Supplementary Information

Palladium-catalyzed regioselective decarboxylative hydroarylation of alkynyl carboxylic acids with arylboronic acids

Zheng Dong, Ren-Jie Tong, Lei Xu, Hua-Jian Xu* and Jun Xu*

School of Food and Biological Engineering, Anhui Province Key Laboratory of Advance Catalytic Materials and Reaction Engineering, Hefei University of Technology, Hefei 230009, China.

junxu@hfut.edu.cn (J. Xu)

hjxu@hfut.edu.cn (H.-J. Xu)

Table of contents

1. General information 1
1.1 Materials 1
1.2 Analytical methods 1
2. Optimization of reaction conditions 2
Table S1. Optimization of the ligands 2
Table S2. Optimization of the reaction solvents 3
Table S3. Optimization of the reaction bases 4
Table S4. Optimization of the reaction parameters 5
Table S5. Optimization of the palladium catalysts 6
3. Preparation of non-commercial substrates 7
4. Time-course reactions under the standard condition. 8
4.1 Identification of the possible intermediate 8
4.2 Control experiment 9
5. General procedure and characterization of products 10
5.1 General procedure 10
5.2 Characterization data for all products 11
6. References 23
7. Copies of NMR spectra 24

1. General information

1.1 Materials

The following chemicals were purchased and used as received:
Palladium chloride (cas: 7647-10-1, Adamas, 5 g), Palladium acetate (cas: 3375-31-3, Adamas, 5 g), other Palladium or Nickel catalyst (Energy or Adamas), Triphenylphosphine (cas: 603-35-0, Energy, 500 g), other Phosphines (Energy or Adamas), Arylboronic acids (Energy or Adamas), Phenylpropiolic acid (cas: 637-44-5, Energy, 10 g), $\mathrm{H}_{2} \mathrm{O}$ (ultrapure water, conductivity $=0.055$ $\mu \mathrm{s} / \mathrm{cm}$), Toluene (cas: 108-88-3, Sinopharm, 500 mL), Potassium acetate (cas: 127-08-2, Aladdin, 500 g).

1.2 Analytical methods

${ }^{1} \mathrm{H}$ NMR, ${ }^{13} \mathrm{C}$ NMR and ${ }^{19} \mathrm{~F}$ NMR spectra were recorded on a Bruker 400 MHz or Keysight 600 MHz spectrometer at 295 K in deuterated solvents. Chemical shifts are reported in ppm with the internal TMS signal at 0.0 ppm as a standard. The data is being reported as ($\mathrm{s}=$ singlet, $\mathrm{d}=$ doublet, $\mathrm{t}=$ triplet, $\mathrm{q}=$ quartet, $\mathrm{m}=$ multiplet or unresolved, coupling constant(s) in Hz , integration).

GC measurements were conducted on Thermo Fisher. HRMS ESI-mass data were acquired on Thermo LTQ Orbitrap XL instrument equipped with an ESI source and controlled by Xcalibur software.

Chromatographic purification of products was accomplished using forced-flow chromatography on silica gel (300-400 mesh)

2. Optimization of reaction conditions

Table S1. Optimization of the ligands

2

Entry	Ligand	Yield (\%) ${ }^{b}$
1	PPh $_{3}$	88%
2	PCy $_{3}$	19%
3	$1,1^{\prime}$-bis(dicyclohexylphosphino)ferrocene	9%
4	tri-o-tolylphosphine	34%
5	BINAP	N.R.
6	dppb	N.R.
7	XPhos	42%
9	dppf	N.R.
10	XantPhos	40%
11	t-BuXPhos	NpePhos

${ }^{a}$ Reaction conditions: $\mathbf{1}$ ($0.30 \mathrm{mmol}, 1.0$ equiv), 2 ($0.45 \mathrm{mmol}, 1.5$ equiv), potassium acetate ($0.6 \mathrm{mmol}, 2.0$ equiv), $\mathrm{Pd}(\mathrm{OAc})_{2}\left(0.006 \mathrm{mmol}, 0.02\right.$ equiv), ligand $\left(0.015 \mathrm{mmol}, 0.05\right.$ equiv), toluene $(3.0 \mathrm{~mL}), \mathrm{H}_{2} \mathrm{O}(0.3 \mathrm{~mL})$ under argon for 10 h (oil bath), unless otherwise noted. ${ }^{b}$ All yields were determined by gas chromatography using biphenyl as an internal standard. N.R. $=$ no reaction; BINAP $=1.1^{\prime}$-binaphthyl-2.2'-diphenylphosphine; dppb $=$ 1,4-bis(diphenylphosphino)butane; Xphos = 2-(dicyclohexyl phosphino)-2',4',6'-tri-i-propyl-1,1'-biphenyl; dppf = 1,1'-Bis(diphenylphosphino)ferrocene; Xant-Phos $=4,5$-bis(diphenylphosphino)-9,9-dimethylxanthene; t-BuXphos $=2$-di-tert-butylphosphino-2',4',6'-triisopropyl biphenyl; DpePhos $=\operatorname{Bis}(2$-diphenylphosphinophenyl) ether; Sphos $=\quad$ 2-dicyclohexylphosphino-2',6'-dimethoxy-1,1'-biphenyl.

Table S2. Optimization of the reaction solvents

 2	$\begin{gathered} \mathrm{Pd}(\mathrm{OAc})_{2}(2 \mathrm{~mol} \%), \\ \mathrm{PPh}_{3}(5 \mathrm{~mol} \%) \\ \hline \mathrm{KOAc}(2.0 \text { equiv }), \\ \text { solvent } / \mathrm{H}_{2} \mathrm{O}, \\ \mathrm{~N}_{2}, 80^{\circ} \mathrm{C}, 10 \mathrm{~h} \end{gathered}$	
Entry	Solvent	Yield (\%) ${ }^{\text {b }}$
1	$\mathrm{PhCl} / \mathrm{H}_{2} \mathrm{O}$	80\%
2	$\mathrm{MeCN} / \mathrm{H}_{2} \mathrm{O}$	N.R.
3	acetone $/ \mathrm{H}_{2} \mathrm{O}$	N.R.
4	1,4-dioxane/ $\mathrm{H}_{2} \mathrm{O}$	N.R.
5	DMC/ $\mathrm{H}_{2} \mathrm{O}$	N.R.
6	NMP/ $\mathrm{H}_{2} \mathrm{O}$	N.R.
7	THF/ $\mathrm{H}_{2} \mathrm{O}$	N.R.
8	nitrobenzene/ $\mathrm{H}_{2} \mathrm{O}$	50\%
9	$\mathrm{DCE} / \mathrm{H}_{2} \mathrm{O}$	61\%
10	DMSO/ $\mathrm{H}_{2} \mathrm{O}$	N.R.
11	DMF/ $\mathrm{H}_{2} \mathrm{O}$	N.R.
12	o-xylene $/ \mathrm{H}_{2} \mathrm{O}$	31\%

${ }^{a}$ Reaction conditions: 1 ($0.30 \mathrm{mmol}, 1.0$ equiv), 2 ($0.45 \mathrm{mmol}, 1.5$ equiv), $\mathrm{Pd}(\mathrm{OAc})_{2}$ ($0.006 \mathrm{mmol}, 0.02$ equiv), PPh_{3} ($0.015 \mathrm{mmol}, 0.05$ equiv), potassium acetate ($0.6 \mathrm{mmol}, 2.0$ equiv), solvent (3.0 mL), $\mathrm{H}_{2} \mathrm{O}(0.3 \mathrm{~mL})$ under argon for 10 h (oil bath), unless otherwise noted. ${ }^{b}$ All yields were determined by gas chromatography using biphenyl as an internal standard. N.R. = no reaction; DMC = dimetyl carbonate; NMP = N-methyl-2-pyrrolidone; THF $=$ tetrahydrofuran; $\mathrm{DCE}=$ 1,2-dichloroethane; $\mathrm{DMSO}=$ dimethyl sulfoxide; $\mathrm{DMF}=N, N-$ dimethylformamide.

Table S3. Optimization of the reaction bases

${ }^{a}$ Reaction conditions: $\mathbf{1}\left(0.30 \mathrm{mmol}, 1.0\right.$ equiv), $\mathbf{2}(0.45 \mathrm{mmol}, 1.5$ equiv $)$, base ($0.6 \mathrm{mmol}, 2.0$ equiv), $\operatorname{Pd}(\mathrm{OAc})_{2}$ ($0.006 \mathrm{mmol}, 0.02$ equiv), $\mathrm{PPh}_{3}\left(0.015 \mathrm{mmol}, 0.05\right.$ equiv), toluene $(3 \mathrm{~mL}), \mathrm{H}_{2} \mathrm{O}(0.3 \mathrm{~mL})$ under argon for 10 h (oil bath), unless otherwise noted. ${ }^{b}$ All yields were determined by gas chromatography using biphenyl as an internal standard. N.R. = no reaction; DBU $=1,8$-diazabicyclo[5.4.0]undec-7-ene; DIPEA $=$ N,N-diisopropylethylamine; TMEDA $=\mathrm{N}, \mathrm{N}, \mathrm{N}^{\prime}, \mathrm{N}^{\prime}$-tetramethyl-ethylenediamine.

Table S4. Optimization of the reaction parameters

2

Entry	Catalyst	Ligand	Solvent	T/ ${ }^{\circ} \mathrm{C}$	Yield (\%) ${ }^{\text {b }}$
1	$2 \mathrm{~mol} \%$	$\mathrm{PPh}_{3}(5 \mathrm{~mol} \%)$	toluene $/ \mathrm{H}_{2} \mathrm{O}$	80	88\%
2	$2 \mathrm{~mol} \%$		toluene $/ \mathrm{H}_{2} \mathrm{O}$	80	N.R.
3	$2 \mathrm{~mol} \%$	$\mathrm{PPh}_{3}(2 \mathrm{~mol} \%$)	toluene $/ \mathrm{H}_{2} \mathrm{O}$	80	62\%
4	$2 \mathrm{~mol} \%$	PPh ${ }_{3}(10 \mathrm{~mol} \%)$	toluene $/ \mathrm{H}_{2} \mathrm{O}$	80	85\%
5	$2 \mathrm{~mol} \%$	$\mathrm{PPh}_{3}(5 \mathrm{~mol} \%$)	toluene	80	N.R.
6	$2 \mathrm{~mol} \%$	$\mathrm{PPh}_{3}(5 \mathrm{~mol} \%$)	toluene/EtOH	80	N.R.
7	$2 \mathrm{~mol} \%$	$\mathrm{PPh}_{3}(5 \mathrm{~mol} \%$)	toluene/AcOH	80	N.R.
8	$2 \mathrm{~mol} \%$	$\mathrm{PPh}_{3}(5 \mathrm{~mol} \%)$	toluene $/ \mathrm{MeOH}$	80	45\%
$9{ }^{\text {c }}$	$2 \mathrm{~mol} \%$	$\mathrm{PPh}_{3}(5 \mathrm{~mol} \%$)	toluene $/ \mathrm{H}_{2} \mathrm{O}$	80	83\%
10	$1 \mathrm{~mol} \%$	$\mathrm{PPh}_{3}(5 \mathrm{~mol} \%$)	toluene $/ \mathrm{H}_{2} \mathrm{O}$	80	78\%
11	-	$\mathrm{PPh}_{3}(5 \mathrm{~mol} \%$)	toluene $/ \mathrm{H}_{2} \mathrm{O}$	80	N.R.
12	$2 \mathrm{~mol} \%$	$\mathrm{PPh}_{3}(5 \mathrm{~mol} \%$)	toluene $/ \mathrm{H}_{2} \mathrm{O}$	60	N.R.
13	$2 \mathrm{~mol} \%$	$\mathrm{PPh}_{3}(5 \mathrm{~mol} \%$)	toluene $/ \mathrm{H}_{2} \mathrm{O}$	100	84\%

${ }^{a}$ Reaction conditions: $\mathbf{1}$ ($0.30 \mathrm{mmol}, 1.0$ equiv), $\mathbf{2}$ ($0.45 \mathrm{mmol}, 1.5$ equiv), potassium acetate ($0.6 \mathrm{mmol}, 2.0$ equiv), $\mathrm{Pd}(\mathrm{OAc})_{2}(0.006 \mathrm{mmol}, 0.02$ equiv $), \mathrm{PPh}_{3}(0.015 \mathrm{mmol}, 0.05$ equiv), toluene $(3.0 \mathrm{~mL})$, proton source $(0.3 \mathrm{~mL})$ under argon for 10 h (oil bath), unless otherwise noted. ${ }^{b}$ All yields were determined by gas chromatography using biphenyl as an internal standard. ${ }^{c}$ The amount of water in the reaction was increased to 0.5 mL ; N.R. = no reaction.

