Supporting Information

For

Regioselective [3+2] cycloaddition reaction of 2-benzylidene-1indenones with functional olefins to access indanone-fused 2D/3D

skeletons

 AUTHOR ADDRESS.
${ }^{a}$ Henan Engineering Research Center of Functional Materials and Catalytic Reaction, College of Chemistry and Chemical Engineering, Henan University, Kaifeng, 475004, China. E-mail: fujiya@126.com.
${ }^{\text {b }}$ School of Pharmacy, Zhengzhou Railway Vocational \& Technical College, Zhengzhou, China.
${ }^{\dagger}$ This author contributed equally to this work.

Table of Contents

1. General experimental information S3
2. Optimization of the reaction conditions S3
3. General experimental procedures for synthesis of compounds $\mathbf{3}$ S4
4. General experimental procedures for synthesis of compounds $\mathbf{5}$ S20
5. Experimental procedures for gram-scale synthesis of compound 3da. S29
6. Procedure for the synthesis of compounds $\mathbf{6}$. S29
7. Procedure for the synthesis of compounds 7 S30
8. Procedure for the synthesis of compounds $\mathbf{8}$ S31
9. Procedure for the synthesis of compounds 9 S32
10. X-ray crystal structure of compound 3fa S32
11. X-ray crystal structure of compound $\mathbf{5 n}$ S34
12. 2D NMR Analysis of 3qa, 3ra and 5n S37
13. NMR spectra S46

1. General experimental information

Reactions were monitored by TLC and visualization of the developed chromatogram was performed by ultraviolet light. Unless otherwise noted, all reagents including solvents were obtained from commercial supplier without any purification. The forcedflow column chromatography was performed using silica gel eluting with ethyl acetate and petroleum ether. NMR spectra were recorded with tetramethylsilane as the internal standard. ${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR spectra of CDCl_{3} or DMSO- d_{6} solutions were recorded either at 400 and 100 MHz or at 500 and 125 MHz (Bruker Avance), respectively and resonances (δ) are given in parts per million (ppm) relatives to tetramethylsilane (TMS). Data for NMR are reported as follows: chemical shift, multiplicity ($\mathrm{s}=$ singlet, $\mathrm{d}=$ doublet, $\mathrm{t}=$ triplet, $\mathrm{m}=$ multiplet), coupling constants (Hz) and integration. High resolution mass spectra were obtained with the Q-TOF-Premier mass spectrometer. The X-ray crystal-structure determinations of 3fa and 50 were obtained on a Bruker APEX DUO system. All melting points are determined on a SGW X-4 melting apparatus and are uncorrected. Cinnamaldehyde 2, witting reagents, 2thenoyltrifluoroacetone were obtained from commercial supplier and used directly. 2-Benzylideneinden-1-one 1, 2-benzylidenebenzofuran-3(2H)-one 4 were prepared according to literature reports. ${ }^{1}$

2. Optimization of the reaction conditions

Table S1. The Screening of solvent and ratio of amount of $\mathbf{1 a}: \mathbf{2} \mathbf{a}^{\mathrm{a}}$

Entry	Base	Solvent	Additive	Time (h)	$\mathbf{1 a : 2 a}$	Yield $(\%)^{\mathrm{b}}$
1	DBU	DMC	-	80	$1.0: 1.0$	n.r.
2	DMAP	DMC	-	80	$1.0: 1.0$	n.r.
3	$\mathrm{Et}_{3} \mathrm{~N}$	DMC	-	80	$1.0: 1.0$	n.r.

4	PPh_{3}	DMC	-	80	1.0:1.0 n.r.
5	$\mathrm{K}_{2} \mathrm{CO}_{3}$	DMC	-	80	1.0:1.0 n.r.
6	$\mathrm{Cs}_{2} \mathrm{CO}_{3}$	DMC	-	80	1.0:1.0 n.r.
7	$\mathrm{Na}_{2} \mathrm{CO}_{3}$	DMC	-	80	1.0:1.0 n.r.
8	NaHCO_{3}	DMC	-	80	1.0:1.0 n.r.
9	NaOH	DMC	-	80	1.0:1.0 n.r.
10	EtONa	DMC	-	80	1.0:1.0 n.r.
11	DABCO	Toluene	-	80	1.0:1.0 n.r.
12	DABCO	DCM	-	80	1.0:1.0 n.r.
13	DABCO	$\mathrm{CH}_{3} \mathrm{CN}$	-	80	1.0:1.0 n.r.
14	DABCO	THF	-	80	1.0:1.0 n.r.
15	DABCO	DMF	-	80	1.0:1.0 n.r.
16	DABCO	DMSO	-	80	1.0:1.0 n.r.
17	DABCO	DEC	-	80	1.0:1.0 n.r.
18	DABCO	DMC	-	48	1.5:1.0 40
19	DABCO	DMC	-	48	2.0:1.0 32
20	DABCO	DMC	-	48	1.0:1.5 34
21	DABCO	DMC	-	48	1.0:2.0 34
$22^{\text {c,d }}$	DABCO	DMC	-	4	1.5:1.0 23
$23^{\text {e }}$	A	DCM	--	72	1.5:1.0 n.r.
$24^{\text {e }}$	B	DCM	--	72	1.5:1.0 n.r.
$25^{\text {e }}$	A	DCM	$\mathrm{Na}_{2} \mathrm{CO}_{3}(20 \mathrm{~mol} \%)$	72	1.5:1.0 n.r.
$26^{\text {e }}$	B	DCM	$\mathrm{Na}_{2} \mathrm{CO}_{3}(20 \mathrm{~mol} \%)$	72	1.5:1.0 n.r.
$27^{\text {e }}$	A	DCM	$\mathrm{Na}_{2} \mathrm{CO}_{3}$ (1.0 equiv.)	72	1.5:1.0 n.r.
$28^{\text {e }}$	B	DCM	$\mathrm{Na}_{2} \mathrm{CO}_{3}$ (1.0 equiv.)	72	1.5:1.0 n.r.
$29^{\text {e }}$	A	DCM	$\mathrm{K}_{2} \mathrm{CO}_{3}$ (1.0 equiv.)	72	1.5:1.0 n.r.
$30^{\text {e }}$	B	DCM	$\mathrm{K}_{2} \mathrm{CO}_{3}$ (1.0 equiv.)	72	1.5:1.0 n.r.

${ }^{a}$ Unless otherwise specified the reaction conditions: $\mathbf{1 a}(0.1 \mathrm{mmol})$, $\mathbf{2 a}(0.1 \mathrm{mmol})$, base (1.0 equiv.), solvent (1.0 mL), $60^{\circ} \mathrm{C} .{ }^{\mathrm{b}}$ Yield of isolated 3aa after purification by silica gel column chromatography. ${ }^{\mathrm{c}}$ DABCO (2 equiv.). ${ }^{\mathrm{d}} \mathrm{DMC}(0.5 \mathrm{~mL}) .{ }^{\mathrm{e}} 40^{\circ} \mathrm{C}$.

3. General experimental procedures for synthesis of compounds 3

A mixture of DABCO ($0.20 \mathrm{mmol}, 1.0$ equiv.), EtONa ($0.20 \mathrm{mmol}, 1.0$ equiv.), $\mathbf{1}$ (0.30 $\mathrm{mmol}, 1.5$ equiv.) and $2(0.20 \mathrm{mmol}, 1.0$ equiv.) and dimethyl carbonate (1.0 mL) were added to a sealed reaction tube equipped with a stir bar. The tube was then sealed and the resulting mixture was stirred at $90^{\circ} \mathrm{C}$ for the 1-80 h. Upon completion (monitored by TLC, visualized by UV light), the reaction solution was concentrated in vacuo. The crude product was purified by column chromatography on silica gel (eluent PE:EtOAc $=10: 1$ to $5: 1$) to afford pure products 3 .

8-oxo-1,3-diphenyl-1,2,3,3a,8,8a-hexahydrocyclopenta[a]indene-2-carbaldehyde

 (3aa)

Yellow solid obtained by column chromatography (petroleum ether/ethyl acetate $=10: 1$ to $5: 1$), $55.6 \mathrm{mg}, 79 \%$ yield, m.p. $135.4-136.6^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$, a mixture of two isomers, the ratio of the two isomers is $20: 1) \delta 9.37(\mathrm{~d}, J=2.7 \mathrm{~Hz}, 1 \mathrm{H})$, 7.70 (d, $J=7.6 \mathrm{~Hz}, 1 \mathrm{H}$), 7.43 (ddd, $J=10.4,5.8,2.0 \mathrm{~Hz}, 3 \mathrm{H}), 7.38-7.27(\mathrm{~m}, 7 \mathrm{H}), 7.27$ - $7.22(\mathrm{~m}, 1 \mathrm{H}), 7.22-7.16(\mathrm{~m}, 1 \mathrm{H}), 6.95(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.09(\mathrm{t}, J=9.0 \mathrm{~Hz}, 1 \mathrm{H})$, $3.67(\mathrm{td}, J=11.3,2.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.59(\mathrm{dd}, J=11.1,8.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.45(\mathrm{t}, J=8.3 \mathrm{~Hz}, 1 \mathrm{H})$, $3.08(\mathrm{dd}, J=11.6,9.6 \mathrm{~Hz}, 1 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{C} \operatorname{NMR}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 205.0,199.7,153.9$, $139.9,138.3,134.2,134.1,128.2,127.9,127.5,126.9,126.7,126.6,126.2,124.5,123.6$, 68.0, 58.6, 53.8, 51.7, 46.8 ppm. HRMS (ESI) calcd. for $\mathrm{C}_{25} \mathrm{H}_{21} \mathrm{O}_{2}[\mathrm{M}+\mathrm{H}]^{+}$353.1536, found: 353.1533 .

5-fluoro-8-oxo-1,3-diphenyl-1,2,3,3a,8,8a-hexahydrocyclopenta[a]indene-2carbaldehyde (3ba)

Light yellow solid obtained by column chromatography (petroleum ether/ethyl acetate $=10: 1$ to $5: 1$), $28.9 \mathrm{mg}, 39 \%$ yield, m.p. $145.8-147.8^{\circ} \mathrm{C} .{ }^{1} \mathrm{H} \mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.$, a mixture of two isomers, the ratio of the two isomers is $>20: 1) \delta 9.46(\mathrm{~d}, J=2.7 \mathrm{~Hz}$, $1 \mathrm{H}), 7.79$ (dd, $J=8.5,5.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.48(\mathrm{~d}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 7.45-7.33(\mathrm{~m}, 7 \mathrm{H}), 7.31$ - $7.26(\mathrm{~m}, 1 \mathrm{H}), 7.12(\mathrm{td}, J=8.6,2.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.68(\mathrm{dd}, J=8.4,2.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.14(\mathrm{t}, J$ $=9.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.75(\mathrm{td}, J=11.4,2.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.66(\mathrm{dd}, J=11.2,8.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.55(\mathrm{t}$, $J=8.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.17(\mathrm{dd}, J=11.6,9.6 \mathrm{~Hz}, 1 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{C}$ NMR $\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$
204.1, 200.6, 167.3 (d, $J=257.6 \mathrm{~Hz}), 157.7(\mathrm{~d}, J=9.9 \mathrm{~Hz}), 140.6,138.9,131.5(\mathrm{~d}, J=$ 1.9 Hz), 129.3, 129.0, 127.9, 127.8, 127.7, 127.4, 127.0 (d, $J=10.6 \mathrm{~Hz}$), 116.8 (d, $J=$ 23.8 Hz), 112.3 (d, $J=22.4 \mathrm{~Hz}$), 68.8, 59.8, 54.7, 52.3, 47.9 ppm . HRMS (ESI) calcd. for $\mathrm{C}_{25} \mathrm{H}_{20} \mathrm{FO}_{2}[\mathrm{M}+\mathrm{H}]^{+}$371.1442, found: 371.1431.

1-(4-methoxyphenyl)-8-oxo-3-phenyl-1,2,3,3a,8,8a-hexahydrocyclopenta[a] indene-2-carbaldehyde (3ca)

Vicious reddle liquid obtained by column chromatography (petroleum ether/ethyl acetate $=10: 1$ to $5: 1), 58.9 \mathrm{mg}, 77 \%$ yield. ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.$, a mixture of two isomers, the ratio of the two isomers is 19:1) $\delta 9.44(\mathrm{~d}, J=2.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.78(\mathrm{~d}, J$ $=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.51(\mathrm{dt}, J=7.5,1.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.46-7.32(\mathrm{~m}, 8 \mathrm{H}), 7.05(\mathrm{~d}, J=7.6 \mathrm{~Hz}$, $1 \mathrm{H}), 6.92(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 2 \mathrm{H}), 4.16(\mathrm{t}, J=8.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.80(\mathrm{~s}, 3 \mathrm{H}), 3.71(\mathrm{dt}, J=11.4$, $2.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.60(\mathrm{dd}, J=11.3,8.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.48(\mathrm{t}, J=8.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.18(\mathrm{dd}, J=11.5$, $9.5 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 205.0,200.0,157.7,154.0,138.5,134.2$, 134.1, 131.7, 128.1, 127.7, 127.4, 126.9, 126.6, 124.5, 123.5, 113.3, 68.1, 58.7, 54.2, 53.7, 51.5, 46.3 ppm . HRMS (ESI) calcd. for $\mathrm{C}_{26} \mathrm{H}_{23} \mathrm{O}_{3}[\mathrm{M}+\mathrm{H}]^{+} 383.1642$, found: 383.1648.

