	13, 15

^a The data were measured at 100 MHz.

^b The data were measured at 400 MHz.

Table S5. NMR data for compound 5 in CDCl₃.

No.	$\delta_{\rm C}{}^a$, type	$\delta_{ m H} (J { m in} { m Hz})^b$	¹ H– ¹ H COSY ^b	HMBC ^b	NOESY ^b
1	39.0, CH	2.43, ddd (6.0, 4.2, 2.4)	6, 7a, 7b	2, 3, 5, 6, 7, 8	5a, 5b, 8
2	175.4, C				
3	90.5, CH	5.05, s		1, 2, 4	9
4	167.3, C				
5	65.1, CH ₂	a: 3.49, dd (10.8, 6.0)	5b, 6	1, 6, 8	1, 7a, 7b, 8
		b: 3.45, dd (10.8, 6.0)	5a, 6	1, 6, 8	1, 7a, 7b, 8
6	36.6, CH	1.99, sept (6.0)	1, 5a, 5b, 8	1, 2, 5, 7, 8	7a, 7b
7	68.2, CH ₂	a: 4.30, dd (11.4, 2.4)	1, 7b	1, 2, 4, 6	5a, 5b, 6, 8
		b: 4.27, dd (11.4, 4.2)	1, 7a	1, 2, 4, 6	5a, 5b, 6, 8
8	14.1, CH ₃	0.88, d (7.2)	6	1, 5, 6	1, 5a, 5b, 7a, 7b
9	55.7, CH ₃	3.66, s		2	3

^{*a*} The data were measured at 100 MHz.

^b The data were measured at 600 MHz.

No.	5	5a	AE	5b	AE
C-1	39.0	41.7	2.7	40.9	1.9
C-2	175.4	176.7	1.3	177.1	1.7
C-3	90.5	91.5	1.0	90.5	0.0
C-4	167.3	166.2	1.1	165.8	1.5
C-5	65.1	63.4	1.7	64.9	0.2
C-6	36.6	39.0	2.4	38.3	1.7
C-7	68.2	66.1	2.1	67.0	1.2
C-8	14.1	12.9	1.2	13.5	0.6
C-9	55.7	54.5	1.2	53.7	2.0
MAE		1.6	52	1.2	22
\mathbb{R}^2		0.99	988	0.99	992
DP4 ⁺		0.3	5%	99.6	5%

Table S6. Mean absolute error (MAE) values, R square (R²) of the linear correlations, and DP4+ probability analysis of 5a and 5b.

Table S7. NMR data for compound 6 in CDCl₃.

No.	$\delta_{\mathrm{C}^{a}}$, type	$\delta_{\mathrm{H}} (J \mathrm{in} \mathrm{Hz})^{b, c}$	¹ H– ¹ H COSY ^b	HMBC ^b	NOESY ^b
1	39.4, CH	2.45	6, 7a, 7b	2,6	5, 8
2	174.1, C				
3	91.4, CH	5.18, s		1, 2, 4	9
4	166.5, C				
5	66.9, CH ₂	4.02, d (6.4)	6	1, 6, 8, 10	1,8
6	33.9, CH	2.27, sept (6.4)	1, 5, 8		7b
7	67.9, CH ₂	a: 4.38, dd (11.6, 4.4)	1, 7b	2, 4, 6	
		b: 4.32, dd (11.6, 2.4)	1, 7a	1, 2, 4, 6	6, 8
8	14.4, CH ₃	1.01, d (7.2)	6	1, 5, 6	1, 5, 7b
9	55.8, CH ₃	3.74, s		2	3
10	170.8, C				
11	20.8, CH ₃	2.05, s		10	

^a The data were measured at 100 MHz.

^b The data were measured at 400 MHz.

Table S8. ¹H and ¹³C NMR data for Ac-5 in CDCl₃.

No.	$\delta_{\rm C}{}^a$, type	$\delta_{\mathrm{H}} (J \mathrm{in} \mathrm{Hz})^{b, c}$	
1	39.5, CH	2.45	
2	174.1, C		
3	91.4, CH	5.19, s	
4	166.5, C		
5	66.9, CH ₂	4.03, d (6.4)	
6	33.9, CH	2.28, sept (6.4)	
7	67.9, CH ₂	a: 4.39, dd (11.6, 4.0)	
		b: 4.33, dd (11.6, 2.4)	
8	14.4, CH ₃	1.02, d (7.2)	
9	55.9, CH ₃	3.74, s	
10	170.8, C		
11	20.8, CH ₃	2.06, s	

^{*a*} The data were measured at 100 MHz.

^b The data were measured at 400 MHz.

Table S9. ¹H and ¹³C NMR data for 7 in CDCl₃.