Table S5. Optimization of the palladium catalysts

		3
Entry	Catalyst	Yield (\%) ${ }^{\text {b }}$
1	$\mathrm{Pd}(\mathrm{OAc})_{2}(2 \mathrm{~mol} \%)$	N.R.
2	$\mathrm{PdCl}_{2}(2 \mathrm{~mol} \%)$	N.R.
3	$\mathrm{Pd}_{2}(\mathrm{dba})_{3}(2 \mathrm{~mol} \%)$	N.R.
4	$\mathrm{Pd}(\mathrm{acac})_{2}(2 \mathrm{~mol} \%)$	N.R.
5	$\mathrm{PdCl}_{2}(2 \mathrm{~mol} \%)+\mathrm{PPh}_{3}(5 \mathrm{~mol} \%)$	78\%
6	$\mathrm{Pd}_{2}(\mathrm{dba})_{3}(2 \mathrm{~mol} \%)+\mathrm{PPh}_{3}(5 \mathrm{~mol} \%)$	45\%
7	$\left.\mathbf{P d}(\mathbf{O A c})_{\mathbf{2}} \mathbf{(2 ~ m o l \%}\right)+\mathrm{PPh}_{3}(5 \mathbf{~ m o l} \%)$	88\%
8	$\mathrm{Pd}\left(\mathrm{PCy}_{3}\right)_{2} \mathrm{Cl}_{2}(2 \mathrm{~mol} \%)$	42\%
9	$\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{2} \mathrm{Cl}_{2}(2 \mathrm{~mol} \%)$	66\%
10	$\mathrm{NiCl}_{2}(\mathrm{dppp})(2 \mathrm{~mol} \%)$	N.R.
11	$\mathrm{Ni}\left(\mathrm{PCy}_{3}\right)_{2} \mathrm{Cl}_{2}(2 \mathrm{~mol} \%)$	N.R.

${ }^{a}$ Reaction conditions: $\mathbf{1}$ ($0.30 \mathrm{mmol}, 1.0$ equiv), $\mathbf{2}(0.45 \mathrm{mmol}, 1.5$ equiv), potassium acetate ($0.6 \mathrm{mmol}, 2.0$ equiv), catalyst (0.006 mmol), toluene $(3.0 \mathrm{~mL}), \mathrm{H}_{2} \mathrm{O}(0.3 \mathrm{~mL})$ under argon for 10 h (oil bath), unless otherwise noted. ${ }^{b}$ All yields were determined by gas chromatography using biphenyl as an internal standard. N.R. = no reaction; $\mathrm{Dppp}=1,3-\operatorname{Bis}($ diphenylphosphino $)$ propane.

3. Preparation of non-commercial substrates

$\mathbf{1 a}^{\mathbf{1}}, \mathbf{1 b}^{\mathbf{1}}, \mathbf{1} \mathbf{c}^{\mathbf{1}}, \mathbf{1 d} \mathbf{d}^{\mathbf{1}}, \mathbf{1} \mathbf{f}^{\mathbf{1}}, \mathbf{1 g}^{\mathbf{1}}, \mathbf{1 h}^{1}, \mathbf{1 i}^{\mathbf{1}}, \mathbf{1 e}^{\mathbf{2}}, \mathbf{1 j}^{\mathbf{3}}, \mathbf{1 k}^{4}, \mathbf{5 5}^{5,6}$ were prepared according to the reported procedures.

1a

1b

1e

1k

1h

1c

$1 f$

1g

$1 i$

1j

55

Figure S1 Preparation of non-commercial substrates

4. Time-course reactions under the standard condition.

4.1 Identification of the possible intermediate

To further probe the possible intermediate in the reaction, we conducted a collection of experiments with $\mathrm{D}_{2} \mathrm{O}$ under the standard condition by detecting the yields of the possible intermediate 57 and final product $\mathbf{4 3}$ at a different time (Figure S2). This experiment showed that the starting substrate 1 was rapidly decarboxylated to intermediate 57 , which subsequently underwent a further transformation into the deuterium-labeled alkenes 43.

For experimental details, see the general procedure B. All yields were determined by gas chromatography using biphenyl as an internal standard.

Figure S2 Time-course reactions under the standard condition.

4.2 Control experiment

To further probe whether alkynes can be converted to the desired product 43 with $\mathrm{D}_{2} \mathrm{O}$ under the standard conditions, we conducted a collection of experiments under the standard condition by detecting the yields of the substate and final product at a different time (Figure S3). It is shown that alkyne can only be converted to mono-deuterated product $\mathbf{5 8}$ under the standard conditions.

entry	Time $/$ h	$\mathbf{5 8} /$ yield $\%$	$\mathbf{5 9} /$ yield $\%$
1	0	0	100
2	0.25	3	78
3	0.5	10	65
4	0.75	23	58
5	1	34	47
6	1.25	47	36
7	1.5	55	28
8	2.0	68	0
9	2.5	68	0

For experimental details, see the general procedure B. All yields were determined by gas chromatography using biphenyl as an internal standard.

Figure S3 Time-course reactions under the standard condition.

5. General procedure and characterization of products

5.1 General procedure

procedure A :

 $80^{\circ} \mathrm{C}, 10 \mathrm{~h}$

Arylpropiolic acid ($0.3 \mathrm{mmol}, 1.0$ equiv), arylboronic acid ($0.45 \mathrm{mmol}, 1.5$ equiv), $\mathrm{Pd}(\mathrm{OAc})_{2}$ $\left(1.35 \mathrm{mg}, 0.006 \mathrm{mmmol}, 0.02\right.$ equiv), $\mathrm{PPh}_{3}(4 \mathrm{mg}, 0.015 \mathrm{mmol}, 0.05$ equiv) and potassium acetate ($60 \mathrm{mg}, 0.6 \mathrm{mmol}, 2.0$ equiv) were placed in a transparent Schlenk tube equipped with a stirring bar. The tube kept in vacuum then flushed with argon. This procedure was repeated for 3-4 times. The solvent (toluene $=3.0 \mathrm{~mL}, \mathrm{H}_{2} \mathrm{O}=0.3 \mathrm{~mL}$) was added under argon atmosphere. The reaction mixture was stirred at $80^{\circ} \mathrm{C}$ for 10 h (oil bath). Then the reaction mixture was cooled to room temperature, then extracted with ethyl acetate. The organic layers were combined and dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, then concentrated under vacuo. The residue was purified by column chromatography on silica gel to afford the desired product (petroleum ether/ethyl acetate).
procedure B: Preparation of deuterium-labeled alkenes

Arylpropiolic acid ($0.3 \mathrm{mmol}, 1.0$ equiv), arylboronic acid ($0.45 \mathrm{mmol}, 1.5$ equiv), $\mathrm{Pd}(\mathrm{OAc})_{2}$ $\left(1.35 \mathrm{mg}, 0.006 \mathrm{mmmol}, 0.02\right.$ equiv), $\mathrm{PPh}_{3}(4 \mathrm{mg}, 0.015 \mathrm{mmol}, 0.05$ equiv) and potassium acetate ($60 \mathrm{mg}, 0.6 \mathrm{mmol}, 2.0$ equiv) were placed in a transparent Schlenk tube equipped with a stirring bar. The tube kept in vacuum then flushed with argon. This procedure was repeated for 3-4 times. Toluene (dried with calcium hydride, distilled, and stored under N_{2} atmosphere, 3.0 mL) and $\mathrm{D}_{2} \mathrm{O}$ $(0.3 \mathrm{~mL})$ was added under argon atmosphere. The reaction mixture was stirred at $80^{\circ} \mathrm{C}$ for 10 h (oil bath). The reaction mixture was cooled to room temperature, then extracted with ethyl acetate. The organic layers were combined and dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, then concentrated under vacuo. The residue was purified by column chromatography on silica gel to afford the desired deuterated product (petroleum ether/ethyl acetate).

5.2 Characterization data for all products

1-Methyl-4-(1-phenylvinyl)benzene (3)

Following the general procedure A, the product 3 was obtained in 80% yield as a colorless oil after column chromatography (eluent $=$ petroleum ether, 47 mg). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.37-7.29$ (m, 5H), 7.23 (d, $J=7.5 \mathrm{~Hz}, 2 \mathrm{H}$), 7.13 (d, $J=7.8 \mathrm{~Hz}, 2 \mathrm{H}$), 5.43 (s, $1 \mathrm{H}), 5.40(\mathrm{~s}, 1 \mathrm{H}), 2.36(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 150.0,141.8,138.7$, 137.6, $129.0,128.4,128.3,128.2,127.7,113.7,21.3$. All data were consistent with that presented in the literature ${ }^{[7]}$.

1-Methyl-2-(1-phenylvinyl)benzene (4)

Following the general procedure A, the product 4 was obtained in 67% yield as a colorless oil after column chromatography (eluent = petroleum ether, 39 mg). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.29-7.24(\mathrm{~m}, 5 \mathrm{H}), 7.24-$ $7.20(\mathrm{~m}, 3 \mathrm{H}), 7.18(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.76(\mathrm{~s}, 1 \mathrm{H}), 5.19(\mathrm{~s}, 1 \mathrm{H}), 2.05(\mathrm{~s}$, $3 \mathrm{H}) .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 149.6,141.7,140.7,136.2,130.2,130.1,128.4,127.7$, $127.6,126.6,125.8,114.9,20.2$. All data were consistent with that presented in the literature ${ }^{[8]}$.

1-Methyl-3-(1-phenylvinyl)benzene (5)

Following the general procedure A, the product 5 was obtained in 78% yield as a colorless oil after column chromatography (eluent $=$ petroleum ether, 45 mg). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.36-7.24$ (m, 5H), $7.23-7.16(\mathrm{~m}, 1 \mathrm{H}), 7.15-7.07(\mathrm{~m}, 3 \mathrm{H}), 5.41(\mathrm{~s}, 2 \mathrm{H}), 2.31$ $(\mathrm{s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \operatorname{NMR}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 150.2,141.7,141.5,137.8,129.0,128.5,128.3$, $128.2,128.1,127.7,125.5,114.2,21.5$. All data were consistent with that presented in the literature ${ }^{[9]}$.

