Electronic Supporting Information

NHC- Zn alkyl catalyzed cross-dehydrocoupling of amines and silanes

Table of Contents

TS1. Crystallographic data and refinement parameters of 2c, 3 and 4. **FS1.** ¹H NMR spectrum (THF- d_8 , 300 MHz, 25 °C) of complex **3**. **FS2.** ¹³C NMR spectrum (THF- d_8 , 75 MHz, 25 °C) of complex **3**. **FS3.** ¹H NMR spectrum (C_6D_6 , 300 MHz, 25 °C) of complex 4. FS4. ¹³C NMR spectrum (C_6D_6 , 75 MHz, 25 °C) of complex 4. FS5. ¹H NMR spectrum (CDCl₃, 400 MHz, 25 °C) of complex 1a. FS6. ¹H NMR spectrum (CDCl₃, 400 MHz, 25 °C) of complex 1b. FS7. ¹H NMR spectrum (CDCl₃, 400 MHz, 25 °C) of complex 1c. FS8. ¹H NMR spectrum (CDCl₃, 400 MHz, 25 °C) of complex 1d. FS9. ¹H NMR spectrum (CDCl₃, 400 MHz, 25 °C) of complex 1e. FS10. ¹H NMR spectrum (CDCl₃, 400 MHz, 25 °C) of complex 1f. FS11. ¹H NMR spectrum (CDCl₃, 400 MHz, 25 °C) of complex 1g. FS12. ¹H NMR spectrum (CDCl₃, 400 MHz, 25 °C) of complex 1h. FS13. ¹H NMR spectrum (CDCl₃, 400 MHz, 25 °C) of complex 1i. FS14. ¹H NMR spectrum (CDCl₃, 400 MHz, 25 °C) of complex 2a. FS15. ¹H NMR spectrum (CDCl₃, 400 MHz, 25 °C) of complex 2b. FS16. ¹H NMR spectrum (CDCl₃, 400 MHz, 25 °C) of complex 2c. FS17. ¹H NMR spectrum (CDCl₃, 400 MHz, 25 °C K) of complex 2d. FS18. ¹H NMR spectrum (CDCl₃, 400 MHz, 25 °C) of complex 2e. FS19. ¹H NMR spectrum (CDCl₃, 400 MHz, 25 °C) of complex 2f. FS20. ¹³C NMR spectrum (CDCl₃, 100 MHz, 25 °C) of complex 2f. FS21. ¹H NMR spectrum (CDCl₃, 400 MHz, 25 °C) of complex 2g. FS22. ¹³C NMR spectrum (CDCl₃, 100 MHz, 25 °C) of complex 2g. FS23. ¹H NMR spectrum (CDCl₃, 400 MHz, 25 °C) of complex 2h.

```
FS24. <sup>13</sup>C NMR spectrum (CDCl<sub>3</sub>, 100 MHz, 25 °C) of complex 2h.
```

FS25. ¹H NMR spectrum (CDCl₃, 400 MHz, 25 °C) of complex 2i.

FS26. ¹³C NMR spectrum (CDCl₃, 100 MHz, 25 °C) of complex 2i.

FS27. ¹H NMR spectrum (CDCl₃, 400 MHz, 25 °C) of complex 2j.

FS28. ¹³C NMR spectrum (CDCl₃, 100 MHz, 25 °C) of complex 2j.

FS29. ¹H NMR spectrum (CDCl₃, 400 MHz, 25 °C) of complex 2k.

FS30. ¹³C NMR spectrum (CDCl₃, 100 MHz, 25 °C) of complex 2k.

FS31. ¹H NMR spectrum (CDCl₃, 400 MHz, 25 °C) of complex 2l.

FS32. ¹³C NMR spectrum (CDCl₃, 100 MHz, 25 °C) of complex 2l.

FS33. ¹H NMR spectrum (CDCl₃, 400 MHz, 25 °C) of complex 2m.

FS34. ¹H NMR spectrum (CDCl₃, 400 MHz, 25 °C) of complex 2n.

FS35. 13 C NMR spectrum (CDCl₃, 100 MHz, 25 °C) of complex 2n.

FS36. ¹H NMR spectrum (CDCl₃, 400 MHz, 25 °C) of complex 20.

FS37. ¹H NMR spectrum (C_6D_6 , 300 MHz, 25 °C) of the stoichiometric reaction between complex **3** and Ph_2SiH_2 .

