Electronic Supplementary Material (ESI) for Organic & Biomolecular Chemistry. This journal is © The Royal Society of Chemistry 2023

Supporting information for

Acid-catalysed intramolecular Friedel-Craft annulation of hetero-atom-functionalized *para*-quinone methides: Access to *O*-, *S*- and *N*-based heterocycles

Sonam Sharma,[#] Gurdeep Singh,[#] Rekha, Munnu Kumar and Ramasamy Vijaya Anand*

Department of Chemical Sciences, Indian Institute of Science Education and Research

(IISER) Mohali, Sector 81, Knowledge City, S. A. S. Nagar, Manauli (PO), Punjab –

140306. India.

E-mail: rvijayan@iisermohali.ac.in

[#] These authors contributed equally

Table of Contents

1.	Optimization table for 6a	S 3
2.	Characterization of 1b to 1u	S3–S11
3.	Characterization of 3b to 3j	S11–S14
4.	Characterization of 5b to 5e	S14–S15
5.	Characterization of products 2b to 2u	S16–S23
6.	Characterization of products 4b to 4j	S23–S26
7.	Characterization of products 6b to 6e	S26–S28
8.	Unsuccessful attempts	S28
9.	References	S28
10.	NMR spectra of 1a to 1u	S29–S50
11.	NMR spectra of 3a to 3j	S50–S60
12.	NMR spectra of 5a to 5e	S60–S65
13.	NMR spectra of 2a to 2u	S65–S86

14. NMR spectra of 4a to 4j	S87–S96
15. NMR spectra of 6a to 6e	S97–S102
16. NMR spectra of 7a	S103
17. NMR spectra of 8a	S104
18. NMR spectra of 9a	S105
19. NMR spectra of 10a	S106

Table 5. Optimization study^a

^aAll reactions were carried out using 5a (0.098 mmol) in 1.5 mL of PhMe. Yields reported are isolated yields

2. Characterization of 1b to 1u:

2,6-di-tert-butyl-4-(2-(p-tolyloxy)benzylidene)cyclohexa-2,5-dien-1-one (1b): Yellow solid

(1.12 g, 53% yield); m. p. = 120 - 122 °C; R_f = 0.5 (5% EtOAc in hexane); ¹H NMR (400 MHz, CDCl₃) 7.52 (d, J = 2.3 Hz, 1H), 7.49 (dd, J = 7.6 1.0 Hz, 1H), 7.45 (s, 1H), 7.33–7.29 (m, 1H), 7.18 – 7.14 (m, 3H), 7.05 (d, J =

2.3 Hz, 1H), 6.96 – 6.92 (m, 2H), 6.87 (dd, J = 8.2, 0.8 Hz, 1H), 2.35 (s, 3H), 1.33 (s, 9H) 1.32 (s, 9H); ¹³C{¹H} NMR (100 MHz, CDCl₃) δ 186.8, 157.0, 154.2, 149.3, 147.7, 138.0, 135.4, 133.7, 132.3, 132.1, 130.8, 130.6, 128.2, 127.0, 122.9, 119.4, 117.8, 35.6, 35.1, 29.7, 29.6, 20.9, 20.88; FT-IR (thin film, neat): 2954, 1613, 1575, 1475, 1301, 797 cm⁻¹; HRMS (ESI): m/z calcd for C₂₈H₃₁O₂ [M-H]⁻ : 399.2324; found : 399.2327.

2,6-di-tert-butyl-4-(2-(4-ethylphenoxy)benzylidene)cyclohexa-2,5-dien-1-one (1c): Yellow

solid (1.20 g, 59% yield); m. p. = 140 – 142 °C; R_f = 0.5 (5% EtOAc in hexane); ¹H NMR (400 MHz, CDCl₃) 7.52 (d, *J* = 2.3 Hz, 1H), 7.48 (dd, *J* = 7.5, 0.7 Hz, 1H), 7.44 (s, 1H), 7.34–7.29 (m, 1H), 7.20 – 7.14 (m, 3H), 7.04 (d, *J* =

2.3 Hz, 1H), 6.98 – 6.94 (m, 2H), 6.90 – 6.88 (m, 1H), 2.65 (q, J = 7.6 Hz, 2H), 1.32 (s, 9H), 1.31 (s, 9H), 1.25 (t, J = 7.6 Hz, 3H); ¹³C{¹H} NMR (100 MHz, CDCl₃) δ 186.8, 157.0, 154.4, 149.3, 147.7, 140.1, 138.0, 135.4, 132.3, 132.1, 130.8, 129.4, 128.2, 127.1, 122.9, 119.4, 117.9, 35.6, 35.1, 29.7, 29.6, 28.3, 15.9; FT-IR (thin film, neat): 2956, 1613, 1451, 1359, 1236, 742 cm⁻¹; HRMS (ESI): m/z calcd for C₂₉H₃₅O₂ [M+H]⁺ : 415.2637; found : 415.2633.

2,6-di-tert-butyl-4-(2-(4-(tert-butyl)phenoxy)benzylidene)cyclohexa-2,5-dien-1-one (1d):

Yellow solid (0.35 g, 39% yield); m. p. = 137–138 °C; $R_f = 0.5$ (5% EtOAc in hexane); ¹H NMR (400 MHz, CDCl₃) δ 7.52 (d, J = 2.2 Hz, 1H), 7.49 (d, J = 7.6 Hz, 1H), 7.43 (s, 1H), 7.39 – 7.36 (m, 2H), 7.34 – 7.30 (m, 1H), 7.16

(t, J = 7.5 Hz, 1H), 7.03 (d, J = 2.3 Hz, 1H), 6.98 – 6.95 (m, 2H), 6.92 (d, J = 8.2 Hz, 1H), 1.33 (s, 9H), 1.32 (s, 9H), 1.31 (s, 9H); ¹³C{¹H} NMR (100 MHz, CDCl₃) δ 186.8, 156.8, 154.2, 149.3, 147.7, 147.0, 138.0, 135.4, 132.3, 132.1, 130.8, 128.2, 127.2, 126.9, 123.0, 118.9, 118.1, 35.6, 35.1, 34.5, 31.6, 29.7, 29.6; FT-IR (thin film, neat): 2957, 1613, 1474, 1390, 1301, 755 cm⁻¹; HRMS (ESI): m/z calcd for C₃₁H₃₉O₂ [M+H]⁺ : 443.2950; found : 443.2946.

2,6-di-*tert*-butyl-4-(2-(3,5-dimethylphenoxy)benzylidene)cyclohexa-2,5-dien-1-one (1e):

Yellow solid (0.70 g, 32% yield); m. p. = 123–125 °C; $R_f = 0.5$ (5% EtOAc in hexane); ¹H NMR (400 MHz, CDCl₃) δ 7.51 (d, J = 2.3 Hz, 1H), 7.48 (dd, J = 7.7, 1.2 Hz, 1H), 7.44 (s, 1H), 7.33 – 7.28 (m, 1H), 7.16 – 7.09 (m, 2H),

7.04 (d, J = 2.3 Hz, 1H), 6.87 (dd, J = 8.3, 0.9 Hz, 1H), 6.84 (d, J = 2.4 Hz, 1H), 6.77 (dd, J = 8.2, 2.6 Hz, 1H), 2.25 – 2.24 (m, 6H), 1.32 (s, 9H), 1.31 (s, 9H); ¹³C{¹H} NMR (100 MHz, CDCl₃) δ 186.8, 157.0, 154.4, 149.3, 147.7, 138.6, 138.1, 135.4, 132.4, 132.3, 132.0, 130.9,

130.7, 128.3, 127.0, 122.8, 120.7, 117.8, 116.7, 35.6, 35.1, 29.7, 29.6, 20.1, 19.2; FT-IR (thin film, neat): 2921, 1740, 1616, 1457, 1251, 742 cm⁻¹; HRMS (ESI): *m/z*, calcd for C₂₉H₃₅O₂ [M+H]⁺ : 415.2637; found :415.2622.

2,6-di-tert-butyl-4-(2-(4-ethoxyphenoxy)benzylidene)cyclohexa-2,5-dien-1-one (**1f**):

Yellow solid (0.95 g, 60% yield); m. p. = 140–142 °C $R_f = 0.4$ (5% EtOAc in hexane); ¹H NMR (400 MHz, CDCl₃) δ 7.52 (d, J = 2.2 Hz, 1H), 7.48 – 7.46 (m, 2H), 7.31 – 7.27 (m, 1H), 7.14 – 7.10 (m, 1H), 7.06 (d, *J* = 2.3 Hz, 1H),

7.00 - 6.96 (m, 2H), 6.92 - 6.88 (m, 2H), 6.80 (dd, J = 8.2, 0.7 Hz, 1H), 4.03 (q, J = 7.0 Hz, 2H), 1.43 (t, J = 7.0 Hz, 3H), 1.32 (s, 91H), 1.31 (s, 9H);¹³C{¹H} NMR (100 MHz, CDCl₃) δ 186.8, 157.7, 155.8, 149.5, 149.3, 147.7, 138.1, 135.4, 132.2, 132.1, 130.7, 128.3, 126.4, 122.5, 121.2, 116.8, 115.7, 64.0, 35.6, 35.2, 29.7, 29.6, 15.0; FT-IR (thin film, neat): 2923, 1614, 1503, 1360, 1228, 753 cm⁻¹; HRMS (ESI): m/z calcd for C₂₉H₃₃O₂ [M-H]⁻: 429.2430; found : 429.2433.

2,6-di-tert-butyl-4-(2-(3-methoxyphenoxy)benzylidene)cyclohexa-2,5-dien-1-one (**1g**):

yellow solid (1.00 g, 24% yield); m. p. = 127-129 °C; $R_f = 0.4$ (5% EtOAc in hexane); ¹H NMR (400 MHz, CDCl₃) δ 7.51 – 7.48 (m, 2H), 7.39 (s, 1H), 7.35 (td, J = 7.9, 1.5 Hz, 1H), 7.27 – 7.23 (m, 1H), 7.20 (t, J = 7.4 Hz, 1H), 7.03 (d, J = 2.3 Hz, 1H), 6.96 (dd, J = 8.2, 0.8 Hz, 1H), 6.71 – 6.68 (m, 1H), 6.61 – 6.58 (m,

2H), 3.78 (s, 3H), 1.32 (s, 9H), 1.31 (s, 9H); ${}^{13}C{}^{1}H$ NMR (100 MHz, CDCl₃) δ 186.8, 161.2, 158.0, 156.1, 149.4, 147.7, 137.7, 135.3, 132.5, 132.1, 130.8, 130.5, 128.2, 127.5, 123.5, 118.9, 111.2, 109.5, 105.2, 55.54, 55.5, 35,6, 35.1, 29.7, 29.6; FT-IR (thin film, neat): 2923, 1693, 1483, 1273, 1153, 754 cm⁻¹; HRMS (ESI): m/z calcd for C₂₈H₃₃O₃ [M+H]⁺ 417.2430; found : 417.2430.

2,6-di-*tert*-butyl-4-(2(3,5-dimethoxyphenoxy)benzylidene)cyclohexa-2,5-dien-1-one (1h):

Yellow solid (0.26 g, 32% yield); m. p. = 132–134 °C; $R_f = 0.3$ (5% EtOAc in hexane); ¹H NMR (400 MHz, CDCl₃) δ 7.59 (d, J = 2.2 Hz, 1H), 7.36 – 7.32 (m, 2H), 7.29 (s, 1H), 7.12 – 7.07 (m, 2H), 6.98 – 6.96 (m, 3H), 6.57 (s,

1H), 3.93 (s, 3H), 3.81 (s, 3H), 1.33 (s, 9H), 1.30 (s, 9H); ${}^{13}C{}^{1}H$ NMR (100 MHz, CDCl₃) δ 186.5, 158.0, 151.5, 150.0, 149.1, 147.4, 145.7, 137.4, 135.6, 131.1, 130.1, 128.0, 123.2, 120.1, 117.6, 113.5, 104.4, 56.4, 56.32, 56.3, 35.6, 35.1, 29.8, 29.6; FT-IR (thin film, neat): 2956, 1456, 1229, 1143, 1091, 756 cm⁻¹; HRMS (ESI): m/z calcd for C₂₉H₃₅O₄ [M+H]⁺: 447.2535; found : 447.2536.