1-(Tert-butyl)-4-(1-phenylvinyl)benzene (6)

Following the general procedure A , the product $\mathbf{6}$ was obtained in 75% yield as a colorless oil after column chromatography (eluent = petroleum ether, 53 mg). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.37-7.30(\mathrm{~m}, 7 \mathrm{H}), 7.29-$ $7.26(\mathrm{~m}, 2 \mathrm{H}), 5.45(\mathrm{~s}, 1 \mathrm{H}), 5.40(\mathrm{~s}, 1 \mathrm{H}), 1.33(\mathrm{~s}, 9 \mathrm{H}) .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR (101 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 150.8,149.9,141.8,138.5,128.5,128.2,128.0,127.7,125.2,113.8,34.7,31.5$. All data were consistent with that presented in the literature ${ }^{[8]}$.

1-Methoxy-3-(1-phenylvinyl)benzene (7)

Following the general procedure A , the product 7 was obtained in 67% yield as a colorless oil after column chromatography (eluent $=$ petroleum ether: ethyl acetate $=50: 1$, $42 \mathrm{mg}) .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.30-7.19(\mathrm{~m}, 5 \mathrm{H})$, $7.18-7.12(\mathrm{~m}, 1 \mathrm{H}), 6.92-6.66(\mathrm{~m}, 3 \mathrm{H}), 5.36(\mathrm{~s}, 2 \mathrm{H}), 3.68(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR (101 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 159.5,150.0,143.1,141.4,129.2,128.3,128.2,127.8,121.0,114.5,114.0,113.3,55.3$. All data were consistent with that presented in the literature ${ }^{[10]}$.

1,2-Dimethoxy-4-(1-phenylvinyl)benzene (8)

Following the general procedure A , the product $\mathbf{8}$ was obtained in 75% yield as a colorless oil after column chromatography (eluent $=$ petroleum ether : ethyl acetate $=50: 1,54 \mathrm{mg}) .{ }^{1} \mathrm{H}$ NMR $(400 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \delta 7.41-7.31(\mathrm{~m}, 5 \mathrm{H}), 6.92-6.90(\mathrm{~m}, 2 \mathrm{H}), 6.85-6.83(\mathrm{~m}$,
$1 \mathrm{H}), 5.43(\mathrm{~s}, 1 \mathrm{H}), 5.40(\mathrm{~s}, 1 \mathrm{H}), 3.90(\mathrm{~s}, 3 \mathrm{H}), 3.84(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ $149.8,148.9,148.6,141.6,134.4,128.3,128.1,127.7,121.0,113.2,111.5,110.8,55.9,55.9$. All data were consistent with that presented in the literature ${ }^{[11]}$.

4-(1-Phenylvinyl)-1,1'-biphenyl (9)

Following the general procedure A, the product 9 was obtained in 83% yield as a white solid after column chromatography (eluent $=$ petroleum ether, 64 mg$).{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 7.58-7.48(\mathrm{~m}$, $4 \mathrm{H}), 7.41-7.25(\mathrm{~m}, 10 \mathrm{H}), 5.46(\mathrm{~s}, 1 \mathrm{H}), 5.41(\mathrm{~s}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 149.7,141.6,140.8,140.6,140.5,128.9,128.7,128.4,128.3,127.9,127.4$, $127.1,127.0,114.4$. All data were consistent with that presented in the literature ${ }^{[12]}$.

2-(1-Phenylvinyl)naphthalene (10)

Following the general procedure A , the product $\mathbf{1 0}$ was obtained in 80% yield as a white solid after column chromatography (eluent $=$ petroleum ether, 55 mg$) \cdot{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.88-$ $7.80(\mathrm{~m}, 4 \mathrm{H}), 7.54-7.47(\mathrm{~m}, 3 \mathrm{H}), 7.45-7.37(\mathrm{~m}, 5 \mathrm{H}), 5.63(\mathrm{~s}$, 1H), $5.59(\mathrm{~s}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 150.1,141.6,139.0,133.4,133.0,128.5$, $128.3,128.3,127.9,127.8,127.7,127.4,126.5,126.2,126.1,114.9$. All data were consistent with that presented in the literature ${ }^{[13]}$.

1-(1-Phenylvinyl)-4-vinylbenzene (11)

Following the general procedure A , the product 11 was obtained in 78% yield as a colorless oil after column chromatography (eluent $=$ petroleum ether, 48 mg$).{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ $7.46-7.30(\mathrm{~m}, 9 \mathrm{H}), 6.82-6.71(\mathrm{~m}, 1 \mathrm{H}), 5.80(\mathrm{~d}, J=17.6 \mathrm{~Hz}$, $1 \mathrm{H}), 5.51(\mathrm{~s}, 1 \mathrm{H}), 5.48(\mathrm{~s}, 1 \mathrm{H}), 5.29(\mathrm{~d}, J=10.9 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ $149.8,141.5,141.0,137.1,136.5,128.5,128.4,128.3,127.8,126.1,114.3,114.0$. All data were consistent with that presented in the literature ${ }^{[14]}$.

M(4-(1-phenylvinyl)phenyl)sulfane (12)

Following the general procedure A , the product $\mathbf{1 2}$ was obtained in 76% yield as a colorless oil after column chromatography (eluent $=$ petroleum ether, 52 mg$).{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.34-$ $7.29(\mathrm{~m}, 5 \mathrm{H}), 7.27-7.23(\mathrm{~m}, 2 \mathrm{H}), 7.20(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 5.43(\mathrm{~s}$, 1H), $5.40(\mathrm{~s}, 1 \mathrm{H}), 2.48(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 149.6,141.5,138.4,138.1$, $128.8,128.4,128.3,127.9,126.3,114.0,15.9$. All data were consistent with that presented in the literature ${ }^{[15]}$.

Methyl(2-(1-phenylvinyl)phenyl)sulfane (13)

Following the general procedure A, the product $\mathbf{1 3}$ was obtained in 81% yield as a colorless oil after column chromatography (eluent = petroleum ether, 55 mg). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.33-7.23(\mathrm{~m}, 6 \mathrm{H}), 7.22-$ $7.14(\mathrm{~m}, 3 \mathrm{H}), 5.82(\mathrm{~s}, 1 \mathrm{H}), 5.27(\mathrm{~s}, 1 \mathrm{H}), 2.30(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR $(101$
$\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 148.1,140.7,139.9,137.7,130.3,128.3,128.2,127.7,126.6,125.2,124.6,116.2$, 15.9. All data were consistent with that presented in the literature ${ }^{[16]}$.

T(4-(1-phenylvinyl)phenyl)silane (14)

Following the general procedure A , the product 14 was obtained in 76% yield as a colorless oil after column chromatography (eluent $=$ petroleum ether, 58 mg). ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.52(\mathrm{~d}, J=$ $8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.41-7.32(\mathrm{~m}, 7 \mathrm{H}), 5.50(\mathrm{~s}, 1 \mathrm{H}), 5.49(\mathrm{~s}, 1 \mathrm{H}), 0.31(\mathrm{~s}$, 9H); ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR (101 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 150.2,141.9,141.6,140.0,133.3,128.4,128.3,127.8$, 127.6, 114.5, -1.0. HRMS-ESI m/z Calculated for $\mathrm{C}_{17} \mathrm{H}_{21} \mathrm{Si}^{+}\left[\left(\mathrm{M}+\mathrm{H}^{+}\right)\right]$253.1408, Found 253.1405.

1-(1-Phenylvinyl)-4-(trifluoromethoxy)benzene (15)

Following the general procedure A, the product 15 was obtained in 43% yield as a colorless oil after column chromatography (eluent $=$ petroleum ether, 34 mg). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.40-$ $7.30(\mathrm{~m}, 7 \mathrm{H}), 7.19(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 2 \mathrm{H}), 5.50(\mathrm{~s}, 1 \mathrm{H}), 5.46(\mathrm{~s}, 1 \mathrm{H})$;
${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR $\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 148.9,141.1,140.3,129.7,128.4,128.3,128.1,120.7,120.6$ (q, $J=257.1 \mathrm{~Hz}$), 115.1. ${ }^{19} \mathrm{~F}$ NMR ($376 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta-57.7$. HRMS-ESI m/z Calculated for $\mathrm{C}_{15} \mathrm{H}_{12} \mathrm{~F}_{3} \mathrm{O}^{+}\left[\left(\mathrm{M}+\mathrm{H}^{+}\right)\right]$265.0835, Found 265.0830.

1-(1-Penylvinyl)-4-(trifluoromethyl)benzene (16)

Following the general procedure A , the product 16 was obtained in 49% yield as a colorless oil after column chromatography (eluent $=$ petroleum ether, 36 mg$).{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ $7.60(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.46(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 2 \mathrm{H}), 7.39-7.29(\mathrm{~m}$, $5 \mathrm{H}), 5.57(\mathrm{~s}, 1 \mathrm{H}), 5.52(\mathrm{~s}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ($\left.101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 149.1,145.2,140.7,129.9(\mathrm{q}$, $J=32.4 \mathrm{~Hz}), 128.7,128.5,128.3,128.2,125.3(\mathrm{q}, J=3.8 \mathrm{~Hz}), 124.3(\mathrm{q}, J=271.9 \mathrm{~Hz}), 116.0 .{ }^{19} \mathrm{~F}$ NMR ($\left.565 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta-62.4$. All data were consistent with that presented in the literature ${ }^{[8]}$.

1-Fluoro-4-(1-phenylvinyl)benzene (17)

Following the general procedure A , the product 17 was obtained in 75% yield as a colorless oil after column chromatography (eluent $=$ petroleum ether, 45 mg). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.31-7.24$ (m, 7H), $7.01-6.94(\mathrm{~m}, 2 \mathrm{H}), 5.39(\mathrm{~s}, 1 \mathrm{H}), 5.37(\mathrm{~s}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR $\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 162.6(\mathrm{~d}, J=246.7 \mathrm{~Hz}), 149.2,141.4,137.7(\mathrm{~d}, J=3.3 \mathrm{~Hz}), 130.0(\mathrm{~d}, J=8.2$ $\mathrm{Hz}), 128.3,128.3,128.0,115.1(\mathrm{~d}, J=21.3 \mathrm{~Hz}), 114.3 .{ }^{19} \mathrm{~F}$ NMR ($376 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta-114.6$. All data were consistent with that presented in the literature ${ }^{[13]}$.

2,4-Difluoro-1-(1-phenylvinyl)benzene (18)

Following the general procedure A , the product 18 was obtained in 70% yield as a colorless oil after column chromatography (eluent $=$ petroleum ether, 45 mg). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.40-7.25(\mathrm{~m}$, $6 \mathrm{H}), 6.97-6.83(\mathrm{~m}, 2 \mathrm{H}), 5.78(\mathrm{~s}, 1 \mathrm{H}), 5.44(\mathrm{~s}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR $(101$ $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 163.9(\mathrm{~d}, J=11.7 \mathrm{~Hz}), 161.9-160.8(\mathrm{~m}), 159.1(\mathrm{~d}, J=11.9 \mathrm{~Hz}), 143.5,140.5$, $132.52-131.82(\mathrm{~m}), 128.4,128.0,126.9,117.3,111.38-110.91(\mathrm{~m}), 104.8-103.4(\mathrm{~m}) .{ }^{19} \mathrm{~F}$ NMR ($565 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta-108.7,-110.8$. All data were consistent with that presented in the literature ${ }^{[17]}$.