No.	$\delta_{\mathrm{C}}{}^{a}$, type	$\delta_{ m H} (J { m in} { m Hz})^{b, c}$	
2	107.1, C		
4	74.0, CH ₂	a: 4.17, t (8.4)	
		b: 3.51, t (8.4)	
5	35.4, CH	2.13	
6	48.1, CH	1.93, ddd (10.8, 5.4, 1.8)	
7	21.5, CH ₂	a: 2.71, dd (16.8, 5.4)	
		b: 2.66, dd (16.8, 1.8)	
8	109.6, C		
9	153.8, C		
10	22.8, CH ₃	1.51, s	
11	15.9, CH ₃	1.05, d (6.6)	
12	138.3, C		
13	109.6, C	6.29, br s	
14	154.6, C		
15	101.6, CH	6.22, br s	
16	19.4, CH ₃	2.19, s	

^{*a*} The data were measured at 150 MHz.

^b The data were measured at 600 MHz.

Table S10. ¹H and ¹³C NMR data for 8 in CD₃OD.

No.	$\delta_{\rm C}{}^a$, type	$\delta_{\mathrm{H}} (J \mathrm{in} \mathrm{Hz})^b$	
1	108.5, CH	6.10, br s	
2	159.3, C		
3	100.7, CH	6.05, br s	
4	159.3, C		
5	108.5, CH	6.10, br s	
6	141.1, C		
7	21.6, CH ₃	2.16, s	

^{*a*} The data were measured at 100 MHz.

^b The data were measured at 400 MHz.

Table S11. ¹H and ¹³C NMR data for 9 in CD₃OD.

No.	$\delta_{\rm C}{}^a$, type	$\delta_{\mathrm{H}} (J \mathrm{in} \mathrm{Hz})^{b}$
1	109.6, CH	6.20, br s
2	159.4, C	
3	99.4, CH	6.14, br s
4	162.2, C	
5	107.0, CH	6.21, br s
6	141.2, C	
7	21.7, CH ₃	2.20, s
4-OCH ₃	55.5, CH ₃	3.69, s

^a The data were measured at 100 MHz.

^b The data were measured at 400 MHz.

Table S12. ¹H and ¹³C NMR data for 10 in CDCl₃.

No.	$\delta_{\rm C}{}^a$, type	$\delta_{\mathrm{H}} (J \mathrm{in} \mathrm{Hz})^{b, c}$	
2	112.1, CH	4.65, d (3.6)	
3	44.3, CH	2.41	
4	47.5, CH	4.21	
5	69.0, CH ₂	a: 4.02, t (7.8)	
		b: 3.88, dd (10.2, 7.8)	
6	173.7, C		
7	92.6, CH	5.11, s	
8	172.6, C		
9	16.1, CH ₃	1.10, d (7.2)	
10	55.8, CH ₃	3.39, s	
11	56.0, CH ₃	3.67, s	

^a The data were measured at 150 MHz.

^b The data were measured at 600 MHz.

Table S13. ¹H and ¹³C NMR data for 11 in CDCl₃.

No.	$\delta_{\rm C}{}^a$, type	$\delta_{\mathrm{H}} (J \mathrm{in} \mathrm{Hz})^{b, c}$	
2	106.5, CH	4.83, d (4.2)	
3	42.6, CH	2.43	
4	44.5, CH	4.38	
5	69.5, CH ₂	a: 4.14, t (8.4)	
		b: 3.80, t (8.4)	
6	175.1, C		
7	92.9, CH	5.12, s	
8	172.6, C		
9	11.4, CH ₃	0.99, d (6.6)	
10	54.6, CH ₃	3.35, s	
11	56.0, CH ₃	3.68, s	

^a The data were measured at 150 MHz.

^b The data were measured at 600 MHz.

Table S14. ¹H and ¹³C NMR data for authentic *O*-methylorcinol in CD₃OD.

No.	$\delta_{\rm C}{}^a$, type	$\delta_{\mathrm{H}} (J \mathrm{in} \mathrm{Hz})^b$	
1	109.6, CH	6.20, br s	
2	159.3, C		
3	99.4, CH	6.14, br s	
4	162.2, C		
5	107.0, CH	6.21, br s	
6	141.2, C		
7	21.7, CH ₃	2.20, s	
4-OCH ₃	55.4, CH ₃	3.70, s	

^a The data were measured at 100 MHz.

^b The data were measured at 400 MHz.

Supplementary Figures

Figure S1. Representative natural products containing furan-fused chromene units.

Conformer 1 (51.37%)

Conformer 3 (6.36%) Conformer 4 (1.61%)

Conformer 1 (55.41%)

Conformer 2 (29.18%)

Conformer 3 (7.27%)

Conformer 4 (2.93%)

Conformer 6 (1.82%)

Figure S2. Most stable conformers of (1*R**, 6*R**)-5a and (1*S**, 6*R**) -5b. The number in the parenthesis signifies the relative population.

Conformer 1 (56.50%)

Conformer 2 (29.76%)

Conformer 3 (7.41%)

Conformer 4 (2.98%)

Figure S3. Most stable conformers of (1*R***, 6***S***)-5.** The number in the parenthesis signifies the relative population.