2,6-di-tert-butyl-4-(2-(2-methoxy-4-methylphenoxy)benzylidene)cyclohexa-2,5-dien-1-

one (1i): yellow solid (1.80 g, 62% yield); m. p. = 137-139 °C; $R_f = 0.4$ (5% EtOAc in hexane);

¹H NMR (400 MHz, CDCl₃) δ 7.57 (s, 1H), 7.54 (d, J = 2.3 Hz, 1H), 7.45 (dd, J = 7.6, 1.1 Hz, 1H), 7.27 – 7.23 (m, 1H), 7.11 – 7.07 (m, 2H), 6.90 (d, J = 8.0 Hz, 1H), 6.83 (d, J = 1.6 Hz, 1H), 6.77 – 6.74 (m, 1H), 6.69 (dd, J = 8.3 0.9

Hz, 1H), 3.79 (s, 3H), 2.37 (s, 3H), 1.32 (s, 9H), 1.31 (s, 9H); ${}^{13}C{}^{1}H{}$ NMR (100 MHz, CDCl₃) δ 186.9, 157.7, 151.3, 149.1, 147.5, 142.0, 138.5, 135.8, 135.6, 132.0, 131.9, 130.6, 128.5, 125.8, 122.1, 121.8, 121.7, 115.7, 113.9, 56.0, 55.99, 35.6, 35.1, 29.7, 29.6, 21.54, 21.5; FT-IR (thin film, neat): 2955, 1612, 1473, 1359, 1266, 747 cm⁻¹; HRMS (ESI): *m/z* calcd for C₂₉H₃₅O₃ [M+H]⁺ : 431.2586; found : 431.2586.

2,6-di-*tert*-butyl-4-(2-(4-fluorophenoxy)benzylidene)cyclohexa-2,5-dien-1-one (1j):

Yellow solid (0.85 g, 33% yield); m. p. = 146–148 °C; $R_f = 0.5$ (5% EtOAc in hexane); ¹H NMR (400 MHz, CDCl₃) δ 7.50 – 7.48 (m, 2H), 7.41 (s, 1H), 7.35 – 7.31 (m, 1H), 7.20 – 7.16 (m, 1H), 7.08 – 6-98 (m, 5H), 6.85 (d, J =

8.2 Hz, 1H), 1.32 (s, 9H), 1.31 (s, 9H); ${}^{13}C{}^{1}H$ NMR (100 MHz, CDCl₃) δ 186.8, 159.2 (d, $J_{C-F} = 241.2$ Hz), 156.7, 152.4 (d, $J_{C-F} = 10.2$ Hz), 149.4 , 147.8, 137.5, 136.2, 132.5, 132.2,

130.8, 128.1, 127.0, 123.2, 120.9 (d, $J_{C-F} = 8.2 \text{ Hz}$), 117.6, 116.7 (d, $J_{C-F} = 23.2 \text{ Hz}$), 35.6, 35.2, 29.7, 29.6; ¹⁹F{¹H} NMR (376 MHz, CDCl₃) δ –119.04; FT-IR (thin film, neat): 2955, 1695, 1618, 1450, 1265, 757 cm⁻¹; HRMS (ESI): m/z calcd for C₂₇H₃₀FO₂ [M+H] : 405.2230; found : 405.2243.

2,6-di-*tert*-butyl-4-(2-(4-chlorophenoxy)benzylidene)cyclohexa-2,5-dien-1-one (Ik):

Yellow solid (0.28 g, 52% yield); m. p. = 131–133 °C; R_f = 0.5 (5% EtOAc in hexane); ¹H NMR (400 MHz, CDCl₃) δ 7.50 – 7.47 (m, 2H), 7.37 – 7.29 (m, 4H), 7.23 – 7.19 (m, 1H), 7.01 (d, *J* = 2.3 Hz, 1H), 6.97 – 6.93 (m, 2H), 6.91

 $(dd, J = 8.0, 0.6 Hz, 1H), 1.31 (s, 9H), 1.30 (s, 9H); {}^{13}C{}^{1}H} NMR (100 MHz, CDCl_3) \delta 186.8, 155.9, 155.4, 149.5, 147.9, 137.2, 135.2, 132.6, 132.3, 130.9, 130.1, 129.0, 128.0, 127.5, 123.8, 120.4, 118.6, 35.6, 35.2, 29.7, 29.6; FT-IR (thin film, neat): 2955, 1692, 1612, 1479, 1234, 757 cm⁻¹; HRMS (ESI):$ *m/z*calcd for C₂₇H₂₈ClO₂ [M-H]⁻ : 419.1778; found : 419.1763.

4-(2-(2-bromophenoxy)benzylidene)-2,6-di-*tert*-butylcyclohexa-2,5-dien-1-one (11):

Yellow solid (0.76 g, 43% yield); m. p. = 122-124 °C; R_f = 0.5 (5% EtOAc in hexane); ¹H NMR (400 MHz, CDCl₃) δ 7.66 (d, J = 7.9 Hz, 1H), 7.51 – 7.48 (m, 3H), 7.33 – 7.28 (m, 2H), 7.19 (t, J = 7.5 Hz, 1H), 7.09 – 7.05 (m, 2H), 7.01 (d, J = 8.1 Hz, 1H), 6.75 (d, J = 8.2 Hz, 1H), 1.33 (s, 9H), 1.31 (s, 9H); ¹³C{¹H} NMR (100 MHz, CDCl₃) δ 186.8, 156.1, 153.1, 149.4, 147.8, 137.5, 135.3, 134.2, 132.5, 132.2, 130.8, 129.0, 128.1, 126.8, 125.9, 123.4, 121.5, 117.1, 115.4, 35.6, 35.2, 29.7, 29.6; FT-IR (thin film, neat): 2921, 1616, 1464, 1360, 1237, 750 cm⁻¹; HRMS (ESI): m/z calcd for C₂₇H₂₈BrO₂ [M-H]⁻ : 463.1273; found : 463.1268.

2,6-di-*tert*-butyl-4-(2-(2,4-dichlorophenoxy)benzylidene)cyclohexa-2,5-dien-1-one (1m):

Yellow solid (2.50 g, 58% yield); m. p. = 160–162 °C; $R_f = 0.5$ (5% EtOAc in hexane); ¹H NMR (400 MHz, CDCl₃) δ 7.50 – 7.47 (m, 3H), 7.41 (s, 1H), 7.33 (td, J = 7.8, 1.6 Hz, 1H), 7.24 – 7.19 (m, 2H), 7.04 (d, J = 2.3 Hz, 1H), 6.94 (d,

J = 8.7 Hz, 1H), 6.75 (dd, J = 8.2, 0.8 Hz, 1H), 1.32 (s, 9H), 1.30 (s, 9H); ¹³C{¹H} NMR (100 MHz, CDCl₃) δ 186.8, 155.7, 150.8, 149.5, 147.9, 136.9, 135.2, 132.7, 132.3, 130.82, 130.8, 130.1, 128.4, 128.0, 127.0, 126.8, 123.7, 122.2, 117.0, 35.6, 35.2, 29.7, 29.6; FT-IR (thin film, neat): 2955, 1774, 1470, 1253, 1100, 744 cm⁻¹; HRMS (ESI): m/z calcd for C₂₇H₂₇Cl₂O₂ [M-H]⁻: 453.1388; found : 453.1366.

2,6-di-*tert*-butyl-4-(2-(2,4-dibromophenoxy)benzylidene)cyclohexa-2,5-dien-1-one (1n):

Yellow solid (1.55 g, 56% yield); m. p. = 145–147 °C; $R_f = 0.5$ (5% EtOAc in hexane) ¹H NMR (400 MHz, CDCl₃) δ 7.80 (d, J = 2.3 Hz, 1H), 7.51 – 7.49 (m, 1H), 7.47 (d, J = 2.2 Hz, 1H), 7.41 – 7.39 (m, 2H), 7.34 (td, J = 7.8, 1.5

Hz, 1H), 7.22 (t, J = 7.5 Hz, 1H), 7.04 (d, J = 2.3 Hz, 1H), 6.85 (d, J = 8.7 Hz, 1H), 6.78 – 6.76 (m, 1H), 1.32 (s, 9H), 1.30 (s, 9H); ¹³C{¹H} NMR (100 MHz, CDCl₃) δ 186.8, 155.5, 152.7, 149.5, 148.0, 136.9, 136.4, 135.2, 132.7, 132.4, 132.0, 130.8, 128.0, 127.0, 123.9, 122.2, 117.4 (2C), 116.1, 35.6, 35.2, 29.7, 29.6; FT-IR (thin film, neat): 2921, 1616, 1462, 1360, 1238, 755 cm⁻¹; HRMS (ESI): m/z calcd for C₂₇H₂₇Br₂O₂ [M-H]⁻ : 541.0378; found : 541.0381.

4-(2-(4-bromo-2-methoxyphenoxy)benzylidene)-2,6-di-tert-butylcyclohexa-2,5-dien-1-

one (10): Yellow solid (1.20 g, 43% yield); m. p. = 139–141 °C; $R_f = 0.4$ (5% EtOAc in

hexane); ¹H NMR (400 MHz, CDCl₃) δ 7.50 (d, J = 2.2 Hz, 1H), 7.48 – 7.45 (m, 2H), 7.30 – 7.26 (m, 1H), 7.15 – 7.12 (m, 2H), 7.09 – 7.06 (m, 2H), 6.87 (d, J = 8.5 Hz, 1H), 6.71 (dd, J = 8.2, 0.7 Hz, 1H), 3.80 (s 3H), 1.32 (s, 9H),

1.31 (s, 9H); ¹³C{¹H} NMR (100 MHz, CDCl₃) δ 186.8, 156.8, 152.2, 149.3, 147.7, 143.9, 137.8, 135.4, 132.3, 132.1, 130.7, 128.3, 126.2, 124.2, 122.9, 122.8, 117.9, 116.5, 116.1, 56.32, 56.3, 35.6, 35.2; FT-IR (thin film, neat): 2955, 1612, 1452, 1359, 1230, 751 cm⁻¹; HRMS (ESI): m/z calcd for C₂₈H₃₂BrO₃ [M+H]⁺ : 495.1535; found : 495.1522.

4-(2-([1,1'-biphenyl]-4-yloxy)benzylidene)-2,6-di-*tert*-butylcyclohexa-2,5-dien-1-one (1p):

Yellow solid (0.80 g, 45% yield); m. p. = 183–185 °C; $R_f = 0.5$ (5% EtOAc in hexane); ¹H NMR (400 MHz, CDCl₃) δ 7.61 – 7.56 (m, 4H), 7.52 –7.51 (m, 2H), 7.46 – 7.43 (m, 3H), 7.39 – 7.33 (m, 2H), 7.21 (t, J = 7.3 Hz, 1H),

7.12 – 7.08 (m, 2H), 7.04 (d, J = 2.3 Hz, 1H), 7.00 (dd, J = 8.2, 0.8 Hz, 1H), 1.32 (s, 18H); ¹³C{¹H} NMR (100 MHz, CDCl₃) δ 186.8, 156.33, 156.3, 149.4, 147.8, 140.4, 137.7, 137.0, 135.3, 132.5, 132.2, 130.9, 129.0, 128.7, 128.1, 127.5, 127.3, 127.1, 123.5, 119.4, 118.7, 35.6, 35.2, 29.7, 29.6; FT-IR (thin film, neat): FT-IR (thin film, neat): 2955, 1614, 1459, 1360, 1228, 755 cm⁻¹; HRMS (ESI): m/z calcd for C₃₃H₃₅O₂ [M+H]⁺ : 463.2637; found : 463.2654.

2,6-di-*tert*-butyl-4-(2-(naphthalen-2-yloxy)benzylidene)cyclohexa-2,5-dien-1-one (1q):

Yellow solid (1.55 g, 57% yield); m. p. = 127–129 °C; $R_f = 0.4$ (5% EtOAc in hexane); ¹H NMR (400 MHz, CDCl₃) δ 7.89 – 7.85 (m, 2H), 7.73 (d, J = 8.0 Hz, 1H), 7.59 – 7.57 (m, 2H), 7.51 – 7.43 (m, 3H), 7.40 – 7.36 (m, 2H), 7.32 –

7.22 (m, 2H), 7.06 (d, J = 8.0 Hz, 1H), 7.02 – 7.00 (m, 1H), 1.37 (s, 9H), 1.35 (s, 9H); ¹³C{¹H} NMR (100 MHz, CDCl₃) δ 186.8, 156.2, 154.5, 143.4, 147.6, 137.7, 135.3, 134.4, 132.5, 132.2, 130.9, 130.5, 130.3, 128.1, 127.9, 127.6, 127.3, 126.8, 125.1, 123.6, 119.9, 118.9, 114.6, 35.6, 35.1, 29.7, 29.6; FT-IR (thin film, neat): 2954, 1614, 1493, 1360, 1261, 752 cm⁻¹; HRMS (ESI): m/z calcd for C₃₁H₃₃O₂ [M+H]⁺ : 437.2481; found : 437.2471.