FS38. ¹H NMR spectrum (C_6D_6 , 300 MHz, 25 °C) of the stoichiometric reaction between 4-aminoacetophenone and Ph_2SiH_2 .

FS39. ¹H NMR spectrum (C_6D_6 , 300 MHz, 25 °C) of the reaction of aniline and 4-methylbenzonitrile in presence of one equiv. Ph₂SiH₂.

FS40. ¹H NMR spectrum (C_6D_6 , 300 MHz, 25 °C) of the reaction of aniline and methyl p-toluate in presence of one equiv. Ph₂SiH₂.

Crystal Parameters	2c (exp_6252)	3 (exp_6384)	4 (exp_6203)
CCDC No.	2251323	2251324	2251325
Empirical formula	C ₂₅ H ₂₃ NSi	$C_{73}H_{80}N_8 Zn_2$	$C_{58}H_{84}N_4 Zn_2$
1	20 20	,5 00 0 <u>1</u>	20 0 2
Formula weight	365.53	1200.19	968.07
<i>Т</i> (К)	293(2) K	150(2) K	150(2) K
- ()	1.54184 A	1.54184 A	0.71073 A
λ (Å)			
Crystal system	Monoclinic	Triclinic	Monoclinic
Space group	$P2_1$	<i>P</i> -1	$P2_1/n$
a(Å)	6.8198(2)	11.3908(7)	12.3983(4)
$b(\mathbf{A})$	11.6463(4)	12.4371(15)	15.3924(4)
$c(\hat{A})$	12.6683(5)	12.7916(13)	14.3196(3)
α (°)	90.00	113.736(11)	90.00
β (°)	99.955(3)	104.197(7)	103.902(3)
γ (°)	90.00	95.841(7)	90.00
	001.04(6)	1.555.5(0)	
$V(A^3)$	991.04(6)	1555.5(3)	2652.7(12)
Z	2		2
$D_{\text{calc}} g \text{ cm}^{-3}$	1.225	1.281	1.212
$\mu (\text{mm}^{-1})$	1.091	1.323	0.944
F(000)	388	634	
I neta range for data	3.542 to /0.59/	3.9// to 69.998 deg	3.1/6 to /1.6/1 deg
Limiting indians	deg	12 - h - 10	15h10
Limiting indices	$-6 \le \Pi \le 3$, $12 \le 1 \le 12$	-13 < -11 < -10,	-13 < -10, 19 < -1. < -17
-	$-13 \ge K \ge 13$, 14 < 1 < 15	-13 < -15 < -15	-10 - K - 17, 17 - 1 - 17
	$-14 \le 1 \le 13$	-13<-15.	-1/<-1<-1/.
Reflections	4118 / 2908	11390 / 5847 [R(int)	10004 / 5057 [R(int) = 0.0485]
collected / unique	[R(int) = 0.0228]	= 0.0393]	
Completeness to	99.8 %	99.9 %	97.8 %
theta			
Absorption	Semi-empirical from	Semi-empirical from	Semi-empirical from
correction	equivalents	equivalents	equivalents
	1 00000 10 70054	1 00000 1	1 00000 1 0 02510
Max. and min.	1.00000 and 0.79954	1.00000 and	1.00000 and $0.83/10$
transmission		0.95993	
Refinement method	Full-matrix least-	Full-matrix least-	Full-matrix least-squares on
	squares on F ²	squares on F ²	F^2
Data / restraints /	2908 / 1 / 246	5847 / 3 / 373	5057 / 0 / 302
parameters	1 100	0.00	1.0.41
Goodness-of-fit on	1.100	0.926	1.041
F ²	D 0.0522		D 0.0772 D 0.2105
Final K indices	$K_1 = 0.0532,$	$K_1 = 0.068 /, WK_2 =$	$K_1 = 0.0 / /3, WK_2 = 0.2195$
[1>2sigma(1)]	$WK_2 = 0.1464$ D = 0.0547	0.1934	$\mathbf{D} = 0.0020 \dots \mathbf{D} = 0.2201$
k indices (all data)	$K_1 = 0.054/,$	$\kappa_1 = 0.0918, W \kappa_2 =$	$\kappa_1 = 0.0838, W \kappa_2 = 0.2301$
	$WK_2 = 0.1483$	0.2183	

TS1. Crystallographic data and refinement parameters of 2b, 2c, 3 and 4.

