Electronic Supplementary Information (ESI)

A colorimetric and 'OFF-ON' fluorometric chemosensor based on Rhodamine-pyrazole derivative for the detection of Al³⁺, Fe³⁺ and Cr³⁺ metal ions, and its intracellular application[†]

Sarita Gond^a, Pranjalee Yadav^a, Aayoosh Singh^a, Somenath Garai^a, Anusmita Shekher^b, Subash Chandra Gupta^{b,c}, Vinod P. Singh^a*

*E mail: <u>singvp@yahoo.co.in</u>

^aDepartment of Chemistry, Institute of Science, Banaras Hindu University, Varanasi 221005, India

^bDepartment of Biochemistry, Institute of Science, Banaras Hindu University, Varanasi 221005, India

^cDepartment of Biochemistry, All India Institute of Medical Sciences, Guwahati, Assam, India

TABLE OF CONTENTS

	General procedures				
Fig. S1	¹ H NMR spectrum of Rhodamine B hydrazide				
Fig. S2	¹³ C NMR spectrum of Rhodamine B hydrazide				
Fig. S3	IR spectrum of Rhodamine B hydrazide				
Fig. S4	¹ H NMR spectrum of RMP				
Fig. S5	¹³ C NMR spectrum of RMP				
Fig. S6	Mass spectrum of RMP				
Table S1	Bond lengths in Å for RMP				
Table S2	Bond angles for RMP				
Fig. S7	Mass spectrum of RMP- Al ³⁺				
Fig. S8	Mass spectrum of RMP -Fe ³⁺				
Fig. S9	Mass spectrum of RMP -Cr ³⁺				
Fig. S10	Absorption studies of RMP (20 μ M) on pH 6 to 1 in ethanol/HEPES (7:3, v/v) buffer				
Fig. S11	(a) Color change of RMP (20 μ M) in the presence of other cations in visible light (b) UV- visible spectra of RMP (20 μ M) in ethanol/HEPES (7:3, v/v; pH 7.2) buffer solution on addition of different metal ions (c) expanded form of Al ³⁺ , Fe ³⁺ and Cr ³⁺ metal ions				
Fig. S12	Fluorescence response of RMP (20 μ M, $\lambda ex = 510$ nm) in ethanol/HEPES (7:3, v/v; pH 7.2) buffer upon addition of various metal ions (20 μ M) in presence of (a) Al ³⁺ , (b) Fe ³⁺ and (c) Cr ³⁺				
Fig. S13, S14	(a) Fluorescence spectra of RMP (20 μ M, $\lambda ex = 510$ nm) in ethanol/HEPES (7:3, v/v; pH 7.2) buffer solution, showing change in emission intensity at 575 nm with incremental addition of Fe ³⁺ /Cr ³⁺ metal ions (b) reversibility test of RMP toward Fe ³⁺ /Cr ³⁺ by using EDTA				
Fig. S15	Job's plots of RMP for Fe ³⁺ and Cr ³⁺				
Fig. S16, S17	Binding constants and Limits of detection of RMP for Fe ³⁺ and Cr ³⁺				
Table S3	Comparison with previously reported sensors				
Fig. S18	Effect of RMP on the viability of SiHa cells.				
	References				

General procedures

UV-Vis and fluorescence spectral studies

Job's plot, UV-visible, and fluorescence titration studies were performed using a 20 μ M acetonitrile solution of **RMP** at room temperature. Milli-Q water was used as solvent for making the metal ion solutions. The binding stoichiometry between **RMP** and metal ions were computed from Job's plot, and binding constants (Ka) of **RMP** for Al³⁺, Fe³⁺ and Cr³⁺ were calculated by using Benesi–Hildebrand equation (1).¹

$$(I_0/I - I_0) = (a/b - a)(1/Ka[Metal] + 1)$$
(1)

where, I and I_0 represent the fluorescence intensities of **RMP** at 510 nm in the presence and absence of metal ion ; a and b are constants.