2,6-di-tert-butyl-4-(2-((6-methoxynaphthalen-2-yl)oxy)benzylidene)cyclohexa-2,5-dien-1-

one (1r): yellow solid (1.00 g, 89% yield); m. p. = 98–100 °C; R_f = 0.3 (5% EtOAc in hexane); ¹H NMR (400 MHz, CDCl₃) δ 7.76 (d, J = 8.9 Hz, 1H), 7.63 (d, J = 9.1 Hz, 1H), 7.56 – 7.53 (m, 2H), 7.49 (s, 1H), 7.38 – 7.32 (m,

2H), 7.26 - 7.14 (m, 4H), 7.05 (s, 1H), 6.94 (d, J = 8.2 Hz, 1H), 3.92 (s, 3H), 1.34 (s, 9H), 1.33 (s, 9H); $^{13}C{^{1}H}$ NMR (100 MHz, CDCl₃) δ 186.8, 157.3, 156.8, 152.6, 149.3, 147.7, 137.9, 135.3, 132.4, 132.2, 131.6, 130.8, 129.6, 128.9, 128.7, 128.2, 127.2, 123.2, 120.5, 119.7, 118.2,

115.4, 106.0, 55.5, 55.4, 35.6, 35.1, 29.7, 29.6; FT-IR (thin film, neat): 2954, 1609, 1576, 1473, 1231, 739 cm⁻¹; HRMS (ESI): *m/z* calcd for C₃₂H₃₅O₃ [M+H]⁺ : 467.2586; found : 467.2567.
4-(2-((6-bromonaphthalen-2-yl)oxy)benzylidene)-2,6-di-*tert*-butylcyclohexa-2,5-dien-1-one (1s): Yellow solid (0.95 g, 65% yield); m. p. = 127–129 °C; R_f = 0.4 (5% EtOAc in hexane);

¹H NMR (400 MHz, CDCl₃) δ 7.97 (d, J = 1.4 Hz, 1H), 7.75 – 7.68 (m, 1H), 7.56 – 7.48 (m, 4H), 7.37 – 7.33 (m, 2H), 7.28 – 7.23 (m, 3H), 6.98 – 6.96 (m, 2H), 1.29 (s, 9H), 1.27 (s, 9H); ¹³C{¹H} NMR (100 MHz, CDCl₃)

δ 186.8, 155.8, 155.1, 149.5, 147.9, 137.3, 135.2, 132.9, 132.7, 132.3, 131.4, 130.9, 130.2, 130.0, 129.4, 128.9, 128.1, 127.8, 124.0, 120.9, 119.2, 118.8, 114.2, 35.6, 35.2, 29.7, 29.6; FT-IR (thin film, neat): 2954, 1614, 1493, 1360, 1261, 752 cm⁻¹; HRMS (ESI): *m/z* calcd for C₃₁H₃₀BrO₂ [M-H]⁻ : 513.1429; found : 513.1442.

2,6-di-*tert*-butyl-4-(2-methyl-6-phenoxybenzylidene)cyclohexa-2,5-dien-1-one (1t):

Yellow solid (0.21 g, 25% yield); m. p. = 116–118 °C; $R_f = 0.4$ (5% EtOAc in hexane); ¹H NMR (400 MHz, CDCl₃) δ 7.30 – 7.22 (m, 3H), 7.07 – 7.04 (m, 2H), 7.01 – 6.96 (m, 3H), 6.89 – 6.87 (m, 2H), 6.83 (d, J = 8.2 Hz, 1H), 2.30 (s, 3H), 1.31 (d, J = 1.0 Hz, 9H), 1.26 (d, J = 1.2 Hz, 9H); ¹³C{¹H} NMR (100 MHz, CDCl₃) δ 186.9, 157.1, 154.7, 148.5, 147.5, 139.0, 137.5, 134.4, 134.0, 129.8, 129.6, 129.3, 126.9, 125.6, 123.3, 118.5, 116.6, 35.3, 35.1, 29.7, 29.6, 20.75, 20.7; FT-IR (thin film, neat): 2955, 1615, 1455, 1359, 1245, 742 cm⁻¹; HRMS (ESI): m/z calcd for C₂₈H₃₃O₂ [M+H]⁺ : 401.2481; found : 401.2464.

2,6-di-*tert*-butyl-4-(4-chloro-2-phenoxybenzylidene)cyclohexa-2,5-dien-1-one (1u):

Yellow solid (0.36 g, 45% yield); m. p. = 140–142 °C; $R_f = 0.4$ (5% EtOAc in hexane); ¹H NMR (400 MHz, CDCl₃) δ 7.44 – 7.39 (m, 4H), 7.34 (s, 1H), 7.21 (t, J = 7.4 Hz, 1H), 7.15 (dd, J = 8.4, 1.9 Hz, 1H), 7.07 – 7.02 (m, 3H),

6.85 (d, J = 2.0 Hz, 1H), 1.32 (s, 9H), 1.31 (s, 9H); ¹³C{¹H} NMR (100 MHz, CDCl₃) δ 186.8,

157.2, 155.8, 149.7, 148.0, 136.3, 136.2, 135.1, 132.7, 130.3, 127.7, 125.5, 124.8, 123.3, 119.8, 118.04, 118.0, 35.6, 35.2, 29.7, 29.6; FT-IR (thin film, neat): 2955, 1614, 1567, 1473, 1234, 918, 742 cm⁻¹; HRMS (ESI): *m/z* calcd for C₂₇H₃₀ClO₂ [M+H]⁺ : 421.1934; found : 421.1947.
3. Characterization of 3b to 3j:

2,6-di-*tert*-butyl-4-(2-((2-ethylphenyl)thio)benzylidene)cyclohexa-2,5-dien-1-one (3b):

Yellow solid (0.15 g, 33% yield); m. p. = 143–145 °C; $R_f = 0.5$ (5% EtOAc in hexane); ¹H NMR (400 MHz, CDCl₃) δ 7.45 (s, 1H), 7.40 – 7.37 (m, 1H), 7.34 – 7.335 (m, 1H), 7.32 – 7.30 (m, 2H), 7.29 – 7.23 (m, 3H), 7.17 – 7.13 (m, 1H), 7.08 – 7.05 (m, 2H), 2.82 (q, J = 7.6 Hz, 2H), 1.36 (s, 9H), 1.30 (s, 9H), 1.24 (t, J = 7.6 Hz, 3H); ¹³C{¹H} NMR (100 MHz, CDCl₃) δ 186.6, 149.2, 147.9, 146.3, 140.1, 138.6, 135.3, 134.8, 134.2, 132.5, 132.2, 131.6, 130.0, 129.6, 129.3, 128.8, 128.2, 127.1, 126.1, 35.5, 35.1, 27.3, 15.15, 15.14; FT-IR (thin film, neat): 2954, 1613, 1563, 1359, 1254, 746 cm¹; HRMS (ESI): m/z calcd for C₂₉H₃₅OS [M+H]⁺: 431.2409; found : 431.2406.

2,6-di-*tert*-butyl-4-(2((4methoxyphenyl)thio)benzylidene)cyclohexa-2,5-dien-1-one (3c):

Yellow solid (2.00 g, 80% yield); m. p. = 165–167 °C; $R_f = 0.3$ (5% EtOAc in hexane); ¹H NMR (400 MHz, CDCl₃) δ 7.43 (s, 1H), 7.42 – 7.38 (m, 2H), 7.34 – 7.30 (m, 2H), 7.25 – 7.20 (m, 2H), 7.07 (d, J = 2.2 Hz, 1H), 7.05 –

7.01 (m, 1H), 6.92 - 6.88 (m, 2H), 3.81 (s, 3H), 1.34 (s, 9H), 1.27 (s, 9H); ${}^{13}C{}^{1}H$ NMR (100 MHz, CDCl₃) δ 186.7, 160.3, 149.3, 147.9, 140.3, 140.0, 135.9, 134.9, 134.2, 132.6, 131.5, 129.5, 128.6, 128.3, 125.6, 123.3, 115.3, 55.5, 55.48, 35.5, 35.2, 29.6; FT-IR (thin film, neat): 2955, 1614, 1493, 1250, 1059, 742 cm⁻¹; HRMS (ESI): *m/z* calcd for C₂₈H₃₃O₂S [M+H]⁺ : 433.2201; found : 433.2214.

2,6-di-*tert*-butyl-4-(2-((4-chlorophenyl)thio)benzylidene)cyclohexa-2,5-dien-1-one (3d):

Yellow solid (0.20 g, 45% yield); m. p. = 122-124 °C; R_f = 0.5 (5% EtOAc in hexane); ¹H NMR (400 MHz, CDCl₃) δ 7.40 – 7.34 (m, 3H), 7.33 – 7.29 (m, 2H), 7.27 - 7.21 (m, 5H), 6.99 (s, 1H), 1.32 (s, 9H), 1.26 (s, 9H); ${}^{13}C{}^{1}H{}$

NMR (100 MHz, CDCl₃) δ 186.6, 149.5, 148.2, 139.9, 136.7, 136.69, 134.7, 133.8, 133.6, 132.8, 132.7, 132.0, 131.9, 129.8, 129.7, 128.0, 127.4, 35.5, 35.2, 29.7; FT-IR (thin film, neat): 2955, 1615, 1475, 1360, 1091, 753 cm⁻¹; HRMS (ESI): *m/z* calcd for C₃₀H₃₁Br₂O₃ [M+H]⁺: 437.1706; found : 437.1705.

```
4-(2-((4-bromophenyl)thio)benzylidene)-2,6-di-tert-butylcyclohexa-2,5-dien-1-one
                                                                                   (3e):
```


Yellow solid (1.00 g, 41% yield); m. p. = $125-127 \text{ }^{\circ}\text{C}$; R_f = 0.5 (5% EtOAc in hexane); ¹H NMR (400 MHz, CDCl₃) δ 7.40 – 7.38 (m, 3H), 7.37 – 7.32 (m, 4H), 7.23 (d, J = 2.2 Hz, 1H), 7.15 (d, J = 8.4 Hz, 2H), 6.98 (d, J = 2.2 Hz,

1H), 1.32 (s, 9H), 1.26 (s, 9H); ${}^{13}C{}^{1}H$ NMR (100 MHz, CDCl₃) δ 186.6, 149.5, 148.1, 139.9, 136.8, 136.4, 134.7, 134.4, 132.7 (2C), 132.6, 132.2, 131.9, 129.8, 127.9, 127.5, 121.6, 35.5, 35.2, 29.6; FT-IR (thin film, neat): 2955, 1613, 1468, 1359, 1254, 753 cm⁻¹; HRMS (ESI): m/z calcd for C₂₇H₃₀BrOS [M+H]⁺ : 481.1201; found : 481.1229.

2,6-di-tert-butyl-(2((2,5dichlorophenyl)thio)benzylidene)cyclohexa-2,5-dien-1-one (**3f**):

Yellow solid (0.15 g, 25% yield); m. p. = 121-122 °C; $R_f = 0.5$ (5% EtOAc in hexane); ¹H NMR (400 MHz, CDCl₃) 7.55 – 7.53 (m, 1H), 7.51 – 7.47 (m, 1H), 7.45 – 7.39 (m, 2H), 7.31 (s, 1H), 7.21 (d, *J* = 8.5 Hz, 1H), 7.18 (d, *J* = 2.0 Hz, 1H), 7.09 (dd, J = 8.5 2.4 Hz, 1H), 6.95 (d, J = 2.2 Hz, 1H), 6.76 (d, J = 2.4 Hz, 1H), 1.30 (s, 9H), 1.25 (s, 9H); ¹³C{¹H} NMR (100 MHz, CDCl₃) δ 186.5, 149.6, 148.1, 139.7, 139.0, 137.7, 135.0, 134.4, 133.2, 132.9, 132.89, 132.8, 132.3, 131.6, 130.6, 130.1, 129.4, 129.2, 127.5, 35.5, 35.1, 29.6, 29.5; FT-IR (thin film, neat): 2921, 1616, 1458, 1360, 1091, 744 cm⁻¹; HRMS (ESI):

2,6-di-*tert*-butyl-4-(4-chloro-2-(phenylthio)benzylidene)cyclohexa-2,5-dien-1-one (3g):

Yellow solid (0.25 g, 28% yield); m. p. = 110–112 °C; $R_f = 0.4$ (5% EtOAc in hexane); ¹H NMR (400 MHz, CDCl₃) δ 7.42 – 7.34 (m, 5H), 7.32 (s, 1H), 7.30 – 7.26 (m, 2H), 7.24 – 7.22 (m, 1H), 7.12 (d, J = 1.8 Hz, 1H) 7.04 (d, J

= 2.2 Hz, 1H), 1.33 (s, 9H), 1.27 (s, 9H); ${}^{13}C{}^{1}H$ NMR (100 MHz, CDCl₃) δ 186.6, 149.7, 148.2, 140.4, 138.4, 135.6, 134.6, 133.7, 133.04, 133.0, 132.8, 132.5, 129.9, 129.7, 128.7, 127.7, 126.7, 35.6, 35.2, 29.6; FT-IR (thin film, neat): 2954, 1613, 1477, 1359, 1254, 739 cm⁻¹; HRMS (ESI): m/z calcd for C₂₇H₃₀ClOS [M+H]⁺ : 437.1706; found : 437.1725.