NMR spectroscopy data of aminosilanes:

1,1'-(phenylsilanediyl)dipyrrolidine (1a)¹

$$\underbrace{ \bigvee_{\substack{I \\ Ph}}^{H} \overset{H}{\underset{Ph}{\sum}} N \overset{H}{\underset{Ph}{\sum}}$$

Yield: 95%. ¹H-NMR (CDCl₃, 400 MHz, 25 °C): $\delta_{\rm H}$ 7.66-7.64 (m, 2H, Ar-*H*), 7.42 (t, *J* = 4 Hz, 3H, Ar-*H*), 5.01 (s, 1H, Si-*H*), 3.10-3.07 (m, 8H, N-C*H*₂), 1.79-1.76 (m, 8H, C*H*₂) ppm.

1-(diphenylsilyl)pyrrolidine (1b)¹

Yield: 96%. ¹H-NMR (CDCl₃, 400 MHz, 25 °C): *δ*_H 7.69-7.67 (m, 4H, Ar-*H*), 7.23-7.21 (m, 6H, Ar-*H*), 5.66 (s, 1H, Si-*H*), 3.03-3.00 (m, 4H, N-C*H*₂), 1.54-1.51 (m, 4H, C*H*₂) ppm.

Diphenyldi(pyrrolidin-1-yl)silane (1c)²

Yield: 95%. ¹H-NMR (CDCl₃, 400 MHz, 25 °C): $\delta_{\rm H}$ 7.66-7.64 (m, 4H, Ar-*H*), 7.19-7.16 (m, 6H, Ar-*H*), 3.03-3.00 (m, 8H, N-CH₂), 1.51-1.48 (m, 8H, CH₂) ppm.

1-(triphenylsilyl)pyrrolidine (1d)²

Yield: 95%. ¹H-NMR (CDCl₃, 400 MHz, 25 °C): *δ*_H 7.63-7.61 (m, 6H, Ar-*H*), 7.14-7.12 (m, 9H, Ar-*H*), 3.01-2.98 (m, 4H, N-C*H*₂), 1.48-1.45 (m, 4H, C*H*₂) ppm.

N,*N*-diethyl-1-phenylsilanamine (1e)¹

Yield: 96%. ¹H-NMR (CDCl₃, 400 MHz, 25 °C): $\delta_{\rm H}$ 7.42-7.39 (m, 2H, Ar-*H*), 6.99-6.98 (m, 3H, Ar-*H*), 4.91 (s, 1H, Si-*H*), 2.63-2.57 (m, 4H, N-CH₂), 0.73 (t, *J* = 8 Hz, 6H, CH₃) ppm.

N,*N*-diethyl-1,1-diphenylsilanamine (1f)¹

Yield: 94%. ¹H-NMR (CDCl₃, 400 MHz, 25 °C): $\delta_{\rm H}$ 7.55-7.52 (m, 4H, Ar-*H*), 7.32-7.28 (m, 6H, Ar-*H*), 5.24 (s, 1H, Si-*H*), 2.89-2.85 (m, 4H, N-CH₂), 0.95 (t, J = 4 Hz, 6H, CH₂) ppm.

N,*N*-diethyl-1,1,1-triphenylsilanamine (1g)³

Yield: 92%. ¹H-NMR (CDCl₃, 400 MHz, 25 °C): $\delta_{\rm H}$ 7.78-7.75 (m, 6H, Ar-*H*), 7.23-7.21 (m, 9H, Ar-*H*), 3.00 (q, J = 8 Hz, 4H, N-C H_2), 0.95 (t, J = 6 Hz, 6H, C H_2) ppm.

N-tert-butyl-1,1-diphenylsilanamine (1h)¹

H Ph−Si−NH Ph ^{`t}Bu

Yield: 95%. ¹H-NMR (CDCl₃, 400 MHz, 25 °C): *δ*_H 7.60-7.57 (m, 4H, Ar-*H*), 7.11-7.09 (m, 6H, Ar-*H*), 5.60 (s, 1H, Si-*H*), 1.02 (s, 9H, N-C*H*₃), 0.84 (s, 1H, N-*H*) ppm.

