Electronic Supplementary Material (ESI) for Organic & Biomolecular Chemistry. This journal is © The Royal Society of Chemistry 2023

Supporting information

An electrochemical tandem oxidative azidation and

intramolecular cyclization strategy for the synthesis of

quinoxaline derivatives

Kai Zhou, Shendan Xia, Zhiwei Chen*

College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou

310014, P.R. China.

*Email: <u>chenzhiwei@zjut.edu.cn</u>

Table of contents

1. General information	S2
2. Typical experimental procedure	S2
3. Large-scale experimental procedure	S4
4. Cyclic voltammetry experiments	S4
5. References	S5
6. Analytical data of the synthesized derivatives	S5
7. NMR spectra of products	S13

1. General information

All reagents were obtained from commercial sources and used without further purification unless otherwise indicated. Silica gel for column chromatography was purchased from Qingdao Haiyang Chemical Co., Ltd. Reactions were stirred using Teflon-coated magnetic stir bars. Thin-layer chromatography (TLC) was used to monitor the reaction. Melting points were determined using a Büchi B-540 capillary melting point apparatus. ¹H NMR (400 MHz), ¹³C NMR (100 MHz) and ¹⁹F NMR (376 MHz) spectra were recorded with CDCl₃. Chemical shifts are reported downfield from TMS (= 0) for ¹H NMR. For ¹³C {1H} NMR, chemical shifts are reported in the scale relative to CDCl₃ (= 77.0). High resolution mass spectrometry (HRMS) analysis was performed on an Agilent 1290–6540 UHPLC Q-Tof HR-MS System (ESI) spectrometer.

2. Typical experimental procedure¹⁻⁴

$$F_{3}C$$
 O O O H H^{2} $COOE1$ H CF_{3} $COOE1$ H CF_{3} $COOE1$ H CF_{3} $COOE1$

A 50 mL single-mouth flask was charged with ethyl trifluoroacetoacetate (5.0 mmol, 920.5 mg), aniline (7.5 mmol, 698.5 mg), DCM (3.0 mL), $Sc(OTf)_2$ (0.25 mmol, 123.0 mg). The reaction mixture was stirred at 40 °C for 9 hours and monitored by TLC during the reaction. When the reaction was finished, the solution was extracted with diethyl ether (2 × 10 mL). After the solvent was evaporated under vacuum, The crude products were separated by flash column chromatography on Et₃N pre-treated silica gel using petroleum ether: ethyl ether = (20:1, v/v) as eluent.

A 50 mL single-mouth flask was charged with ethyl benzoyl acetate (5 mmol, 961.1 mg), aniline (7.5 mmol, 698.5 mg), $InCl_3$ (0.5 mmol, 221.2 mg). The reaction mixture was stirred at room temperature for 12 hours and monitored by TLC during the reaction. When the reaction was finished, the solution was extracted with diethyl ether (2 × 10 mL). After the solvent was evaporated under vacuum, The crude products were separated by flash column chromatography on Et₃N pre-treated silica gel using petroleum ether: ethyl ether = (20:1, v/v) as eluent.

Take a 50 mL single-necked round-bottomed flask that was dried in the oven in aniline 698.5 advance, add (7.5)mmol, then slowly mg), add dimethylacetylenedicarboxylate (5.0 mmol, 710.5 mg), and mix thoroughly to form a uniform paste. The reaction mixture was stirred at room temperature for 30 min and monitor the reaction process by TLC. After the reaction was completed, using petroleum ether/ethyl acetate = (15:1, v/v) as eluent to quickly purify by silica gel column pretreated with Et₃N to obtain the desired product.

In an oven-dried undivided three-necked bottle added enamine ester **1aa** (0.5mmol , 122.6 mg), MeCN (5.0 mL), TMSN₃(1.0 mmol, 115.0 mg), "Bu₄NPF₆(0.5 mmol, 193.5 mg), KI (1.0 mmol, 166.0 mg). The bottle was equipped with platinum plate (20 mm \times 15 mm) as the anode and platinum plate (20 mm \times 15 mm) as the action mixture was stirred and electrolyzed at a constant current of 3.0 mA for 6 hours at room temperature. When the reaction was finished, the solution was extracted with diethyl ether (3 \times 10 mL). After the solvent was evaporated under

vacuum, the residues were purified by flash column chromatography on silica gel (petroleum ether: ethyl ether = 10:1, v/v) to give the desired product.