4-(4-bromo-2-(phenylthio)benzylidene)-2,6-di-*tert*-butylcyclohexa-2,5-dien-1-one (3h):

yellow solid (0.19 g 28% yield); m. p. = 108–110 °C; $R_f = 0.4$ (5% EtOAc in hexane); ¹H NMR (400 MHz, CDCl₃) δ 7.46 – 7.33 (m, 6H), 7.32 – 7.29 (m, 2H), 7.26 – 7.21 (m, 2H), 7.01 (d, J = 1.8 Hz, 1H), 1.32 (s, 9H), 1.27 (s,

9H); ¹³C{¹H} NMR (100 MHz, CDCl₃) δ 186.6, 149.7, 148.3, 140.4, 138.5, 134.6, 134.3, 134.2, 133.0, 132.9, 132.8, 132.7, 129.9, 129.7, 128.6, 127.7, 123.8, 35.6, 35.2, 29.64, 29.6; FT-IR (thin film, neat): 2921, 1740, 1617, 1458, 1375, 740 cm⁻¹; HRMS (ESI): *m/z* calcd for C₂₇H₃₀BrOS [M+H]⁺ : 481.1201; found : 481.1213.

2,6-di-*tert*-butyl-4-(4-methoxy-2-(phenylthio)benzylidene)cyclohexa-2,5-dien-1-one (3i):

Yellow solid (0.30 g, 34% yield); m. p. = 171-173 °C; R_f = 0.3 (5% EtOAc in hexane); ¹H NMR (400 MHz, CDCl₃) δ 7.41 (s, 1H), 7.39 – 7.26 (m, 7H), 7.02 (d, J = 2.2 Hz, 1H) 6.86 (dd, J = 8.6, 2.5 Hz, 1H), 6.75 (d, J =

2.5 Hz, 1H) 3.74 (s, 3H), 1.33 (s, 9H), 1.28 (s, 9H); ${}^{13}C{}^{1}H$ NMR (100 MHz, CDCl₃) δ 186.7, 160.7, 149.0, 147.5, 140.1, 139.7, 135.1, 134.0, 133.1, 132.3, 131.7, 129.6, 128.6, 128.3, 128.1, 116.4, 112.7, 55.53, 55.5, 35.5, 35.1, 29.7, 29.6; FT-IR (thin film, neat): 2954, 1610, 1589, 1359, 1252, 743 cm⁻¹; HRMS (ESI): *m*/*z* calcd for C₂₈H₃₃O₂S [M+H]⁺ : 433.2201; found : 433.2208.

2,6-di-*tert*-butyl-4-(2-(naphthalen-2-ylthio)benzylidene)cyclohexa-2,5-dien-1-one (3j):

Yellow solid (0.27 g, 32% yield); m. p. = 132–133 °C; $R_f = 0.4$ (5% EtOAc in hexane); ¹H NMR (400 MHz, CDCl₃) δ 7.82 (d, J = 1.2 Hz, 1H), 7.80 – 7.78 (m, 1H), 7.76 (d, J = 8.6 Hz, 1H), 7.73 – 7.71 (m, 1H), 7.50 – 7.45 (m, 2H),

7.44 (s, 1H), 7.41 – 7.35 (m, 3H), 7.33 – 7.28 (m, 2H), 7.27 – 7.26 (m, 1H), 6.98 (d, J = 2.3 Hz, 1H), 1.29 (s, 9H), 1.26 (s, 9H); ¹³C{¹H} NMR (100 MHz, CDCl₃) δ 186.7, 149.4, 148.0, 140.2, 137.4, 136.5, 134.6, 133.9, 132.6, 132.5, 132.0, 131.8 (2C), 130.8, 129.7, 129.3, 129.0, 128.1, 127.9, 127.5, 127.1, 126.9, 126.7, 35.5, 35.1, 29.64, 29.60; FT-IR (thin film, neat): 2921, 1740, 1617, 1459, 1376, 743 cm⁻¹; HRMS (ESI): m/z calcd for C₃₁H₃₃OS [M+H]⁺ : 453.2252; found : 453.2259.

4. Characterization of 5b to 5e

2,6-di-tert-butyl-4-(2-(3-methyl-1H-indol-1-yl)benzylidene)cyclohexa-2,5-dien-1-one

(**5b**): Yellow solid (0.30 g, 52% yield); m. p. = 179–181 °C; R_f = 0.5 (5% EtOAc in hexane);

¹H NMR (400 MHz, CDCl₃) δ 7.68 – 7.65 (m, 1H), 7.63 – 7.62 (m, 1H), 7.57 (d, J = 2.1 Hz, 1H), 7.55 –7.47 (m, 3H), 7.21 – 7.20 (m, 3H), 6.98 (s,1H), 6.80 – 6.79 (m, 2H), 2.40 (s, 3H), 1.35 (s, 9H), 1.27 (s, 9H); ¹³C{¹H} NMR (100 MHz, CDCl₃) δ 186.7, 149.8, 147.9, 139.7, 138.7, 137.4, 134.9, 132.8, 132.68,

132.66, 130.1, 129.5, 127.8, 127.5, 127.4, 127.3, 122.7, 120.1, 119.2, 113.1, 110.7, 35.7, 35.2, 29.7, 29.6, 9.79, 9.76; FT-IR (thin film, neat FT-IR (thin film, neat): 2922, 1738, 1616, 1458, 1360, 741 cm⁻¹; HRMS (ESI): m/z calcd for C₃₀H₃₄NO [M+H]⁺ : 424.2640; found : 424.2620.

Yellow solid (0.066 g, 41.3% yield); m. p. = 132-134 °C; R_f = 0.4 (5% EtOAc in hexane); ¹H NMR (400 MHz, DMSO-*d*₆) δ 7.84 (d, *J* = 1.6 Hz, 1H), 7.69 – 7.62 (m, 3H), 7.61 – 7.57 (m, 1H), 7.49 (d, *J* = 3.2 Hz, 1H), 7.37 (d, *J* = 1.2 Hz, 1H), 7.24 (dd, *J* = 8.7, 1.7 Hz, 1H), 7.11 – 7.09 (m, 1H), 6.95 (brs, 2H),

6.67 (d, J = 3.2 Hz, 1H), 1.20 (s, 9H), 1.17 (s, 9H); ¹³C{¹H} NMR (100 MHz, DMSO- d_6) δ 185.9, 148.2, 146.7, 139.6, 137.9, 135.2, 134.8, 132.5, 132.2, 132.1, 131.8, 130.6, 130.4, 128.2, 127.8, 127.7, 124.8, 123.1, 112.8, 112.4, 103.0, 35.0, 34.7, 29.24, 29.2; FT-IR (thin film, neat FT-IR (thin film, neat): 2925, 1740, 1607, 1459, 1362, 750 cm⁻¹; HRMS (ESI): m/z calcd for C₂₉H₃₁ClNO [M+H]⁺ : 444.2094; found : 444.2079.

4-(2-(5-bromo-1H-indol-1-yl)benzylidene)-2,6-di-tert-butylcyclohexa-2,5-dien-1-one

(5d): Yellow solid (0.134 g, 47% yield); m. p. = 134-136 °C; $R_f = 0.4$ (5% EtOAc in hexane);

¹H NMR (400 M DMSO- d_6) δ 7.68 – 7.62 (m, 4H), 7.60 – 7.58 (m, 1H), 7.48 (d, J = 3.2 Hz, 1H), 7.34 (d, J = 1.8 Hz, 1H), 7.12 –7.09 (m, 1H), 7.08 (s, 1H), 6.96 (s, 1H), 6.94 (d, J = 2.0 Hz, 1H), 7.34 (dd, J = 3.2, 0.6 Hz, 1H), 1.19 (s, 9H), 1.16 (s, 9H); ¹³C{¹H} NMR (100 MHz, DMSO- d_6) δ 185.9, 148.4, 146.8, 139.8, 137.7,

136.7, 134.7, 132.4, 132.3, 132.2, 131.3, 130.7, 128.3, 127.72, 127.7, 127.3, 127.1, 122.3, 120.6, 110.2, 103.6, 35.0, 34.7, 29.2, 29.1; FT-IR (thin film, neat FT-IR (thin film, neat): 2955, 1615 1483, 1458, 1360, 742 cm⁻¹; HRMS (ESI): m/z calcd for C₂₉H₃₁BrNO [M+H]⁺: 488.1589; found : 488.1617.

2,6-di-tert-butyl-4-(2-(5-methoxy-1H-indol-1-yl)benzylidene)cyclohexa-2,5-dien-1-one

(**5e**): Yellow solid (0.15 g, 55.9% yield); m. p. = 143–145 °C; R_f = 0.3 (5% EtOAc in hexane);

¹H NMR (400 MHz, CDCl₃) δ 7.62 (d, J = 7.1 Hz, 1H), 7.54 – 7.52 (m, 3H), 7.51 – 7.48 (m, 1H), 7.17 – 7.15 (m, 3H), 6.87 (dd, J = 9.0, 2.4 Hz, 1H), 6.79 (d, J = 2.2 Hz, 1H), 6.73 (s, 1H), 6.63 (d, J = 3.1 Hz, 1H), 3.89 (s, 3H), 1.33 (s, 9H), 1.27 (s, 9H); ¹³C{¹H} NMR (100 MHz, CDCl₃) δ 186.7, 154.9, 149.8, 148.0,

139.5, 138.5, 134.8, 132.9, 132.7, 132.6, 132.3, 130.6, 130.1, 129.5, 127.7, 127.6, 127.4, 112.9, 111.6, 103.5, 102.7, 56.0, 55.98, 35.6, 35.2, 29.7, 29.6; FT-IR (thin film, neat FT-IR (thin film, neat): 2954, 1614, 1578, 1483, 1256, 740 cm⁻¹; HRMS (ESI): m/z calcd for C₃₀H₃₄NO₂ [M+H]⁺ : 440.2590; found : 440.2575.

5. Characterization of products 2b to 2u

2,6-di-tert-butyl-4-(3-methyl-9H-xanthen-9-yl)phenol (2b): The reaction was performed at

0.125 mmol scale of **1b**; pale yellow solid (48.5 mg, 97% yield); $R_f = 0.4$ (5% EtOAc in hexane); ¹H NMR (400 MHz, CDCl₃) δ 7.22 – 7.18 (m, 1H), 7.15 – 7.12 (m, 2H), 7.06 – 7.04 (m, 1H), 7.02 – 7.00 (m, 2H), 6.97 – 6.95 (m, 3H), 5.11 (s, 1H), 5.07 (s, 1H), 2.27 (s, 3H),1.38 (s, 18H); ¹³C {¹H} NMR (100 MHz,

CDCl₃) *δ* 152.5, 151.8, 149.6, 137.3, 135.9, 132.5, 129.9, 129.6, 128.4, 127.6, 125.7, 125.1, 124.7, 123.1, 116.5, 116.2, 44.8, 44.77, 34.4, 30.4, 21.91, 21.9; FT-IR (thin film, neat):, 2956, 1599, 1480, 1454, 1313, 751 cm⁻¹; HRMS (ESI): m/z calcd for C₂₈H₃₁O₂ [M–H]⁻: 399.2324 found : 399.2339.