N-tert-butyl-1,1,1-triphenylsilanamine (1i)²

Ph Ph-Si-NH Ph ^{`t}Bu

Yield: 93%. ¹H-NMR (CDCl₃, 400 MHz, 25 °C): *δ*_H 7.85-7.83 (m, 6H, Ar-*H*), 7.22-7.20 (m, 9H, Ar-*H*), 1.29 (s, 1H, N-*H*), 1.10 (s, 9H, N-C*H*₃) ppm.

N,*N*',1-triphenylsilanediamine (2a)⁴

```
Ph H
HN-Si-NH
Ph Ph
```

Yield: 94%. ¹H-NMR (CDCl₃, 400 MHz, 25 °C): $\delta_{\rm H}$ 7.98 (d, J = 8 Hz, 2H, Ar-H), 7.70-7.63 (m, 3H, Ar-H), 7.38 (t, J = 8 Hz, 4H, Ar-H), 7.04 (d, J = 8 Hz, 6H, Ar-H), 5.82 (s, 1H, Si-H), 4.11 (s, 2H, N-H) ppm.

N,1,1-triphenylsilanamine (2b)⁴

Yield: 97%. ¹H-NMR (CDCl₃, 400 MHz, 25 °C): $\delta_{\rm H}$ 7.57 (d, J = 8 Hz, 4H, Ar-H), 7.35-7.28 (m, 6H, Ar-H), 7.01 (t, J = 8 Hz, 2H, Ar-H), 6.62 (d, J = 8 Hz, 3H, Ar-H), 5.52 (s, 1H, Si-H), 3.75 (s, 1H, N-H) ppm.

N-benzyl-1,1,1-triphenylsilanamine (2c)²

Yield: 90%. ¹H-NMR (CDCl₃, 400 MHz, 25 °C): $\delta_{\rm H}$ 7.61-7.59 (m, 5H, Ar-*H*), 7.11-7.08 (m, 15H, Ar-*H*), 3.91 (d, J = 8 Hz, 2H, N-C H_2) ppm.

N,N'-bis(2,6-diisopropylphenyl)-1-phenylsilanediamine (2d)⁵

Yield: 85%. ¹H-NMR (CDCl₃, 400 MHz, 25 °C): $\delta_{\rm H}$ 8.03-8.01 (m, 2H, Ar-*H*), 7.67 (d, *J* = 4 Hz, 3H, Ar-*H*), 7.34-7.28 (m, 6H, Ar-*H*), 5.68 (s, 1H, Si-*H*), 3.52-3.48 (m, 4H, C*H*(CH₃)₂) 3.31 (d, *J* = 4 Hz, 2H, N-*H*), 1.39-1.32 (m, 24H, CH(CH₃)₂) ppm.

N-(2,6-diisopropylphenyl)-1,1-diphenylsilanamine (2e)¹

Yield: 90%. ¹H-NMR (CDCl₃, 400 MHz, 25 °C): $\delta_{\rm H}$ 7.85-7.83 (m, 4H, Ar-*H*), 7.60-7.56 (m, 6H, Ar-*H*), 7.32-7.27 (m, 3H, Ar-*H*), 5.82 (s, 1H, Si-*H*), 3.68-3.59 (m, 2H, C*H*(CH₃)₂) 3.37 (s, 1H, N-*H*), 1.35 (d, *J* = 4 Hz, 12H, CH(CH₃)₂) ppm.

1,1-diphenyl-N-(o-tolyl)silanamine (2f)

Yield: 94%. ¹H NMR (CDCl₃, 400 MHz, 25 °C) δ 7.58-7.50 (m, 4H, Ar-*H*), 7.30-7.24 (m, 6H, Ar-*H*), 7.20-7.16 (m, 1H, Ar-*H*), 6.95-6.93 (m, 1H, Ar-*H*), 6.83-6.79 (m, 1H, Ar-*H*), 6.64-6.60 (m, 1H, Ar-*H*), 4.86 (s, 1H, Si-*H*), 4.03 (s, 1H, N-*H*), 2.18 (s, 3H, C*H*₃) ppm. ¹³C{¹H} NMR (CDCl₃, 100 MHz, 25 °C) δ 143.9 (ArC-N), 135.6 (Ar-*C*), 134.7 (Ar-*C*), 134.6 (Ar-*C*), 129.9 (Ar-*C*), 128.3 (Ar-*C*), 127.7 (Ar-*C*), 119.0 (Ar-*C*), 116.7 (Ar-*C*), 19.1(*C*H₃) ppm. Elemental analysis: (C₁₉H₁₉NSi) (289.0); calcd. C 78.84, H 6.62, N 4.84; found C 78.67, H 6.52, N 4.72.