Figure S1. Electrolysis setup

3. Large-scale experimental procedure

In an oven-dried undivided three-necked bottle added enamine ester **1aa** (5.0 mmol, 1.23 g), MeCN (20.0 mL), TMSN₃ (10.0 mmol, 1.12 g), ${}^{n}Bu_{4}NPF_{6}$ (5.0 mmol, 1.94 g), KI (10.0 mmol, 1.66 g). The bottle was equipped with platinum plate (20 mm × 15 mm) as the anode and platinum plate (20 mm × 15 mm) as the cathode. The reaction mixture was stirred and electrolyzed at a constant current of 6.0 mA for 16 hours at room temperature. When the reaction was finished, the solution was extracted with diethyl ether (3 × 20 mL). After the solvent was evaporated under vacuum, the residues were purified by flash column chromatography on silica gel (petroleum ether: ethyl ether = 10:1, v/v) to give the desired product.

4. Cyclic voltammetry experiments

Cyclic voltammetry was performed in a three-electrode bottle (10.0 mL) by electrochemical analyzer at room temperature. The working electrode was a steady glassy carbon disk electrode, the counter electrode a platinum wire. The reference was an Ag/AgCl electrode submerged in saturated aqueous KCl solution. In all experiments, 10 mL of CH₃CN containing 0.1 M n Bu₄NPF₆ were poured into the electrochemical cell. The scan rate is 0.04 V/s, ranging from 0.0 V to 2.0 V.

5. References

- J. S. Yadav, V. N. Kumar, R. S. Rao, A. D. Priyadarshini, P. P. Rao, B. V. S. Reddy and K. Nagaiah, *J. Mol. Catal. A: Chem.*, 2006, **256**, 234-237.
- 2. D. Ramanathan and K. Pitchumani, Eur. J. Org. Chem., 2015, 2015, 463-467.
- 3. H. Ma, D. Li and W. Yu, Org. Lett., 2016, 18, 868-871.
- 4. G. Choudhary and R. K. Peddinti, Green Chem., 2011, 13, 3290-3299.

6. Analytical data of the synthesized derivatives

ethyl -4,4,4-trifluoro-2-imino-3-(phenylimino)butanoate (2aa)

HN COOEt Vellow oil; ¹H NMR (400 MHz, CDCl₃) δ 12.06 (s, 1H), 7.32 (t, J = 7.7 Hz, 2H), 7.20 (t, J = 7.4 Hz, 1H), 6.93 (d, J = 7.4 Hz, 2H), 4.04 (q, J = 7.2 Hz, 2H), 1.09 (t, J = 7.2 Hz, 3H).¹³C NMR (100 MHz, CDCl₃) δ 162.0, 157.1, 152.4 (q, $^{2}J_{C-F} = 35.7$ Hz), 145.9, 129.1, 127.1, 120.6, 118.8 (q, $^{1}J_{C-F} = 279.1$ Hz), 63.4, 13.5. ¹⁹F NMR (376 MHz, CDCl₃) δ -69.61. HRMS-ESI (m/z): calcd for C₁₂H₁₂F₃N₂O₂⁺ [M+H]⁺ 273.0845, found 273.0846. ethyl 3-(trifluoromethyl)quinoxaline-2-carboxylate (3aa)

CDCl₃) δ 8.27 (m, 2H), 7.98 (m, 2H), 4.58 (q, *J* = 7.2 Hz, 1H), 1.48 (t, *J* = 7.2 Hz, 1H). ¹³C NMR (100 MHz, CDCl₃) δ 164.2, 143.6, 141.7, 140.5, 140.2 (q, ²*J*_{C-F} = 36.6 Hz), 133.2, 132.8, 129.8, 129.6, 120.6 (q, ¹*J*_{C-F} = 275.8 Hz), 63.2, 13.9. ¹⁹F NMR (376 MHz, CDCl₃) δ -64.4. HRMS-ESI (m/z): calcd for C₁₂H₁₀F₃N₂O₂⁺ [M+H]⁺ 271.0689, found 271.0691

ethyl 7-methoxy-3-(trifluoromethyl)quinoxaline-2-carboxylate (3ab)

COOEt

MeO

CF₃ Yellow viscous oil; 74% yield; ¹H NMR (400 MHz, CDCl₃) δ 8.04 (d, J = 9.2 Hz, 1H), 7.51 (dd, J = 9.2, 3.0 Hz, 1H), 7.42 (d, J = 2.8 Hz, 1H), 4.48 (q, J = 7.2 Hz, 2H), 3.93 (s, 2H), 1.39 (t, J = 7.2 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 164.4, 163.3, 143.9, 143.7, 137.8 (q, ²J_{C-F} = 36.2 Hz, CF₃), 137.0, 130.7, 126.8, 122.3 (q, ¹J_{C-F} = 275.8 Hz, CF₃), 106.3, 63.1, 56.2, 13.9. ¹⁹F NMR (376 MHz, CDCl₃) δ -64.0.