2,6-di-tert-butyl-4-(3-ethyl-9H-xanthen-9-yl)phenol (2c): The reaction was performed at 0.121 mmol scale of 1c; pale yellow solid (48.0 mg, 96% yield); $R_f = 0.4$ (5% EtOAc in hexane); ¹H NMR (400 MHz, CDCl₃) δ 7.21

-7.17 (m, 1H), 7.14 - 7.10 (m, 2H), 7.06 - 7.03 (m, 2H), 7.01 - 6.99 (m, 1H), 6.97 - 6.96 (m, 1H), 6.94 (s, 2H), 5.19 (s, 1H), 5.05 (s, 1H), 2.56 (q, J = 7.6 Hz, 2H), 1.36 (s, 18H), 1.17 (t, J = 7.6 Hz, 3H); ${}^{13}C$ { ${}^{1}H$ } NMR (100 MHz, CDCl₃) δ 152.4, 151.9, 149.8, 139.1, 136.9, 135.8, 129.6, 128.7, 127.6, 127.2, 125.7, 125.3, 124.8, 123.1, 116.5, 116.3, 44.7, 34.4, 30.4, 28.3, 16.0; FT-IR (thin film, neat): 2958, 16301, 1478, 1456, 1235, 754 cm⁻¹; HRMS (ESI): m/z calcd for $C_{29}H_{33}O_2$ [M–H]⁻: 413.2481; found : 413.2487.

2,6-di-*tert*-butyl-4-(3-(*tert*-butyl)-9H-xanthen-9-yl)phenol (**2d**): The reaction was performed at 0.110 mmol scale of 1d; yellow gummy solid (42.0 mg, 84%) ОН ^tBu ^tBu yield); $R_f = 0.4$ (5% EtOAc in hexane); ¹H NMR (400 MHz, CDCl₃) δ 7.26 -7.18 (m, 4H), 7.14 - 7.12 (m, 1H), 7.08 - 7.06 (m, 1H), 7.04 - 7.00 (m,

1H), 6.94 (s, 2H), 5.18 (s, 1H), 5.06 (s, 1H), 1.37 (s, 18H), 1.28 (s, 9H); ¹³C {¹H} NMR (100 MHz, CDCl₃) δ 152.4, 152.2, 149.7, 145.9, 136.3, 135.8, 129.6, 127.7, 126.2, 125.6, 125.0, 124.9, 124.7, 123.1, 116.5, 115.9, 44.63, 44.6, 34.6, 34.44, 34.4, 31.6, 30.4; FT-IR (thin film, neat): 2958, 1598, 1481, 1433, 1251, 753 cm⁻¹; HRMS (ESI): m/z calcd for C₃₁H₃₇O₂ [M–H]⁻: 441.2794; found : 441.2803.

2,6-di-tert-butyl-4-(2,4-dimethyl-9H-xanthen-9-yl)phenol (2e): The reaction was performed

at 0.096 mmol scale of **1e**; white solid (41.0 mg, 80% yield); $R_f = 0.4$ (5% EtOAc in hexane); ¹H NMR (400 MHz, CDCl₃) δ 7.22 – 7.16 (m, 1H), 7.13 – 7.11 (m, 2H), 7.01 – 6.99 (m, 1H), 6.97 (s, 2H), 6.94 (s, 1H), 6.89 (s, 1H), 5.10

(s, 1H), 5.06 (s, 1H), 2.25 (s, 3H), 2.18 (s, 3H), 1.39 (s, 18H); 13 C { 1 H} NMR (100 MHz, CDCl₃) δ 152.4, 151.8, 149.5, 137.5, 136.1, 135.8, 131.3, 130.2, 129.7, 127.5, 125.8, 124.8, 123.0, 122.5, 117.3, 116.5, 44.4, 44.39, 34.4, 30.4, 19.74, 19.7, 19.2; FT-IR (thin film, neat): 2957, 1482, 1403, 1232, 753 cm⁻¹; HRMS (APCI): *m*/*z* calcd for C₂₉H₃₃O₂ [M–H]⁻ : 413.2481; found : 413.2494.

2,6-di-tert-butyl-4-(2-ethoxy-9H-xanthen-9-yl)phenol (2f): The reaction was performed at

0.116 mmol scale of **1f**; white solid (49.1 mg, 98% yield); $R_f = 0.3$ (5% EtOAc in hexane); ¹H NMR (400 MHz, CDCl₃) δ 7.19 (t, J = 7.6 Hz, 1H), 7.10 (d, J = 7.9 Hz, 2H), 7.05 (d, J = 8.8 Hz, 1H), 7.00 – 6.96 (m, 1H), 6.95

(s, 2H), 6.76 (dd, J = 8.8, 2.8 Hz, 1H), 6.64 (d, J = 2.6 Hz, 1H), 5.10 (s, 1H), 5.05 (s, 1H), 3.95 (q, J = 7.0 Hz, 2H), 1.37 (s, 21H); ¹³C {¹H} NMR (100 MHz, CDCl₃) δ 154.7, 152.5, 151.9, 145.8, 136.8, 136.0, 129.6, 127.6, 126.3, 125.2, 124.8, 123.0, 117.1, 116.4, 114.9, 114.1, 64.0, 45.1, 45.0, 34.4, 30.4, 15.0; FT-IR (thin film, neat): 2959, 1478, 1434, 1252, 1223, 750 cm⁻¹; HRMS (ESI): m/z calcd for C₂₉H₃₃O₃ [M–H]⁻: 429.2430; found : 429.2441.

2,6-di-tert-butyl-4-(3-methoxy-9H-xanthen-9-yl)phenol (2g): The reaction was performed at

0.120 mmol scale of **1g**; yellow gummy solid (36.5 mg, 71% yield); $R_f = 0.3$ (5% EtOAc in hexane); ¹H NMR (400 MHz, CDCl₃) δ 7.22 – 7.18 (m, 1H), 7.12 – 7.10 (m, 2H), 7.07 (d, J = 8.9 Hz, 1H), 7.01 – 6.97 (m, 1H), 6.95 (s, 2H), 6.78 (dd, J = 8.9, 3.0 Hz, 1H), 6.65 (d, J = 2.9 Hz, 1H), 5.11 (s, 1H), 5.06 (s, 1H), 3.74 (s, 3H), 1.37 (s, 18H); ¹³C {¹H} NMR (100 MHz, CDCl₃) δ 155.4, 152.5, 151.9, 145.8, 136.7, 135.9, 129.6, 127.7, 126.4, 125.1, 124.8, 123.0, 117.2, 116.4, 114.1, 113.4, 55.8, 55.7, 45.1, 34.4, 30.4; FT-IR (thin film, neat): 2959, 1624, 1481, 1433, 1238, 753 cm⁻¹; HRMS (ESI): m/z calcd for C₂₈H₃₁O₃ [M–H]⁻ : 415.2273; found : 415.2294.

2,6-di-tert-butyl-4-(1,3-dimethoxy-9H-xanthen-9-yl)phenol (2h): The reaction was

performed at 0.112 mmol scale of **1h**; white solid (48.0 mg, 96% yield); R_f = 0.2 (5% EtOAc in hexane); ¹H NMR (400 MHz, CDCl₃) δ 7.26 – 7.23 (m, 1H), 7.21 – 7.19 (m, 1H), 7.16 – 7.14 (m, 1H), 7.05 (dd, *J* = 7.4, 1.2 Hz,

1H), 7.02 (s, 2H), 6.37 (d, J = 2.4 Hz, 1H), 6.21 (d, J = 2.3 Hz, 1H), 5.32 (s, 1H), 4.99 (s, 1H), 3.82 (s, 3H), 3.80 (s, 3H), 1.37 (s, 18H); ¹³C {¹H} NMR (100 MHz, CDCl₃) δ 159.7, 157.9, 153.3, 152.2, 152.0, 137.3, 135.3, 129.7, 127.4, 126.4, 124.3, 123.5, 116.3, 108.1, 94.1, 93.4, 55.70, 55.68, 55.54, 55.52, 38.95, 38.9, 34.4, 30.4; FT-IR (thin film, neat): 2956, 1603, 1454, 1229, 1143, 756 cm⁻¹; HRMS (ESI): m/z calcd for C₂₉H₃₃O₄ [M–H]⁻ : 445.2379; found : 445.2382.

2,6-di-tert-butyl-4-(4-methoxy-2-methyl-9H-xanthen-9-yl)phenol (2i): The reaction was

performed at 0.104 mmol scale of **1i**; white solid (38.0 mg, 76% yield); $R_f = 0.3$ (5% EtOAc in hexane); ¹H NMR (400 MHz, CDCl₃) δ 7.27 – 7.25 (m, 1H), 7.22 – 7.18 (m, 1H), 7.13 – 7.11 (m, 1H), 7.02 – 6.98 (m, 1H), 6.96 (s,

2H), 6.63 - 6.57 (m, 2H), 5.10 (s, 1H), 5.06 (s, 1H), 3.95 (s, 3H), 2.27 (s, 3H), 1.37 (s, 18H); ¹³C {¹H} NMR (100 MHz, CDCl₃) δ 152.4, 151.5, 147.7, 139.0, 137.2, 135.8, 132.4, 129.6, 127.6, 126.0, 125.3, 124.7, 123.3, 121.4, 116.8, 111.0, 56.3, 44.7, 34.4, 30.4, 21.4; FT-IR (thin film, neat): 2959, 1608, 1481, 1241, 1117, 753 cm⁻¹; HRMS (ESI): m/z calcd for C₂₉H₃₃O₃ [M– H]⁻: 429.2430; found : 429.2437.

2,6-di-tert-butyl-4-(2-fluoro-9H-xanthen-9-yl)phenol (2j): The reaction was performed at

0.099 mmol scale of **1***j*; white gummy solid (20 mg, 50% yield); $R_f = 0.4$ (5% EtOAc in hexane); ¹H NMR (400 MHz, CDCl₃) δ 7.23 – 7.19 (m, 1H), 7.12 – 7.06 (m, 3H), 7.02 – 6.98 (m, 1H), 6.93 – 6.87 (m, 3H), 6.79 (dd, J = 9.0,

3.0 Hz, 1H), 5.10 (s, 1H), 5.09 (s, 1H), 1.37 (s, 18H); ¹³C {¹H} NMR (100 MHz, CDCl₃) δ 158.6 (d, $J_{C-F} = 238.8$ Hz), 152.7, 151.5, 147.7 (d, $J_{C-F} = 1.0$ Hz), 136.3, 136.2, 129.6, 127.9, 127.0 (d, $J_{C-F} = 29.3$ Hz), 124.9, 124.6, 123.4, 117.6 (d, $J_{C-F} = 8.3$ Hz), 116.5, 115.6 (d, $J_{C-F} = 23.1$ Hz), 114.6 (d, $J_{C-F} = 23.7$ Hz), 44.8, 34.5, 30.4; ¹⁹F{¹H} NMR (376 MHz, CDCl₃) δ – 120.6; FT-IR (thin film, neat): 2956, 1567, 1450, 1434, 1264, 753 cm⁻¹; HRMS (ESI): m/zcalcd for C₂₇H₂₈FO₂ [M–H]⁻: 403.2073; found : 403.2072.

2,6-di-tert-butyl-4-(2-chloro-9H-xanthen-9-yl)phenol (2k): The reaction was performed at

0.107 mmol scale of **1k**; yellow gummy solid (39.5 mg, 79% yield); $R_f = 0.4$ (5% EtOAc in hexane); ¹H NMR (400 MHz, CDCl₃) δ 7.23 – 7.12 (m, 3H), 7.10 – 7.05 (m, 3H), 7.03 – 6.98 (m, 1H), 6.92 (s, 2H), 5.10 (s, 1H), 5.09 (s,

1H), 1.37 (s, 18H); ¹³C {¹H} NMR (100 MHz, CDCl₃) δ 152.7, 151.2, 150.2, 136.4, 136.1, 129.7, 129.3, 127.9, 127.8, 127.2, 124.9, 124.8, 123.6, 118.9, 117.9, 116.5, 44.6, 34.4, 30.4; FT-IR (thin film, neat): 2956, 1598, 1474, 1434, 1254, 753 cm⁻¹; HRMS (ESI): *m/z* calcd for C₂₇H₂₈ClO₂ [M–H]⁻ : 419.1778; found : 419.1784.

