Electronic Supplementary Material (ESI) for Organic & Biomolecular Chemistry. This journal is © The Royal Society of Chemistry 2023

Electronic Supplementary Information

Alkaline Phosphatase (ALP) Activatable Small Molecule-based Prodrugs for Cancer Theranostics

Kartikay Tyagi^a, Reena Kumari^a and V. Venkatesh^{*a}

^a Laboratory of Chemical Biology and Medicinal Chemistry, Department of Chemistry, Indian

Institute of Technology Roorkee, Uttarakhand-247667, India, E-mail:

venkatesh.v@cy.iitr.ac.in

Table of Contents		Page No.
•	General experimental details	2
•	Synthetic route of proposed prodrugs	3
•	Fluorescence emission spectra of generated fluorophore	
	and GSH depletion by DTNB assay	4
•	HRMS spectrum of <i>p</i> -naphthoquinone methide and GSH adduct	5
•	Cellular images of generated turn-on fluorophore	6
•	¹ H, ¹³ C, ³¹ P, ¹⁹ F NMR and HRMS spectra	7-36

General Experimental Details: All solvents and reagents were used, as received from the suppliers. TLC was performed on Merck Kiesel gel 60, F₂₅₄ plates with the layer thickness of 0.25 mm. Column chromatography was performed on silica gel (100-200 mesh) using a gradient of ethyl acetate and hexane as mobile phase. ¹ H NMR spectral data were collected at, 500 MHz (JEOL), ¹³C NMR were recorded at 125 MHz, ³¹P NMR were recorded at 202 MHz, and ¹⁹F NMR spectra were recorded at 471 MHz. ¹H NMR spectral data are given as chemical shifts in ppm followed by multiplicity (s- singlet; d- doublet; t- triplet; q-quartet; m- multiplet), number of protons and coupling constants. ¹³C NMR, ³¹P NMR, and ¹⁹F NMR chemical shifts are expressed in ppm. Fluorescence spectra was recorded using Horiba Fluoromax. Results obtained from MTT assay, GSH depletion assay, and DCFH-DA assays were recorded by Biotek synergy H1 plate reader. All the biological analysis were completed using GraphPad Prism software.

Fig. S1 Stepwise synthetic route for prodrug synthesis

Fig. S2: (a) Reduction of 6-hydroxy-2-naphthaldehyde into of 6-(hydroxymethyl)naphthalen-2-ol; (b) Fluorescence spectrum of 6-(hydroxymethyl)naphthalen-2-ol and fluorophore generated from ALP triggered hydrolysis of 5-FUPD.

Fig. S3: Assessment of GSH depletion by treatment with prodrugs using DTNB assay. GSH, prodrug, and ALP solutions were incubated at 37 ^oC for 20 minutes and DTNB reagent was added. Depletion in GSH levels was observed by taking absorption spectrum using UV-Vis. spectrophotometer.

Fig. S4: HRMS spectrum of captured *p*-naphthoquinone methide and GSH adduct.

Fig. S5: Fluorescence images (a, b) untreated cells brightfield image and untreated cells under blue channel; (c, d) brightfield and fluorescence images of 5-FUPD under blue channel; (e, f) brightfield and fluorescence images of SAHAPD under blue channel.

$^{\rm 13}C$ NMR of compound 2 (CDCl_3)

8

³¹P NMR of compound 2 (CDCl₃)

9

10

¹H NMR of compound 3 (CDCl₃)

S10

 ^{31}P NMR of compound 3 (CDCl₃)

¹H NMR of compound 5 (CDCl₃)

S14

S15

^{31}P NMR of compound 5 (CDCl₃)

$^{19}\mathsf{F}$ NMR of compound 5 (CDCl₃)

S17

S18

¹³C NMR of compound 6 (CDCl₃)

S20

 ^{31}P NMR of compound 6 (CDCl₃)

S21

S22

S23

S24

³¹P NMR of compound 7 (DMSO-d₆)

S26

¹³C NMR of compound 8 (DMSO-d₆)

³¹P NMR of compound 8 (DMSO-d₆)

S29

S30

S31

S32

¹³C NMR of compound 9 (DMSO-d₆)

S33

³¹P NMR of compound 9 (DMSO-d₆)

S34

S35