1-Chloro-2-(1-phenylvinyl)benzene (19)

Following the general procedure A , the product 19 was obtained in 50% yield as a colorless oil after column chromatography (eluent = petroleum ether, 32 mg). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.47-7.41(\mathrm{~m}, 1 \mathrm{H}), 7.39-$ $7.26(\mathrm{~m}, 8 \mathrm{H}), 5.87(\mathrm{~s}, 1 \mathrm{H}), 5.32(\mathrm{~s}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 147.5,140.7,139.8,133.4,131.6,129.8,128.9,128.4,127.8,126.7,126.5,116.3$. All data were consistent with that presented in the literature ${ }^{[18]}$.

1-Chloro-3-(1-phenylvinyl)benzene (20)

Following the general procedure A , the product $\mathbf{2 0}$ was obtained in 69% yield as a colorless oil after column chromatography (eluent $=$ petroleum ether, 44 mg$) \cdot{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.35-$ $7.28(\mathrm{~m}, 6 \mathrm{H}), 7.28-7.17(\mathrm{~m}, 3 \mathrm{H}), 5.48(\mathrm{~s}, 1 \mathrm{H}), 5.45(\mathrm{~s}, 1 \mathrm{H})$. ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 149.0,143.5,140.9,134.2,129.5,128.4,128.3,128.1,127.9$, 126.6, 115.4. All data were consistent with that presented in the literature ${ }^{[13]}$.

2,4-Dichloro-1-(1-phenylvinyl)benzene (21)

Following the general procedure A , the product 21 was obtained in 67% yield as a colorless oil after column chromatography (eluent $=$ petroleum ether, 50 mg). ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.41(\mathrm{~d}, J=1.8$ $\mathrm{Hz}, 1 \mathrm{H}), 7.34-7.22(\mathrm{~m}, 7 \mathrm{H}), 5.83(\mathrm{~s}, 1 \mathrm{H}), 5.27(\mathrm{~s}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR (101 MHz, CDCl_{3}) $\delta 146.6,139.5,139.3,134.2,134.1,132.4,129.7,128.5,128.0,127.1,126.5$, 116.8. All data were consistent with that presented in the literature ${ }^{[19]}$.

1-Bromo-4-(1-phenylvinyl)benzene (22)

Following the general procedure A , the product $\mathbf{2 2}$ was obtained in 71% yield as a colorless oil after column chromatography (eluent $=$ petroleum ether, 55 mg). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.49-7.46$ $(\mathrm{m}, 2 \mathrm{H}), 7.38-7.32(\mathrm{~m}, 5 \mathrm{H}), 7.25-7.21(\mathrm{~m}, 2 \mathrm{H}), 5.49(\mathrm{~s}, 1 \mathrm{H}), 5.47$ $(\mathrm{s}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR (101 MHz, CDCl_{3}) $\delta 149.1,141.0,140.5,131.4,130.0,128.4,128.3$, $128.0,121.9,114.8$. All data were consistent with that presented in the literature ${ }^{[13]}$.

1-Nitro-3-(1-phenylvinyl)benzene (23)

Following the general procedure A , the product 23 was
obtained in 63% yield as an yellow solid after column chromatography (eluent = petroleum ether: ethyl acetate $=20: 1,43 \mathrm{mg}) .{ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.25-8.15(\mathrm{~m}, 2 \mathrm{H}), 7.66(\mathrm{~d}, J=7.7$ $\mathrm{Hz}, 1 \mathrm{H}), 7.54-7.47(\mathrm{~m}, 1 \mathrm{H}), 7.41-7.34(\mathrm{~m}, 3 \mathrm{H}), 7.33-7.28(\mathrm{~m}, 2 \mathrm{H}), 5.61(\mathrm{~s}, 1 \mathrm{H}), 5.57(\mathrm{~s}, 1 \mathrm{H})$. ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR (101 MHz, CDCl_{3}) $\delta 148.5,148.2,143.4,140.2,134.3,129.2,128.6,128.5,128.2$, $123.1,122.7,116.6$. All data were consistent with that presented in the literature ${ }^{[20]}$.

Buta-1,3-diene-2,3-diyldibenzene (24)

Following the general procedure A, the product 24 was obtained in 82% yield as a white solid after column chromatography (eluent $=$ petroleum ether, 51 mg). ${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.42-7.38(\mathrm{~m}$, $4 \mathrm{H}), 7.29-7.22(\mathrm{~m}, 6 \mathrm{H}), 5.55(\mathrm{~d}, J=1.6 \mathrm{~Hz}, 2 \mathrm{H}), 5.32(\mathrm{~d}, J=1.6 \mathrm{~Hz}$, $2 \mathrm{H}) .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR (151 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta$ 149.8, 140.1, 128.2, 127.5, $127.5,116.4$. All data were consistent with that presented in the literature ${ }^{[21]}$.

1-Methyl-3-(1-(4-(trifluoromethoxy)phenyl)vinyl)benzene (27)

Following the general procedure A, the product 27 was obtained in 60% yield as a colorless oil after column chromatography (eluent = petroleum ether, 50 mg). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.42-7.34(\mathrm{~m}, 2 \mathrm{H}), 7.27-7.23(\mathrm{~m}$, $1 \mathrm{H}), 7.22-7.10(\mathrm{~m}, 5 \mathrm{H}), 5.48(\mathrm{~s}, 1 \mathrm{H}), 5.45(\mathrm{~s}, 1 \mathrm{H}), 2.37(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR (101 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 149.0,148.9,141.1,140.4,138.0,129.7,129.0,128.8,128.3,125.5,120.7,120.6(\mathrm{q}, J=$ 255.4 Hz), 114.9, 21.5. ${ }^{19} \mathrm{~F}$ NMR ($565 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta-57.7$. HRMS-ESI m/z Calculated for $\mathrm{C}_{16} \mathrm{H}_{14} \mathrm{~F}_{3} \mathrm{O}^{+}\left[\left(\mathrm{M}+\mathrm{H}^{+}\right)\right]$279.0991, Found 279.0986.

2-(1-(M-tolyl)vinyl)naphthalene (28)

Following the general procedure A, the product $\mathbf{2 8}$ was obtained in 74% yield as a white solid after column chromatography (eluent $=$ petroleum ether, 54 mg). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.84-7.75$ $(\mathrm{m}, 4 \mathrm{H}), 7.51-7.41(\mathrm{~m}, 3 \mathrm{H}), 7.27-7.13(\mathrm{~m}, 4 \mathrm{H}), 5.56(\mathrm{~s}, 1 \mathrm{H}), 5.53$ $(\mathrm{s}, 1 \mathrm{H}), 2.34(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 150.2, 141.6, 139.1, 137.9, 133.4, 133.0, 129.2, 128.7, 128.3, 128.2, 127.7, 127.7, 127.3, 126.5, 126.2, 126.1, 125.6, 114.8, 21.5. HRMS-ESI m/z Calculated for $\mathrm{C}_{19} \mathrm{H}_{17}{ }^{+}\left[\left(\mathrm{M}+\mathrm{H}^{+}\right)\right] 245.1325$, Found 245.1324 .

1-Methoxy-4-(1-(p-tolyl)vinyl)benzene (29)

Following the general procedure A , the product 29 was obtained in 75% yield as a colorless oil after column chromatography (eluent $=$ petroleum ether: ethyl acetate $=$ $50: 1,50 \mathrm{mg}) .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.28-7.25(\mathrm{~m}$, 2H), $7.24-7.21(\mathrm{~m}, 2 \mathrm{H}), 7.13(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 2 \mathrm{H}), 6.87-6.83(\mathrm{~m}, 2 \mathrm{H}), 5.33(\mathrm{~s}, 1 \mathrm{H}), 5.32(\mathrm{~s}, 1 \mathrm{H})$, $3.80(\mathrm{~s}, 3 \mathrm{H}), 2.35(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 159.4,149.5,139.0,137.5,134.3$, $129.5,128.9,128.3,113.6,112.4,55.4,21.3$. All data were consistent with that presented in the literature ${ }^{[22]}$.

Trimethyl(4-(1-(p-tolyl)vinyl)phenyl)silane (30)

Following the general procedure A , the product $\mathbf{3 0}$ was obtained in 85% yield as a colorless oil after column chromatography (eluent $=$ petroleum ether, 68 mg). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.49(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.33$ (d, $J=8.1 \mathrm{~Hz}, 2 \mathrm{H}), 7.25(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 2 \mathrm{H}), 7.14(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 2 \mathrm{H}), 5.44(\mathrm{~s}, 1 \mathrm{H}), 5.43(\mathrm{~s}, 1 \mathrm{H})$, $2.37(\mathrm{~s}, 3 \mathrm{H}), 0.29(\mathrm{~s}, 9 \mathrm{H}) .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 150.0,142.1,139.9,138.7,137.6$, 133.3, 129.0, 128.3, 127.7, 113.9, 21.3, -1.0. HRMS-ESI m/z Calculated for $\mathrm{C}_{18} \mathrm{H}_{23} \mathrm{Si}^{+}\left[\left(\mathrm{M}+\mathrm{H}^{+}\right)\right]$ 267.1564, Found 267.1566.

1-Chloro-4-(1-(4-methoxyphenyl)vinyl)benzene (31)

Following the general procedure A , the product 31 was obtained in 64% yield as a colorless oil after column chromatography (eluent $=$ petroleum ether: ethyl acetate $=$ $50: 1,47 \mathrm{mg}) .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.32-7.23(\mathrm{~m}$, $6 \mathrm{H}), 6.90-6.84(\mathrm{~m}, 2 \mathrm{H}), 5.40(\mathrm{~s}, 1 \mathrm{H}), 5.34(\mathrm{~s}, 1 \mathrm{H}), 3.83(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR (101 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 159.6,148.5,140.4,133.6,133.6,129.7,129.4,128.4,113.7,113.4,55.4$. All data were consistent with that presented in the literature ${ }^{[23]}$.

3-(1-([1,1'-Biphenyl]-4-yl)vinyl)thiophene (32)

Following the general procedure A, the product 32 was obtained in 42% yield as a white solid after column chromatography (eluent $=$ petroleum ether, 33 mg). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.67-7.60$ $(\mathrm{m}, 4 \mathrm{H}), 7.52-7.46(\mathrm{~m}, 4 \mathrm{H}), 7.42-7.32(\mathrm{~m}, 2 \mathrm{H}), 7.27-7.20(\mathrm{~m}$, 2H), $5.58(\mathrm{~s}, 1 \mathrm{H}), 5.43(\mathrm{~s}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR $\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 144.3,142.5,140.8,140.7$, $140.5,128.9,128.6,127.4,127.4,127.1,127.0,125.6,123.4,113.6$. All data were consistent with that presented in the literature ${ }^{[24]}$.

4-(1-(2-Fluorophenyl)vinyl)-1,1'-biphenyl (33)

Following the general procedure A, the product 33 was obtained in 55% yield as a white solid after column chromatography (eluent $=$ petroleum ether, 45 mg$).{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.67-$ $7.57(\mathrm{~m}, 4 \mathrm{H}), 7.51-7.42(\mathrm{~m}, 4 \mathrm{H}), 7.42-7.31(\mathrm{~m}, 3 \mathrm{H}), 7.23-$ $7.10(\mathrm{~m}, 2 \mathrm{H}), 5.86(\mathrm{~s}, 1 \mathrm{H}), 5.49(\mathrm{~s}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR (101 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 160.2(\mathrm{~d}, J=248.4 \mathrm{~Hz}), 143.8,140.7(\mathrm{~d}, J=6.3 \mathrm{~Hz}), 139.5,131.6(\mathrm{~d}, J=3.6 \mathrm{~Hz}), 129.5$ $(\mathrm{d}, J=8.1 \mathrm{~Hz}), 129.3(\mathrm{~d}, J=14.3 \mathrm{~Hz}), 128.9,127.4,127.3,127.1,127.0,124.1(\mathrm{~d}, J=3.6 \mathrm{~Hz})$, 117.1, 116.0, 115.8. ${ }^{19} \mathrm{~F}$ NMR ($565 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta-113.0$. HRMS-ESI m/z Calculated for $\mathrm{C}_{20} \mathrm{H}_{16} \mathrm{~F}^{+}\left[\left(\mathrm{M}+\mathrm{H}^{+}\right)\right]$275.1231, Found 275.1235.