4-(1-bromo-9H-xanthen-9-yl)-2,6-di-tert-butylphenol (2l): The reaction was performed at

0.115 mmol scale of **1**l; yellow gummy solid (38.0 mg, 76% yield); $R_f = 0.4$ (5% EtOAc in hexane); ¹H NMR (400 MHz, CDCl₃) δ 7.40 (dd, J = 7.8, 1.4 Hz, 1H), 7.23 – 7.19 (m, 2H), 7.06 – 6.99 (m, 3H), 6.88 (s, 2H), 6.82 (t, J = 7.8Hz, 1H), 5.11 (s, 1H), 5.05 (s, 1H), 1.32 (s, 18H); ¹³C {¹H} NMR (100 MHz,

CDCl₃) δ 152.7, 152.6, 151.3, 148.4, 136.1, 136.08, 131.4, 129.5, 128.8, 127.9, 127.5, 125.3,

124.9, 123.9, 116.9, 110.7, 44.9, 44.8, 34.4, 30.4; FT-IR (thin film, neat): 2956, 1474, 1434, 1254, 754 cm⁻¹; HRMS (ESI): m/z calcd for C₂₇H₂₈BrO₂ [M–H]⁻: 463.1273; found : 463.1272.

2,6-di-*tert*-butyl-4-(1,3-dichloro-9H-xanthen-9-yl)phenol (2m): The reaction was

performed at 0.109 mmol scale of 1m; yellow gummy solid (36.0 mg, 72%) yield); $R_f = 0.4$ (5% EtOAc in hexane); ¹H NMR (400 MHz, CDCl₃) δ 7.28 (d, J = 2.4 Hz, 1H), 7.25 - 7.23 (m, 2H), 7.08 - 7.02 (m, 2H), 7.00 (dd, J = 2.4, 0.6Hz, 1H), 6.91 (s, 2H), 5.13 (s, 1H), 5.10 (s, 1H), 1.38 (s, 18H); ¹³C {¹H} NMR (100 MHz, $CDCl_3$) δ 152.9, 150.8, 146.3, 136.3, 135.7, 129.5, 128.6, 128.2, 128.1, 127.9, 127.6, 124.8, 124.5, 124.2, 122.5, 116.9, 44.76, 44.7, 34.5, 30.4; FT-IR (thin film, neat): 2959, 1595, 1449, 1264, 1183, 752 cm⁻¹; HRMS (ESI): m/z calcd for C₂₇H₂₇ClO₂[M–H]⁻ : 453.1388; found : 453.1393.

2,6-di-tert-butyl-4-(1,3-dibromo-9H-xanthen-9-yl)phenol (2n): The reaction was performed

at 0.009 mmol scale of **1n**; yellow gummy solid (37.0 mg, 74% yield); $R_f = 0.4$ (5% EtOAc in hexane); ¹H NMR (400 MHz, CDCl₃) δ 7.58 (d, J = 2.3 Hz, 1H), 7.24 - 7.23 (m, 2H), 7.18 (dd, J = 2.3, 0.6 Hz, 1H), 7.08 - 7.02 (m, 2H), 6.90(s, 2H), 5.13 (s, 1H), 5.10 (s, 1H), 1.37 (s, 18H); ${}^{13}C$ { ${}^{1}H$ } NMR (100 MHz, CDCl₃) δ 152.9, 151.0, 147.8, 136.3, 135.6, 133.7, 131.5, 129.5, 129.0, 128.1, 124.8, 124.7, 124.2, 116.9, 115.2, 111.6, 44.83, 44.8, 34.5, 30.4; FT-IR (thin film, neat): 2959, 1558, 1443, 1264, 1158, 753 cm⁻ ¹; HRMS (ESI): m/z calcd for C₂₇H₂₇Br₂O₂ [M–H]⁻: 541.0378; found : 541.0378.

4-(2-bromo-4-methoxy-9H-xanthen-9-yl)-2,6-di-tert-butylphenol (20): The reaction was performed at 0.101 mmol scale of 10; white solid (37.0 mg, 74% yield); R_f ρн ,^tBu = 0.3 (5% EtOAc in hexane); ¹H NMR (400 MHz, CDCl₃) δ 7.26 – 7.19 (m, 2H), 7.09 – 7.07 (m, 1H), 7.03 – 6.99 (m, 1H), 6.92 (s, 3H), 6.88 – 6.87 (m,

1H), 5.09 (s, 1H), 5.08 (s, 1H), 3.94 (s, 3H), 1.37 (s, 18H); ¹³C {¹H} NMR (100 MHz, CDCl₃) δ 152.7, 150.9, 148.8, 140.3, 136.4, 136.1, 129.6, 127.9 (2C), 124.8, 124.7, 123.9, 123.8, 116.8,

114.8, 113.4, 56.55, 56.5, 44.46, 44.4, 34.4, 30.4; FT-IR (thin film, neat): 2956, 1607, 1481, 1433, 1241, 752 cm⁻¹; HRMS (ESI): m/z calcd for C₂₈H₃₀BrO₃ [M–H]⁻: 493.1378; found : 493.1385.

2,6-di-tert-butyl-4-(2-phenyl-9H-xanthen-9-yl)phenol (2p): The reaction was performed at

0.108 mmol scale of **1p**; yellow gummy solid (37.5 mg, 75% yield); $R_f = 0.4$ (5% EtOAc in hexane); ¹H NMR (400 MHz, CDCl₃) δ 7.53 (d, J = 7.6 Hz, 2H), 7.47 (dd, *J* = 8.4, 2.0 Hz, 1H), 7.44 – 7.39 (m, 3H), 7.35 – 7.30 (m, 1H),

7.26 - 7.22 (m, 2H), 7.19 - 7.17 (m, 2H), 7.06 (d, J = 7.5 Hz, 1H), 7.02 (s, 2H), 5.24 (s, 1H), 5.09 (s, 1H), 1.40 (s, 18H); ¹³C NMR (100 MHz, CDCl₃) δ 152.6, 151.6, 151.3, 140.9, 136.9, 136.3, 136.0, 129.7, 128.8, 128.3, 127.7, 127.0, 126.9, 126.5, 125.8, 125.5, 124.8, 123.4, 116.9, 116.6, 44.8, 44.77, 34.4, 30.4; FT-IR (thin film, neat): 2958, 1601, 1478, 1434, 1235, 754 cm⁻ ¹; HRMS (ESI): m/z calcd for C₂₉H₃₃O₄ [M–H]⁻: 461.2481; found : 461.2494.

4-(12H-benzo[a]xanthen-12-yl)-2,6-di-tert-butylphenol (2q): The reaction was performed at

0.110 mmol scale of 1q; pale yellow solid (48.0 mg, 98% yield); $R_f = 0.4$ (5% EtOAc in hexane); ¹H NMR (400 MHz, CDCl₃) δ 8.10 (d, J = 8.4 Hz, 1H), 7.84 (d, J = 8.0 Hz, 1H), 7.80 (d, J = 8.9 Hz, 1H), 7.54 – 7.50 (m, 1H), 7.47 – 7.39 (m, 3H), 7.26 – 7.23 (m, 2H), 7.14 – 7.10 (m, 3H), 5.79 (s, 1H), 5.01 (s, 1H), 1.36 (s, 18H); ${}^{13}C$ { ${}^{1}H$ } NMR (100 MHz, CDCl₃) δ 152.3, 151.0, 149.8, 136.9, 135.8, 131.9, 130.9, 129.3, 128.7, 128.6, 127.5, 126.6, 126.2, 124.1, 124.0, 123.8, 123.3, 118.1, 117.3, 116.7, 41.74, 41.7, 34.3, 30.3; FT-IR (thin film, neat): 2959, 1582, 1485, 1433, 1245, 738 cm⁻¹; HRMS (ESI): m/z calcd for C₃₁H₃₁O₂ [M–H]⁻: 435.2324; found : 435.2332.

2,6-di-tert-butyl-4-(3-methoxy-12H-benzo[a]xanthen-12-yl)phenol (2r): The reaction was

performed at 0.085 mmol scale of 1r; pale yellow solid (48.0 mg, 96%) yield); $R_f = 0.3$ (5% EtOAc in hexane); ¹H NMR (400 MHz, CDCl₃) δ 7.97 - 7.94 (m, 1H), 7.66 (d, J = 8.0 Hz, 1H), 7.39 (d, J = 8.8 Hz, 2H), 7.26 – 7.19 (m, 2H), 7.17 – 7.14 (m, 2H), 7.09 – 7.04 (m, 3H), 5.70 (s, 1H), 4.95 (s, 1H), 3.90 (s, 3H), 1.31 (s, 18H); ¹³C {¹H} NMR (100 MHz, CDCl₃) δ 156.4, 152.3, 151.2, 148.4, 136.9, 135.8, 132.0, 129.3, 127.44, 127.4, 127.0, 126.2, 124.8, 123.9, 123.6, 118.8, 118.5, 117.7, 116.6, 107.2, 55.43, 55.4, 41.9, 34.3, 30.3; FT-IR (thin film, neat): 2956, 1611, 1514, 1433, 1247, 752 cm⁻¹; HRMS (ESI): *m/z* calcd for C₃₂H₃₃O₃ [M–H][–] : 465.2430; found : 465.2433.

4-(3-bromo-12H-benzo[a]xanthen-12-yl)-2,6-di-tert-butylphenol (2s): The reaction was

performed at 0.120 mmol scale of **1s**; yellow white solid (42.0 mg, 85% yield); $R_f = 0.4$ (5% EtOAc in hexane); ¹H NMR (400 MHz, CDCl₃) δ 7.94 (d, J = 2.0 Hz, 1H), 7.88 (d, J = 9.0 Hz, 1H), 7.66 (d, J = 9.0 Hz, 1H), 7.52

(dd, J = 9.0, 2.0 Hz, 1H), 7.42 (d, J = 8.9 Hz, 1H), 7.38 (d, J = 7.4 Hz, 1H), 7.26 – 7.13 (m, 2H), 7.11 – 7.07 (m, 1H), 7.01 (s, 2H), 5.67 (s, 1H), 4.98 (s, 1H), 1.31 (s, 18H); ¹³C {¹H} NMR (100 MHz, CDCl₃) δ 152.4, 150.7, 149.9, 136.6, 136.0, 132.1, 130.6, 130.5, 129.8, 129.3, 127.8, 127.6, 125.8, 125.1, 124.0, 123.9, 119.3, 117.9, 117.5, 116.7, 41.7, 34.3, 30.3; FT-IR (thin film, neat): 2958, 1627, 1488, 1434, 1249, 753 cm⁻¹; HRMS (ESI): m/z calcd for C₃₁H₃₀BrO₂ [M–H]⁻: 513.1429; found : 513.1427.

2,6-di-tert-butyl-4-(1-methyl-9H-xanthen-9-yl)phenol (2t): The reaction was performed at

0.124 mmol scale of **1t**; pale yellow solid (48.0 mg, 96% yield); m. p. = 88– 90 °C; $R_f = 0.4$ (5% EtOAc in hexane); δ 7.31 (dd, J = 7.6, 1.0 Hz, 1H), 7.21 – 7.12 (m, 3H), 7.09-7.07 (m, 1H), 7.03 (td, J = 7.4, 1.2 Hz, 1H), 6.99 (s, 2H),

6.91 (d, J = 7.3 Hz, 1H), 5.14 (s, 1H), 5.01 (s, 1H), 2.28 (s, 3H), 1.36 (s, 18H); ¹³C{¹H} NMR (100 MHz, CDCl₃) δ 152.5, 152.3, 151.5, 137.3, 136.2, 135.8, 129.1, 127.5, 127.4, 126.9, 125.1, 124.4, 124.1, 123.3, 116.6, 114.5, 42.83, 42.8, 34.4, 30.4, 19.4; FT-IR (thin film, neat): 2923,1656, 1462, 1436, 1257, 1155, 749 cm⁻¹; HRMS (ESI): m/z calcd for C₂₈H₃₁O₂ [M–H]⁻: 399.2324; found : 399.2325.

2,6-di-tert-butyl-4-(3-chloro-9H-xanthen-9-yl)phenol (2u): The reaction was performed at

0.118 mmol scale of **1u**; pale yellow solid (46.0 mg, 92 % yield); m. p. = 187–189 °C; $R_f = 0.4$ (5% EtOAc in hexane); ¹H NMR (400 MHz, CDCl₃) δ 7.24 – 7.20 (m, 1H), 7.16 – 7.09 (m, 3H), 7.05 – 7.00 (m, 2H), 6.99 – 6.97

(m, 1H), 6.94 (s, 2H), 5.12 (s, 1H), 5.10 (s, 1H), 1.38 (s, 18H); ${}^{13}C{}^{1}H$ NMR (100 MHz, CDCl₃) δ 152.7, 152.0, 151.1, 136.5, 136.1, 132.7, 130.7, 129.7, 127.9, 125.1, 124.9, 124.2, 123.7, 123.5, 116.8, 116.5, 44.1, 34.4, 30.4; FT-IR (thin film, neat): 2921, 1739, 1457, 1274, 929, 753 cm⁻¹; HRMS (ESI): m/z calcd for C₂₇H₂₈ClO₂ [M–H][–] : 419.1778; found : 419.1787.