8-oxo-3-phenyl-1-(p-tolyl)-1,2,3,3a,8,8a-hexahydrocyclopenta[a]indene-2carbaldehyde (3da)

Vicious reddle liquid obtained by column chromatography (petroleum ether/ethyl acetate $=10: 1$ to $5: 1$), $46.9 \mathrm{mg}, 64 \%$ yield. ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.$, a mixture of two isomers, the ratio of the two isomers is 16:1) $\delta 9.45(\mathrm{~d}, J=2.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.78(\mathrm{~d}, J$ $=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.52(\mathrm{dt}, J=7.4,1.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.45-7.28(\mathrm{~m}, 8 \mathrm{H}), 7.23-7.17(\mathrm{~m}, 2 \mathrm{H})$, $7.05(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.17(\mathrm{t}, J=9.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.79-3.69(\mathrm{~m}, 1 \mathrm{H}), 3.66-3.59(\mathrm{~m}$,
$1 \mathrm{H}), 3.51(\mathrm{t}, J=8.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.19$ (dd, $J=11.6,9.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.36(\mathrm{~s}, 3 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 205.0,199.9,154.0,138.4,136.7,135.8,134.2,134.1,128.6$, 128.1, 127.4, 126.9, 126.6, 126.5, 124.5, 123.6, 68.1, 58.7, 53.7, 51.6, 46.6, 20.0 ppm. HRMS (ESI) calcd. for $\mathrm{C}_{26} \mathrm{H}_{23} \mathrm{O}_{2}[\mathrm{M}+\mathrm{H}]^{+} 367.1693$, found: 367.1690.

1-(4-fluorophenyl)-8-oxo-3-phenyl-1,2,3,3a,8,8a-hexahydrocyclopenta[a]indene-

 2-carbaldehyde (3ea)

Tawny solid obtained by column chromatography (petroleum ether/ethyl acetate $=10: 1$ to $5: 1$), $37.8 \mathrm{mg}, 51 \%$ yield, m.p. $152.7-154.5{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$, a mixture of two isomers, the ratio of the two isomers is $>20: 1) \delta 9.44(\mathrm{~d}, J=2.6 \mathrm{~Hz}, 1 \mathrm{H})$, 7.78 (d, $J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.52(\mathrm{td}, J=7.5,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.49-7.40(\mathrm{~m}, 5 \mathrm{H}), 7.40-7.32$ $(\mathrm{m}, 3 \mathrm{H}), 7.11-7.00(\mathrm{~m}, 3 \mathrm{H}), 4.18(\mathrm{t}, J=9.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.76-3.61(\mathrm{~m}, 2 \mathrm{H}), 3.47(\mathrm{t}, J=$ $8.2 \mathrm{~Hz}, 1 \mathrm{H}$), $3.20-3.11(\mathrm{~m}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (125 MHz, DMSO- d_{6}) δ 206.4, 203.2, 161.6 (d, $J=242.8 \mathrm{~Hz}$), 155.9, 140.4, 137.9 (d, $J=2.9 \mathrm{~Hz}$), 136.0, 135.5, $130.5(\mathrm{~d}, J=$ $8.0 \mathrm{~Hz}), 129.3,128.9,128.6,127.8,125.7,124.4,115.7(\mathrm{~d}, J=21.1 \mathrm{~Hz}), 69.9,59.5$, 54.3, 52.5, 47.1 ppm . HRMS (ESI) calcd. for $\mathrm{C}_{25} \mathrm{H}_{20} \mathrm{FO}_{2}[\mathrm{M}+\mathrm{H}]^{+} 371.1442$, found: 371.1440.

1-(4-chlorophenyl)-8-oxo-3-phenyl-1,2,3,3a,8,8a-hexahydrocyclopenta[a]indene-2-carbaldehyde (3fa)

Tawny solid obtained by column chromatography (petroleum ether/ethyl acetate $=10: 1$ to $5: 1$), $29.4 \mathrm{mg}, 38 \%$ yield, m.p. $161.6-162.9{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$, a mixture of two isomers, the ratio of the two isomers is $>20: 1) \delta 9.44(\mathrm{~d}, J=2.6 \mathrm{~Hz}, 1 \mathrm{H})$, $7.78(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.55-7.49(\mathrm{~m}, 1 \mathrm{H}), 7.43(\mathrm{t}, J=7.7 \mathrm{~Hz}, 5 \mathrm{H}), 7.39-7.32(\mathrm{~m}$,

5H), $7.05-7.01(\mathrm{~m}, 1 \mathrm{H}), 4.17(\mathrm{t}, J=9.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.76-3.59(\mathrm{~m}, 2 \mathrm{H}), 3.46(\mathrm{t}, J=8.1$ $\mathrm{Hz}, 1 \mathrm{H}$), 3.15 (dd, $J=11.2,9.5 \mathrm{~Hz}, 1 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{C}$ NMR (125 MHz, DMSO- d_{6}) $\delta 206.33$, 203.20, 155.91, 140.79, 140.41, 135.99, 135.46, 131.94, 130.51, 129.32, 128.92, $128.89,128.66,127.77,125.74,124.38,69.66,59.41,54.24,52.49,47.10$, ppm. HRMS (ESI) calcd. for $\mathrm{C}_{25} \mathrm{H}_{20} \mathrm{ClO}_{2}[\mathrm{M}+\mathrm{H}]^{+}$387.1146, found: 387.1147.

1-(4-bromophenyl)-8-ox0-3-phenyl-1,2,3,3a,8,8a-hexahydrocyclopenta[a]indene-2-carbaldehyde (3ga)

Tawny solid obtained by column chromatography (petroleum ether/ethyl acetate $=10: 1$ to $5: 1$), $26.7 \mathrm{mg}, 31 \%$ yield, m.p. $164.0-166.2{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$, a mixture of two isomers, the ratio of the two isomers is >20:1) $\delta 9.43(\mathrm{~d}, J=2.6 \mathrm{~Hz}, 1 \mathrm{H})$, 7.78 (d, $J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.55-7.48(\mathrm{~m}, 3 \mathrm{H}), 7.46-7.32(\mathrm{~m}, 8 \mathrm{H}), 7.03(\mathrm{~d}, J=7.6 \mathrm{~Hz}$, $1 \mathrm{H}), 4.17(\mathrm{t}, J=9.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.73-3.56(\mathrm{~m}, 2 \mathrm{H}), 3.46(\mathrm{t}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.15(\mathrm{dd}, J$ $=11.3,9.5 \mathrm{~Hz}, 1 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 204.8,199.5,153.8,138.8$, $138.0,134.4,134.0,131.0,128.5,128.2,127.6,126.8,124.5,123.6,120.1,67.7,58.4$, 53.9, 51.5, 46.0 ppm. HRMS (ESI) calcd. for $\mathrm{C}_{25} \mathrm{H}_{20} \mathrm{BrO}_{2}[\mathrm{M}+\mathrm{H}]^{+} 431.0641$, found: 431.0643.

4-(2-formyl-8-oxo-3-phenyl-1,2,3,3a,8,8a-hexahydrocyclopenta[a]inden-1-

 yl)benzonitrile (3ha)

Light brown solid obtained by column chromatography (petroleum ether/ethyl acetate $=10: 1$ to $5: 1$), $18.9 \mathrm{mg}, 25 \%$ yield, m.p. $188.8-190.4^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 9.43(\mathrm{~d}, J=2.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.78(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.69-7.60(\mathrm{~m}, 4 \mathrm{H}), 7.56-7.50$ (m, 1H), $7.47-7.41(\mathrm{~m}, 3 \mathrm{H}), 7.37(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}), 7.02(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.19$
(t, $J=9.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.78-3.68(\mathrm{~m}, 2 \mathrm{H}), 3.51-3.44(\mathrm{~m}, 1 \mathrm{H}), 3.13(\mathrm{td}, J=9.4,2.7 \mathrm{~Hz}$, $1 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 204.6, 199.0, 153.6, 145.5, 137.6, 134.6, 133.9, 131.7, 128.4, 127.8, 127.7, 127.0, 126.8, 124.6, 123.7, 117.7, 110.1, 67.2, 58.1, 54.2, 51.5, 46.0 ppm. HRMS (ESI) calcd. for $\mathrm{C}_{26} \mathrm{H}_{19} \mathrm{NO}_{2}[\mathrm{M}+\mathrm{H}]^{+}$378.1489, found:378.1493.

1-(3-methoxyphenyl)-8-oxo-3-phenyl-1,2,3,3a,8,8a-hexahydrocyclopenta

 [a]indene-2-carbaldehyde (3ia)

Vicious reddle liquid obtained by column chromatography (petroleum ether/ethyl acetate $=10: 1$ to $5: 1$), $32.1 \mathrm{mg}, 42 \%$ yield. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$, a mixture of two isomers, the ratio of the two isomers is 20:1) $\delta 9.38(\mathrm{~d}, J=2.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.70(\mathrm{~d}, J$ $=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.43(\mathrm{td}, J=7.7,1.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.38-7.30(\mathrm{~m}, 3 \mathrm{H}), 7.30-7.24(\mathrm{~m}, 3 \mathrm{H})$, $7.24-7.19(\mathrm{~m}, 1 \mathrm{H}), 7.03-6.96(\mathrm{~m}, 2 \mathrm{H}), 6.94(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.74(\mathrm{dd}, J=8.2$, $2.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.08(\mathrm{t}, J=9.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.76(\mathrm{~s}, 3 \mathrm{H}), 3.66(\mathrm{td}, J=11.3,2.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.60$ $-3.51(\mathrm{~m}, 1 \mathrm{H}), 3.44(\mathrm{t}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.07(\mathrm{dd}, J=11.6,9.6 \mathrm{~Hz}, 1 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{C}$ NMR (100 MHz, CDCl_{3}) $\delta 205.1,199.8,159.0,153.9,141.5,138.2,134.2,134.1,128.9$, $128.2,127.5,126.9,126.7,124.5,123.6,118.7,112.7,111.5,67.8,58.5,54.2,53.8$, 51.6, 46.6 ppm. HRMS (ESI) calcd. for $\mathrm{C}_{26} \mathrm{H}_{22} \mathrm{O}_{3}[\mathrm{M}+\mathrm{H}]^{+} 383.1642$, found: 383.1643.

8-oxo-3-phenyl-1-(m-tolyl)-1,2,3,3a,8,8a-hexahydrocyclopenta[a]indene-2carbaldehyde (3ja)

Yellow viscous liquid obtained by column chromatography (petroleum ether/ethyl acetate $=10: 1$ to $5: 1$), $49.1 \mathrm{mg}, 67 \%$ yield. ${ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.$, a mixture of two isomers, the ratio of the two isomers is 20:1) $\delta 9.45(\mathrm{~d}, J=2.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.78(\mathrm{~d}, J$
$=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.52(\mathrm{td}, J=7.5,1.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.46-7.39(\mathrm{~m}, 3 \mathrm{H}), 7.40-7.31(\mathrm{~m}, 3 \mathrm{H})$, 7.29-7.27 (m, 3H), $7.14-7.07(\mathrm{~m}, 1 \mathrm{H}), 7.04(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.18(\mathrm{t}, J=9.0 \mathrm{~Hz}$, $1 \mathrm{H}), 3.74(\mathrm{td}, J=11.4,2.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.62(\mathrm{dd}, J=11.1,8.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.54(\mathrm{t}, J=8.3 \mathrm{~Hz}$, $1 \mathrm{H}), 3.17(\mathrm{dd}, J=11.7,9.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.39(\mathrm{~s}, 3 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 206.1, 200.9, 155.0, 140.8, 139.4, 138.6, 135.3, 135.2, 129.2, 128.9, 128.5, 128.4, 128.1, 127.9, 127.7, 125.6, 124.5, 124.6, 69.2, 59.7, 54.8, 52.7, 47.9, 21.6 ppm. HRMS (ESI) calcd. for $\mathrm{C}_{26} \mathrm{H}_{23} \mathrm{O}_{2}[\mathrm{M}+\mathrm{H}]^{+} 367.1693$, found: 367.1690.

1-(3-fluorophenyl)-8-oxo-3-phenyl-1,2,3,3a,8,8a-hexahydrocyclopenta[a]indene-2-carbaldehyde (3ka)

Brown solid obtained by column chromatography (petroleum ether/ethyl acetate $=10: 1$ to $5: 1$), $8.1 \mathrm{mg}, 11 \%$ yield, m.p. $180.2-180.6^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR (500 MHz , DMSO- d_{6}, a mixture of two isomers, the ratio of the two isomers is $>20: 1) \delta 9.33(\mathrm{~d}, J=3.9 \mathrm{~Hz}, 1 \mathrm{H})$, $7.63(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.59-7.52(\mathrm{~m}, 1 \mathrm{H}), 7.48-7.39(\mathrm{~m}, 4 \mathrm{H}), 7.38-7.31(\mathrm{~m}, 3 \mathrm{H})$, $7.31-7.21(\mathrm{~m}, 2 \mathrm{H}), 7.07-7.00(\mathrm{~m}, 1 \mathrm{H}), 6.90(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.21(\mathrm{t}, J=8.8 \mathrm{~Hz}$, $1 \mathrm{H}), 3.66-3.52(\mathrm{~m}, 3 \mathrm{H}), 3.22(\mathrm{t}, J=10.4 \mathrm{~Hz}, 1 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{C}$ NMR (125 MHz , DMSO$\left.d_{6}\right) \delta 206.4,203.2,162.9(\mathrm{~d}, J=243.1 \mathrm{~Hz}), 155.9,144.8(\mathrm{~d}, J=7.4 \mathrm{~Hz}), 140.3,136.0$, $135.5,130.8$ (d, $J=8.5 \mathrm{~Hz}$), 129.3, 128.9, 128.7, 127.8, 125.7, 124.9, 124.8 (d, $J=2.7$ $\mathrm{Hz}), 115.2(\mathrm{~d}, J=21.6 \mathrm{~Hz}), 114.2(\mathrm{~d}, J=20.7 \mathrm{~Hz}), 69.5,59.4,54.3,52.5,47.3 \mathrm{ppm}$. HRMS (ESI) calcd. for $\mathrm{C}_{25} \mathrm{H}_{20} \mathrm{FO}_{2}[\mathrm{M}+\mathrm{H}]^{+} 371.1442$, found: 371.1446.