HRMS-ESI (m/z): calcd for $C_{13}H_{12}F_3N_2O_3^+$ [M+H]⁺ 301.0795, found 301.0796

ethyl 7-methyl-3-(trifluoromethyl)quinoxaline-2-carboxylate (3ac)

N CF₃ Yellow viscous oil; 72% yield; ¹H NMR (400 MHz, CDCl₃) δ 8.06 (m, 1H), 7.95 (s, 1H), 7.72 (m, 2H), 4.49 (q, J = 7.2 Hz, 2H), 2.59 (s, 3H), 1.39 (t, J = 7.2 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 164.4, 144.6, 143.6, 141.8, 140.8 (q, ² J_{C-F} = 36.0 Hz, CF₃), 139.1, 135.2, 129.3, 128.3, 122.2 (q, ¹ J_{C-F} = 275.8 Hz, CF₃), 63.1, 22.1, 13.9. ¹⁹F NMR (376 MHz, CDCl₃) δ -64.3.

HRMS-ESI (m/z): calcd for $C_{13}H_{12}F_3N_2O_2^+$ [M+H]⁺ 285.0845, found 285.0846

ethyl 7-chloro-3-(trifluoromethyl)quinoxaline-2-carboxylate (3ad)

CI N COOEt

Yellow oil; 46% yield; ¹H NMR (400 MHz, CDCl₃) δ 8.22 – 8.09 (m, 2H), 7.85 (m, 1H), 4.50 (q, J = 7.2 Hz, 2H), 1.40 (t, J = 7.2 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 163.8, 144.5, 142.0, 140.6 (q, ² J_{C-F} = 36.7 Hz, CF₃), 139.6, 139.1, 134.0, 131.0, 128.5, 120.5 (q, ¹ J_{C-F} = 275.8 Hz, CF₃), 63.4, 13.9. ¹⁹F NMR (376 MHz, CDCl₃) δ -64.5.

HRMS-ESI (m/z): calcd for $C_{12}H_9ClF_3N_2O_2^+$ [M+H]⁺ 305.0299, found 305.0298

ethyl 7-bromo-3-(trifluoromethyl)quinoxaline-2-carboxylate (3ae)

COOEt

Yellow oil; 48% yield; ¹H NMR (400 MHz, CDCl₃) δ 8.46 (d, J = 2.6 Hz, 1H), 8.16 - 8.00 (m, 2H), 4.57 (q, J = 7.2 Hz, 2H), 1.47 (t, J = 7.2 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 163.8, 144.5, 142.1, 140.6 (q, ² $J_{C-F} = 36.7$ Hz, CF₃), 139.3, 136.5, 131.9, 131.0, 128.0, 120.5 (q, ¹ $J_{C-F} = 275.8$ Hz, CF₃), 63.4, 13.9. ¹⁹F NMR (376 MHz, CDCl₃) δ -64.5. HRMS-ESI (m/z): calcd for C₁₂H₉BrF₃N₂O₂⁺ [M+H]⁺ 348.9794, found 348.9795

ethyl 5-methyl-3-(trifluoromethyl)quinoxaline-2-carboxylate (3af)

Me Yellow oil; 46% yield; ¹H NMR (400 MHz, CDCl₃) δ 8.02 (d, J = 8.4 Hz, 1H), 7.79 (t, J = 7.8 Hz, 1H), 7.71 (d, J = 7.2 Hz, 1H), 4.50 (q, J = 7.2 Hz, 2H), 2.77 (s, 3H), 1.40 (t, J = 7.2 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 164.4, 143.1, 141.9, 139.8, 139.2 (q, ² $J_{C-F} =$ 36.0 Hz, CF₃), 139.0, 133.0, 132.5, 127.3, 120.8 (q, ¹ $J_{C-F} =$ 275.8 Hz, CF₃), 63.1, 16.9, 13.9. ¹⁹F NMR (376 MHz, CDCl₃) δ -64.3. HRMS-ESI (m/z): calcd for C₁₃H₁₂F₃N₂O₂⁺ [M+H]⁺ 285.0845, found 284.0846

ethyl 5-chloro-3-(trifluoromethyl)quinoxaline-2-carboxylate (3ag)