The Detection limit (LOD) for **RMP** was computed with the help of equation (2). The slope was acquired from a linear fitting plot of absorbance/fluorescence ratio versus concentration of metal ions added.²

$$LOD = 3\sigma/slope \tag{2}$$

Fluorescence quantum yield measurements

The following equation is used to figure out the amount of fluorescence given off by **RMP** and its M^{3+} complexes:

$$Q = Qr(I/I_r) \times (OD_r/OD) \times (n^2/n_r^2)$$
(3)

Where Q and I represent the quantum yield and integrated fluorescence intensity of the fluorescence, respectively. The solvent's refractive index and absorbance are represented by the symbols n and OD, respectively. Reference quinine sulphate (indicated by r) has a quantum yield of 0.54 in 0.5 M H_2SO_4 . Quantum yield is determined by integrating the area of the emission spectrum using the instrument's built-in software.

Fig. S1 ¹H NMR spectrum of Rhodamine B hydrazide

Fig. S2 ¹³C NMR spectrum of Rhodamine B hydrazide

Fig. S3 IR spectrum of Rhodamine B hydrazide

Fig. S4 ¹H NMR spectrum of RMP

Fig. S6 Mass spectrum of RMP

Bond length (Å)		
Cl1-C38 1.765(7)	C28-C32	1.397(5)
O1-C4 1.388(4)	C30-C44	1.393(5)
O1-C6 1.369(4)	N5-C40	1.307(7)
N1-N4 1.377(3)	C34-C41	1.444(5)
N1-C34 1.273(4)	C36-C46	1.389(5)
O2-C16 1.229(4)	C38-C41	1.316(7)
N4-C10 1.486(3)	C40-C27	1.524(7)
N4-C16 1.370(4)	C40-C41	1.295(7)
C1-C4 1.385(4)	C42-C48	1.478(6)
C1-C10 1.509(4)	C44-C50	1.349(7)
C1-C20 1.383(4)	C46-C50	1.393(8)
C4-C28 1.355(4)	C25-C35	1.415(11)
C6-C8 1.376(4)	C13-C17	1.340(8)
C6-C14 1.390(4)	C7-C29	1.3900
C8-C10 1.516(4)	C7-C33	1.3900
C8-C12 1.382(4)	C29-C15	1.3900
N6-N5 1.323(7)	C15-C31	1.3900
N6-C38 1.300(9)	C31-C2	1.3900
N6-C2 1.465(7)	C2-C33	1.3900
C10-C22 1.528(4)	C9-C37	1.42(2)
C12-C24 1.373(5)	C19-C39	1.60(2)
C14-C18 1.401(5)	N3-C5	1.504(5)
C16-C30 1.454(5)	N3-N7	1.505(5)
C18-C24 1.403(5)	N3-C47	1.339(10)
C18-N2 1.376(5)	C5-C41	1.505(5)
C20-C26 1.367(5)	C5-Cl2	1.395(8)
C22-C30 1.380(5)	C41-C21	1.505(5)
C22-C36 1.366(5)	C21-N7	1.504(5)
N8-C32 1.370(5)	C21-C43	1.445(15)
N8-C25 1.437(6)	C11-C45	1.3900
N8-C13 1.488(7)	C11-C49	1.3900
C26-C32 1.402(5)	C45-C23	1.3900
N2-C42 1.447(5)	C23-C47	1.3900
N2-C9 1.486(16)	C47-C3	1.3900
N2-C19 1.503(18)	C3-C49	1.3900