1-(3-chlorophenyl)-8-oxo-3-phenyl-1,2,3,3a,8,8a-hexahydrocyclopenta[a]indene-2-carbaldehyde (3la)

Brown solid obtained by column chromatography (petroleum ether/ethyl acetate $=10: 1$
to $5: 1$), $10.8 \mathrm{mg}, 14 \%$ yield, m.p. $144.0-145.8^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 9.46$ $(\mathrm{d}, J=2.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.79(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.56-7.49(\mathrm{~m}, 2 \mathrm{H}), 7.44(\mathrm{t}, J=7.7 \mathrm{~Hz}$, 3H), $7.41-7.29$ (m, 5H), $7.29-7.27(\mathrm{~m}, 1 \mathrm{H}), 7.03(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.19(\mathrm{t}, J=9.0$ $\mathrm{Hz}, 1 \mathrm{H}), 3.77-3.56(\mathrm{~m}, 2 \mathrm{H}), 3.50(\mathrm{t}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.14(\mathrm{dd}, J=11.3,9.6 \mathrm{~Hz}, 1 \mathrm{H})$ ppm. ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 204.8,199.3,153.7,142.0,138.0,134.4,134.0$, 133.8, 129.2, 128.2, 127.6, 126.8, 126.7, 126.5, 125.2, 124.6, 123.6, 67.7, 58.4, 54.0, 51.6, 46.1. HRMS (ESI) calcd. for $\mathrm{C}_{25} \mathrm{H}_{20} \mathrm{ClO}_{2}[\mathrm{M}+\mathrm{H}]^{+}$387.1146, found: 387.1142.

1-(3-bromophenyl)-8-oxo-3-phenyl-1,2,3,3a,8,8a-hexahydrocyclopenta[a]indene-2-carbaldehyde (3ma)

Tawny solid obtained by column chromatography (petroleum ether/ethyl acetate $=10: 1$ to $5: 1$), $12.1 \mathrm{mg}, 14 \%$ yield, m.p. $159.33-161.2^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ $9.47(\mathrm{~d}, J=2.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.81(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.68(\mathrm{~s}, 1 \mathrm{H}), 7.55(\mathrm{t}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H})$, $7.49-7.42(\mathrm{~m}, 5 \mathrm{H}), 7.42-7.35(\mathrm{~m}, 3 \mathrm{H}), 7.29(\mathrm{t}, J=3.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.05(\mathrm{~d}, J=7.6 \mathrm{~Hz}$, $1 \mathrm{H}), 4.21(\mathrm{t}, J=9.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.80-3.63(\mathrm{~m}, 2 \mathrm{H}), 3.52(\mathrm{t}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.15(\mathrm{dd}, J$ $=11.3,9.6 \mathrm{~Hz}, 1 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 204.7, 199.3, 153.7, 142.3, $137.9,134.4,134.0,129.6,129.5,129.4,128.2,127.6,126.9,125.8,124.6,123.7,122.0$, 67.7, 58.4, 54.0, 51.5, 46.1. HRMS (ESI) calcd. for $\mathrm{C}_{25} \mathrm{H}_{20} \mathrm{BrO}_{2}[\mathrm{M}+\mathrm{H}]^{+}$431.0641, found: 466.0639 .

1-(2-methoxyphenyl)-8-oxo-3-phenyl-1,2,3,3a,8,8a-hexahydrocyclopenta[a] indene-2-carbaldehyde (3na)

Brown viscous liquid obtained by column chromatography (petroleum ether/ethyl acetate $=10: 1$ to $5: 1), 43.6 \mathrm{mg}, 57 \%$ yield. ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.$, a mixture of
two isomers, the ratio of the two isomers is 12:1) $\delta 9.42(\mathrm{~d}, J=2.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.76(\mathrm{~d}, J$ $=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.50(\mathrm{td}, J=7.5,1.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.44-7.38(\mathrm{~m}, 4 \mathrm{H}), 7.38-7.27(\mathrm{~m}, 4 \mathrm{H})$, $7.04(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.98(\mathrm{td}, J=7.5,1.1 \mathrm{~Hz}, 1 \mathrm{H}), 6.94(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.26-$ 4.17 (m, 1H), 3.94 (s, 3H), 3.89 (dd, $J=11.5,2.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.86-3.76(\mathrm{~m}, 2 \mathrm{H}), 3.14$ (dd, $J=11.6,9.5 \mathrm{~Hz}, 1 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 205.8, 200.1, 156.1, $154.4,139.1,134.2,134.0,129.0,128.0,127.6,127.4,127.3,126.9,126.4,124.5,123.4$, 120.1, 110.1, 67.1, 56.7, 54.3, 53.8, 52.1, 44.1 ppm . HRMS (ESI) calcd. for $\mathrm{C}_{26} \mathrm{H}_{23} \mathrm{O}_{3}$ $[\mathrm{M}+\mathrm{H}]^{+}$383.1642, found: 383.1645.

8-oxo-3-phenyl-1-(o-tolyl)-1,2,3,3a,8,8a-hexahydrocyclopenta[a]indene-2carbaldehyde (30a)

Brown viscous liquid obtained by column chromatography (petroleum ether/ethyl acetate $=10: 1$ to $5: 1), 42.5 \mathrm{mg}, 58 \%$ yield. ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 9.41(\mathrm{~d}, J=$ $2.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.77$ (d, J=7.6 Hz, 1H), $7.55-7.48(\mathrm{~m}, 2 \mathrm{H}), 7.47-7.38(\mathrm{~m}, 5 \mathrm{H}), 7.38-$ $7.32(\mathrm{~m}, 1 \mathrm{H}), 7.32-7.24(\mathrm{~m}, 1 \mathrm{H}), 7.22-7.11(\mathrm{~m}, 2 \mathrm{H}), 7.05(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.24$ $(\mathrm{t}, J=9.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.97(\mathrm{dd}, J=11.1,8.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.81-3.75(\mathrm{~m}, 1 \mathrm{H}), 3.53(\mathrm{t}, J=8.3$ $\mathrm{Hz}, 1 \mathrm{H}), 3.17(\mathrm{dd}, J=11.8,9.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.49(\mathrm{~s}, 3 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{C} \mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ $\delta 205.1,199.7,154.0,138.8,138.5,135.6,134.2,134.0,129.8,128.2,127.4,126.8$, $126.6,125.8,125.7,125.6,124.5,123.5,70.1,59.9,54.0,51.8,42.2,19.1 \mathrm{ppm}$. HRMS (ESI) calcd. for $\mathrm{C}_{26} \mathrm{H}_{23} \mathrm{O}_{2}[\mathrm{M}+\mathrm{H}]^{+}$367.1693, found: 367.1698.

1-(2-fluorophenyl)-8-oxo-3-phenyl-1,2,3,3a,8,8ahexahydrocyclopenta[a]indene-2carbaldehyde (3pa)

Reddish brown viscous liquid obtained by column chromatography (petroleum ether/ethyl acetate $=10: 1$ to $5: 1$), $20.0 \mathrm{mg}, 27 \%$ yield. ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$
$9.44(\mathrm{~d}, J=2.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.77(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.51(\mathrm{t}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.47-7.37$ $(\mathrm{m}, 6 \mathrm{H}), 7.34(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.28(\mathrm{~d}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.19-7.08(\mathrm{~m}, 2 \mathrm{H}), 7.04$ (d, $J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.25(\mathrm{t}, J=8.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.86(\mathrm{t}, J=10.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.71(\mathrm{p}, J=8.0$ $\mathrm{Hz}, 2 \mathrm{H}), 3.11(\mathrm{t}, 1 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 205.0$, 199.5, $160.2(\mathrm{~d}, J=$ $245.7 \mathrm{~Hz}), 154.0,138.4,134.2,134.0,129.8(\mathrm{~d}, J=4.8 \mathrm{~Hz}), 128.2,128.1,127.5,126.9$, 126.7, 124.5, 123.7 (d, $J=3.3 \mathrm{~Hz}), 123.6,115.2(\mathrm{~d}, J=21.9 \mathrm{~Hz}), 67.3,57.2,54.2,51.7$, 42.9 ppm . HRMS (ESI) calcd. for $\mathrm{C}_{25} \mathrm{H}_{20} \mathrm{FO}_{2}[\mathrm{M}+\mathrm{H}]^{+} 371.1442$, found: 371.1446.

1-(2-chlorophenyl)-8-ox0-3-phenyl-1,2,3,3a,8,8a-hexahydrocyclopenta[a]indene-2-carbaldehyde (3qa)

Yellow viscous liquid obtained by column chromatography (petroleum ether/ethyl acetate $=10: 1$ to $5: 1), 43.3 \mathrm{mg}, 56 \%$ yield. ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 9.35(\mathrm{~d}, J=$ $2.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.68(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.42(\mathrm{t}, J=7.9 \mathrm{~Hz}, 2 \mathrm{H}), 7.36-7.27(\mathrm{~m}, 6 \mathrm{H}), 7.27$ - 7.18 (m, 2H), $7.18-7.11(\mathrm{~m}, 1 \mathrm{H}), 6.94(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.20(\mathrm{t}, J=9.1 \mathrm{~Hz}, 1 \mathrm{H})$, 3.96 (dd, $J=11.1,7.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.91-3.81(\mathrm{~m}, 1 \mathrm{H}), 3.70(\mathrm{t}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.06(\mathrm{t}, J$ $=10.6 \mathrm{~Hz}, 1 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{C}$ NMR (125 MHz , DMSO- d_{6}) $\delta 205.9$, 202.5, 156.0, 140.4, $138.8,136.0,135.3,133.4,130.7,129.9,129.3,129.1,128.9,128.6,128.3,127.8,125.8$, 124.4, 71.1, 59.4, 54.1, 52.4, 44.4 ppm . HRMS (ESI) calcd. for $\mathrm{C}_{25} \mathrm{H}_{20} \mathrm{ClO}_{2}[\mathrm{M}+\mathrm{H}]^{+}$ 387.1146, found: 387.1145.

1-(2-bromophenyl)-8-oxo-3-phenyl-1,2,3,3a,8,8a-hexahydrocyclopenta[a]indene-2-carbaldehyde (3r)

Brown viscous liquid obtained by column chromatography (petroleum ether/ethyl acetate $=10: 1$ to $5: 1), 44.9 \mathrm{mg}, 52 \%$ yield. ${ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}\right.$, DMSO- $\left.d_{6}\right) \delta 9.46(\mathrm{~d}$,
$J=4.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.92(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.69(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.68-7.58(\mathrm{~m}, 2 \mathrm{H})$, $7.55-7.44(\mathrm{~m}, 4 \mathrm{H}), 7.42(\mathrm{t}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.32(\mathrm{t}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.23(\mathrm{td}, J=7.7$, $1.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.00(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.36(\mathrm{t}, J=8.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.09(\mathrm{dd}, J=10.9,8.7$ $\mathrm{Hz}, 1 \mathrm{H}), 3.76$ (t, $J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.54(\mathrm{td}, J=11.2,4.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.50-3.43(\mathrm{~m}, 1 \mathrm{H})$ ppm. ${ }^{13} \mathrm{C}$ NMR (125 MHz, DMSO- d_{6}) δ 205.72, 202.35, 155.98, 140.45, 140.38, $136.03,135.22,133.16,130.85,129.43,129.32,128.94,128.90,128.62,127.78$, 125.76, 124.41, 124.37, 71.51, 59.77, 54.08, 52.39, 47.08 ppm. HRMS (ESI) calcd. for $\mathrm{C}_{25} \mathrm{H}_{20} \mathrm{BrO}_{2}[\mathrm{M}+\mathrm{H}]^{+} 431.0641$, found: 431.0646 .

8-oxo-1-phenyl-3-(p-tolyl)-1,2,3,3a,8,8a-hexahydrocyclopenta[a]indene-2carbaldehyde (3ab)

Brown viscous liquid obtained by column chromatography (petroleum ether/ethyl acetate $=10: 1$ to $5: 1$), $21.2 \mathrm{mg}, 29 \%$ yield. ${ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 9.42(\mathrm{~s}, 1 \mathrm{H})$, $7.75(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.47(\mathrm{dd}, J=11.8,7.3 \mathrm{~Hz}, 3 \mathrm{H}), 7.37(\mathrm{dt}, J=15.2,7.4 \mathrm{~Hz}, 3 \mathrm{H})$, 7.27-7.14 (m, 5H), $7.02(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.12(\mathrm{t}, J=9.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.71-3.61(\mathrm{~m}, 2 \mathrm{H})$, $3.49(\mathrm{t}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.09(\mathrm{t}, J=10.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.35(\mathrm{~s}, 3 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{C}$ NMR (100 $\mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 205.1, 199.9, 154.0, 139.9, 136.4, 135.2, 134.2, 134.1, 128.8, 127.9, 127.4, 126.7, 126.7, 126.2, 124.6, 123.6, 68.0, 58.6, 53.6, 51.7, 46.7, 20.1 ppm. HRMS (ESI) calcd. for $\mathrm{C}_{26} \mathrm{H}_{23} \mathrm{O}_{2}[\mathrm{M}+\mathrm{H}]^{+}$367.1693, found: 367.1695.