Cl Yellow oil; 41% yield; ¹H NMR (400 MHz, CDCl₃) δ 8.20 (d, J =8.4 Hz, 1H), 8.08 (d, J = 7.6 Hz, 1H), 7.90 (t, J = 8.2 Hz, 1H), 4.58 (q, J = 7.4 Hz, 2H), 1.47 (t, J = 7.2 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 163.8, 144.3, 142.7, 140.2 (q, ² $J_{C-F} =$ 36.2 Hz, CF₃), 137.6, 134.3, 132.9, 132.5, 128.5, 120.5(q, ¹ $J_{C-F} =$ 275.8 Hz, CF₃), 63.4, 13.9. ¹⁹F NMR (376 MHz, CDCl₃) δ -64.3. HRMS-ESI (m/z): calcd for C₁₂H₉ClF₃N₂O₂⁺ [M+H]⁺ 305.0299, found 305.0298

ethyl 6-methyl-3-(trifluoromethyl)quinoxaline-2-carboxylate (3ah)

Me COOEt (CF₃) Yellow solid; m.p.= 58.2-59.3 °C; 43% yield; ¹H NMR (400 MHz, CDCl₃) δ 7.81 (d, *J* = 2.0 Hz, 1H), 7.73 (d, *J* = 7.6 Hz, 1H), 7.35 – 7.25 (m, 1H), 4.39 (q, *J* = 7.2 Hz, 2H), 2.38 (s, 3H), 1.38 (t, *J* = 7.2 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 159.3, 148.2, 139.0, 135.6 (q, ²*J*_{C-F} = 35.6 Hz, CF₃), 131.4, 128.8, 127.8, 127.2, 123.2, 120.8 (q, ¹*J*_{C-F} = 269.1 Hz, CF₃), 62.3, 21.2, 13.9. ¹⁹F NMR (376 MHz, CDCl₃) δ -61.1.

HRMS-ESI (m/z): calcd for C₁₃H₁₂F₃N₂O₂⁺[M+H]⁺ 285.0845, found 285.0846 ethyl 2-(trifluoromethyl)benzo[f]quinoxaline-3-carboxylate (3aj)

Yellow viscous oil; 47% yield; ¹H NMR (400 MHz, CDCl₃) δ 9.31 – 9.21 (m, 1H), 8.22 (d, *J* = 9.0 Hz, 1H), 8.09 – 7.97 (m, 2H), 7.90 – 7.83 (m, 2H), 4.59 (q, *J* = 7.2 Hz, 2H), 1.49 (t, *J* = 7.2 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 164.5, 135.6 (q, ²*J*_{C-F} = 35.6 Hz, CF₃), 135.3, 134.0, 133.1, 130.6, 129.9, 128.9, 128.9, 128.7, 128.3, 125.8, 125.4, 120.8 (q, ¹*J*_{C-F} = 269.1 Hz), 63.2, 14.0. ¹⁹F NMR (376 MHz, CDCl₃) δ -63.9.

HRMS-ESI (m/z): calcd for $C_{16}H_{12}F_3N_2O_2^+$ [M+H]⁺ 321.0845, found 321.0844

ethyl 7,8-dimethyl-3-(trifluoromethyl)quinoxaline-2-carboxylate (3al)

Yellow viscous oil; 41% yield; ¹H NMR (400 MHz, CDCl₃) δ 8.00 (d, J = 8.6 Hz, 1H), 7.78 (d, J = 8.7 Hz, 1H), 4.56 (q, J = 7.2 Hz, 2H), 2.77 (s, 4H), 2.59 (s, 4H), 1.47 (t, J = 7.0 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 164.5, 144.7, 144.2, 142.8 (q, ² J_{C-F} = 36.0 Hz, CF₃), 129.9, 129.7, 128.6, 128.5, 125.2 (q, ¹ J_{C-F} = 275.8 Hz, CF₃), 119.5, 117.2, 63.1, 20.7, 20.6, 13.9. ¹⁹F NMR (376 MHz, CDCl₃) δ -67.3.