N-(2-methoxyphenyl)-1-phenylsilanamine (2g)

Yield: 95%. ¹H NMR (CDCl₃, 400 MHz, 25 °C) δ 7.67-7.61 (m, 1H, Ar-*H*), 7.48-7.42 (m, 1H, Ar-*H*), 7.31-7.26 (m, 3H, Ar-*H*), 7.13-7.07 (m, 2H, Ar-*H*), 6.86-6.81 (m, 1H, Ar-*H*), 6.67 (d, *J* = 8 Hz, 1H, Ar-*H*), 4.90 (s, 1H, Si-*H*), 4.87 (br, 1H, N-*H*), 3.61 (s, 3H, CH₃) ppm. ¹³C{¹H} NMR (CDCl₃, 100 MHz, 25 °C) δ 156.4 (ArC-N), 135.1 (Ar-C), 134.3 (Ar-C), 130.7 (Ar-C), 128.8 (Ar-C), 128.4 (Ar-C), 127.9 (Ar-C), 127.5 (Ar-C), 120.4 (Ar-C), 119.9 (Ar-C), 109.7 (Ar-C), 55.1 (OCH₃) ppm. Elemental analysis: (C₁₃H₁₅NOSi) (229.3); calcd. C 68.08, H 6.59, N 6.11; found C 67.88, H 6.44, N 5.97.

N-(2-fluorophenyl)-1,1-diphenylsilanamine (2h)

Yield: 95%. ¹H NMR (CDCl₃, 400 MHz, 25 °C) δ 7.67-7.65 (m, 4H, Ar-*H*), 7.47-7.38 (m, 6H, Ar-*H*), 7.01-6.95 (m, 1H, Ar-*H*), 6.85 - 6.75 (m, 2H, Ar-*H*), 6.68-6.63 (m, 1H, Ar-*H*), 5.62 (s, 1H, Si-*H*), 4.13 (br, 1H, N*H*) ppm. ¹³C{¹H} NMR (CDCl₃, 100 MHz, 25 °C) δ 153.8 (F attached Ar-*C*), 134.9 (Ar-*C*), 132.7 (Ar-*C*), 130.5 (Ar-*C*), 128.3 (Ar-*C*), 124.4 (Ar-*C*), 118.4 (Ar-*C*), 116.9 (Ar-*C*), 114.8(Ar-*C*) ppm. Elemental analysis: (C₁₈H₁₆FNSi) (293.4); calcd. C 73.68, H 5.50, N 4.77; found C 73.57, H 5.46, N 4.65.

N,*N*'-bis(2-bromophenyl)-1,1-diphenylsilanediamine (2i)

Yield: 94%. ¹H NMR (CDCl₃, 400 MHz, 25 °C) δ 7.67-7.65 (m, 2H, Ar-*H*), 7.55-7.50 (m, 3H, Ar-*H*), 7.34-7.27 (m, 8H, Ar-*H*), 7.15-7.11 (m, 2H, Ar-*H*), 6.97-6.86 (m, 1H, Ar-*H*), 6.55-6.51(m, 1H, Ar-*H*), 4.96 (br, 1H, N*H*), 4.84 (br, 1H, N*H*) ppm. ¹³C{¹H} NMR (CDCl₃, 100 MHz, 25 °C) δ 143.1 (Ar-C), 134.9 (Ar-C), 132.7 (Ar-C), 130.4 (Ar-C), 128.3 (Ar-C), 120.2 (Ar-C), 119.4 (Ar-C), 117.4 (Ar-C), 113.4 (Ar-C) ppm. Elemental analysis: (C₂₄H₂₀Br₂N₂Si) (524.3); calcd. C 54.98, H 3.84, N 5.34; found C 54.82, H 3.69, N 5.24.