3-(4-fluorophenyl)-8-oxo-1-phenyl-1,2,3,3a,8,8a-hexahydrocyclopenta[a]indene-2-carbaldehyde (3ac)

Light yellow solid obtained by column chromatography (petroleum ether/ethyl acetate $=10: 1$ to $5: 1$), $34.1 \mathrm{mg}, 46 \%$ yield, m.p. $145.8-147.8^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$, a mixture of two isomers, the ratio of the two isomers is $>20: 1) \delta 9.45(\mathrm{~d}, J=2.5 \mathrm{~Hz}$, $1 \mathrm{H}), 7.79(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.57-7.47(\mathrm{~m}, 3 \mathrm{H}), 7.41(\mathrm{dt}, J=18.9,7.6 \mathrm{~Hz}, 3 \mathrm{H}), 7.36$ - $7.31(\mathrm{~m}, 2 \mathrm{H}), 7.29(\mathrm{t}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.11(\mathrm{t}, J=8.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.01(\mathrm{~d}, J=7.6 \mathrm{~Hz}$, $1 \mathrm{H}), 4.12(\mathrm{t}, J=9.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.79-3.61(\mathrm{~m}, 2 \mathrm{H}), 3.53(\mathrm{t}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.16(\mathrm{t}, J=$ $10.2 \mathrm{~Hz}, 1 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{C}$ NMR (125 MHz , DMSO- d_{6}) $\delta 206.4,203.2$, $161.9(\mathrm{~d}, J=243.1$ $\mathrm{Hz}), 155.7,141.8,136.6(\mathrm{~d}, J=3.1 \mathrm{~Hz}), 135.9,135.5,130.60(\mathrm{~d}, J=8.0 \mathrm{~Hz}), 129.0$, $128.9,128.5,127.3,125.7,124.4,116.03(\mathrm{~d}, J=21.1 \mathrm{~Hz}), 69.9,59.5,53.5,52.6,47.8$ ppm. HRMS (ESI) calcd. for $\mathrm{C}_{25} \mathrm{H}_{20} \mathrm{FO}_{2}[\mathrm{M}+\mathrm{H}]^{+}$371.1442, found: 371.1445.

3-(4-chlorophenyl)-8-oxo-1-phenyl-1,2,3,3a,8,8a-hexahydrocyclopenta[a]indene-2-carbaldehyde (3ad)

Brown solid obtained by column chromatography (petroleum ether/ethyl acetate $=10: 1$ to $5: 1), 63.4 \mathrm{mg}, 82 \%$ yield, m.p. $145.8-147.8^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.$, a mixture of two isomers, the ratio of the two isomers is >20:1) $\delta 9.37(\mathrm{~d}, J=2.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.70$ (d, $J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.42(\mathrm{dd}, J=12.3,7.0 \mathrm{~Hz}, 3 \mathrm{H}), 7.37(\mathrm{~d}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.35-$ $7.28(\mathrm{~m}, 4 \mathrm{H}), 7.25-7.17(\mathrm{~m}, 3 \mathrm{H}), 6.94(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.04(\mathrm{t}, J=9.1 \mathrm{~Hz}, 1 \mathrm{H})$, $3.70-3.52(\mathrm{~m}, 2 \mathrm{H}), 3.45(\mathrm{t}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.07(\mathrm{t}, J=10.3 \mathrm{~Hz}, 1 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{C}$ NMR 125 MHz, DMSO- d_{6}) $\delta 206.4,203.1,155.64,141.7,139.5,136.0,135.5,132.3,130.6$, $129.2,129.0,128.9,128.5,127.3,125.8,124.4,69.8,59.5,53.5,52.5,47.8$ ppm. HRMS (ESI) calcd. for $\mathrm{C}_{25} \mathrm{H}_{20} \mathrm{ClO}_{2}[\mathrm{M}+\mathrm{H}]^{+}$387.1146, found: 387.1150.

3-(4-bromophenyl)-8-oxo-1-phenyl-1,2,3,3a,8,8a-hexahydrocyclopenta[a]indene-2-carbaldehyde (3ae)

Brown solid obtained by column chromatography (petroleum ether/ethyl acetate $=10: 1$ to $5: 1$), $38.8 \mathrm{mg}, 45 \%$ yield, m.p. $135.1-136.9^{\circ} \mathrm{C} .{ }^{1} \mathrm{H} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.$, a mixture of two isomers, the ratio of the two isomers is $>20: 1) \delta 9.43(\mathrm{~d}, J=2.6 \mathrm{~Hz}, 1 \mathrm{H})$, 7.78 (d, J=7.6 Hz, 1H), $7.57-7.47(\mathrm{~m}, 3 \mathrm{H}), 7.44-7.41(\mathrm{~m}, 3 \mathrm{H}), 7.39-7.35(\mathrm{~m}, 5 \mathrm{H})$, $7.03(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.17(\mathrm{t}, J=9.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.75-3.58(\mathrm{~m}, 2 \mathrm{H}), 3.46(\mathrm{t}, J=8.2$ $\mathrm{Hz}, 1 \mathrm{H}), 3.15(\mathrm{dd}, J=11.3,9.5 \mathrm{~Hz}, 1 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 204.8$, $199.5,153.8,138.8,138.0,134.4,134.0,131.0,128.5,128.2,127.6,126.8,126.8,124.5$, 123.6, 120.2, 67.7, 58.4, 53.9, 51.5, 46.0 ppm. HRMS (ESI) calcd. for $\mathrm{C}_{25} \mathrm{H}_{20} \mathrm{BrO}_{2}$ [M $+\mathrm{H}]^{+} 431.0641$, found: 431.0640 .

3-(4-nitrophenyl)-8-oxo-1-phenyl-1,2,3,3a,8,8a-hexahydrocyclopenta[a]indene-2carbaldehyde (3af)

Brown solid obtained by column chromatography (petroleum ether/ethyl acetate $=10: 1$ to $5: 1$), $20.7 \mathrm{mg}, 26 \%$ yield, m.p. 201.3-202.7 ${ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 9.47$ $(\mathrm{d}, J=2.4 \mathrm{~Hz}, 1 \mathrm{H}), 8.29(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.80(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.63-7.54(\mathrm{~m}$, $3 \mathrm{H}), 7.53-7.47(\mathrm{~m}, 3 \mathrm{H}), 7.45-7.38(\mathrm{~m}, 2 \mathrm{H}), 7.34-7.28(\mathrm{~m}, 1 \mathrm{H}), 6.97(\mathrm{~d}, J=7.5 \mathrm{~Hz}$, $1 \mathrm{H}), 4.18(\mathrm{t}, J=8.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.77(\mathrm{dt}, J=11.3,2.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.71-3.55(\mathrm{~m}, 2 \mathrm{H}), 3.32$ $(\mathrm{dd}, J=11.6,9.6 \mathrm{~Hz}, 1 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 205.2,199.9,153.9$, 147.5, 147.3, 140.2, 135.5, 135.1, 129.2, 129.0, 128.9, 127.6, 125.2, 124.9, 124.4, 68.8, 59.6, 53.9, 52.5, 48.3 ppm. HRMS (ESI) calcd. for $\mathrm{C}_{25} \mathrm{H}_{20} \mathrm{NO}_{4}[\mathrm{M}+\mathrm{H}]^{+}$398.1387, found: 398.1386 .

8-oxo-1-phenyl-3-(m-tolyl)-1,2,3,3a,8,8a-hexahydrocyclopenta[a]indene-2carbaldehyde (3ag)

Yellow viscous liquid obtained by column chromatography (petroleum ether/ethyl acetate $=10: 1$ to $5: 1$), $13.2 \mathrm{mg}, 18 \%$ yield. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$, a mixture of two isomers, the ratio of the two isomers is $>20: 1) \delta 9.37(\mathrm{~d}, J=2.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.70(\mathrm{~d}$, $J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.48-7.40(\mathrm{~m}, 3 \mathrm{H}), 7.33(\mathrm{dt}, J=15.3,7.6 \mathrm{~Hz}, 3 \mathrm{H}), 7.24-7.18(\mathrm{~m}$, 2H), $7.10-7.06(\mathrm{~m}, 3 \mathrm{H}), 6.98(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.10(\mathrm{t}, J=9.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.71-3.55$ $(\mathrm{m}, 2 \mathrm{H}), 3.45(\mathrm{t}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.05(\mathrm{t}, 1 \mathrm{H}), 2.32(\mathrm{~s}, 3 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{C}$ NMR (100 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 205.0,199.9,154.0,139.8,138.2,137.8,134.2,134.1,128.0,127.9,127.5$, 127.4, 126.7, 126.2, 124.6, 124.0, 123.5, 68.0, 58.6, 53.8, 51.6, 46.7, 20.5 ppm. HRMS (ESI) calcd. for $\mathrm{C}_{26} \mathrm{H}_{23} \mathrm{O}_{2}[\mathrm{M}+\mathrm{H}]^{+}$367.1693, found: 367.1697.

3-(3-chlorophenyl)-8-oxo-1-phenyl-1,2,3,3a,8,8a-hexahydrocyclopenta[a]indene-2-carbaldehyde (3ah)

Brown viscous liquid obtained by column chromatography (petroleum ether/ethyl acetate $=10: 1$ to $5: 1$), $24.8 \mathrm{mg}, 32 \%$ yield. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$, a mixture of two isomers, the ratio of the two isomers is 13:1) $\delta 9.38(\mathrm{~d}, J=1.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.71(\mathrm{~d}, J$ $=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.46(\mathrm{t}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.41(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.37(\mathrm{~d}, J=7.5 \mathrm{~Hz}$, $1 \mathrm{H}), 7.31(\mathrm{t}, J=7.5 \mathrm{~Hz}, 3 \mathrm{H}), 7.28-7.20(\mathrm{~m}, 3 \mathrm{H}), 7.19-7.15(\mathrm{~m}, 1 \mathrm{H}), 6.96(\mathrm{~d}, J=7.5$ $\mathrm{Hz}, 1 \mathrm{H}), 4.07(\mathrm{t}, J=8.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.64(\mathrm{t}, J=11.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.59-3.51(\mathrm{~m}, 1 \mathrm{H}), 3.46$ $(\mathrm{t}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.08(\mathrm{t}, J=10.5 \mathrm{~Hz}, 1 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 204.6, 199.4, 153.5, 140.6, 139.5, 134.4, 134.1, 134.0, 129.4, 128.0, 127.6, 126.9, 126.8,
126.6, 126.4, 125.3, 124.4, 123.7, 67.9, 58.5, 53.1, 51.5, 47.0 ppm. HRMS (ESI) calcd. for $\mathrm{C}_{25} \mathrm{H}_{20} \mathrm{ClO}_{2}[\mathrm{M}+\mathrm{H}]^{+}$387.1146, found: 387.1148.

3-(3-nitrophenyl)-8-oxo-1-phenyl-1,2,3,3a,8,8a-hexahydrocyclopenta[a]indene-2carbaldehyde (3ai)

Orange-yellow solid obtained by column chromatography (petroleum ether/ethyl acetate $=10: 1$ to $5: 1$), $37.4 \mathrm{mg}, 47 \%$ yield, m.p. $139.1-141.0^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR (400 MHz , CDCl_{3}, a mixture of two isomers, the ratio of the two isomers is 17:1) $\delta 9.47(\mathrm{~d}, J=2.4$ $\mathrm{Hz}, 1 \mathrm{H}), 8.31(\mathrm{t}, J=2.0 \mathrm{~Hz}, 1 \mathrm{H}), 8.24-8.16(\mathrm{~m}, 1 \mathrm{H}), 7.80(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.69$ (d, $J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.60$ (t, $J=7.9 \mathrm{~Hz}, 1 \mathrm{H}$), $7.57-7.49$ (m, 3H), 7.47 (d, $J=7.4 \mathrm{~Hz}$, $1 \mathrm{H}), 7.45-7.38(\mathrm{~m}, 2 \mathrm{H}), 7.35-7.28(\mathrm{~m}, 1 \mathrm{H}), 6.98(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.22-4.15(\mathrm{~m}$, $1 \mathrm{H}), 3.78(\mathrm{td}, J=11.3,2.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.71-3.53(\mathrm{~m}, 2 \mathrm{H}), 3.34(\mathrm{dd}, J=11.6,9.6 \mathrm{~Hz}$, 1H) ppm. ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 205.3,200.1,154.1,148.9,142.0,140.2$, 135.6, 135.1, 134.6, 130.2, 129.2, 128.9, 127.7, 127.6, 125.2, 124.9, 122.8, 122.5, 68.8, 59.5, 53.7, 52.4, 48.4 ppm. HRMS (ESI) calcd. for $\mathrm{C}_{25} \mathrm{H}_{20} \mathrm{NO}_{4}[\mathrm{M}+\mathrm{H}]^{+}$398.1387, found: 398.1392 .