Table S1 bond lengths in Å for RMP

Bond angle $(^{0})$ 118.8(2)C6-O1-C4 N1-C34-C41 119.2(3)C34-N1-N4 119.6(3) C16-N4-C10 114.7(2)114.95(19) 121.6(3) N1-N4-C10 C4-C1-C10 C16-N4-N1 129.3(3) C20-C1-C4 115.8(3) 122.5(3)122.5(2)C1-C4-O1 C20-C1-C10 C28-C4-O1 114.8(2)C22-C36-C46 117.1(4) 120.1(5) C28-C4-C1 122.7(3)N6-C38-Cl1 106.1(6) 123.2(3)01-C6-C8 N6-C38-C41 O1-C6-C14 114.2(2)C41-C38-Cl1 133.7(6) 122.7(3)N5-C40-C27 124.2(5)C8-C6-C14 121.8(3)C41-C40-N5 111.3(4)C6-C8-C10 C6-C8-C12 115.7(3)C41-C40-C27 124.5(5)C12-C8-C10 122.4(2)N2-C42-C48 114.4(4)N5-N6-C2 117.3(6) C50-C44-C30 118.3(4)C38-N6-N5 111.4(5)C36-C46-C50 121.8(5)131.3(5)C44-C50-C46 120.5(4)C38-N6-C2 N4-C10-C1 110.4(2)C35-C25-N8 115.5(8) 109.9(2) C17-C13-N8 108.3(7)N4-C10-C8 N4-C10-C22 99.6(2) C29-C7-C33 120.0 C15-C29-C7 C1-C10-C8 110.7(2)120.0 C1-C10-C22 112.6(2)C31-C15-C29 120.0 C8-C10-C22 113.1(3)C15-C31-C2 120.0 C24-C12-C8 123.4(3)C31-C2-N6 123.3(4)C6-C14-C18 121.0(3)C33-C2-N6 116.7(4) 120.0 O2-C16-N4 125.6(3) C33-C2-C31 O2-C16-C30 129.0(3)C2-C33-C7 120.0 112.5(13) N4-C16-C30 105.4(3)C37-C9-N2 C14-C18-C24 116.2(3)N2-C19-C39 100.5(15)N2-C18-C14 121.4(3)C5-N3-N7 108.0 122.4(3)C47-N3-C5 132.5(7)N2-C18-C24 119.1(7) C26-C20-C1 123.0(3)C47-N3-N7 108.0 C30-C22-C10 109.7(3)N3-C5-C41 C36-C22-C10 129.0(3) Cl2-C5-N3 124.7(5)121.3(3) Cl2-C5-C41 125.4(5)C36-C22-C30

Table S2 bond angles for RMP

C12-C24-C18

C32-N8-C25 C32-N8-C13

C25-N8-C13

C20-C26-C32

C18-N2-C42

C18-N2-C9

C18-N2-C19

C42-N2-C9

C42-N2-C19

C4-C28-C32

C22-C30-C16

C22-C30-C44

120.9(3)

122.3(4)

119.5(4)

118.0(4)

120.5(3)

122.0(3)

120.5(7)

117.0(8)

117.2(7)

115.6(9)

121.4(3)

110.5(3)

121.1(4)

C34-C41-C5

C34-C41-C21

C38-C41-C34

C40-C41-C34

C40-C41-C38

C21-C41-C5

N7-C21-C41

C43-C21-C41

C43-C21-N7

C21-N7-N3

C45-C11-C49

C23-C45-C11

C47-C23-C45

130.4(3)

120.9(3)

119.3(5) 132.5(4)

107.6(5)

146.1(7)

105.0(8)

108.0

108.0

108.0

120.0

120.0

120.0

C44-C30-C16	128.4(4)	N3-C47-C23	117.1(8)
N8-C32-C26	121.4(3)	N3-C47-C3	122.9(8)
N8-C32-C28	122.0(3)	C23-C47-C3	120.0
C28-C32-C26	116.5(3)	C49-C3-C47	120.0
C40-N5-N6	103.6(5)	C3-C49-C11	120.0

Fig. S7 Mass spectrum of RMP-Al³⁺ complex

Fig. S8 Mass spectrum of RMP-Fe³⁺ complex

Fig. S9 Mass spectrum of RMP- Cr^{3+} complex

Fig. S10 Absorption studies of RMP (20 $\mu M)$ on pH 6 to 1in ethanol/HEPES (7:3, v/v) buffer solution

Fig. S11(a) Color change of RMP (20 μ M) in the presence of other cations invisible light(b)UVvisible spectra of RMP (20 μ M) in ethanol/HEPES (7:3, v/v; pH 7.2) buffer solution on addition of different metal ions (c) expanded form of Al³⁺, Fe³⁺ and Cr³⁺ metal ions

Fig. S12 Fluorescence response of **RMP** (20 μ M, λ ex = 510 nm) in ethanol/HEPES (7:3, v/v; pH 7.2) buffer upon addition of various metal ions (20 μ M) in presence of (a) Al³⁺, (b) Fe³⁺ and (c) Cr³⁺.