5-(1-([1,1'-Biphenyl]-4-yl)vinyl)benzo[d][1,3]dioxole (34)

Following the general procedure A , the product 34 was obtained in 58% yield as a white solid after column chromatography (petroleum ether: ethyl acetate $=50: 1,52$ $\mathrm{mg}) .{ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.65-7.58(\mathrm{~m}, 4 \mathrm{H}), 7.48$
$-7.42(\mathrm{~m}, 4 \mathrm{H}), 7.40-7.35(\mathrm{~m}, 1 \mathrm{H}), 6.90-6.87(\mathrm{~m}, 2 \mathrm{H}), 6.83-6.80(\mathrm{~m}, 1 \mathrm{H}), 6.00-5.98(\mathrm{~m}$, 2H), $5.44(\mathrm{~s}, 1 \mathrm{H}), 5.42(\mathrm{~s}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 149.3,147.6,147.4,140.8$, $140.7,140.6,135.8,128.9,128.8,127.4,127.1,127.0,122.2,113.5,108.8,108.1,101.2$. All data were consistent with that presented in the literature ${ }^{[25]}$.

4,4'-(Ethene-1,1-diyl)bis(fluorobenzene) (35)

Following the general procedure A , the product 35 was obtained in 74% yield as a colorless oil after column chromatography (eluent $=$ petroleum ether, 48 mg). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.33-7.26(\mathrm{~m}, 4 \mathrm{H}), 7.11-6.98(\mathrm{~m}, 4 \mathrm{H})$, $5.40(\mathrm{~s}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 162.7(\mathrm{~d}, J=247.1 \mathrm{~Hz}), 148.2,137.5(\mathrm{~d}, J=3.3$ $\mathrm{Hz}), 129.9(\mathrm{~d}, J=8.0 \mathrm{~Hz}), 115.2(\mathrm{~d}, J=21.4 \mathrm{~Hz}), 114.2 .{ }^{19} \mathrm{~F}$ NMR $\left(565 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta-114.3$. All data were consistent with that presented in the literature ${ }^{[13]}$.

1-Fluoro-4-(1-(4-vinylphenyl)vinyl)benzene (36)

Following the general procedure A , the product 36 was obtained in 77% yield as a colorless oil after column chromatography (eluent = petroleum ether, 52 mg). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.49-7.37(\mathrm{~m}, 2 \mathrm{H}), 7.36-7.25(\mathrm{~m}, 4 \mathrm{H})$, $7.13-6.96(\mathrm{~m}, 2 \mathrm{H}), 6.83-6.69(\mathrm{~m}, 1 \mathrm{H}), 5.79(\mathrm{~d}, J=18.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.45(\mathrm{~d}, J=23.3 \mathrm{~Hz}, 2 \mathrm{H})$, $5.29(\mathrm{~d}, J=10.9 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 162.6(\mathrm{~d}, J=246.7 \mathrm{~Hz}), 148.8$, $140.8,137.6(\mathrm{~d}, J=3.3 \mathrm{~Hz}), 137.3,136.5,130.0(\mathrm{~d}, J=7.9 \mathrm{~Hz}), 128.4,126.2,115.1(\mathrm{~d}, J=21.4$ Hz), 114.2, 114.2. ${ }^{19} \mathrm{~F}$ NMR ($565 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta-114.5$. HRMS-ESI m/z Calculated for $\mathrm{C}_{16} \mathrm{H}_{14} \mathrm{~F}^{+}$ $\left[\left(\mathrm{M}+\mathrm{H}^{+}\right)\right]$225.1075, Found 225.1072.

1-Methyl-2-(1-(4-(trifluoromethyl)phenyl)vinyl)benzene (37)

Following the general procedure A, the product 37 was obtained in 58% yield as a colorless oil after column chromatography (eluent $=$ petroleum ether, 46 mg). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.55$ (d, $J=$ $8.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.38(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 2 \mathrm{H}), 7.30-7.20(\mathrm{~m}, 4 \mathrm{H}), 5.86(\mathrm{~s}$, $1 \mathrm{H}), 5.34(\mathrm{~s}, 1 \mathrm{H}), 2.05(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 148.5,144.2,140.8,136.1$, $130.4,130.1,129.8,129.6(\mathrm{q}, J=32.5 \mathrm{~Hz}), 126.8,126.0,125.4(\mathrm{q}, J=3.8 \mathrm{~Hz}), 124.3(\mathrm{q}, J=271.9$ Hz), 117.1, 20.2. ${ }^{19} \mathrm{~F}$ NMR ($565 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta-62.4$. HRMS-ESI m/z Calculated for $\mathrm{C}_{16} \mathrm{H}_{14} \mathrm{~F}_{3}{ }^{+}$ $\left[\left(\mathrm{M}+\mathrm{H}^{+}\right)\right]$263.1043, Found 263.1044.

1-(4-(1-(4-Chlorophenyl)vinyl)phenyl)ethan-1-one (38)

Following the general procedure A, the product 38 was obtained in 68% yield as a white solid after column chromatography (eluent $=$ petroleum ether: ethyl acetate $=20: 1,52 \mathrm{mg}) .{ }^{1} \mathrm{H}$ NMR $(400 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \delta 7.94-7.91(\mathrm{~m}, 2 \mathrm{H}), 7.42-7.38(\mathrm{~m}, 2 \mathrm{H}), 7.33-7.29(\mathrm{~m}$, $2 \mathrm{H}), 7.26-7.22(\mathrm{~m}, 2 \mathrm{H}), 5.55(\mathrm{~s}, 1 \mathrm{H}), 5.54(\mathrm{~s}, 1 \mathrm{H}), 2.61(\mathrm{~s}, 3 \mathrm{H})$.
${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR $\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 197.7,148.2,145.7,139.2,136.5,134.0,129.5,128.6,128.5$, 128.4, 116.5, 26.7. HRMS-ESI m/z Calculated for $\mathrm{C}_{16} \mathrm{H}_{14} \mathrm{ClO}^{+}\left[\left(\mathrm{M}+\mathrm{H}^{+}\right)\right]$257.0728, Found 257.0727 .

Methyl 4-(1-(naphthalen-1-yl)vinyl)benzoate (39)

Following the general procedure A , the product 39 was obtained in 62% yield as a white solid after column chromatography (eluent $=$ petroleum ether: ethyl acetate $=20: 1,53 \mathrm{mg}) .{ }^{1} \mathrm{H}$ NMR $(400 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \delta 7.93(\mathrm{~m}, 4 \mathrm{H}), 7.70(\mathrm{~d}, \mathrm{~J}=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.58-7.30(\mathrm{~m}, 6 \mathrm{H})$, $6.09(\mathrm{~s}, 1 \mathrm{H}), 5.54(\mathrm{~s}, 1 \mathrm{H}), 3.91(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 166.9,147.6,145.5$, 139.1, 133.7, 131.7, 129.8, 129.2, 128.4, 128.4, 127.4, 126.6, 126.2, 126.1, 125.9, 125.5, 118.4, 52.2. HRMS-ESI m/z Calculated for $\mathrm{C}_{20} \mathrm{H}_{17} \mathrm{O}_{2}+\left[\left(\mathrm{M}+\mathrm{H}^{+}\right)\right]$289.1224, Found 289.1220

4-(1-(4-Nitrophenyl)vinyl)-1,1'-biphenyl (40)

Following the general procedure A , the product 40 was obtained in 58% yield as a white solid after column chromatography (eluent $=$ petroleum ether: ethyl acetate $=$ $50: 1,52 \mathrm{mg}$). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.27-8.18(\mathrm{~m}$, 2H), $7.65-7.59(\mathrm{~m}, 4 \mathrm{H}), 7.57-7.52(\mathrm{~m}, 2 \mathrm{H}), 7.50-7.43(\mathrm{~m}, 2 \mathrm{H}), 7.41-7.34(\mathrm{~m}, 3 \mathrm{H}), 5.70(\mathrm{~s}$, $1 \mathrm{H}), 5.61(\mathrm{~s}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR (101 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 148.1,148.1,147.5,141.3,140.5,139.1$, $129.2,129.0,128.6,127.7,127.3,127.1,123.7,117.2$. All data were consistent with that presented in the literature ${ }^{[24]}$.

4-(Oct-1-en-2-yl)-1,1'-biphenyl (41)

Following the general procedure A , the product 41 was obtained in 83% yield as a white solid after column chromatography (eluent = petroleum ether, 66 mg). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.68-7.61(\mathrm{~m}, 4 \mathrm{H}), 7.56-7.47(\mathrm{~m}, 4 \mathrm{H})$, $7.41-7.37(\mathrm{~m}, 1 \mathrm{H}), 5.39(\mathrm{~s}, 1 \mathrm{H}), 5.14(\mathrm{~s}, 1 \mathrm{H}), 2.73-2.44(\mathrm{~m}, 2 \mathrm{H}), 1.58-1.52(\mathrm{~m}, 2 \mathrm{H}), 1.42-$ $1.31(\mathrm{~m}, 6 \mathrm{H}), 0.97-0.91(\mathrm{~m}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR $\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 148.3,140.9,140.4,140.1$, 128.8, 127.3, 127.0, 127.0, 126.5, 112.1, 35.4, 31.8, 29.1, 28.4, 22.7, 14.2. HRMS-ESI m/z Calculated for $\mathrm{C}_{20} \mathrm{H}_{25}{ }^{+}\left[\left(\mathrm{M}+\mathrm{H}^{+}\right)\right]$265.1951, Found 265.1950.

4-(1-Cyclopropylvinyl)-1,1'-biphenyl (42)

Following the general procedure A , the product $\mathbf{4 2}$ was obtained in 54% yield as a white solid after column chromatography (eluent $=$ petroleum ether, 36 mg). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.70(\mathrm{~d}, J=8.5$ $\mathrm{Hz}, 2 \mathrm{H}), 7.65-7.58(\mathrm{~m}, 4 \mathrm{H}), 7.50-7.42(\mathrm{~m}, 2 \mathrm{H}), 7.40-7.32(\mathrm{~m}, 1 \mathrm{H})$, $5.37(\mathrm{~s}, 1 \mathrm{H}), 4.99(\mathrm{~s}, 1 \mathrm{H}), 1.80-1.63(\mathrm{~m}, 1 \mathrm{H}), 0.95-0.82(\mathrm{~m}, 2 \mathrm{H}), 0.71-0.57(\mathrm{~m}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR (101 MHz, CDCl_{3}) $\delta 148.9,140.9,140.6,140.4,128.9,127.3,127.1,127.0,126.6,109.2$, $15.7,6.8$. All data were consistent with that presented in the literature ${ }^{[26]}$.