8-oxo-1-phenyl-3-(o-tolyl)-1,2,3,3a,8,8a-hexahydrocyclopenta[a]indene-2carbaldehyde (3aj)

Orange-yellow solid obtained by column chromatography (petroleum ether/ethyl acetate $=10: 1$ to $5: 1$), $18.3 \mathrm{mg}, 25 \%$ yield, m.p. $145.6-147.5^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR (400 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 9.39(\mathrm{~s}, 1 \mathrm{H}), 7.71(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.53(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.43(\mathrm{t}, J=$
$7.1 \mathrm{~Hz}, 3 \mathrm{H}), 7.32(\mathrm{td}, J=14.6,12.4,8.0 \mathrm{~Hz}, 4 \mathrm{H}), 7.22(\mathrm{~d}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.13(\mathrm{~d}, J=$ $8.0 \mathrm{~Hz}, 2 \mathrm{H}), 6.91(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.11(\mathrm{t}, J=9.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.71(\mathrm{td}, J=11.2,2.1$ $\mathrm{Hz}, 1 \mathrm{H}), 3.64(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.53-3.36(\mathrm{~m}, 2 \mathrm{H}), 2.03(\mathrm{~s}, 3 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 205.2,199.7,154.0,140.0,136.9,135.3,134.3,134.0,129.8$, $128.0,127.5,126.7,126.2,126.12,126.0,125.6,124.2,123.6,69.0,58.8,52.5,48.6$, 47.0, 19.1 ppm . HRMS (ESI) calcd. for $\mathrm{C}_{26} \mathrm{H}_{23} \mathrm{O}_{2}[\mathrm{M}+\mathrm{H}]^{+} 367.1693$, found: 367.1697.

3-(2-chlorophenyl)-8-ox0-1-phenyl-1,2,3,3a,8,8a-hexahydrocyclopenta[a]indene-

 2-carbaldehyde (3ak)

3ak
Brown viscous liquid obtained by column chromatography (petroleum ether/ethyl acetate $=10: 1$ to $5: 1$), $19.3 \mathrm{mg}, 25 \%$ yield. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$, a mixture of two isomers, the ratio of the two isomers is $13: 1) \delta 9.49(\mathrm{~d}, J=3.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.72(\mathrm{~d}, J$ $=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.58-7.49(\mathrm{~m}, 2 \mathrm{H}), 7.47(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.41-7.35(\mathrm{~m}, 2 \mathrm{H}), 7.34$ - 7.27 (m, 3H), $7.23-7.19$ (m, 1H), $7.17-7.14$ (m, 1H), 6.83 (d, $J=15.7 \mathrm{~Hz}, 1 \mathrm{H})$, $6.35-6.19(\mathrm{~m}, 1 \mathrm{H}), 3.90(\mathrm{t}, J=8.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.58(\mathrm{dd}, J=11.1,8.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.40-3.33$ (m, 2H), 2.89-2.70(m, 1H) ppm. ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 204.9, 199.7, 153.7, $139.7,134.5,133.7,132.1,130.4,128.8,128.5,128.0,127.9,127.6,126.6,126.3,126.0$, 124.6, 123.6, 66.6, 58.6, 51.6, 49.3, 46.5 ppm . HRMS (ESI) calcd. for $\mathrm{C}_{25} \mathrm{H}_{20} \mathrm{ClO}_{2}[\mathrm{M}$ $+\mathrm{H}]^{+}$387.1146, found: 387.1150.

3-(2-bromophenyl)-8-oxo-1-phenyl-1,2,3,3a,8,8a-hexahydrocyclopenta[a]indene-2-carbaldehyde (3al)

3al

Brown viscous liquid obtained by column chromatography (petroleum ether/ethyl acetate $=10: 1$ to $5: 1$), $14.7 \mathrm{mg}, 17 \%$ yield. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$, a mixture of two isomers, the ratio of the two isomers is $10: 1) \delta 9.49(\mathrm{~d}, J=3.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.72(\mathrm{~d}, J$ $=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.58-7.53(\mathrm{~m}, 1 \mathrm{H}), 7.52-7.48(\mathrm{~m}, 2 \mathrm{H}), 7.38(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.30$ (t, $J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.27-7.20(\mathrm{~m}, 2 \mathrm{H}), 7.10-7.05(\mathrm{~m}, 1 \mathrm{H}), 6.79(\mathrm{~d}, J=15.7 \mathrm{~Hz}, 1 \mathrm{H})$, $6.23(\mathrm{dd}, J=15.7,8.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.90(\mathrm{t}, J=8.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.58(\mathrm{dd}, J=11.0,8.3 \mathrm{~Hz}, 1 \mathrm{H})$, $3.43-3.31(\mathrm{~m}, 2 \mathrm{H}), 2.84(\mathrm{q}, J=9.3 \mathrm{~Hz}, 1 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 204.9, 199.7, 153.7, 139.7, 135.6, 134.5, 132.0, 131.1, 130.6, 128.2, 128.0, 127.6, 126.7, 126.6, 126.3, 124.7, 123.6, 122.5, 66.6, 58.6, 51.5, 49.3, 46.5 ppm . HRMS (ESI) calcd. for $\mathrm{C}_{25} \mathrm{H}_{20} \mathrm{BrO}_{2}[\mathrm{M}+\mathrm{H}]^{+} 431.0641$, found: 431.0645 .

4. General experimental procedures for synthesis of compounds 5

A mixture of DABCO ($0.20 \mathrm{mmol}, 1.0$ equiv. $), \mathrm{EtONa}(0.20 \mathrm{mmol}, 1.0$ equiv. $), \mathbf{1}$ (0.30 mmol, 1.5 equiv.) and $\mathbf{4}(0.20 \mathrm{mmol}, 1.0$ equiv.) and dimethyl carbonate (1.0 mL) were added to a sealed reaction tube equipped with a stir bar. The tube was then sealed and the resulting mixture was stirred at $90^{\circ} \mathrm{C}$ for the 1-48 h . Upon completion (monitored by TLC, visualized by UV light), the reaction solution was concentrated in vacuo. The crude product was purified by column chromatography on silica gel (eluent PE:EtOAc $=8: 1$ to $5: 1$) to afford pure products 5 .

1',3'-diphenyl-1',3',3a',8a'-tetrahydro-3H,8'H-spiro[benzofuran-2,2'-

 cyclopenta[a]indene]-3,8'-dione (5a)

Yellow solid obtained by column chromatography (petroleum ether/ethyl acetate $=8: 1$ to $5: 1$), $73.5 \mathrm{mg}, 83 \%$ yield, m.p. $213.4-214.1^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.79$ $(\mathrm{d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.49(\mathrm{td}, J=7.4,1.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.42(\mathrm{t}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.41-7.28$ $(\mathrm{m}, 5 \mathrm{H}), 7.26-7.17(\mathrm{~m}, 3 \mathrm{H}), 7.19-7.11(\mathrm{~m}, 3 \mathrm{H}), 7.12-7.05(\mathrm{~m}, 1 \mathrm{H}), 7.01(\mathrm{~d}, J=7.6$
$\mathrm{Hz}, 1 \mathrm{H}), 6.90(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.72(\mathrm{t}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.70(\mathrm{dd}, J=10.4,8.3 \mathrm{~Hz}$, $1 \mathrm{H}), 4.04$ (dd, $J=10.2,8.3 \mathrm{~Hz}, 1 \mathrm{H}$), $3.95(\mathrm{~d}, J=10.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.67(\mathrm{~d}, J=10.4 \mathrm{~Hz}$, 1H) ppm. ${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 205.4,199.2,171.1,155.4,138.0,135.4$, $134.9,134.8,129.2,129.0,128.5,128.4,128.2,127.8,127.6,125.4,124.7,123.8,121.7$, 121.5, 112.6, 103.2, 59.7, 56.0, 55.1, 49.4 ppm. HRMS (ESI) calcd. for $\mathrm{C}_{31} \mathrm{H}_{23} \mathrm{O}_{3}[\mathrm{M}+$ $\mathrm{H}]^{+} 443.1642$, found: 443.1639 .

1'-(4-methoxyphenyl)-3'-phenyl-1',3',3a',8a'-tetrahydro-3H,8'H-spiro

[benzofuran-2,2'-cyclopenta[a]indene]-3,8'-dione (5b)

5b
Yellow solid obtained by column chromatography (petroleum ether/ethyl acetate $=8: 1$ to $5: 1$), $72.8 \mathrm{mg}, 77 \%$ yield, m.p. $95.2-96.2^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.60(\mathrm{~d}$, $J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.49(\mathrm{td}, J=7.5,1.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.41-7.37(\mathrm{~m}, 1 \mathrm{H}), 7.37-7.33(\mathrm{~m}$, 1H), $7.26-7.21(\mathrm{~m}, 2 \mathrm{H}), 7.16-7.09(\mathrm{~m}, 5 \mathrm{H}), 7.08-7.03(\mathrm{~m}, 1 \mathrm{H}), 6.97(\mathrm{~d}, J=8.5 \mathrm{~Hz}$, $1 \mathrm{H}), 6.81(\mathrm{~d}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.70(\mathrm{t}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.63(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 2 \mathrm{H}), 4.66$ (dd, $J=10.6,8.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.97(\mathrm{dd}, J=10.3,8.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.66(\mathrm{~d}, J=10.2 \mathrm{~Hz}, 1 \mathrm{H})$, $3.51(\mathrm{~s}, 3 \mathrm{H}), 3.38(\mathrm{~d}, J=10.6 \mathrm{~Hz}, 1 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{C}$ NMR $\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 13 \mathrm{C}$ NMR (125 MHz, DMSO-d d_{6}) $\delta 205.8,198.9,171.1,158.9,155.8,139.2,136.1,135.5,135.2$, $130.4,129.4,129.1,128.8,128.2,127.5,125.6,124.5,123.9,122.4,121.5,113.9,113.3$, 103.3, 59.7, 56.1, 55.3, 54.1, 49.0, 40.4, 40.4, 40.3, 40.2, 40.1, 40.0, 39.9, 39.9, 39.8, 39.6, 39.4. ppm. HRMS (ESI) calcd. for $\mathrm{C}_{32} \mathrm{H}_{25} \mathrm{O}_{4}[\mathrm{M}+\mathrm{H}]^{+} 473.1747$, found: 473.1742 . 2,2'-cyclopenta[a]indene]-3,8'-dione (5c)

5c
Yellow solid obtained by column chromatography (petroleum ether/ethyl acetate $=8: 1$ to $5: 1$), $59.9 \mathrm{mg}, 65 \%$ yield, m.p. $95.1-96.0^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.71(\mathrm{~d}$, $J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.41(\mathrm{td}, J=7.5,1.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.35(\mathrm{td}, J=7.4,1.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.31-$ $7.21(\mathrm{~m}, 5 \mathrm{H}), 7.18-7.05(\mathrm{~m}, 4 \mathrm{H}), 6.92(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.86-6.74(\mathrm{~m}, 3 \mathrm{H}), 6.67$ (t, $J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.61(\mathrm{dd}, J=10.3,8.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.93-3.79(\mathrm{~m}, 2 \mathrm{H}), 3.57(\mathrm{~d}, J=$ $10.4 \mathrm{~Hz}, 1 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 205.2,199.0,171.0,162.2(\mathrm{~d}, J=$ $246.0 \mathrm{~Hz}), 155.4,138.2,135.5,135.3,134.7,130.7(\mathrm{~d}, J=3.2 \mathrm{~Hz}), 130.5(\mathrm{~d}, J=8.1$ Hz), 129.1, 128.6, 128.4, 127.8, 125.4, 124.7, 123.8, 121.7, 121.7, 115.2 (d, $J=21.5$ Hz), 112.6, 103.1, 59.6, 56.2, 54.3, 49.3 ppm . HRMS (ESI) calcd. for $\mathrm{C}_{31} \mathrm{H}_{22} \mathrm{FO}_{3}[\mathrm{M}+$ $\mathrm{H}]^{+} 461.1547$, found: 461.1565 .

1'-(4-chlorophenyl)-3'-phenyl-1',3',3a',8a'-tetrahydro-3H,8'H-spiro[benzofuran-

 2,2'-cyclopenta[a]indene]-3,8'-dione (5d)

Yellow solid obtained by column chromatography (petroleum ether/ethyl acetate $=8: 1$ to 5:1), $54.4 \mathrm{mg}, 57 \%$ yield, m.p. 66.2-67.2 ${ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.79(\mathrm{~d}, J$ $=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.53-7.47(\mathrm{~m}, 1 \mathrm{H}), 7.47-7.41(\mathrm{~m}, 1 \mathrm{H}), 7.39-7.33(\mathrm{~m}, 3 \mathrm{H}), 7.32-$ $7.28(\mathrm{~m}, 2 \mathrm{H}), 7.26-7.23(\mathrm{~m}, 1 \mathrm{H}), 7.22-7.18(\mathrm{~m}, 2 \mathrm{H}), 7.17-7.12(\mathrm{~m}, 3 \mathrm{H}), 7.00(\mathrm{~d}, \mathrm{~J}$ $=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.92(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.77(\mathrm{t}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.68(\mathrm{dd}, J=10.3,8.1$ $\mathrm{Hz}, 1 \mathrm{H}), 4.04-3.78(\mathrm{~m}, 2 \mathrm{H}), 3.64(\mathrm{~d}, J=10.3 \mathrm{~Hz}, 1 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{C}$ NMR (125 MHz , DMSO- d_{6}) $\delta 205.6,198.6,171.0,155.8,139.4,136.2,135.4,135.0,134.7,132.6,131.1$, $129.4,129.1,128.9,128.6,128.3,125.6,124.5,123.9,122.6,121.4,113.3,103.0,59.6$, 55.8, 53.9, 49.0 ppm. HRMS (ESI) calcd. for $\mathrm{C}_{31} \mathrm{H}_{22} \mathrm{ClO}_{3}[\mathrm{M}+\mathrm{H}]^{+} 477.1252$, found: 477.1257.