Fig. S13 (a) Fluorescence spectra of **RMP** (20 μ M, λ ex = 510 nm) in ethanol/HEPES (7:3, v/v; pH 7.2) buffer solution, showing change in emission intensity at 575 nm with incremental addition of Fe³⁺ metal ion (**b**) reversibility test of **RMP** toward Fe³⁺ by using EDTA

g. S14 (a) Fluorescence spectra of **RMP** (20 μ M, λ ex = 510 nm) in ethanol/HEPES (7:3, v/v; pH 7.2) buffer solution, showing change in emission intensity at 575 nm with incremental addition of Cr³⁺ metal ion (**b**) Reversibility test of **RMP** toward Cr³⁺ by using EDTA

Fig. S15. Job's plots of RMP for Fe^{3+} and Cr^{3+}

Fig. S16 Binding constants of RMP for Fe³⁺ and Cr³⁺

Fig. S17 Limits detection of RMP for Fe^{3+} and Cr^{3+}

Table S3	Comparison	with	previously	v re	ported sensors
				/	

S. N.	Wavelength	Solvent system	Analytes	LOD (M)	Application	Ref.
	$(\lambda_{ex}/\lambda_{em})$ (nm)					
1.	530/588	CH ₃ OH/H ₂ O	Al ³⁺	2.7 X 10 ⁻³	NA	[3]
		(8:2, v/v)	Fe ³⁺	1.9 X 10 ⁻³		
			Cr^{3+}	3.5 X 10 ⁻³		
2.	480/583	Methanol	Al ³⁺	2.2 X 10 ⁻⁵	logic gate	[4]
			Fe ³⁺	1.4 X 10 ⁻⁵		
			Cr ³⁺	6.3 X 10 ⁻⁵		
3.	520/585	CH ₃ OH/H ₂ O	A1 ³⁺	-	NA	[5]
		(1/3, v/v)	Fe ³⁺	-		
			Cr^{3+}	-		
4.	314/430	H ₂ O	A1 ³⁺	1.09×10^{-4}	NA	[6]
			Fe ³⁺	1.66×10^{-5}		
			Cr ³⁺	6.17×10^{-5}		
5.	365/470	ethanol/water	A1 ³⁺	2 X 10 ⁻⁴	NA	[7]
		(2:1, v/v)	Fe ³⁺	8 X 10 ⁻⁵		
			Cr^{3+}	1 X 10 ⁻⁴		
6.	510/575	Ethanol/HEPES	A1 ³⁺	1.74×10^{-5}	Live cell	This work
		buffer(7:3, v/v)	Fe ³⁺	3.45×10^{-5}	imaging,	
			Cr ³⁺	1.86×10^{-5}	molecular	
					logic gate	

Fig. S18 Effect of **RMP** on the viability of SiHa cells. The cells were treated with indicated concentrations of **RMP** for 24 h in the culture medium at neutral pH. The cell viability was examined by MTT assay

References

- 1 H.A. Benesi and J.H. Hildebrand, J. Am. Chem. Soc., 1949, 71, 2703–2707.
- 2 G.L. Long and J. D. Winefordner, Anal. Chem., 1983, 55, 712A–724A.
- 3 S. Hou, Z. Qu, K. Zhong, Y. Bian, L. Tang, Tetrahedron Letters, 2016, 57, 2616-2619.
- 4 X. Yue, C. Li, Z. Yang, J. Photochem. Photobiol. A: Chemistry, 2018, 351, 1-7.
- 5 H. Wang, T. Kang, X. Wang, L. Feng, Sensors and Actuators B: Chemical, 2018, 264, 391-397.
- 6 Z. Zhan, X. Liang, X. Zhang, Y.Jia, M. Hu, Dalton Trans., 2019, 48, 1786-1794.
- 7 S. Tao, X. Li, C. Wang, C. Meng, Chemistry Select, 2016, 1, 3208–3214.