HRMS-ESI (m/z): calcd for C₁₄H₁₄F₃N₂O₂⁺[M+H]⁺ 299.1002, found 299.1004

ethyl 3-phenylquinoxaline-2-carboxylate (3ba)

.COOEt

Ph Yellow solid; m.p.= 65.1-66.7 °C; 71% yield; ¹H NMR (400 MHz, CDCl₃) δ 8.2 (dd, J = 13.7, 8.2 Hz, 2H), 7.9 – 7.7 (m, 4H), 7.5 (q, J = 2.9, 2.4 Hz, 3H), 4.3 (q, J = 7.2 Hz, 2H), 1.2 – 1.1 (m, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 166.6, 152.3, 145.7, 142.2, 139.9, 137.8, 131.7, 130.5, 129.6, 129.3, 128.6, 128.5, 62.4, 13.7. HRMS-ESI (m/z): calcd for C₁₇H₁₅N₂O₂⁺ [M+H]⁺ 279.1128, found 279.1127

ethyl 7-chloro-3-phenylquinoxaline-2-carboxylate (3bd)

Yellow solid; m.p.= 91.1-92.8 °C; 59% yield; ¹H NMR (400 MHz, CDCl₃) δ 8.21 (d, J = 2.3 Hz, 1H), 8.12 (d, J = 9.0 Hz, 1H), 7.80 (dd, J = 9.0, 2.3 Hz, 1H), 7.76 – 7.71 (m, 2H), 7.55 – 7.49 (m, 3H), 4.34 (q, J = 7.1 Hz, 2H), 1.18 (t, J = 7.1 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 166.3, 152.3, 146.5, 140.7, 140.1, 137.3, 136.4, 132.7, 130.5, 129.8, 128.7, 128.5, 128.3, 62.5, 13.7.

HRMS-ESI (m/z): calcd for $C_{17}H_{14}CIN_2O_2^+$ [M+H]⁺ 313.0738, found 313.0736

ethyl 7-bromo-3-phenylquinoxaline-2-carboxylate (3be)

Br N COOEt

Yellow solid; m.p.= 103.1-104.8 °C; 58% yield; ¹H NMR (400 MHz, CDCl₃) δ 8.40 (d, J = 2.2 Hz, 1H), 8.05 (d, J = 9.0 Hz, 1H), 7.93 (dd, J = 9.0, 2.1 Hz, 1H), 7.74 (ddt, J = 5.2, 3.0, 1.4 Hz, 2H), 7.57 – 7.48 (m, 3H), 4.34 (q, J = 7.0 Hz, 2H), 1.19 (t, J = 7.0 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 166.3, 152.4, 146.5, 141.0, 140.4, 137.3, 135.2, 131.7, 130.6, 129.8, 128.7, 128.5, 124.5, 62.5, 13.6. HRMS-ESI (m/z): calcd for C₁₇H₁₄BrN₂O₂⁺ [M+H]⁺ 357.0233, found 357.0235

ethyl 7-fluoro-3-phenylquinoxaline-2-carboxylate (3bm)

N Ph Yellow solid; m.p.= 76.2-77.3 °C; 57% yield; ¹H NMR (400 MHz, CDCl₃) δ 8.20 (dd, J = 9.2, 5.7 Hz, 1H), 7.84 (dd, J = 8.9, 2.8 Hz, 1H), 7.80 – 7.60 (m, 3H), 7.55 – 7.49 (m, 3H), 4.34 (q, J = 7.2 Hz, 2H), 1.18 (t, J = 7.1 Hz, 3H).
¹³C NMR (100 MHz, CDCl₃) δ 166.4, 163.0 (d, J = 253.8 Hz), 151.6, 151.5, 146.5, 140.7, 140.6, 139.5, 137.4, 131.5, 131.4, 129.7, 128.7, 128.5, 122.4, 122.1, 113.1, 112.8, 62.5, 13.7.

HRMS-ESI (m/z): calcd for $C_{17}H_{14}FN_2O_2^+$ [M+H]⁺ 297.1034, found 297.1033

ethyl 5-methyl-3-phenylquinoxaline-2-carboxylate (3bf)

Me Yellow oil; 58% yield; ¹H NMR (400 MHz, CDCl₃) δ 8.08 – 8.00 (m, 1H), 7.84 – 7.75 (m, 2H), 7.74 – 7.65 (m, 2H), 7.57 – 7.46 (m, 3H), 4.34 (q, J = 7.1 Hz, 2H), 2.85 (s, 3H), 1.19 (t, J = 7.2 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 167.0, 150.7, 145.1, 141.4, 139.9, 138.1, 137.8, 131.4, 130.2, 129.5, 128.8, 128.5, 127.3, 62.3, 17.1, 13.7.