3'-phenyl-1'-(4-(trifluoromethyl)phenyl)-1',3',3a',8a'-tetrahydro-3H,8'H-

 spiro[benzofuran-2,2'-cyclopenta[a]indene]-3,8'-dione (5e)

Yellow solid obtained by column chromatography (petroleum ether/ethyl acetate $=8: 1$ to $5: 1$), $44.9 \mathrm{mg}, 44 \%$ yield, m.p. $116.6-117.5^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.80$ (d, $J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.52-7.47(\mathrm{~m}, 3 \mathrm{H}), 7.44$ (t, $J=7.6 \mathrm{~Hz}, 3 \mathrm{H}), 7.38-7.33(\mathrm{~m}, 3 \mathrm{H})$, $7.26-7.23(\mathrm{~m}, 1 \mathrm{H}), 7.23-7.18(\mathrm{~m}, 2 \mathrm{H}), 7.18-7.12(\mathrm{~m}, 1 \mathrm{H}), 7.05-6.96(\mathrm{~m}, 1 \mathrm{H})$, $6.91(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.76(\mathrm{t}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.72(\mathrm{dd}, J=10.1,7.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.01$ (d, $J=6.4 \mathrm{~Hz}, 2 \mathrm{H}$), $3.66(\mathrm{~d}, J=10.4 \mathrm{~Hz}, 1 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 205.7, 198.7, 170.9, 155.3, 139.2, 138.3, 135.6, 135.2, 134.4, 129.7 (q, $J=32.5 \mathrm{~Hz}$), 129.4, 129.1, 128.7, 128.5, 127.9, 125.4, 125.2 (q, $J=3.8 \mathrm{~Hz}), 124.8,124.0(\mathrm{q}, J=$ 270.5 Hz), 123.9, 121.9, 121.5, 112.6, 102.8, 59.9, 56.1, 54.4, 49.3 ppm. HRMS (ESI) calcd. for $\mathrm{C}_{32} \mathrm{H}_{22} \mathrm{~F}_{3} \mathrm{O}_{3}[\mathrm{M}+\mathrm{H}]^{+}$511.1516, found: 511.1520.

1'-(3-methoxyphenyl)-3'-phenyl-1',3',3a',8a'-tetrahydro-3H,8'H-spiro[benzofuran-2,2'-cyclopenta[a]indene]-3,8'-dione (5f)

Yellow solid obtained by column chromatography (petroleum ether/ethyl acetate $=8: 1$ to $5: 1$), $66.2 \mathrm{mg}, 70 \%$ yield, m.p. $84.3-85.2^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.72(\mathrm{~d}$, $J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.41(\mathrm{td}, J=7.4,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.35(\mathrm{t}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.31-7.22(\mathrm{~m}$, $3 \mathrm{H}), 7.19-7.15(\mathrm{~m}, 1 \mathrm{H}), 7.12(\mathrm{t}, J=7.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.07(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.99(\mathrm{t}, J=$ $7.9 \mathrm{~Hz}, 1 \mathrm{H}), 6.92(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.88-6.82(\mathrm{~m}, 3 \mathrm{H}), 6.66(\mathrm{t}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.56$ (dd, $J=8.0,2.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.68-4.56(\mathrm{~m}, 1 \mathrm{H}), 3.93(\mathrm{dd}, J=10.2,8.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.84(\mathrm{~d}$, $J=10.2 \mathrm{~Hz}, 1 \mathrm{H}$), $3.62(\mathrm{~s}, 3 \mathrm{H}), 3.57(\mathrm{~d}, J=10.4 \mathrm{~Hz}, 1 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{C}$ NMR (125 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 205.3,199.1,171.1,159.3,155.4,138.0,136.5,135.4,134.8,129.2,129.1$,
$128.5,128.4,128.4,127.8,125.4,124.7,123.9,121.8,121.6,121.5,114.4,113.4,112.6$, 103.1, 59.8, 56.1, 55.2, 54.9, 49.4 ppm. HRMS (ESI) calcd. for $\mathrm{C}_{32} \mathrm{H}_{25} \mathrm{O}_{4}[\mathrm{M}+\mathrm{H}]^{+}$ 473.1747, found: 473.1746.

1'-(3-fluorophenyl)-3'-phenyl-1',3',3a',8a'-tetrahydro-3H,8'H-spiro[benzofuran-

 2,2'-cyclopenta[a]indene]-3,8'-dione (5g)

Yellow solid obtained by column chromatography (petroleum ether/ethyl acetate $=8: 1$ to $5: 1$), $75.5 \mathrm{mg}, 82 \%$ yield, m.p. $74.0-74.9^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.79(\mathrm{~d}$, $J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.49(\mathrm{td}, J=7.5,1.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.43(\mathrm{t}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.39-7.31(\mathrm{~m}$, $3 \mathrm{H}), 7.28-7.23(\mathrm{~m}, 1 \mathrm{H}), 7.23-7.19(\mathrm{~m}, 2 \mathrm{H}), 7.18-7.11(\mathrm{~m}, 2 \mathrm{H}), 7.11-7.07(\mathrm{~m}, 2 \mathrm{H})$, $7.02-6.98(\mathrm{~m}, 1 \mathrm{H}), 6.93$ (d, $J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.83-6.71$ (m, 2H), 4.70 (dd, $J=10.4$, $8.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.00-3.89(\mathrm{~m}, 2 \mathrm{H}), 3.65(\mathrm{~d}, J=10.4 \mathrm{~Hz}, 1 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{C}$ NMR (125 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 205.1,198.8,171.0,162.6(\mathrm{~d}, J=245.4 \mathrm{~Hz}), 155.3,138.2,137.5(\mathrm{~d}, J=7.4$ $\mathrm{Hz}), 135.5,135.2,134.6,129.7$ (d, $J=8.5 \mathrm{~Hz}), 129.2,128.6,128.5,127.9,125.4,124.9$ (d, $J=2.7 \mathrm{~Hz}$), 124.7, 123.9, 121.8, 121.6, $115.8(\mathrm{~d}, J=22.1 \mathrm{~Hz}), 114.6(\mathrm{~d}, J=21.1$ $\mathrm{Hz}), 112.6,102.9,59.7,56.1,54.5,49.3 \mathrm{ppm}$. HRMS (ESI) calcd. for $\mathrm{C}_{31} \mathrm{H}_{22} \mathrm{FO}_{3}[\mathrm{M}+$ $\mathrm{H}]^{+} 461.1547$, found: 461.1550 .

1'-(3-chlorophenyl)-3'-phenyl-1',3',3a',8a'-tetrahydro-3H,8'H-spiro[benzofuran-2,2'-cyclopenta[a]indene]-3,8'-dione (5h)

Yellow solid obtained by column chromatography (petroleum ether/ethyl acetate $=8: 1$ to 5:1), $14.3 \mathrm{mg}, 15 \%$ yield, m.p. 85.3-86.2 ${ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.72(\mathrm{~d}, J$ $=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.41(\mathrm{t}, J=7.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.39-7.32(\mathrm{~m}, 2 \mathrm{H}), 7.28(\mathrm{t}, J=8.4 \mathrm{~Hz}, 3 \mathrm{H})$, $7.20-7.15(\mathrm{~m}, 1 \mathrm{H}), 7.16-7.04(\mathrm{~m}, 4 \mathrm{H}), 6.99(\mathrm{~d}, J=4.6 \mathrm{~Hz}, 2 \mathrm{H}), 6.92(\mathrm{~d}, J=7.5 \mathrm{~Hz}$,
$1 \mathrm{H}), 6.86(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.68(\mathrm{t}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.67-4.56(\mathrm{~m}, 1 \mathrm{H}), 3.94-3.84$ $(\mathrm{m}, 1 \mathrm{H}), 3.82(\mathrm{~d}, J=10.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.56(\mathrm{~d}, J=10.4 \mathrm{~Hz}, 1 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{C}$ NMR $(125 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \delta 205.1,198.8,171.0,155.3,138.3,137.1,135.5,135.2,134.5,134.0,129.5$, 129.2, 129.0, 128.6, 128.5, 127.9, 127.8, 127.4, 125.4, 124.7, 123.9, 121.8, 121.6, 112.6, 102.8, 59.66, 56.2, 54.5, 49.4 ppm. HRMS (ESI) calcd. for $\mathrm{C}_{31} \mathrm{H}_{22} \mathrm{ClO}_{3}[\mathrm{M}+\mathrm{H}]^{+}$ 477.1252, found: 477.1251.

1'-(3-bromophenyl)-3'-phenyl-1', $\mathbf{3}^{\prime}, \mathbf{3 a}^{\prime}, 8 \mathbf{a n}^{\prime}$-tetrahydro- $\mathbf{3 H}, \mathbf{8}^{\prime} \mathbf{H}$-spiro[benzofuran-2,2'-cyclopenta[a]indene]-3,8'-dione (5i)

Yellow solid obtained by column chromatography (petroleum ether/ethyl acetate $=8: 1$ to $5: 1$), $26.1 \mathrm{mg}, 25 \%$ yield, m.p. $103.2-104.1^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.71$ $(\mathrm{d}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.50(\mathrm{~s}, 1 \mathrm{H}), 7.40(\mathrm{t}, J=7.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.34(\mathrm{t}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.30$ - $7.22(\mathrm{~m}, 3 \mathrm{H}), 7.19-7.10(\mathrm{~m}, 5 \mathrm{H}), 7.10-7.06(\mathrm{~m}, 1 \mathrm{H}), 6.92(\mathrm{t}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 6.87$ $(\mathrm{d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.66(\mathrm{t}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.62(\mathrm{dd}, 1 \mathrm{H}), 3.87(\mathrm{dd}, J=10.0,8.4 \mathrm{~Hz}$, $1 \mathrm{H}), 3.80(\mathrm{~d}, J=10.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.56(\mathrm{~d}, J=10.5 \mathrm{~Hz}, 1 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{C}$ NMR (125 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 205.1,198.7,171.0,155.3,138.3,137.4,135.5,135.2,134.5,131.9,130.7$, 129.8, 129.2, 128.6, 128.5, 127.9, 127.9, 125.4, 124.7, 123.9, 122.3, 121.8, 121.6, 112.6, 102.8, 59.6, 56.2, 54.5, 49.4 ppm . HRMS (ESI) calcd. for $\mathrm{C}_{31} \mathrm{H}_{22} \mathrm{BrO}_{3}[\mathrm{M}+\mathrm{H}]^{+}$ 521.0747, found: 521.0753.

1'-(2-methoxyphenyl)-3'-phenyl-1', $\mathbf{3}^{\prime}, \mathbf{3 a}^{\prime}, 8 \mathbf{a n}^{\prime}$-tetrahydro- $\mathbf{3 H}, \mathbf{8}^{\prime} \mathbf{H}$ -

 spiro[benzofuran-2,2'-cyclopenta[a]indene]-3,8'-dione (5j)

Yellow solid obtained by column chromatography (petroleum ether/ethyl acetate $=8: 1$ to $5: 1$), $68.0 \mathrm{mg}, 72 \%$ yield, m.p. $181.3-182.0^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.78$
(d, $J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.59(\mathrm{dd}, J=7.8,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.48(\mathrm{td}, J=7.5,1.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.45$ $-7.38(\mathrm{~m}, 1 \mathrm{H}), 7.40-7.35(\mathrm{~m}, 2 \mathrm{H}), 7.33-7.26(\mathrm{~m}, 1 \mathrm{H}), 7.25-7.24(\mathrm{~m}, ~, 1 \mathrm{H}), 7.23-$ 7.17 (m, 2H), $7.18-7.11$ (m, 1H), 7.09 - 7.01 (m, 1H), $7.02-6.97(\mathrm{~m}, 1 \mathrm{H}), 6.88-$ $6.81(\mathrm{~m}, 2 \mathrm{H}), 6.77-6.69(\mathrm{~m}, 1 \mathrm{H}), 6.62(\mathrm{dd}, J=8.3,1.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.74-4.55(\mathrm{~m}, 2 \mathrm{H})$, $4.02(\mathrm{dd}, J=10.0,8.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.72(\mathrm{~d}, J=10.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.64(\mathrm{~s}, 3 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{C}$ NMR (125 MHz, DMSO-d ${ }_{6}$) $\delta 206.3,198.2,170.5,157.3,155.9,138.7,136.1,135.3,135.2$, $130.0,129.5,129.15,128.8,128.8,128.2,125.6,124.5,124.0,123.6,122.2,121.6$, 120.4, 113.1, 111.1, 102.4, 60.1, 56.2, 55.7, 49.3, 46.3 ppm. HRMS (ESI) calcd. for $\mathrm{C}_{32} \mathrm{H}_{25} \mathrm{O}_{4}[\mathrm{M}+\mathrm{H}]^{+} 473.1747$, found: 473.1746 .