N-(2-iodophenyl)-1,1-diphenylsilanamine (2j)

Yield: 90%. ¹H NMR (CDCl₃, 400 MHz, 25 °C) δ 7.69-7.65 (m, 5H, Ar-H), 7.47-7.38 (m, 6H, Ar-H), 7.05-7.01 (m, 1H, Ar-H), 6.79 (dd, J = 6.6 Hz, 1H, Ar-H), 6.46 (td, J = 7.4 Hz, 1H, Ar-H), 5.60 (s, 1H, Si-H), 4.47 (br, 1H, NH) ppm. ¹³C{¹H} NMR (CDCl₃, 100 MHz, 25 °C) δ 153.8 (Ar-C), 134.9 (Ar-C), 132.7 (Ar-C), 130.5 (Ar-C), 128.3 (Ar-C), 124.4 (Ar-C), 118.4 (Ar-C), 116.9 (Ar-C), 115.0 (Ar-C), 114.8 (Ar-C) ppm. Elemental analysis: (C₁₈H₁₆INSi) (401.3); calcd. C 53.87, H 4.02, N 3.49; found C 53.65, H 3.86, N 3.41.

N,*N*-dicyclohexyl-1,1-diphenylsilanamine (2k)

Yield: 90%. ¹H NMR (CDCl₃, 400 MHz, 25 °C) δ 7.67 - 7.59 (m, 4H, Ar-H), 7.42-7.36 (m, 6H, Ar-H), 4.97 (s, 1H, Si-H), 2.60-2.58 (m, 2H, Cy-H), 1.91-1.73 (m, 9H, Cy-H), 1.30-1.24 (m, 1H, Cy-H), 1.08-1.04 (m, 10H, Ar-H), ppm. ¹³C{¹H} NMR (CDCl₃, 100 MHz, 25 °C) δ 135.7 (Ar-C), 134.3 (Ar-C), 130.3 (Ar-

C), 129.9 (Ar-C), 128.1 (Ar-C), 127.9 (Ar-C), 53.0 (Cy-C), 34.4 (Cy-C), 26.2 (Cy-C), 25.3 (Cy-C) ppm. Elemental analysis: (C₂₄H₃₃NSi) (363.6); calcd. C 79.28, H 9.15, N 3.85; found C 79.11, H 9.05, N 3.73.

N-(diphenylsilyl)pyrazin-2-amine (2l)

Yield: 95%. ¹H NMR (CDCl₃, 400 MHz, 25 °C) δ 7.83-7.78 (m, 1H, Ar-H), 7.74 (s, 1H, NH), 7.50-7.48 (m, 6H, Ar-H), 7.30-7.25 (m, 6H, Ar-H), 4.83 (s, 1H, Si-H) ppm. ¹³C{¹H} NMR (CDCl₃, 100 MHz, 25 °C) δ 155.4 (Ar-C), 141.9 (Ar-C), 135.6 (Ar-C), 134.4 (Ar-C), 134.3 (Ar-C), 129.8 (Ar-C), 128.0 (Ar-C), 127.8 (Ar-C) ppm. Elemental analysis: (C₁₆H₁₅N₃Si) (277.4); calcd. C 69.28, H 5.45, N 15.15; found C 69.20, H 5.33, N 14.89.

1-(diphenylsilyl)-1H-indole (2m)

Yield: 90%. ¹H NMR (CDCl₃, 400 MHz, 25 °C) δ 7.58-7.56 (m, 1H, Ar-H), 7.40-7.34 (m, 2H, Ar-H), 7.14-7.05 (m, 9H, Ar-H), 6.95-6.88 (m, 2H, Ar-H), 6.63 (d, *J* = 3 Hz, 1H, C=CH), 6.10 (d, *J* = 3 Hz, 1H, C=CH), 4.92 (s, 1H, Si-H), ppm. Elemental analysis: (C₂₀H₁₇NSi) (299.4); calcd. C 80.22, H 5.72, N 4.68; found C 80.15, H 5.66, N 4.57.

1-(diphenylsilyl)-1H-pyrrolo[2,3-b]pyridine (2n)

Yield: 90%. ¹H NMR (CDCl₃, 400 MHz, 25 °C) δ 8.35 (d, *J* = 7.9 Hz, 1H, C=CH), 7.98 (d, *J* = 7.3 Hz, 1H, Ar-H), 7.63-7.61 (m, 4H, Ar-H), 7.40-7.39 (m, 7H, Ar-H), 7.12 (d, *J* = 3 Hz, 1H, C=CH), 6.53 (d, *J* = 3 Hz, 1H, C=CH), 4.94 (s, 1H, Si-H), ppm. ¹³C{¹H} NMR (CDCl₃, 100 MHz, 25 °C) δ 142.6 (Ar-C), 135.6 (Ar-C), 134.3 (Ar-C), 129.8 (Ar-C), 128.1 (Ar-C), 127.9 (Ar-C), 115.8 (Ar-C), 100.6 (Ar-C) ppm. Elemental analysis: (C₁₉H₁₆N₂Si) (300.4); calcd. C 75.96, H 5.37, N 9.32; found C 75.81, H 5.29, N 9.25.