1-Methyl-4-(1-phenylvinyl-2,2- \boldsymbol{d}_{2})benzene (43)

Following the general procedure B , the product 43 was obtained in 77% yield $(91 \% \mathrm{D})$ as a colorless oil after column chromatography (eluent = petroleum ether, 45 mg). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.34-7.23(\mathrm{~m}$, $5 \mathrm{H}), 7.19(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.09(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 2 \mathrm{H}), 5.37(\mathrm{~s}, 0.09 \mathrm{H})$,
$5.34(\mathrm{~s}, 0.03 \mathrm{H}), 2.32(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ 149.9, 141.8, 138.7, 137.6, 129.0, 128.4, 128.2, 128.2, 127.7, 21.3. HRMS-ESI m/z Calculated for $\mathrm{C}_{15} \mathrm{H}_{13} \mathrm{D}_{2}{ }^{+}\left[\left(\mathrm{M}+\mathrm{H}^{+}\right)\right]$ 197.1294, Found 197.1289.

1-Chloro-4-(1-(4-fluorophenyl)vinyl-2,2- d_{2})benzene (44)

Following the general procedure B, the product 44 was obtained in 63% yield $(94 \% \mathrm{D})$ as a colorless oil after column chromatography (eluent = petroleum ether, 44 mg$).{ }^{1} \mathrm{H}$ NMR $\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.51-$ $7.38(\mathrm{~m}, 2 \mathrm{H}), 7.33-7.27(\mathrm{~m}, 4 \mathrm{H}), 7.05-7.00(\mathrm{~m}, 2 \mathrm{H}), 5.41(\mathrm{~s}, 0.10 \mathrm{H})$, $5.30(\mathrm{~s}, 0.02 \mathrm{H}) .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}\left(151 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 162.6(\mathrm{~d}, J=247.3 \mathrm{~Hz}), 147.8,133.7,129.8$ $(\mathrm{d}, J=8.0 \mathrm{~Hz}), 129.5,129.0,128.4,128.2,115.2(\mathrm{~d}, J=21.4 \mathrm{~Hz}) .{ }^{19} \mathrm{~F}$ NMR $\left(564 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ -114.3. HRMS-ESI m/z Calculated for $\mathrm{C}_{14} \mathrm{H}_{9} \mathrm{D}_{2} \mathrm{ClF}^{+}\left[\left(\mathrm{M}+\mathrm{H}^{+}\right)\right]$235.0654, Found 235.0650.

1-(1-(4-Fluorophenyl)vinyl-2,2- d_{2})naphthalene (45)

Following the general procedure B, the product 45 was obtained in 64% yield $(83 \% \mathrm{D})$ as a white solid after column chromatography (eluent $=$ petroleum ether, 48 mg). ${ }^{1} \mathrm{H} \mathrm{NMR}\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.91-7.84$ (m, 2H), $7.74(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.53-7.50(\mathrm{~m}, 1 \mathrm{H}), 7.47-7.42(\mathrm{~m}$, $2 \mathrm{H}), 7.37-7.33(\mathrm{~m}, 1 \mathrm{H}), 7.32-7.26(\mathrm{~m}, 2 \mathrm{H}), 7.01-6.90(\mathrm{~m}, 2 \mathrm{H}), 5.91(\mathrm{~s}, 0.08 \mathrm{H}), 5.37(\mathrm{~s}$, $0.17 \mathrm{H}) .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}\left(151 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 162.4(\mathrm{~d}, J=247.1 \mathrm{~Hz}), 147.1,139.5,137.2(\mathrm{~d}, J=$ 3.7 Hz), 133.7, 131.7, 128.3, 128.2, 128.1, 127.2, 126.3, 125.9, 125.7, 125.4, 115.2 (d, $J=21.5$ $\mathrm{Hz}) .{ }^{19} \mathrm{~F}$ NMR ($564 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ-114.7. HRMS-ESI m/z Calculated for $\mathrm{C}_{18} \mathrm{H}_{12} \mathrm{D}_{2} \mathrm{~F}^{+}\left[\left(\mathrm{M}+\mathrm{H}^{+}\right)\right]$ 251.1200, Found 251.1196.

1-Methyl-4-(1-(4-(trifluoromethyl)phenyl)vinyl-2,2- d_{2})benzene (46)

Following the general procedure B , the product 46 was obtained in 68% yield $(93 \% \mathrm{D})$ as a colorless oil after column chromatography (eluent $=$ petroleum ether, 54 mg$).{ }^{1} \mathrm{H} \mathrm{NMR}\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.59$ (d, $J=8.1 \mathrm{~Hz}, 2 \mathrm{H}), 7.46(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 2 \mathrm{H}), 7.24-7.13$ (m, 4H), 5.53 $(\mathrm{s}, 0.07 \mathrm{H}), 5.45(\mathrm{~s}, 0.03 \mathrm{H}), 2.39(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ($\left.151 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 148.7,145.3,138.0$, $137.7,129.7(\mathrm{q}, J=32.4 \mathrm{~Hz}), 129.1,128.6,128.0,125.1(\mathrm{q}, J=3.8 \mathrm{~Hz}), 124.2(\mathrm{q}, J=271.8 \mathrm{~Hz})$, 21.2. ${ }^{19} \mathrm{~F}$ NMR $\left(564 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta-62.5$. HRMS-ESI m/z Calculated for $\mathrm{C}_{16} \mathrm{H}_{12} \mathrm{D}_{2} \mathrm{~F}_{3}{ }^{+}\left[\left(\mathrm{M}+\mathrm{H}^{+}\right)\right]$ 265.1168, Found 265.1167.

1-(Tert-butyl)-4-(1-(4-(trifluoromethyl)phenyl)vinyl-2,2- d_{2})benzene (47)

Following the general procedure B, the product 47 was obtained in 60% yield $(91 \% \mathrm{D})$ as a colorless oil after column chromatography (eluent = petroleum ether, 55 mg). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.49(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.37(\mathrm{~d}, J=8.1$ $\mathrm{Hz}, 2 \mathrm{H}), 7.30-7.24(\mathrm{~m}, 2 \mathrm{H}), 7.18-7.12(\mathrm{~m}, 2 \mathrm{H}), 5.44(\mathrm{~s}, 0.09 \mathrm{H}), 5.35(\mathrm{~s}, 0.03 \mathrm{H}), 1.25(\mathrm{~s}, 9 \mathrm{H})$. ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 151.3,148.7,145.4,137.7,129.8(\mathrm{q}, J=32.3 \mathrm{~Hz}$), 128.7, $127.9,125.4,125.2(\mathrm{q}, J=3.8 \mathrm{~Hz}), 124.4(\mathrm{q}, J=272.7 \mathrm{~Hz}), 34.7,31.4 .{ }^{19} \mathrm{~F}$ NMR (376 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta$-62.3. HRMS-ESI m/z Calculated for $\mathrm{C}_{19} \mathrm{H}_{18} \mathrm{D}_{2} \mathrm{~F}_{3}{ }^{+}\left[\left(\mathrm{M}+\mathrm{H}^{+}\right)\right]$307.1638, Found 307.1630 .

1-(4-(1-(3-Methoxyphenyl)vinyl-2,2- d_{2})phenyl)ethan-1-one (48)

Following the general procedure B , the product 48 was obtained in 58% yield $(86 \% \mathrm{D})$ as a white solid after column chromatography (eluent $=$ petroleum ether: ethyl acetate $=15: 1,44 \mathrm{mg}$). ${ }^{1} \mathrm{H}$ NMR $\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.94-7.91(\mathrm{~m}, 2 \mathrm{H}), 7.46-7.40(\mathrm{~m}, 2 \mathrm{H}), 7.28$ $-7.25(\mathrm{~m}, 1 \mathrm{H}), 6.91-6.87(\mathrm{~m}, 2 \mathrm{H}), 6.86-6.82(\mathrm{~m}, 1 \mathrm{H}), 5.55(\mathrm{~s}$, $0.14 \mathrm{H}), 5.53(\mathrm{~s}, 0.04 \mathrm{H}), 3.79(\mathrm{~s}, 3 \mathrm{H}), 2.61(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}\left(151 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 197.7$, $159.5,148.9,146.0,142.1,136.3,129.3,128.4,128.3,120.7,113.9,113.4,55.2,26.6$. HRMS-ESI m / z Calculated for $\mathrm{C}_{17} \mathrm{H}_{15} \mathrm{D}_{2} \mathrm{O}_{2}{ }^{+}\left[\left(\mathrm{M}+\mathrm{H}^{+}\right)\right]$255.1349, Found 255.1344.

1-Methoxy-3-(oct-1-en-2-yl-1,1- d_{2})benzene (49)

Following the general procedure B , the product 49 was obtained in 62% yield $(85 \% \mathrm{D})$ as a colorless oil after column chromatography (eluent $=$ petroleum ether, 41 mg). ${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.28-7.22(\mathrm{~m}, 1 \mathrm{H}), 7.04-6.99(\mathrm{~m}, 1 \mathrm{H})$, $6.98-6.93(\mathrm{~m}, 1 \mathrm{H}), 6.86-6.79(\mathrm{~m}, 1 \mathrm{H}), 5.26(\mathrm{~s}, 0.15 \mathrm{H}), 5.04(\mathrm{~s}, 0.07 \mathrm{H}), 3.83(\mathrm{~s}, 3 \mathrm{H}), 2.50-$ $2.46(\mathrm{~m}, 2 \mathrm{H}), 1.48-1.43(\mathrm{~m}, 2 \mathrm{H}), 1.35-1.26(\mathrm{~m}, 6 \mathrm{H}), 0.91-0.85(\mathrm{~m}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR (151 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 159.5,148.5,143.1,129.1,118.7,112.4,112.1,55.2,35.3,31.7,29.0,28.2,22.6$, 14.1. HRMS-ESI m/z Calculated for $\mathrm{C}_{15} \mathrm{H}_{21} \mathrm{D}_{2} \mathrm{O}^{+}\left[\left(\mathrm{M}+\mathrm{H}^{+}\right)\right]$221.1869, Found 221.1875.

2,4-Dichloro-1-(oct-1-en-2-yl-1,1- d_{2})benzene (50)

Following the general procedure B , the product 50 was obtained in 71% yield $(85 \%$ D) as a colorless oil after column chromatography (eluent = petroleum ether, 55 mg$).{ }^{1} \mathrm{H}$ NMR $(600$ $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.40-7.35(\mathrm{~m}, 1 \mathrm{H}), 7.21-7.18(\mathrm{~m}, 1 \mathrm{H}), 7.09(\mathrm{~d}$, $J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.22(\mathrm{~s}, 0.09 \mathrm{H}), 4.95(\mathrm{~s}, 0.15 \mathrm{H}), 2.42-2.39(\mathrm{~m}, 2 \mathrm{H}), 1.35-1.25(\mathrm{~m}, 8 \mathrm{H}), 0.89-$ $0.86(\mathrm{~m}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}\left(151 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 147.6,140.6,133.1,132.9,131.1,129.3,126.7$, $36.5,31.7,28.9,27.7,22.6,14.1$. HRMS-ESI m / z Calculated for $\mathrm{C}_{14} \mathrm{H}_{17} \mathrm{D}_{2} \mathrm{Cl}_{2}^{+}\left[\left(\mathrm{M}+\mathrm{H}^{+}\right)\right]$ 259.0984, Found 259.0980.