3'-phenyl-1'-(o-tolyl)-1',3',3a',8a'-tetrahydro-3H,8'H-spiro[benzofuran-2,2'-cyclopenta[a]indene]-3,8'-dione (5k)

5k
Brown solid obtained by column chromatography (petroleum ether/ethyl acetate $=8: 1$ to $5: 1$), $65.7 \mathrm{mg}, 72 \%$ yield, m.p. $104.2-105.3^{\circ} \mathrm{C} .{ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.80$ $(\mathrm{d}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.68(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.48(\mathrm{td}, J=7.4,1.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.43(\mathrm{t}, J=$ $7.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.40-7.36(\mathrm{~m}, 2 \mathrm{H}), 7.34$ (ddd, $J=8.5,7.3,1.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.25-7.18(\mathrm{~m}$, $3 \mathrm{H}), 7.17-7.13(\mathrm{~m}, 1 \mathrm{H}), 7.07(\mathrm{td}, J=8.0,7.3,2.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.02-6.91(\mathrm{~m}, 4 \mathrm{H}), 6.72$ (t, $J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.73(\mathrm{dd}, J=10.6,8.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.41(\mathrm{~d}, J=9.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.89(\mathrm{dd}$, $J=9.9,8.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.67(\mathrm{~d}, J=10.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.32(\mathrm{~s}, 3 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{C}$ NMR (125 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 205.8,199.4,171.0,155.3,138.0,137.1,135.4,135.3,134.8,133.9,130.3$, $129.2,129.1,128.5,128.4,127.8,127.1,125.6,125.4,124.6,123.8,121.5,121.5,112.6$, 103.0, 60.2, 58.5, 49.6, 49.0, 20.3 ppm. HRMS (ESI) calcd. for $\mathrm{C}_{32} \mathrm{H}_{25} \mathrm{O}_{3}[\mathrm{M}+\mathrm{H}]^{+}$ 457.1798, found: 457.1806.

1'-(2-fluorophenyl)-3'-phenyl-1', $\mathbf{3}^{\prime}, \mathbf{3 a}^{\prime}, 8 a^{\prime}$ 'tetrahydro- $\mathbf{3 H}, \mathbf{8}^{\prime} \mathbf{H}$-spiro[benzofuran-2,2'-cyclopenta[a]indene]-3,8'-dione (51)

Yellow solid obtained by column chromatography (petroleum ether/ethyl acetate $=8: 1$ to $5: 1$), $75.5 \mathrm{mg}, 82 \%$ yield, m.p. $134.6-135.1^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.79$ (d, $J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.57-7.52(\mathrm{~m}, 1 \mathrm{H}), 7.51-7.45(\mathrm{~m}, 1 \mathrm{H}), 7.45-7.40(\mathrm{~m}, 1 \mathrm{H}), 7.40$ $-7.36(\mathrm{~m}, 2 \mathrm{H}), 7.34-7.29(\mathrm{~m}, 1 \mathrm{H}), 7.28-7.25(\mathrm{~m}, 1 \mathrm{H}), 7.23-7.18(\mathrm{~m}, 2 \mathrm{H}), 7.17-$ $7.12(\mathrm{~m}, 1 \mathrm{H}), 7.09-7.03(\mathrm{~m}, 1 \mathrm{H}), 7.02-6.95(\mathrm{~m}, 2 \mathrm{H}), 6.92(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.89$ - $6.84(\mathrm{~m}, 1 \mathrm{H}), 6.73(\mathrm{t}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.72(\mathrm{dd}, J=10.5,8.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.34(\mathrm{~d}, J=$ $9.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.06(\mathrm{dd}, J=9.9,8.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.68(\mathrm{~d}, J=10.5 \mathrm{~Hz}, 1 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{C}$ NMR $\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 205.2,198.5,170.9,161.0(\mathrm{~d}, J=248.0 \mathrm{~Hz}), 155.3,138.0,135.4$, 135.3, 134.7, $130.6(\mathrm{~d}, J=3.5 \mathrm{~Hz}), 129.2,129.1(\mathrm{~d}, J=8.5 \mathrm{~Hz}), 128.6,128.4,127.8$, 125.4, 124.7, 123.9, 123.8 (d, $J=3.6 \mathrm{~Hz}), 122.2(\mathrm{~d}, J=13.2 \mathrm{~Hz}), 121.6,121.4,115.5$ $(\mathrm{d}, J=23.0 \mathrm{~Hz}), 112.5,102.8,59.7,55.9,49.5,47.4 \mathrm{ppm}$. HRMS (ESI) calcd. for $\mathrm{C}_{31} \mathrm{H}_{22} \mathrm{FO}_{3}[\mathrm{M}+\mathrm{H}]^{+} 461.1547$, found: 461.1553 .

1'-(2-chlorophenyl)-3'-phenyl-1',3',3a',8a'-tetrahydro-3H,8'H-spiro[benzofuran-2,2'-cyclopenta[a]indene]-3,8'-dione (5m)

Yellow solid obtained by column chromatography (petroleum ether/ethyl acetate $=8: 1$ to $5: 1), 73.5 \mathrm{mg}, 77 \%$ yield, m.p. 227.5-228.3 ${ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR (500 MHz, DMSO- d_{6}) $\delta{ }^{1} \mathrm{H}$ NMR (500 MHz, DMSO-d $)_{6} \delta 7.91-7.80(\mathrm{~m}, 1 \mathrm{H}), 7.74(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.61$ (td, $J=7.5,1.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.52(\mathrm{t}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.51-7.43(\mathrm{~m}, 1 \mathrm{H}), 7.38(\mathrm{~d}, J=7.3 \mathrm{~Hz}$, 2H), 7.32 - 7.21 (m, 5H), $7.22-7.10(\mathrm{~m}, 2 \mathrm{H}), 7.09$ (d, $J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.93$ (d, $J=7.7$ $\mathrm{Hz}, 1 \mathrm{H}), 6.83$ (t, $J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.85(\mathrm{dd}, J=10.8,8.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.55(\mathrm{~d}, J=9.6 \mathrm{~Hz}$, $1 \mathrm{H}), 4.07(\mathrm{t}, J=8.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.55(\mathrm{~d}, J=10.8 \mathrm{~Hz}, 1 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{C}$ NMR (125 MHz , DMSO- d_{6}) δ 205.6, 197.9, 170.7, 155.7, 139.2, 136.3, 135.1, 134.9, 133.8, 133.7, 131.81, 129.5, 129.5, 129.4, 129.2, 128.9, 128.3, 127.3, 125.7, 124.6, 124.0, 122.6,
121.2, 113.3, 102.1, 60.0, 58.0, 49.2, 49.2 ppm . HRMS (ESI) calcd. for $\mathrm{C}_{31} \mathrm{H}_{22} \mathrm{ClO}_{3}[\mathrm{M}$ $+\mathrm{H}]^{+} 477.1252$, found: 477.1249 .

1'-(2-bromophenyl)-3'-phenyl-1',3',3a',8a'-tetrahydro-3H,8'H-spiro[benzofuran-

2,2'-cyclopenta[a]indene]-3,8'-dione (5n)

Yellow solid, $54.4 \mathrm{mg}, 70$ \% yield, m.p. 226.6-227.4 ${ }^{\circ} \mathrm{C}$. ${ }^{1} \mathrm{H}$ NMR (400 MHz , DMSO$\left.d_{6}\right) \delta 7.84(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.74(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.62(\mathrm{t}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.55-$ 7.49 (m, 1H), $7.49-7.42$ (m, 2H), 7.38 (d, $J=7.3 \mathrm{~Hz}, 2 \mathrm{H}$), $7.33-7.23$ (m, 4H), 7.20 $-7.14(\mathrm{~m}, 1 \mathrm{H}), 7.11-7.01(\mathrm{~m}, 2 \mathrm{H}), 6.93(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.83(\mathrm{t}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H})$, $4.84(\mathrm{t}, 1 \mathrm{H}), 4.55(\mathrm{~d}, J=9.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.02(\mathrm{t}, J=9.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.53(\mathrm{~d}, J=10.7 \mathrm{~Hz}, 1 \mathrm{H})$ ppm. ${ }^{13} \mathrm{C}$ NMR (125 MHz , DMSO- d_{6}) $\delta 205.4,197.8,170.7,155.8,139.2,136.3,135.5$, $135.1,134.9,132.9,131.9,129.7,129.5,129.3,128.9,128.3,127.8,125.7,125.1,124.6$, 124.0, 122.6, 121.2, 113.3, 102.1, 60.1, 58.4, 51.8, 49.8 ppm. HRMS (ESI) calcd. for $\mathrm{C}_{31} \mathrm{H}_{22} \mathrm{BrO}_{3}[\mathrm{M}+\mathrm{H}]^{+}$521.0747, found: 521.0744.

3'-phenyl-1'-(2-(trifluoromethyl)phenyl)-1',3',3a',8a'-tetrahydro-3H,8'H-spiro[benzofuran-2,2'-cyclopenta[a]indene]-3,8'-dione (50)

50
Yellow solid obtained by column chromatography (petroleum ether/ethyl acetate $=8: 1$ to $5: 1$), $27.6 \mathrm{mg}, 27 \%$ yield, m.p. $92.3-93.3^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.04(\mathrm{~d}$, $J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.79(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.55-7.47(\mathrm{~m}, 2 \mathrm{H}), 7.44(\mathrm{q}, J=6.9 \mathrm{~Hz}, 2 \mathrm{H})$, $7.42-7.37(\mathrm{~m}, 2 \mathrm{H}), 7.40-7.30(\mathrm{~m}, 1 \mathrm{H}), 7.22$ (dd, $J=8.2,6.3 \mathrm{~Hz}, 4 \mathrm{H}), 7.20-7.13$ $(\mathrm{m}, 1 \mathrm{H}), 7.01(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.97(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.76(\mathrm{t}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H})$, $4.69(\mathrm{t}, J=9.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.35(\mathrm{~d}, J=9.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.90(\mathrm{t}, J=9.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.77(\mathrm{~d}, J=$ $10.3 \mathrm{~Hz}, 1 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{C}$ NMR (125 MHz, DMSO- $_{6}$) $\delta 204.5,197.2,170.4,155.6,139.3$, 136.3, 134.9, 134.9 (d, $J=13.4 \mathrm{~Hz}), 132.8,132.4,129.6,129.3,128.9,128.4,128.4$ (d,
$J=6.6 \mathrm{~Hz}), 128.2,126.0,125.9,125.7,124.3(\mathrm{q}, J=549.1,274.7 \mathrm{~Hz}), 124.6,124.0$, 122.7, 121.1, 113.3, 101.8, 60.3, 60.0, 49.1, 48.7 ppm. HRMS (ESI) calcd. for $\mathrm{C}_{32} \mathrm{H}_{22} \mathrm{~F}_{3} \mathrm{O}_{3}[\mathrm{M}+\mathrm{H}]^{+}$511.1516, found: 511.1523.
5. Experimental procedures for gram-scale synthesis of compound 3da.

A mixture of DABCO ($4.0 \mathrm{mmol}, 1.0$ equiv.), $\mathrm{EtONa}(4.0 \mathrm{mmol}, 1.0$ equiv.), $\mathbf{1 j}$ (6.0 mmol, 1.5 equiv.) and $\mathbf{2 a}$ ($4.0 \mathrm{mmol}, 1.0$ equiv.) and dimethyl carbonate (20.0 mL) were added to a round-bottom flask equipped with a stir bar. The tube was then sealed and the resulting mixture was stirred at $90^{\circ} \mathrm{C}$ for the 24 h . Upon completion (monitored by TLC, visualized by UV light), the reaction solution was concentrated in vacuo. The crude product was purified by column chromatography on silica gel (eluent PE:EtOAc $=10: 1$) to afford pure products 3da in a 75% yield.

6. Experimental procedures for synthesis of compounds 6.

A mixture of 3da ($45 \mathrm{mg}, 0.123 \mathrm{mmol}, 1.0$ equiv.), 1-(triphenylphosphoranylidene) propan-2-one ($48.9 \mathrm{mg}, 0.148 \mathrm{mmol}, 1.2$ equiv.) and chloroform (5 mL) were added to a sealed reaction tube equipped with a stir bar. The tube was then sealed and the resulting mixture was stirred at $60^{\circ} \mathrm{C}$ for the 12 h . Upon completion (monitored by TLC, visualized by UV light), the reaction solution was concentrated in vacuo. The crude product was purified by column chromatography on silica gel (eluent PE:EtOAc $=15: 1$ to $3: 1$) to afford pure products 6 .

2-(3-oxobut-1-en-1-yl)-3-phenyl-1-(m-tolyl)-2,3,3a,8a-tetrahydrocyclopenta[a] inden-8(1H)-one (6)

6
Yellow solid, $34.5 \mathrm{mg}, 69 \%$ yield, m.p. 53.2-54.2 ${ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 7.70 (d, $J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.43(\mathrm{td}, J=7.5,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.36-7.30(\mathrm{~m}, 3 \mathrm{H}), 7.27-7.21$ (m, 3H), 7.18 (s, 1H), 7.17 - 7.10 (m, 2H), 7.00 (d, J=7.3 Hz, 1H), 6.95 (d, J = 8.1 Hz , $1 \mathrm{H}), 6.36(\mathrm{dd}, J=16.0,7.9 \mathrm{~Hz}, 1 \mathrm{H}), 5.58(\mathrm{~d}, J=16.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.05(\mathrm{t}, J=9.0 \mathrm{~Hz}, 1 \mathrm{H})$, $3.52-3.27$ (m, 2H), 3.15 (dd, $J=11.0,8.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.74(\mathrm{dd}, J=11.5,9.6 \mathrm{~Hz}, 1 \mathrm{H})$, $2.31(\mathrm{~s}, 3 \mathrm{H}), 1.92(\mathrm{~s}, 3 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{C} \operatorname{NMR}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 206.49,197.95,155.49$, $145.6,141.1,140.0,138.4,135.2,135.1,132.2,129.1,128.8,128.6,128.3,128.0,127.9$, 127.5, 125.6, 124.8, 124.6, 60.7, 59.7, 59.0, 52.7, 52.4, 27.0, 21.6 ppm. HRMS (ESI) calcd. for $\mathrm{C}_{29} \mathrm{H}_{27} \mathrm{O}_{2}[\mathrm{M}+\mathrm{H}]^{+} 407.2006$, found: 407.2006.