HRMS-ESI (m/z): calcd for $C_{18}H_{17}N_2O_2^+$ [M+H]⁺ 293.1285, found 293.1286

ethyl 5-chloro-3-phenylquinoxaline-2-carboxylate (3bg)

Cl Yellow solid; m.p. = 117.5–120.3 °C; 57% yield; ¹H NMR (400 MHz, CDCl₃) δ 8.14 (dd, J = 8.4, 1.3 Hz, 1H), 7.96 (dd, J = 7.6, 1.3 Hz, 1H), 7.83 (dd, J = 6.6, 2.9 Hz, 2H), 7.74 (t, J = 8.0 Hz, 1H), 7.53 (q, J = 2.9 Hz, 3H), 4.36 (q, J = 7.1 Hz, 2H), 1.20 (t, J = 7.1 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 166.4, 152.3, 146.3, 140.7, 139.0, 137.2, 133.4, 131.4, 130.1, 130.0, 128.9, 128.7, 128.5, 62.6, 13.7. HRMS-ESI (m/z): calcd for C₁₇H₁₄ClN₂O₂⁺ [M+H]⁺ 313.0738, found 313.0737

ethyl 3-(4-fluorophenyl)quinoxaline-2-carboxylate (3bn)

Yellow solid; m.p.= 147.1-148.9 °C; 55% yield;¹H NMR

(400 MHz, CDCl₃) δ 8.20 (ddd, J = 19.6, 8.2, 1.8 Hz, 1H), 7.91 – 7.80 (m, 1H), 7.78 – 7.72 (m, 1H), 7.21 (t, J = 8.6 Hz, 1H), 4.37 (q, J = 7.2 Hz, 1H), 1.24 (t, J = 7.2 Hz, 1H). ¹³C NMR (100 MHz, CDCl₃) δ 166.5, 163.8 (d, J = 250.0 Hz), 151.1, 145.5, 142.2, 139.9, 133.9, 131.8, 130.6, 130.6, 129.6, 129.3, 115.9, 115.6, 62.5, 13.8. ¹⁹F NMR (376 MHz, CDCl₃) δ -111.3.

HRMS-ESI (m/z): calcd for $C_{17}H_{14}FN_2O_2^+$ [M+H]⁺ 297.1034, found 297.1035

dimethyl quinoxaline-2,3-dicarboxylate (3ca)

COOMe

White solid; m.p.= 122.1-124.5 °C; 66% yield; ¹H NMR (400 MHz, CDCl₃) δ 8.27 (dd, J = 6.4, 3.4 Hz, 2H), 7.96 (dd, J = 6.4, 3.4 Hz, 2H), 4.10 (s, 6H). ¹³C NMR (100 MHz, CDCl₃) δ 165.1, 143.8, 141.4, 132.7, 129.9, 53.6. HRMS-ESI (m/z): calcd for C₁₂H₁₁N₂O₄⁺ [M+H]⁺ 247.0713, found 247.0715

dimethyl 6-methylquinoxaline-2,3-dicarboxylate (3cc)

Me N COOMe

CI

COOMe Yellow solid; m.p.= 84.4-85.4 °C; 69% yield; ¹H NMR (400 MHz, CDCl₃) δ 8.14 (d, J = 8.6 Hz, 1H), 8.01 (dt, J = 1.8, 0.8 Hz, 1H), 7.77 (dd, J = 8.6, 1.8 Hz, 1H), 4.09 (s, 6H), 2.65 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 165.3, 165.1, 144.0, 143.9, 142.5, 141.4, 139.8, 135.0, 129.2, 128.4, 53.4, 53.4, 22.0. HRMS-ESI (m/z): calcd for C₁₃H₁₃N₂O₄+ [M+H]+ 261.0870, found 261.0869

dimethyl 6-chloroquinoxaline-2,3-dicarboxylate (3cd)

.COOMe

.COOMe

N COOMe Brown white solid; m.p.= 78.1-80.3 °C; 68% yield; ¹H NMR (400 MHz, CDCl₃) δ 8.27 – 8.16 (m, 2H), 7.88 (dd, *J* = 9.0, 2.2 Hz, 1H), 4.09 (d, *J* = 1.0 Hz, 6H). ¹³C NMR (100 MHz, CDCl₃) δ 164.9, 164.7, 144.9, 143.5, 141.6, 139.9, 139.0, 133.8, 131.0, 128.6, 53.6.