(4-(1-Cyclopropylvinyl-2,2- d_{2})phenyl)trimethylsilane (51)

Following the general procedure B , the product 51 was obtained in 63% yield $(90 \% \mathrm{D})$ as a colorless oil after column chromatography (eluent $=$ petroleum ether, 41 mg$).{ }^{1} \mathrm{H}$ NMR $\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.61(\mathrm{~d}, J=8.0 \mathrm{~Hz}$, $2 \mathrm{H}), 7.52(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 5.30(\mathrm{~s}, 0.22 \mathrm{H}), 5.30(\mathrm{~s}, 0.09 \mathrm{H}), 1.69-1.63(\mathrm{~m}$, $1 \mathrm{H}), 0.86-0.82(\mathrm{~m}, 2 \mathrm{H}), 0.63-0.57(\mathrm{~m}, 2 \mathrm{H}), 0.28(\mathrm{~s}, 9 \mathrm{H}) .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}\left(151 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ 149.1, 142.0, 139.5, 133.2, 125.4, 15.4, 6.6, -1.1. HRMS-ESI m/z Calculated for $\mathrm{C}_{14} \mathrm{H}_{19} \mathrm{D}_{2} \mathrm{Si}^{+}$ $\left[\left(\mathrm{M}+\mathrm{H}^{+}\right)\right]$219.1533, Found 219.1529.

4-(Ethynyl-d)-1,1'-biphenyl (53)

To a 15 mL -schlenk tube charged with a stirring bar, was added 3-([1,1'-biphenyl]-4-yl) propiolic acid ($67 \mathrm{mg}, 0.3 \mathrm{mmol}, 1.0$ equiv), $\mathrm{Pd}(\mathrm{OAc})_{2}\left(1.35 \mathrm{mg}, 0.006 \mathrm{mmmol}, 0.02\right.$ equiv), $\mathrm{PPh}_{3}(4 \mathrm{mg}, 0.015 \mathrm{mmol}$,
0.05 equiv), and KOAc ($60 \mathrm{mg}, 0.6 \mathrm{mmol}, 2.0$ equiv). The tube kept in vacuum then flushed with argon. This procedure was repeated for 3-4 times. Then the solvent (toluene $=3 \mathrm{~mL}, \mathrm{D}_{2} \mathrm{O}=0.3$ mL) was added under argon atmosphere. The reaction mixture was stirred at $80^{\circ} \mathrm{C}$ for 0.5 h (oil bath). The reaction mixture was cooled to room temperature, then extracted with ethyl acetate. The organic layers were combined and dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, then concentrated under vacuo. The residue was purified by flash column chromatography on silica gel (petroleum ether) to afford the product $53(30 \mathrm{mg}, 56 \%$ yield, $90 \% \mathrm{D})$ as a white solid. ${ }^{1} \mathrm{H}$ NMR $\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.61-7.57$ (m, 6H), $7.49-7.45(\mathrm{~m}, 2 \mathrm{H}), 7.41-7.35(\mathrm{~m}, 1 \mathrm{H}), 3.15(\mathrm{~s}, 0.10 \mathrm{H}) .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR (151 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 141.6,140.2,132.6,128.9,127.8,127.1,127.0,121.0,83.1(\mathrm{t}, J=7.7 \mathrm{~Hz}), 77.8$. All data were consistent with that presented in the literature ${ }^{[27]}$.

3,3-Diphenylacrylic acid (55)

To an oven-dried Teflon capped vial equipped with a magnetic stirring bar were added sequentially $\operatorname{AgOAc}(2.59 \mathrm{~g}, 15.5 \mathrm{mmol})$ and $\operatorname{Pd}(\mathrm{OAc})_{2}(11.2 \mathrm{mg}$, $0.05 \mathrm{mmol})$.The vial kept in vacuum then flushed with argon. This procedure was repeated for 3-4 times. Then $\mathrm{AcOH}(15 \mathrm{~mL})$, iodobenzene $(1.73 \mathrm{~mL}$, $15.5 \mathrm{mmol})$ and ethyl acrylate $(0.54 \mathrm{~mL}, 5.00 \mathrm{mmol})$ was added under Ar atmosphere, and the mixture was stirred under an atmosphere of argon at $110{ }^{\circ} \mathrm{C}$ for 6 hours. The mixture was cooled to room temperature, diluted with EtOAc $(20 \mathrm{~mL})$ and filtered through a pad of Celite. Then the filtrate was concentrated in vacuo, and the crude product ethyl 3,3-diphenylacrylate was purified by flash chromatography on silica column (petroleum ether: ethyl acetate $=15: 1,1.07 \mathrm{~g}, 85 \%$ yield).

To a solution of ethyl 3,3-diphenylacrylate (4.25 mmol) in 25 mL of ethanol was added slowly with stirring an aqueous sodium hydroxide solution $(25 \mathrm{~mL}, 1 \mathrm{~N})$. After 6 h , the reaction mixture was diluted with water $(50 \mathrm{~mL})$ and was washed with dichloromethane $(2 \times 25 \mathrm{~mL})$. The aqueous phase was acidified with $20 \% \mathrm{HCl}$ solution and was extracted with dichloromethane ($3 \times 50 \mathrm{~mL}$). The combined extracts were dried over MgSO_{4} and purified by recrystallization to give 3,3diphenylacrylic acid ($477 \mathrm{mg}, 50 \%$ yield). ${ }^{1} \mathrm{H}$ NMR (400 MHz, DMSO- d_{6}) $\delta 12.21(\mathrm{~s}, 1 \mathrm{H}), 7.41-$ $7.33(\mathrm{~m}, 6 \mathrm{H}), 7.30-7.22(\mathrm{~m}, 2 \mathrm{H}), 7.18-7.12(\mathrm{~m}, 2 \mathrm{H}), 6.37(\mathrm{~s}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR (101 MHz, DMSO- $\left.d_{6}\right) \delta 166.8,153.7,140.6,138.8,129.2,129.0,128.5,127.9,118.9$. All data were consistent with that presented in the literature ${ }^{[28]}$.

(Ethynyl-d)benzene (57)

To a 15 mL -schlenk tube charged with a stirring bar, was added phenylpropiolic acid ($0.3 \mathrm{mmol}, 1.0$ equiv, 67 mg), $\mathrm{Pd}(\mathrm{OAc})_{2}(1.35 \mathrm{mg}$, $0.006 \mathrm{mmmol}, 0.02$ equiv), $\mathrm{PPh}_{3}(4 \mathrm{mg}, 0.015 \mathrm{mmol}, 0.05$ equiv), and KOAc ($60 \mathrm{mg}, 0.6 \mathrm{mmol}, 2.0$ equiv). The tube kept in vacuum then flushed with argon. This procedure was repeated for 3-4 times. Then the solvent (toluene $=3 \mathrm{~mL}, \mathrm{D}_{2} \mathrm{O}=$ 0.3 mL) was added under argon atmosphere. The reaction mixture was stirred at $80^{\circ} \mathrm{C}$ for 1 h (oil bath). The reaction mixture was cooled to room temperature, then extracted with ethyl acetate. The organic layers were combined and dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, then concentrated under vacuo. The residue was purified by flash column chromatography on silica gel (petroleum ether) to afford the product $57(13 \mathrm{mg}, 42 \%$ yield, $94 \% \mathrm{D})$ as a colorless oil. ${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.53-$ $7.49(\mathrm{~m}, 2 \mathrm{H}), 7.37-7.31(\mathrm{~m}, 3 \mathrm{H}), 3.09(\mathrm{~s}, 0.06 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($\left.151 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 132.1,128.8$,
$128.3,122.1,83.2(\mathrm{t}, J=7.6 \mathrm{~Hz}), 76.9(\mathrm{t}, J=38.6 \mathrm{~Hz})$. All data were consistent with that presented in the literature ${ }^{[29]}$.

(E)-1-methyl-4-(1-phenylvinyl-2-d)benzene (58)

To a 15 mL -schlenk tube charged with a stirring bar, was added $\mathrm{Pd}(\mathrm{OAc})_{2}\left(1.35 \mathrm{mg}, 0.006 \mathrm{mmmol}, 0.02\right.$ equiv), $\mathrm{PPh}_{3}(4 \mathrm{mg}, 0.015$ mmol, 0.05 equiv), and KOAc ($60 \mathrm{mg}, 0.6 \mathrm{mmol}, 2.0$ equiv). The tube kept in vacuum then flushed with argon. This procedure was repeated for 3-4 times. Then the solvent (toluene $=3 \mathrm{~mL}, \mathrm{D}_{2} \mathrm{O}=0.3 \mathrm{~mL}$) and phenylacetylene ($31 \mathrm{mg}, 0.3$ mmol) was added under argon atmosphere. The reaction mixture was stirred at $80^{\circ} \mathrm{C}$ for 10 h (oil bath). The reaction mixture was cooled to room temperature, then extracted with ethyl acetate. The organic layers were combined and dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, then concentrated under vacuo. The residue was purified by flash column chromatography on silica gel (petroleum ether) to afford the product $58\left(40 \mathrm{mg}, 68 \%\right.$ yield) as a colorless oil. ${ }^{1} \mathrm{H}$ NMR $\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.41-7.32(\mathrm{~m}$, $5 \mathrm{H}), 7.28-7.26(\mathrm{~m}, 2 \mathrm{H}), 7.19-7.15(\mathrm{~m}, 2 \mathrm{H}), 5.42(\mathrm{~s}, 1 \mathrm{H}), 2.40(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (151 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 149.8,141.7,138.6,137.5,128.9,128.3,128.2,128.1,127.7,113.4(\mathrm{t}, J=24.1 \mathrm{~Hz})$, 21.2. HRMS-ESI m/z Calculated for $\mathrm{C}_{15} \mathrm{H}_{14} \mathrm{D}_{2}^{+}\left[\left(\mathrm{M}+\mathrm{H}^{+}\right)\right]$196.1232, Found 196.1230.

6. References

[1] J. Hwang, J. Choi, K. Park, W. Kim, K. H. Song and S. Lee, Eur. J. Org. Chem., 2015, 10, 2235-2243.
[2] M. Zhou, M. Chen, Y. Zhou, K. Yang, J. Su, J. Du and Q. Song, Org. Lett., 2015, 17, 1786-1789
[3] E. D. Slack, C. M. Gabriel and B. H. Lipshutz, Angew. Chem. Int. Ed., 2014, 53, 14051-14054.
[4] S. N. Karad and W. K. Chung, Chem. Commun., 2015, 51, 13004-13007.
[5] M. G. Lloyd and R. J. K. Taylor, Org. Biomol. Chem., 2016, 14, 8971-8988.
[6] Q. Yan and D. Kong, J. Org. Chem., 2016, 81, 2070-2077.
[7] U. T. Duong, A. B. Gade, S. Plummer, F. Gallou and S. Handa, ACS Catal., 2019, 9, 10963-10970.
[8] C. H. Lei, Y. J. Yip and J. S. Zhou, J. Am. Chem. Soc., 2017, 139, 6086-6089.
[9] M. L. Czyz, M. S. Taylor, T. H. Horngren and A. Polyzos, ACS Catal., 2021, 11, 5472-5480.
[10] J. C. L.Walker and M. Oestreich, Org. Lett., 2018, 20, 6411-6414.
[11] A. Music, A. N. Baumann, P. Spieß, N. Hilgert, M. Köllen and D. Didier, Org. Lett., 2019, 21, 2189-2193.
[12] N. Noto, T. Koike and M. Akita, ACS Catal., 2019, 9, 4382-4387.
[13] C. Wan, R. J. Song and J. H. Li, Org. Lett., 2019, 21, 2800-2803.
[14] G. Z. Wang, X. L. Li, J. J. Dai and H. J. Xu, J. Org. Chem., 2014, 79, 7220-7225.
[15] M. L. Zhang, J. Xie and C. J. Zhu, Nat Commun., 2018, 9, 3517.
[16] K. Kobayashi and T. Ueyama, Heterocycles., 2018, 96, 1570-1582.
[17] F. G. Portolés, R. Greco and J. O. Meseguer, Nat Catal., 2021, 4, 293-303.
[18] S. S. Zhang, Z. M. Shen and H. Jian, J. Org. Chem., 2020, 85, 6143-6150.
[19] J. H. Chen, C. H. Chen, C. L. Ji and Z. Lu, Org. Lett., 2016, 18, 1594-1597.
[20] D. Ganapathy and G. Sekar, Org. Lett., 2014, 16, 3856-3859.
[21] D. Eom, S. Park, Y. Park, T. Ryu and P. H. Lee, Org. Lett., 2012, 14, 5392-5395.
[22] L. Li and G. Hilt, Org. Lett., 2020, 22, 1628-1632.
[23] G. J. Wu, X. Zhao, W. Z. Ji, Y. Zhang and J. Wang, Chem. Commun., 2016, 52, 1961-1963.
[24] Y. Liu, P. Liu, Y. Liu and Y. Wei, Chin. J. Chem.., 2017, 35, 1141-1148.
[25] M. Y. Chang, Y. H. Huang and H. S. Wang, Tetrahedron., 2016, 72, 3022-3031.
[26] P. W. Long, T. He and M. Oestreich, Org. Lett., 2020, 22, 7383-7386.
[27] C. Liu, S. Han, M. Li, X. Chong and B. Zhang, Angew. Chem. Int. Ed., 2020, 59, 18527-18531.
[28] C. Song, P. Chen and Y. Tang, RSC Adv., 2017, 7, 11233-11243.
[29] B. Chatterjee and C. Gunanathan, Chem. Commun., 2016, 52, 4509-4512.