9-(diphenylsilyl)-9H-carbazole (20)

Yield: 88%. ¹H NMR (CDCl₃, 400 MHz, 25 °C) δ 8.02-8.00 (m, 2H, Ar-H), 7.52-7.48 (m, 4H, Ar-H), 7.39-7.34 (m, 2H, Ar-H), 7.30-7.25 (m, 4H, Ar-H), 7.15-7.11 (m, 2H, Ar-H), 7.09-7.07 (m, 4H, Ar-H), 4.85 (s, 1H, Si-H) ppm. Elemental analysis: (C₂₄H₁₉NSi) (349.5); calcd. C 82.48, H 5.48, N 4.01; found C 82.39, H 5.38, N 3.92.

NMR spectra:

FS1: ¹H NMR spectrum (THF-*d*₈, 300 MHz, 25 °C) of compound **3** (**#** n-Hexane, ***** NMR solvent residual signals)

FS3: ¹H NMR spectrum (C₆D₆, 300 MHz, 25 °C) of compound 4

FS5. ¹H NMR spectrum (CDCl₃, 400 MHz, 25 °C) of complex 1a.

FS7. ¹H NMR spectrum (CDCl₃, 400 MHz, 25 °C) of complex 1c.

FS9. ¹H NMR spectrum (CDCl₃, 400 MHz, 25 °C) of complex 1e.

FS11. ¹H NMR spectrum (CDCl₃, 400 MHz, 25 °C) of complex 1g.

FS13. ¹H NMR spectrum (CDCl₃, 400 MHz, 25 °C) of complex 1i.

FS15. ¹H NMR spectrum (CDCl₃, 400 MHz, 25 °C) of complex 2b.

S17. ¹H NMR spectrum (CDCl₃, 400 MHz, 25 °C) of complex **2d.**

FS19. ¹H NMR spectrum (CDCl₃, 400 MHz, 25 °C) of complex 2f.

FS21. ¹H NMR spectrum (CDCl₃, 400 MHz, 25 °C) of complex 2g.

FS23. ¹H NMR spectrum (CDCl₃, 400 MHz, 25 °C) of complex 2h.

FS25. ¹H NMR spectrum (CDCl₃, 400 MHz, 25 °C) of complex 2i.

FS27. ¹H NMR spectrum (CDCl₃, 400 MHz, 25 °C) of complex 2j.

FS28. ¹³C NMR spectrum (CDCl₃, 100 MHz, 25 °C) of complex 2j.

FS29. ¹H NMR spectrum (CDCl₃, 400 MHz, 25 °C) of complex 2k.

FS31. ¹H NMR spectrum (CDCl₃, 400 MHz, 25 °C) of complex 2l.

FS33. ¹H NMR spectrum (CDCl₃, 400 MHz, 25 °C) of complex 2m.

FS35. ¹³C NMR spectrum (CDCl₃, 100 MHz, 25 °C) of complex 2n.

FS36. ¹H NMR spectrum (CDCl₃, 400 MHz, 25 °C) of complex 20.

Stoichiometric reaction between Complex 3 and diphenylsilane:

Ph₂SiH₂ (0.5 mmol, 2 equiv) was added to a C₆D₆ solution of complex **3** (0.25 mmol, 1 equiv) in a screw cap NMR tube inside the glove box. After 4 hours, the progress of the reaction was monitored by ¹H NMR. Singlet peak at δ = 3.90 and 5.43 ppm correspond to N-H and Si-H proton respectively indicates for the formation of CDC product. Whereas singlet resonance at δ = 3.95 ppm indicates the formation of zinc hydride.

Complex 3

FS37. ¹H NMR spectrum (C_6D_6 , 300 MHz, 25 °C) of the stoichiometric reaction between complex **3** and Ph₂SiH₂.