Figure S4. Cell viability of human cancer cells supplemented with the tested compound.

Figure S5. ¹H NMR spectrum of 1 in CDCl₃ at 600 MHz.

Figure S6. ¹³C NMR spectrum of 1 in CDCl₃ at 150 MHz.

Figure S7. ¹H-¹H COSY spectrum of 1 in CDCl₃ at 600 MHz.

Figure S8. HSQC spectrum of 1 in CDCl₃ at 600 MHz.

Figure S9. HMBC spectrum of 1 in CDCl₃ at 600 MHz.

Figure S10. NOESY spectrum of 1 in CDCl₃ at 600 MHz.

Figure S11. ¹H NMR spectrum of 2 in CDCl₃ at 400 MHz.

Figure S12. ¹³C NMR spectrum of 2 in CDCl₃ at 100 MHz.

Figure S13. ¹H -¹H COSY spectrum of 2 in CDCl₃ at 400 MHz.

Figure S14. HSQC spectrum of 2 in CDCl₃ at 400 MHz.

Figure S15. HMBC spectrum of 2 in CDCl₃ at 400 MHz.

Figure S16. NOESY spectrum of 2 in CDCl₃ at 400 MHz.

Figure S17. ¹H NMR spectrum of 3 in CDCl₃ at 400 MHz.

Figure S18. ¹³C NMR spectrum of 3 in CDCl₃ at 100 MHz.

Figure S19. ¹H -¹H COSY spectrum of 3 in CDCl₃ at 400 MHz.

Figure S20. HSQC spectrum of 3 in CDCl₃ at 600 MHz.

Figure S21. HMBC spectrum of 3 in CDCl₃ at 600 MHz.

Figure S22. NOESY spectrum of 3 in CDCl₃ at 600 MHz.

Figure S23. ¹H NMR spectrum of 4 in CDCl₃ at 400 MHz.

Figure S24. ¹³C NMR spectrum of 4 in CDCl₃ at 100 MHz.

Figure S25. ¹H-¹H COSY spectrum of 4 in CDCl₃ at 400 MHz.

Figure S26. HSQC NMR spectrum of 4 in CDCl₃ at 400 MHz.

Figure S27. HMBC spectrum of 4 in CDCl₃ at 400 MHz.

Figure S28. ROESY spectrum of 4 in CDCl₃ at 400 MHz.

Figure S29. ¹H NMR spectrum of 5 in CDCl₃ at 600 MHz.

Figure S30. ¹³C NMR spectrum of 5 in CDCl₃ at 100 MHz.

Figure S31. ¹H-¹H COSY spectrum of 5 in CDCl₃ at 600 MHz.

Figure S32. HSQC spectrum of 5 in CDCl₃ at 600 MHz.

Figure S33. HMBC spectrum of 5 in CDCl₃ at 600 MHz.

Figure S34. NOESY spectrum of 5 in CDCl₃ at 600 MHz.

Figure S35. ¹H NMR spectrum of 6 in CDCl₃ at 400 MHz.

Figure S36. ¹³C NMR spectrum of 6 in CDCl₃ at 100 MHz.

Figure S37. ¹H -¹H COSY spectrum of 6 in CDCl₃ at 400 MHz.

Figure S38. HSQC spectrum of 6 in CDCl₃ at 400 MHz.

Figure S39. HMBC spectrum of 6 in CDCl₃ at 400 MHz.

Figure S40. NOESY spectrum of 6 in CDCl₃ at 600 MHz.

Figure S41. ¹H NMR spectrum of 7 in CDCl₃ at 600 MHz.

Figure S42. ¹³C NMR spectrum of 7 in CDCl₃ at 150 MHz.

Figure S43. ECD spectra of 4 and 7.

Figure S44. ¹H NMR spectrum of 8 in CD₃OD at 400 MHz.

Figure S45. ¹³C NMR spectrum of 8 in CD₃OD at 100 MHz.

Figure S46. ¹H NMR spectrum of 9 in CD₃OD at 400 MHz.

Figure S47. ¹³C NMR spectrum of 9 in CD₃OD at 100 MHz.

Figure S48. ¹H NMR spectrum of authentic *O*-methylorcinol in CD₃OD at 400 MHz.

Figure S49. ¹³C NMR spectrum of authentic *O*-methylorcinol in CD₃OD at 400 MHz.

Figure S51. ¹³C NMR spectrum of 10 in CDCl₃ at 100 MHz.

Figure S52. ¹H NMR spectrum of 11 in CDCl₃ at 600 MHz.

Figure S53. ¹³C NMR spectrum of 11 in CDCl₃ at 150 MHz.

Figure S54. ¹H NMR spectrum of Ac-5 in CDCl₃ at 400 MHz.

Figure S55. ¹³C NMR spectrum of Ac-5 in CDCl₃ at 100 MHz.