6. Characterization of products 4b to 4j

2,6-di-tert-butyl-4-(4-ethyl-9H-thioxanthen-9-yl)phenol (4b): The reaction was performed

at 0.116 mmol scale of **3b**; yellow gummy solid (32.8 mg, 66% yield); $R_f = 0.4$ (5% EtOAc in hexane); ¹H NMR (400 MHz, CDCl₃) δ 7.45 (dd, J = 7.4, 1.3 Hz, 1H), 7.39 (dd, J = 7.4, 1.4 Hz, 1H), 7.26 – 7.17 (m, 4H), 7.14 – 7.12 (m, 1H),

6.89 (s, 2H), 5.23 (s, 1H), 5.03 (s, 1H), 2.87 – 2.81 (m, 2H), 1.32 (s, 18H), 1.28 (t, J = 7.5 Hz, 3H); ¹³C {¹H} NMR (100 MHz, CDCl₃) δ 152.4, 141.2, 138.5, 137.8, 135.3, 133.0, 132.2, 131.6, 129.1, 127.3, 127.2, 126.63, 126.6, 126.5, 126.4, 124.9, 53.65, 53.6, 34.4, 30.3, 27.4, 14.7; FT-IR (thin film, neat): 2959, 1588, 1434, 1235, 1120, 739 cm⁻¹; HRMS (ESI): m/z calcd for C₂₉H₃₃OS [M–H]⁻: 429.2252; found : 429.2260.

2,6-di-tert-butyl-4-(2-methoxy-9H-thioxanthen-9-yl)phenol (4c): The reaction was

performed at 0.115 mmol scale of **3c**; pale yellow solid (42.0 mg, 84% yield); m. p. = 216–218 °C; $R_f = 0.3$ (5% EtOAc in hexane); ¹H NMR (400 MHz, CDCl₃)) δ 7.45 – 7.43 (m, 1H), 7.39 – 7.35 (m, 2H), 7.26 – 7.19 (m, 2H),

6.97 (s, 3H), 6.82 (dd, J = 8.5, 2.7 Hz, 1H), 5.18 (s, 1H), 5.09 (s, 1H), 3.81 (s, 3H), 1.36 (s, 18H), $^{13}C{^{1}H}$ NMR (100 MHz, CDCl₃) δ 158.8, 152.5, 139.7, 138.0, 135.5, 133.7, 131.2, 129.3, 127.9, 127.0, 126.7, 126.5, 125.0, 124.2, 115.0, 112.9, 55.6, 55.56, 53.7, 53.65, 34.4,

30.3; FT-IR (thin film, neat): 2957, 1598, 1466, 1434, 1236, 739 cm⁻¹; HRMS (ESI): *m/z* calcd for C₂₈H₃₁O₂S [M–H]⁻ : 431.2045; found : 431.2054.

2,6-di*tert*-**butyl-4**-(**2-chloro-9H-thioxanthen-9-yl)phenol (4d):** The reaction was performed at 0.115 mmol scale of **3d**; white solid (33.0 mg, 66% yield); $R_f = 0.4$ (5% EtOAc in hexane); ¹H NMR (400 MHz, CDCl₃) δ 7.43 (dd, J = 7.0, 1.4 Hz, 1H), 7.38 – 7.35 (m, 3H), 7.28 – 7.19 (m, 3H), 6.93 (s, 2H), 5.17 (s, 1H), 5.10 (s, 1H), 1.35 (s, 18H); ¹³C {¹H} NMR (100 MHz, CDCl₃) δ 152.7, 139.9, 137.4, 135.7, 132.5, 132.3, 131.7, 131.0, 129.5, 129.4, 128.1, 127.0, 126.94, 126.9, 126.8, 124.8, 53.1, 34.4, 30.3; FT-IR (thin film, neat): 2958, 1740, 1432, 1320, 805, 753 cm⁻¹; HRMS (APCI): m/z calcd for C₂₇H₂₈ClOS [M–H]⁻: 435.1549; found : 435.1542.

4-(2-bromo-9H-thioxanthen-9-yl)-2,6-di-tert-butylphenol (4e): The reaction was performed

at 0.103 mmol scale of **3e**; pale yellow solid (36.5 mg, 73% yield); $R_f = 0.4$ (5% EtOAc in hexane); ¹H NMR (400 MHz, CDCl₃) δ 7.52 (d, J = 1.9 Hz, 1H), 7.42 – 7.39 (m, 1H), 7.35 – 7.26 (m, 3H), 7.25 – 7.18 (m, 2H), 6.91 (s,

2H), 5.15 (s, 1H), 5.08 (s, 1H), 1.34 (s, 18H); ¹³C {¹H} NMR (100 MHz, CDCl₃) δ 152.7, 140.1, 137.4, 135.7 132.4, 132.3, 132.2, 131.0, 129.6, 129.5, 128.3, 127.0, 126.93, 126.9, 124.8, 120.2, 53.0, 52.9, 34.4, 30.3; FT-IR (thin film, neat): 2959, 1462, 1436, 1235, 1156, 751 cm⁻¹; HRMS (ESI): *m/z* calcd for C₂₇H₂₈BrOS [M–H][–] : 479.1044; found : 479.1054.

2,6-di-*tert*-**butyl-4-(2,5-dichloro-9H-thioxanthen-9-yl)phenol** (**4f**): The reaction was performed at 0.136 mmol scale of **3f**; white solid (34.0 mg, 74% yield); m. p. = 178–180 °C; $R_f = 0.4$ (5% EtOAc in hexane); ¹H NMR (400 MHz, CDCl₃) δ 7.52 – 7.49 (m, 1H), 7.48 – 7.45 (m, 1H), 7.34 – 7.28 (m, 3H), 7.24 – 7.22 (m, 1H), 6.90 (s, 2H), 5.98 (s, 1H), 5.04 (s, 1H), 1.29 (s, 18H); ¹³C{¹H} NMR (100 MHz, CDCl₃)

 $\delta \ 152.7, \ 139.8, \ 137.4, \ 135.7, \ 132.5, \ 132.3, \ 131.7, \ 131.0, \ 129.5, \ 129.4, \ 128.0, \ 127.0, \ 126.93, \ 12$

126.9, 126.8, 124.8, 53.1, 34.4, 30.3; FT-IR (thin film, neat): 2958, 1592, 1459, 1155, 809, 742 cm⁻¹; HRMS (ESI): m/z calcd for C₂₇H₂₇Cl₂OS [M–H]⁻: 469.1160; found : 469.1183.

2,6-di-tert-butyl-4-(3-chloro-9H-thioxanthen-9-yl)phenol (4g): The reaction was performed

at 0.115 mmol scale of 3g; yellow gummy solid (29.0 mg, 58% yield); m. p. = 138–140 °C; $R_f = 0.4$ (5% EtOAc in hexane); ¹H NMR (400 MHz, CDCl₃) δ 7.44 – 7.42 (m, 2H), 7.37 – 7.35 (m, 1H), 7.30 – 7.28 (m, 1H), 7.26 – 7.19 (m, 3H), 6.89 (s, 2H), 5.19 (s, 1H), 5.08 (s, 1H), 1.34 (s, 18H); ${}^{13}C{}^{1}H$ NMR (100 MHz, CDCl₃) *δ* 152.6, 137.7, 136.7, 135.6, 135.0, 132.31, 132.3, 131.1, 130.4, 129.5, 127.0, 126.9 (2C), 126.7, 126.6, 124.8, 52.6, 52.59, 34.4, 30.3; FT-IR (thin film, neat): 2957, 1580, 1464, 1435, 1235, 746 cm⁻¹; HRMS (ESI): m/z calcd for C₂₇H₂₈ClOS [M–H]⁻: 435.1549; found : 435.1566.

4-(3-bromo-9H-thioxanthen-9-yl)-2,6-di-tert-butylphenol The (4h): reaction was

p. = 196–198 °C; $R_f = 0.4$ (5% EtOAc in hexane); ¹H NMR (400 MHz, CDCl₃) δ 7.29 (d, J = 2.0 Hz, 1H), 7.23 – 7.19 (m, 1H), 7.11 (dd, J = 8.1, 1.7Hz, 2H), 7.08 (dd, J = 7.8, 1.6 Hz, 1H), 7.04 – 7.01 (m, 1H), 7.00 – 6.95 (m, 1H), 6.91 (s, 2H), 5.08 (s, 2H), 1.36 (s, 18H); ${}^{13}C{}^{1}H$ NMR (100 MHz, CDCl₃) δ 152.7, 152.1, 151.1, 136.4, 136.1, 131.0, 129.7, 127.9, 126.3, 125.0, 124.9, 124.7, 123.7, 120.4, 119.7, 116.5, 44.2, 44.16, 34.4, 30.4; FT-IR (thin film, neat): 2956, 1595, 1475, 1274, 917, 755 cm⁻¹; HRMS (ESI): m/z calcd for C₂₇H₂₉BrOS [M+H]⁺ : 481.1201; found : 481.1217.

2,6-di-tert-butyl-4-(3-methoxy-9H-thioxanthen-9-yl)phenol (**4i**): The reaction was performed at 0.114 mmol scale of **3i**; pale yellow solid (36.4 mg, 73% yield); OH ^tBu ^fBı m. p. = 90–92 °C; $R_f = 0.3$ (5% EtOAc in hexane); ¹H NMR (400 MHz, CDCl₃) δ 7.44 – 7.42 (m, 1H), 7.39 – 7.37 (m, 1H), 7.28 (d, J = 8.5 Hz, 1H),

7.26 – 7.19 (m, 2H), 7.10 (d, J = 2.6 Hz, 1H), 6.93 (s, 2H), 6.81 (dd, J = 8.4, 2.6 Hz, 1H), 5.19

(s, 1H), 5.06 (s, 1H), 3.82 (s, 3H), 1.35 (s, 18H); ${}^{13}C{}^{1}H$ NMR (100 MHz, CDCl₃) δ 158.2, 152.4, 138.4, 135.4, 134.1, 132.8, 132.1, 130.3, 130.2, 129.4, 128.5, 126.9, 126.6, 124.8, 113.0, 111.6, 55.6, 55.5, 52.34, 52.3, 34.4, 30.3, FT-IR (thin film, neat): 2956, 1600, 1435, 1246, 1056, 739 cm⁻¹; HRMS (ESI): *m/z* calcd for C₂₈H₃₂O₂S [M–H]⁻: 431.2045; found : 435.2049.

4-(12H-benzo[a]thioxanthen-12-yl)-2,6-di-tert-butylphenol (4j): The reaction was

performed at 0.110 mmol scale of **3j**; white solid (35.0 mg, 70% yield); m. p. = 84–86 °C; $R_f = 0.4$ (5% EtOAc in hexane); ¹H NMR (400 MHz, CDCl₃) δ 8.35 (d, J = 8.6, Hz, 1H), 7.87 – 7.85 (m, 1H), 7.73 (d, J = 8.5 Hz, 1H), 7.60 – 7.56

(m, 1H), 7.52 (d, J = 8.6 Hz, 1H), 7.49 – 7.45 (m, 2H), 7.30 (td, J = 7.4, 1.4 Hz, 1H), 7.26 – 7.22 (m, 2H), 6.90 (s, 2H), 6.24 (s, 1H), 4.97 (s, 1H), 1.24 (s, 18H); ¹³C{¹H} NMR (100 MHz, CDCl₃) δ 152.4, 137.3, 135.3, 132.8, 132.6, 132.3, 132.2, 131.8, 131.0, 130.0, 129.0, 127.2, 127.0, 126.8, 126.75, 126.7, 125.4, 125.2, 124.4, 122.9, 47.0, 34.3, 30.2; FT-IR (thin film, neat): 2956, 1592, 1435, 1235, 806, 740 cm⁻¹; HRMS (ESI): m/z calcd for C₃₁H₃₂OS [M–H]⁻: 451.2096; found : 451.2088.