Competitive reactivity study of amine and carbonyl functionality in presence of Ph₂SiH₂:

4-aminoacetophenone (0.25 mmol, 1 equiv.), Ph₂SiH₂ (0.25 mmol, 1 equiv.) and NHC-Zn catalyst (2 mol %) were charged in a Schlenk tube inside the glove box. The reaction mixture was stirred for 3 hours at room temperature in neat conditions. Upon completion of the reaction, the progress of the reaction was monitored by ¹H NMR with the help of mesitylene as the internal standard in C₆D₆ and a mixture of products was obtained. Doublet peak at $\delta = 6.23$ ppm (¹J_{HH} = 9 Hz) for N-H proton and singlet peak at $\delta = 5.86$ ppm for Si-H proton are the indication of the formation of only CDC product **5a** [1-(4-((diphenylsilyl)amino)phenyl)ethan-1-one] (32% product formation), whereas quartet resonance at $\delta = 5.03$ ppm (¹J_{HH} = 7 Hz) indicates the formation of another product **5b** [N-(4-(1-((diphenylsilyl)oxy)ethyl)phenyl)-1,1-diphenylsilanamine] where both amine and carbonyl group reacted with silane (68% product formation).

FS38. ¹H NMR spectrum (C₆D₆, 300 MHz, 25 °C) of the stoichiometric reaction between 4aminoacetophenone and Ph₂SiH₂.

Selective CDC reaction of amine functionality over reduction of nitrile group in presence of 1 equiv. Ph₂SiH₂:

Aniline (0.25 mmol, 1 equiv.), 4-methylbenzonitrile (0.25 mmol, 1 equiv.), Ph_2SiH_2 (0.25 mmol, 1 equiv.) and NHC-Zn catalyst (2 mol %) were charged in a Schlenk tube inside the glove box. The reaction mixture was stirred for 3 hours at room temperature in neat conditions. Upon completion of the reaction, the progress of the reaction was monitored by ¹H NMR with the help of mesitylene as the internal standard in C₆D₆. Singlet peak at $\delta = 3.68$ and 5.86 ppm correspond to N-H and Si-H proton respectively indicates for the formation of CDC product from aniline.

FS39. ¹H NMR spectrum (C₆D₆, 300 MHz, 25 °C) of the reaction of aniline and 4-methylbenzonitrile in presence of one equiv. Ph₂SiH₂.

Selective CDC reaction of amine functionality over reduction of ester group in presence of 1 equiv. Ph₂SiH₂:

Aniline (0.25 mmol, 1 equiv.), Methyl *p*-toluate (0.25 mmol, 1 equiv.), Ph_2SiH_2 (0.25 mmol, 1 equiv.) and NHC-Zn catalyst (2 mol %) were charged in a Schlenk tube inside the glove box. The reaction mixture was stirred for 3 hours at room temperature in neat conditions. Upon completion of the reaction, the progress of the reaction was monitored by ¹H NMR with the help of mesitylene as the internal standard in C₆D₆. Singlet peak at $\delta = 3.68$ and 5.87 ppm correspond to N-H and Si-H proton respectively indicates for the formation of CDC product from aniline.

FS40. ¹H NMR spectrum (C_6D_6 , 300 MHz, 25 °C) of the reaction of aniline and methyl *p*-toluate in presence of one equiv. Ph₂SiH₂.

References

- 1. X. Zhang, S. Zhou, X. Fang, L. Zhang, G. Tao, Y. Wei, X. Zhu, P. Cui and S. Wang, *Inorg. Chem.*, 2020, **59**, 9683-9692.
- 2. M. S. Hill, D. J. Liptrot, D. J. MacDougall, M. F. Mahon and T. P. Robinson, *Chem. Sci.*, 2013, 4, 4212-4222.
- 3. S. Anga, Y. Sarazin, J.-F. Carpentier and T. K. Panda, *ChemCatChem*, 2016, 8, 1373-1378.
- D. Gasperini, A. K. King, N. T. Coles, M. F. Mahon and R. L. Webster, ACS Catal., 2020, 10, 6102-6112.
- 5. A. Baishya, T. Peddarao and S. Nembenna, Dalton Trans., 2017, 46, 5880-5887.
- 6. C. Bellini, J.-F. Carpentier, S. Tobisch and Y. Sarazin, Angew. Chem., 2015, 127, 7789-7793.
- J. F. Dunne, S. R. Neal, J. Engelkemier, A. Ellern and A. D. Sadow, J. Am. Chem. Soc., 2011, 133, 16782-16785.
- 8. W. Xie, H. Hu and C. Cui, Angew. Chem., 2012, 124, 11303-11306.