7. Copies of NMR spectra

1-Methyl-4-(1-phenylvinyl)benzene (3)

$\stackrel{n}{i}$

${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

$\begin{array}{llllllllllllllllllll}) 0 & 190 & 180 & 170 & 160 & 150 & 140 & 130 & 120 & 110 & 100 & 90 & 80 & 70 & 60 & 50 & 40 & 30 & 20 & 10\end{array} \quad$ (

1-Methyl-2-(1-phenylvinyl)benzene (4)

$\stackrel{\text { N }}{1}$

${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

1－Methyl－3－（1－phenylvinyl）benzene（5）

录芯䦽
$\stackrel{n}{N}$

${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

1-(Tert-butyl)-4-(1-phenylvinyl)benzene (6)

No

${ }^{13} \mathrm{C}$ NMR (101 MHz , Chloroform-d)

1-Methoxy-3-(1-phenylvinyl)benzene (7)

${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

[^0]
1，2－Dimethoxy－4－（1－phenylvinyl）benzene（8）

水水染

${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

$\begin{array}{llllllllllllllllllll}) 0 & 190 & 180 & 170 & 160 & 150 & 140 & 130 & 120 & 110 & 100 & 90 & 80 & 70 & 60 & 50 & 40 & 30 & 20 & 10\end{array} \quad$（

4-(1-Phenylvinyl)-1,1'-biphenyl (9)

苍荢

${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

2-(1-Phenylvinyl)naphthalene (10)

閶

1-(1-Phenylvinyl)-4-vinylbenzene (11)

$\left.\begin{array}{lllllllllllllllllllll}) 0 & 190 & 180 & 170 & 160 & 150 & 140 & 130 & 120 & 110 & 100 \\ \mathrm{f} 1(\mathrm{ppm})\end{array}\right)$

Methyl(4-(1-phenylvinyl)phenyl)sulfane (12)

$\stackrel{9}{i}$

[^1]
Methyl(2-(1-phenylvinyl)phenyl)sulfane (13)

弪
$\stackrel{2}{1}$

${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

Trimethyl(4-(1-phenylvinyl)phenyl)silane (14)

1-(1-Phenylvinyl)-4-(trifluoromethoxy)benzene (15)

${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

1-(1-Phenylvinyl)-4-(trifluoromethyl)benzene (16)

1-Fluoro-4-(1-phenylvinyl)benzene (17)

${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

\qquad

2,4-Difluoro-1-(1-phenylvinyl)benzene (18)

${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{19} \mathrm{~F}$ NMR ($565 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

1-Chloro-2-(1-phenylvinyl)benzene (19)

式水

${ }^{13}{ }^{13}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

1－Chloro－3－（1－phenylvinyl）benzene（20）

芥芥完

${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

2,4-Dichloro-1-(1-phenylvinyl)benzene (21)

水完

)0 $\begin{array}{lllllllllllllllllllllllllllllll}190 & 180 & 170 & 160 & 150 & 140 & 130 & 120 & 110 & 100 & \begin{array}{c}90 \\ \mathrm{f} 1 \\ (\mathrm{ppm})\end{array} & 80 & 70 & 60 & 50 & 40 & 30 & 20 & 10 & 0 & -10\end{array}$

1-Bromo-4-(1-phenylvinyl)benzene (22)

穴芯

$\left.\begin{array}{llllllllllllllllllll}) 0 & 190 & 180 & 170 & 160 & 150 & 140 & 130 & 120 & 110 & 100 \\ \mathrm{f} 1(\mathrm{ppm})\end{array}\right)$

1-Nitro-3-(1-phenylvinyl)benzene (23)

${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR $\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

$\begin{array}{llllllllllllllllllll}) 0 & 190 & 180 & 170 & 160 & 150 & 140 & 130 & 120 & 110 & 100 & 90 & 80 & 70 & 60 & 50 & 40 & 30 & 20 & 10\end{array}$ (

Buta-1,3-diene-2,3-diyldibenzene (24)

${ }^{1} \mathrm{H}$ NMR $\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

No

${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}\left(151 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

$\left.\begin{array}{llllllllllllllllllll}) 0 & 190 & 180 & 170 & 160 & 150 & 140 & 130 & 120 & 110 & 100 \\ \mathrm{fl}(\mathrm{ppm})\end{array}\right)$

1-Methyl-3-(1-(4-(trifluoromethoxy)phenyl)vinyl)benzene (27)

${ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

$\stackrel{n}{N}$

${ }^{19} \mathrm{~F}$ NMR $\left(565 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

2-(1-(M-tolyl)vinyl)naphthalene (28)

$\stackrel{n}{\sim}$

${ }^{13}{ }^{13}\left\{\begin{array}{l}1 \\ H\end{array}\right\} \operatorname{NMR}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

$\begin{array}{lllllllllllllllllllll}10 & 190 & 180 & 170 & 160 & 150 & 140 & 130 & 120 & \begin{array}{c}110 \\ \mathrm{f} 1 \\ (\mathrm{ppm})\end{array} & 100 & 90 & 80 & 70 & 60 & 50 & 40 & 30 & 20 & 10 & (\end{array}$

1-Methoxy-4-(1-(p-tolyl)vinyl)benzene (29)

Trimethyl(4-(1-(p-tolyl)vinyl)phenyl)silane (30)

$\stackrel{N}{n}$

I

$\stackrel{\grave{i}}{\stackrel{1}{2}}$

$\frac{\cdots}{i} \quad \frac{0}{i}$

1-Chloro-4-(1-(4-methoxyphenyl)vinyl)benzene (31)

3-(1-([1,1'-Biphenyl]-4-yl)vinyl)thiophene (32)

${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

4-(1-(2-Fluorophenyl)vinyl)-1,1'-biphenyl (33)

${ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

$\left.\begin{array}{llllllllllllllllllllllll}190 & 180 & 170 & 160 & 150 & 140 & 130 & 120 & 110 & 100 \\ \mathrm{fl}(\mathrm{ppm})\end{array}\right)$

$$
\stackrel{\stackrel{0}{i}}{\underset{i}{i}}
$$

${ }^{19} \mathrm{~F} \operatorname{NMR}\left(565 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

5-(1-([1,1'-Biphenyl]-4-yl)vinyl)benzo[d][1,3]dioxole (34)

${ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR $\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

4,4'-(Ethene-1,1-diyl)bis(fluorobenzene) (35)

1-Fluoro-4-(1-(4-vinylphenyl)vinyl)benzene (36)

$\stackrel{n}{\underset{i}{7}}$

 f1 (ppm)

1-Methyl-2-(1-(4-(trifluoromethyl)phenyl)vinyl)benzene (37)

[^2]

$\begin{array}{llllllllllllllllllllllllllllllll}) 0 & 190 & 180 & 170 & 160 & 150 & 140 & 130 & 120 & 110 & 100 & 90 & 80 & 70 & 60 & 50 & 40 & 30 & 20 & 10 & (\end{array}$

Methyl 4-(1-(naphthalen-1-yl)vinyl)benzoate (39)

4－（Oct－1－en－2－yl）－1，1＇－biphenyl（41）

${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR $\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

4-(1-Cyclopropylvinyl)-1,1'-biphenyl (42)

1－Methyl－4－（1－phenylvinyl－2，2－ \boldsymbol{d}_{2} ）benzene（43）

录定
$\stackrel{n}{i}$

${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

1－Chloro－4－（1－（4－fluorophenyl）vinyl－2，2－d_{2} ）benzene（44）

1-(1-(4-Fluorophenyl)vinyl-2,2- \boldsymbol{d}_{2})naphthalene (45)

${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR $\left(151 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{19} \mathrm{~F} \operatorname{NMR}\left(564 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

```
106
```


1-Methyl-4-(1-(4-(trifluoromethyl)phenyl)vinyl-2,2- d_{2})benzene (46)

$\stackrel{N}{N}$

1-(Tert-butyl)-4-(1-(4-(trifluoromethyl)phenyl)vinyl-2,2- d_{2})benzene (47)

1-Methoxy-3-(oct-1-en-2-yl-1,1- \boldsymbol{d}_{2})benzene (49)

I,
${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}\left(151 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

2,4-Dichloro-1-(oct-1-en-2-yl-1,1- \boldsymbol{d}_{2})benzene (50)

${ }^{1} \mathrm{H} \operatorname{NMR}\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

(4-(1-Cyclopropylvinyl-2,2- d_{2})phenyl)trimethylsilane (51)

No
$\stackrel{7}{7}$

${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}\left(151 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

4-(Ethynyl-d)-1,1'-biphenyl (53)

${ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

3,3-Diphenylacrylic acid (55)

${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR $\left(101 \mathrm{MHz}\right.$, DMSO- $\left.d_{6}\right)$

$\left.\begin{array}{llllllllllllllllllll}190 & 180 & 170 & 160 & 150 & 140 & 130 & 120 & 110 & 100 \\ \mathrm{fl} 1(\mathrm{ppm})\end{array}\right)$

(Ethynyl-d)benzene (57)

${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}\left(151 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

(E)-1-methyl-4-(1-phenylvinyl-2-d)benzene (58)

$\stackrel{\Im}{+}$

${ }^{1} \mathrm{H} \operatorname{NMR}\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

NO
$\stackrel{N}{N}$

${ }^{13}{ }^{13}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}\left(151 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

[^0]:

[^1]: $\left.\begin{array}{lllllllllllllllllll}190 & 180 & 170 & 160 & 150 & 140 & 130 & 120 & 110 & 100 \\ \mathrm{fl}(\mathrm{ppm})\end{array}\right)$

[^2]: $\left.\begin{array}{lllllllllllllllllllll}) 0 & 190 & 180 & 170 & 160 & 150 & 140 & 130 & 120 & 110 & 100 \\ \mathrm{fl}(\mathrm{ppm})\end{array}\right)$