HRMS-ESI (m/z): calcd for $C_{12}H_{10}ClN_2O_4^+$ [M+H]⁺ 281.0324, found 281.0327

dimethyl 6-bromoquinoxaline-2,3-dicarboxylate (3ce)

COOMe Yellow solid; m.p.= 99.6-100.3 °C; 65% yield; ¹H NMR (400 MHz, CDCl₃) δ 8.44 (d, J = 2.0 Hz, 1H), 8.13 (d, J = 9.0 Hz, 1H), 8.01 (dd, J = 9.0, 2.0 Hz, 1H), 4.09 (s, 6H). ¹³C NMR (100 MHz, CDCl₃) δ 164.9, 164.8, 144.8, 143.7, 141.8, 140.1, 136.3, 132.1, 131.0, 127.4, 53.7.

HRMS-ESI (m/z): calcd for $C_{12}H_{10}BrN_2O_4^+$ [M+H]⁺ 324.9818, found 324.9816

dimethyl 5-methylquinoxaline-2,3-dicarboxylate (3cf)

HRMS-ESI (m/z): calcd for C₁₃H₁₃N₂O₄⁺ [M+H]⁺ 261.0870, found 261.0869

diethyl quinoxaline-2,3-dicarboxylate (3da)

N COOEt White solid; m.p.= 128.3-130.6 °C; 65% yield;¹H NMR (400 MHz, CDCl₃) δ 8.3 (dt, J = 6.5, 3.2 Hz, 2H), 7.9 (dq, J = 6.4, 3.0 Hz, 2H), 4.6 (q, J = 7.1 Hz, 4H), 1.5 (t, J = 7.2 Hz, 6H). ¹³C NMR (100 MHz, CDCl₃) δ 164.7, 144.1, 141.3, 132.4, 129.8, 62.8, 14.0. HRMS-ESI (m/z): calcd for C₁₄H₁₅N₂O₄⁺ [M+H]⁺ 275.1026, found 275.1027

diethyl 6-chloroquinoxaline-2,3-dicarboxylate (3dd)

COOEt

CODEL Brown solid; m.p.= 118.6-120.7 °C; 69% yield; ¹H NMR (400 MHz, CDCl₃) δ 7.16 – 7.07 (m, 2H), 6.63 – 6.56 (m, 2H), 4.25 – 4.11 (m, 4H), 1.25 (t, *J* = 7.2 Hz, 6H). ¹³C NMR (100 MHz, CDCl₃) δ 164.5, 164.4, 145.3, 144.0, 141.6, 139.9, 138.7, 133.5, 131.0, 128.6, 63.0, 14.1,14.0. HRMS-ESI (m/z): calcd for C₁₄H₁₄ClN₂O₄⁺ [M+H]⁺ 309.0637, found 309.0638

diethyl 5-chloroquinoxaline-2,3-dicarboxylate (3dg)

CI

CIBrown solid; m.p.= 90.5-92.7 °C; 67% yield; ¹H NMR (400MHz, CDCl₃) δ 8.2 (dd, J = 8.4, 1.2 Hz, 0H), 8.0 (dd, J = 7.6, 1.4 Hz, 0H), 7.8 (dd, J= 8.4, 7.6 Hz, 0H), 4.6 (q, J = 7.2 Hz, 1H), 1.5 (t, J = 7.2 Hz, 1H). ¹³C NMR (100MHz, CDCl₃) δ 164.5, 164.3, 144.8, 144.4, 142.2, 138.3, 134.0, 132.3, 132.0, 128.8, 63.0, 62.9, 14.1, 14.0.

HRMS-ESI (m/z): calcd for $C_{14}H_{14}ClN_2O_4^+$ [M+H]⁺ 309.0637, found 309.0639

7. NMR spectra of products

HN, COOEt CF₃

2aa ¹H NMR (400 MHz, CDCI₃)

CF₃

3ad ¹H NMR (400 MHz, CDCI₃)

0.504.0

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 f1 (ppm)

--67.31

10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 fl (ppm)

S38

77.7.15 77.7.15 77.7.13 77.7.13 77.7.14 77.7.7