7. Characterization of products 6b to 6e

2,6-di-tert-butyl-4-(10-methyl-10H-indolo[1,2-a]indol-11-yl)phenol (6b): The reaction was

performed at 0.094 mmol scale of **5b**; Greyish gummy solid (37 mg, 92% yield); $R_f = 0.4$ (5% EtOAc in hexane); ¹H NMR (400 MHz, CDCl₃) δ 7.89 (d, J = 7.9 Hz, 1H), 7.82 (d, J = 8.2 Hz, 1H), 7.62 – 7.60 (m, 1H), 7.56 (s, 2H), 7.44 – 7.32 (m, 3H), 7.27 – 7.23 (m, 1H), 7.14 (td, J = 7.5, 0.6 Hz, 1H), 5.22 (s, 1H), 4.55 (q, J = 7.2 Hz 1H), 1.57 – 1.55 (m, 21H); ¹³C{¹H} NMR (100 MHz, CDCl₃) δ 152.3, 143.4, 140.6, 139.8, 136.1, 131.9, 130.8, 128.0, 125.6, 124.9, 124.8, 122.6, 122.1, 120.7, 120.3, 112.5, 110.9, 110.5, 36.3, 34.7, 30.6, 17.6; FT-IR (thin film, neat FT-IR (thin film, neat): 3634, 2955, 1603, 1492, 1312, 740 cm⁻¹; HRMS (ESI): *m*/z calcd for C₃₀H₃₄NO [M+H]⁺ : 424.2640; found : 424.2620.

4-(9-chloro-10H-indolo[1,2-a]indol-11-yl)-2,6-di-tert-butylphenol (6c): The reaction was

performed at 0.009 mmol scale of **5c**; Greyish gummy solid (36 mg, 90% yield); $R_f = 0.4$ (5% EtOAc in hexane); ¹H NMR (400 MHz, CDCl₃) δ 7.93 (d, J = 7.9 Hz, 1H), 7.76 (d, J = 8.0 Hz, 1H), 7.59 (d, J = 1.1 Hz, 1H), 7.54 (s, 2H),

7.52 – 7.49 (m, 1H), 7.36 – 7.32 (m, 1H), 7.26 (s, 2H), 5.25 (s, 1H), 4.21 (s, 2H), 1.53 (s, 18H); $^{13}C\{^{1}H\}$ NMR (100 MHz, CDCl₃) δ 152.4, 137.7, 136.5, 135.8, 131.5, 131.1, 130.9, 129.2, 125.9, 124.4, 122.2, 122.19, 121.2, 120.5, 115.0, 112.5, 111.6, 110.9, 34.7, 30.6, 29.6; FT-IR (thin film, neat FT-IR (thin film, neat): 3674, 2926, 1743, 1493, 1378, 767 cm⁻¹; HRMS (ESI): *m/z* calcd for C₂₉H₃₁ClNO [M+H]⁺ : 444.2094; found : 444.2076.

2,6-di-tert-butyl-4-(9-bromo-10H-indolo[1,2-a]indol-11-yl)phenol (6d): The reaction was

performed at 0.081mmol scale of **5d**; Greyish gummy solid (38 mg, 95% yield); $R_f = 0.4$ (5% EtOAc in hexane); ¹H NMR (400 MHz, CDCl₃) δ 7.94 (d, J = 7.8 Hz, 1H), 7.76 (d, J = 8.0 Hz, 1H), 7.59 – 7.58 (m, 1H), 7.55 (s, 2H),

7.38 – 7.34 (m, 2H), 7.31 – 7.26 (m, 1H), 7.09 (dd, J = 7.9, 1.8 Hz, 1H), 5.26 (s, 1H), 4.15 (s, 2H), 1.55 (s, 18H); ¹³C{¹H} NMR (100 MHz, CDCl₃) δ 152.4, 142.4, 138.3, 136.4, 133.7, 132.0, 131.6, 131.1, 126.6, 125.8, 124.4, 122.3 (2C), 121.3, 120.4, 112.6, 111.1, 111.0, 34.7, 30.6, 29.3; 3640, 2924, 1599, 1493, 1305, 736 cm⁻¹; HRMS (ESI): m/z calcd for C₂₉H₃₁BrNO [M+H]⁺ : 488.1589; found : 488.1613.

2,6-di-tert-butyl-4-(7-methoxy-10H-indolo[1,2-a]indol-11-yl)phenol (6e): The reaction was

performed at 0.091 mmol scale of **5e**; Greyish gummy solid (30 mg, 75% yield); $R_f = 0.3$ (5% EtOAc in hexane); ¹H NMR (400 MHz, CDCl₃) δ 7.96 (d, J = 7.9 Hz, 1H), 7.77 (d, J = 8.0 Hz, 1H), 7.58 (s, 2H), 7.52 (d, J = 8.5 Hz,

1H), 7.35 – 7.31 (m, 1H), 7.27 – 7.23 (m, 1H), 7.09 (d, J = 2.4 Hz, 1H), 6.93 (dd, J = 8.5, 2.5 Hz, 1H), 5.24 (s, 1H), 4.20 (s, 2H), 3.86 (s, 3H), 1.55 (s, 18H); ¹³C{¹H} NMR (100 MHz, CDCl₃) δ 155.9, 152.1, 138.3, 136.4, 135.5, 135.1, 131.0, 130.9, 126.4, 124.3, 121.8, 120.5,

120.3, 113.1, 112.3, 111.7, 110.64, 110.6, 56.0, 55.96, 34.7, 30.6, 30.1; FT-IR (thin film, neat FT-IR (thin film, neat): 3644, 2922, 1599, 1498, 1247, 737 cm⁻¹; HRMS (ESI): *m/z* calcd for C₃₀H₃₄NO₂ [M+H]⁺ : 440.2590; found : 440.2575.

8. Unsuccessful attempts

A reaction has been tried with a *p*-QM having isopropyl groups in the 2- and 6-positions of *p*-QM. In this case, we found that the reaction was proceeding. However, unfortunately, we were unable to isolate the product purest form. For reference, spectra for both the starting material as well as the product are given at the end of the SI.

Scheme 4. Reaction with *p*-QM having isopropyl groups.

Other electrophiles such as cinnamaldehyde and ethyl-cinnamate were also subjected to react under the standard reaction condition However, in those cases, we did not observe any product formation under standard reaction condition as well as at elevated temperature.

Scheme 5. Reaction with other Electrophiles

9. References:

1. (a) W. –D. Chu, L. –F. Zhang, X. Bao, X. –H. Zhao, C. Zeng, J. –Y. Du, G. –B. Zhang, F. –X. Wang, X. –Y. Ma, and C. –A. Fan, *Angew. Chem. Int. Ed.*, 2013, **52**, 9229. (b) V. Reddy and R. V. Anand, *Org. Lett.* 2015., **17**, 3390.

¹H NMR (400 MHz, CDCl₃) spectrum of **1a**

¹H NMR (400 MHz, CDCl₃) spectrum of **1b**

1 H NMR (400 MHz, CDCl₃) spectrum of **1c**

1 H NMR (400 MHz, CDCl₃) spectrum of **1d**

¹H NMR (400 MHz, CDCl₃) spectrum of **1e**

1 H NMR (400 MHz, CDCl₃) spectrum of **1f**

^1H NMR (400 MHz, CDCl₃) spectrum of 1g

^1H NMR (400 MHz, CDCl₃) spectrum of 1h

¹H NMR (400 MHz, CDCl₃) spectrum of **1i**

¹H NMR (400 MHz, CDCl₃) spectrum of 1j

¹³C NMR (100 MHz, CDCl₃) spectrum of **1k**

^{13}C NMR (100 MHz, CDCl₃) spectrum of 11

¹³C NMR (100 MHz, CDCl₃) spectrum of **1m**

¹³C NMR (100 MHz, CDCl₃) spectrum of **1n**

¹³C NMR (100 MHz, CDCl₃) spectrum of **10**

¹³C NMR (100 MHz, CDCl₃) spectrum of **1p**

^{13}C NMR (100 MHz, CDCl₃) spectrum of 1q

¹³C NMR (100 MHz, CDCl₃) spectrum of **1r**

¹³C NMR (100 MHz, CDCl₃) spectrum of **1t**

¹³C NMR (100 MHz, CDCl₃) spectrum of **1u**

¹³C NMR (100 MHz, CDCl₃) spectrum of **3a**

¹³C NMR (100 MHz, CDCl₃) spectrum of **3b**

¹³C NMR (100 MHz, CDCl₃) spectrum of **3c**

¹³C NMR (100 MHz, CDCl₃) spectrum of **3e**

¹³C NMR (100 MHz, CDCl₃) spectrum of **3f**

^{13}C NMR (100 MHz, CDCl₃) spectrum of 3g

¹³C NMR (100 MHz, CDCl₃) spectrum of **3h**

¹³C NMR (100 MHz, CDCl₃) spectrum of **3i**

¹³C NMR (100 MHz, CDCl₃) spectrum of **3j**

¹³C NMR (100 MHz, CDCl₃) spectrum of 5a

^{13}C NMR (100 MHz, CDCl₃) spectrum of 5b

7.0 10.0 9.5 9.0 8.5 8.0 7.5 6.5 6.0 5.5 5.0 f1 (ppm) 4.5 4.0 3.5 3.0 2.5 2.0 1.5 1.0 0.5 0.0

13 C NMR (100 MHz, DMSO-*d*₆) spectrum of **5c**

13 C NMR (100 MHz, DMSO- d_6) spectrum of **5d**

¹³C NMR (100 MHz, CDCl₃) spectrum of **5e**

¹³C {¹H} NMR (100 MHZ, CDCl₃) spectrum of **2a**

^{13}C {¹H} NMR (100 MHZ, CDCl₃) spectrum of 2c

^{13}C {¹H} NMR (100 MHZ, CDCl₃) spectrum of 2d

^{13}C {¹H} NMR (100 MHZ, CDCl₃) spectrum of **2e**

S72

10.0 7.0 5.0 f1 (ppm) 4.0 1.5 . 9.5 . 9.0 . 8.5 8.0 7.5 6.5 6.0 5.5 4.5 3.5 3.0 2.5 2.0 1.0 0.5 0.0

S74

^{13}C {¹H} NMR (100 MHZ, CDCl₃) spectrum of **2j**

-10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 f1 (ppm)

H NMR (400 MHZ, CDCl₃) spectrum of 2k

 ^{113}C {¹H} NMR (100 MHZ, CDCl₃) spectrum of 2k

^1H NMR (400 MHZ, CDCl₃) spectrum of 2l

¹H NMR (400 MHZ, CDCl₃) spectrum of 2m

S79

1 H NMR (400 MHZ, CDCl₃) spectrum of **20**

¹H NMR (400 MHZ, CDCl₃) spectrum of **2p**

¹H NMR (400 MHZ, CDCl₃) spectrum of 2q

¹H NMR (400 MHZ, CDCl₃) spectrum of **2r**

¹H NMR (400 MHZ, CDCl₃) spectrum of 2s

¹H NMR (400 MHZ, CDCl₃) spectrum of 2t

¹H NMR (400 MHZ, CDCl₃) spectrum of 2u

¹H NMR (400 MHZ, CDCl₃) spectrum of 4a

^1H NMR (400 MHZ, CDCl₃) spectrum of 4b

¹H NMR (400 MHZ, CDCl₃) spectrum of **4c**

 1 H NMR (400 MHZ, CDCl₃) spectrum of **4d**

¹H NMR (400 MHZ, CDCl₃) spectrum of **4e**

^1H NMR (400 MHZ, CDCl₃) spectrum of 4f

^1H NMR (400 MHZ, CDCl₃) spectrum of 4g

^1H NMR (400 MHZ, CDCl_3) spectrum of 4h

^1H NMR (400 MHZ, CDCl₃) spectrum of 4i

¹H NMR (400 MHZ, CDCl₃) spectrum of **4j**

¹H NMR (400 MHz, CDCl₃) spectrum of **6a**

¹H NMR (400 MHz, CDCl₃) spectrum of **6b**

¹H NMR (400 MHz, CDCl₃) spectrum of 6c

¹H NMR (400 MHz, CDCl₃) spectrum of **6d**

¹H NMR (400 MHz, CDCl₃) spectrum of **6e**

¹H NMR (400 MHZ, CDCl₃) spectrum of **7a**

¹H NMR (400 MHZ, CDCl₃) spectrum of 8a

¹H NMR (400 MHZ, CDCl₃) spectrum of **9a**

S104

120 110 100 90 f1 (ppm)

200 190 180 170 160 150 140 130

70

60 50 40 30 20

. 80 10 0

 ^{13}C {¹H} NMR (100 MHZ, CDCl₃) spectrum of **10a**