7. Experimental procedures for synthesis of compounds 7.

A mixture of 3da ($45 \mathrm{mg}, 0.123 \mathrm{mmol}, 1.0$ equiv), 1-cyclopropyl-2-(triphenyl-lambda5-phosphanylidene)ethan-1-one ($52.9 \mathrm{mg}, 0.148 \mathrm{mmol}, 1.2$ equiv.) and chloroform (5 mL) were added to a sealed reaction tube equipped with a stir bar. The tube was then sealed and the resulting mixture was stirred at $60^{\circ} \mathrm{C}$ for the 12 h . Upon completion (monitored by TLC, visualized by UV light), the reaction solution was concentrated in vacuo. The crude product was purified by column chromatography on silica gel (eluent PE:EtOAc $=20: 1$ to $8: 1$) to afford pure products 7.

2-(3-cyclopropyl-3-oxoprop-1-en-1-yl)-3-phenyl-1-(m-tolyl)-2,3,3a,8atetrahydrocyclopenta [a]inden-8(1H)-one (7)

Yellow solid, $20.7 \mathrm{mg}, 39 \%$ yield, m.p. $51.9-52.5^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR (500 MHz , DMSO- d_{6}) $\delta 7.59(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.52(\mathrm{dt}, J=7.5,1.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.40(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 3 \mathrm{H}), 7.33$
(t, $J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.26(\mathrm{~s}, 1 \mathrm{H}), 7.24-7.13(\mathrm{~m}, 3 \mathrm{H}), 6.98(\mathrm{~d}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.88(\mathrm{~d}$, $J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.56(\mathrm{dd}, J=15.8,8.7 \mathrm{~Hz}, 1 \mathrm{H}), 5.63(\mathrm{~d}, J=15.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.12(\mathrm{t}, J=$ $9.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.56-3.38(\mathrm{~m}, 2 \mathrm{H}), 3.12(\mathrm{dd}, J=10.9,9.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.86(\mathrm{dd}, J=11.4$, $9.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.25(\mathrm{~s}, 3 \mathrm{H}), 2.00-1.74(\mathrm{~m}, 1 \mathrm{H}), 0.67-0.62(\mathrm{~m}, 2 \mathrm{H}), 0.59-0.55(\mathrm{~m}, 2 \mathrm{H})$ ppm. ${ }^{13} \mathrm{C}$ NMR (125 MHz, DMSO- d_{6}) $\delta 206.6,199.1,156.4,146.0,142.2,141.4,137.9$, $135.7,135.5,131.2,129.2,129.2,128.8,128.7,128.7,127.8,127.4,125.8,125.8,124.3$, $61.3,59.5,58.5,52.6,52.6,21.6,18.5,11.0,10.94=$ ppm. HRMS (ESI) calcd. for $\mathrm{C}_{31} \mathrm{H}_{28} \mathrm{O}_{2}[\mathrm{M}+\mathrm{H}]^{+} 433.2162$, found: 433.2160 .

8. Experimental procedures for synthesis of compounds 8.

Solution of 3da ($45 \mathrm{mg}, 0.123 \mathrm{mmol}, 1.0$ equiv.) in methanol (2 mL) was cooled to 0 ${ }^{\circ} \mathrm{C}$. Then, sodium borohydride ($14.0 \mathrm{mg}, 0.369 \mathrm{mmol}, 3$ equiv.) was added to the solution at $0^{\circ} \mathrm{C}$ and the resulting mixture was stirred at $0^{\circ} \mathrm{C}$ for 1 h , and quenched with saturated $\mathrm{NH}_{4} \mathrm{Cl}$ aqueous solution (5 mL). The mixture was extracted with dichloromethane ($5 \mathrm{~mL} \times 3$) and the combined organic phase was dried over anhydrous MgSO_{4}, filtered, and concentrated in vacuo. The crude product was purified by column chromatography on silica gel (eluent $\mathrm{PE}: \mathrm{EtOAc}=15: 1$ to $5: 1$) to afford pure products 8.

2-(hydroxymethyl)-3-phenyl-1-(m-tolyl)-1,2,3,3a,8,8a-hexahydrocyclopenta

 [a]inden-8-ol (8)

8
White solid, 44.6 mg , 98% yield, m.p. $167.9-168.9^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ $7.35-7.28(\mathrm{~m}, 5 \mathrm{H}), 7.23-7.09(\mathrm{~m}, 6 \mathrm{H}), 6.97(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 1 \mathrm{H}), 6.90(\mathrm{~d}, J=7.5 \mathrm{~Hz}$, $1 \mathrm{H}), 5.22$ (d, $J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.77(\mathrm{t}, J=8.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.43(\mathrm{q}, J=9.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.35-$ $3.20(\mathrm{~m}, 3 \mathrm{H}), 2.95(\mathrm{dd}, J=11.3,8.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.56-2.37(\mathrm{~m}, 1 \mathrm{H}), 2.29(\mathrm{~s}, 3 \mathrm{H}) \mathrm{ppm}$. ${ }^{13}{ }^{3} \operatorname{NMR}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 145.3,143.7,143.6,143.4,138.5,128.9,128.8,128.8$,
$128.8,128.0,127.5,127.5,126.7,125.3,125.1,124.3,75.4,61.8,60.4,56.5,56.3,55.2$, 47.1, 21.6 ppm . HRMS (ESI) calcd. for $\mathrm{C}_{26} \mathrm{H}_{27} \mathrm{O}_{2}[\mathrm{M}+\mathrm{H}]^{+} 371.2006$, found: 371.2011. 9. Experimental procedures for synthesis of compounds 9 .

A mixture of 3da ($45 \mathrm{mg}, 0.123 \mathrm{mmol}, 1.0$ equiv.), 2-thenoyltrifluoroacetone (82.0 mg , $0.369 \mathrm{mmol}, 3.0$ equiv.), p-toluenesulfonic acid ($10.5 \mathrm{mg}, 0.061 \mathrm{mmol}, 0.5$ equiv.) and toluene (10 mL) were added to a sealed reaction tube equipped with a stir bar. The resulting mixture was stirred at $110^{\circ} \mathrm{C}$ for the 10 h . Upon completion (monitored by TLC, visualized by UV light), the reaction solution was concentrated in vacuo. The crude product was purified by column chromatography on silica gel (eluent PE:EtOAc $=20: 1$ to $8: 1$) to afford pure products 9 .

4,4,4-trifluoro-2-((8-oxo-3-phenyl-1-(m-tolyl)-1,2,3,3a,8,8a-hexahydrocyclopenta

 [a]inden-2-yl)methylene)-1-(thiophen-2-yl)butane-1,3-dione (9)

9
Red solid, $32.3 \mathrm{mg}, 46 \%$ yield, m.p. 68.9-69.6 ${ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.78$ $(\mathrm{d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.54(\mathrm{~d}, J=4.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.51(\mathrm{t}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.42(\mathrm{t}, J=7.5$ $\mathrm{Hz}, 3 \mathrm{H}), 7.37-7.34$ (m, 2H), $7.34-7.27$ (m, 3H), 7.08 (d, J = $6.4 \mathrm{~Hz}, 1 \mathrm{H}$), 7.05 (d, J $=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.01(\mathrm{dd}, J=4.9,3.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.76(\mathrm{dd}, J=15.4,7.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.31(\mathrm{~d}$, $J=15.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.17(\mathrm{t}, J=9.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.59-3.45(\mathrm{~m}, 2 \mathrm{H}), 3.27(\mathrm{dd}, J=11.1,8.5$ $\mathrm{Hz}, 1 \mathrm{H}), 2.87(\mathrm{dd}, J=11.6,9.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.38(\mathrm{~s}, 3 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 205.5,180.6,154.6,144.8,143.9,140.2,139.2,137.4,134.2,134.1,132.7,130.8$, $128.0,127.8,127.7,127.3,127.1,126.9,126.9,126.4,125.7,124.6,123.9,123.5,60.0$, 58.6, 58.0, 51.5, 51.4, 20.6 ppm. HRMS (ESI) calcd. for $\mathrm{C}_{34} \mathrm{H}_{26} \mathrm{~F}_{3} \mathrm{O}_{3} \mathrm{~S}[\mathrm{M}+\mathrm{H}]^{+}$ 571.1549, found: 571.1542.

10. X-ray crystal structure of compound 3fa

Crystal data for compound 3fa: $\mathrm{C}_{25} \mathrm{H}_{19} \mathrm{ClO}_{2}, M=386.85, a=22.4516(5) \AA, b=$
22.4516(5) $\AA, c=7.6085(2) \AA, \alpha=90^{\circ}, \beta=90^{\circ}, \gamma=90^{\circ}, V=3835.2(2) \AA^{3}, T=150$.(2) K , space group $P-421 c, Z=8, \mu(\mathrm{Cu} \mathrm{K} \alpha)=1.900 \mathrm{~mm}^{-1}, 42858$ reflections measured, 3751 independent reflections ($R_{\text {int }}=0.3123$). The final R_{I} values were $0.0466(I>2 \sigma(I))$. The final $w R\left(F^{2}\right)$ values were $0.0790(I>2 \sigma(I))$. The final R_{l} values were 0.0773 (all data). The final $w R\left(F^{2}\right)$ values were 0.0880 (all data). The goodness of fit on F^{2} was 1.047. Flack parameter $=0.071(18)$.

View of a molecule of compound $\mathbf{3 f a}$ with the atom-labelling scheme.
Displacement ellipsoids are drawn at the 30% probability level.

View of the pack drawing of compound 3fa.
Hydrogen-bonds are shown as dashed lines.
Table S2. Crystal data and structure refinement for compound 3fa.

Identification code

Empirical formula
Formula weight
global
$\mathrm{C}_{25} \mathrm{H}_{19} \mathrm{Cl} \mathrm{O}_{2}$
386.85

Temperature	150(2) K
Wavelength	1.54178 A
Crystal system	Tetragonal
Space group	P-421c
Unit cell dimensions	$\mathrm{a}=22.4516(5) \AA \quad \alpha=90^{\circ}$.
	$b=22.4516(5) \AA \quad \beta=90^{\circ}$.
	$\mathrm{c}=7.6085(2) \AA$ A $\quad \gamma=90^{\circ}$.
Volume	3835.2(2) \AA^{3}
Z	8
Density (calculated)	$1.340 \mathrm{Mg} / \mathrm{m}^{3}$
Absorption coefficient	$1.900 \mathrm{~mm}^{-1}$
F(000)	1616
Crystal size	$0.680 \times 0.010 \times 0.010 \mathrm{~mm}^{3}$
Theta range for data collection	2.78 to 72.38°.
Index ranges	$-27<=\mathrm{h}<=27,-27<=\mathrm{k}<=27,-9<=\mathrm{l}<=7$
Reflections collected	42858
Independent reflections	$3751[\mathrm{R}(\mathrm{int})=0.3123]$
Completeness to theta $=72.38^{\circ}$	99.0\%
Absorption correction	Semi-empirical from equivalents
Max. and min. transmission	0.98 and 0.65
Refinement method	Full-matrix least-squares on F^{2}
Data / restraints / parameters	3751/0/253
Goodness-of-fit on F^{2}	1.047
Final R indices [$\mathrm{I}>2 \operatorname{sigma}(\mathrm{I}$]	$\mathrm{R} 1=0.0466, \mathrm{wR} 2=0.0790$
R indices (all data)	$\mathrm{R} 1=0.0773, \mathrm{wR} 2=0.0880$
Absolute structure parameter	0.071(18)
Largest diff. peak and hole	0.230 and -0.222 e. \AA^{-3}

11. X-ray crystal structure of compound 5 n

rystal data for compound 5n: $\mathrm{C}_{31} \mathrm{H}_{21} \mathrm{BrO}_{3}, M=521.39, a=12.3698(5) \AA$, $b=$ 17.4754(8) $\AA, c=12.4146(5) \AA, \alpha=90^{\circ}, \beta=117.668(2)^{\circ}, \gamma=90^{\circ}, V=2376.76(18) \AA^{3}$,
$T=150$.(2) K, space group $P 121 / c 1, Z=4, \mu(\mathrm{Cu} \mathrm{K} \alpha)=2.611 \mathrm{~mm}^{-1}$, 37763 reflections measured, 4381 independent reflections ($R_{\text {int }}=0.0679$). The final R_{l} values were 0.0816 $(I>2 \sigma(I))$. The final $w R\left(F^{2}\right)$ values were $0.2020(I>2 \sigma(I))$. The final R_{l} values were 0.1129 (all data). The final $w R\left(F^{2}\right)$ values were 0.2545 (all data). The goodness of fit on F^{2} was 1.200.

View of a molecule of compound $\mathbf{5 n}$ with the atom-labelling scheme.
Displacement ellipsoids are drawn at the 30% probability level.

View of the pack drawing of compound $\mathbf{5 0}$.
Hydrogen-bonds are shown as dashed lines.
Table S3. Crystal data and structure refinement for compound $\mathbf{5 0}$.

Identification code
Empirical formula
Formula weight
global
$\mathrm{C}_{31} \mathrm{H}_{21} \mathrm{Br} \mathrm{O}_{3}$
521.39

Temperature
Wavelength
Crystal system
Space group
Unit cell dimensions
117.668(2) ${ }^{\circ}$.

Volume
Z
Density (calculated)

Absorption coefficient
F(000)
Crystal size
Theta range for data collection
Index ranges
Reflections collected
Independent reflections
Completeness to theta $=72.14^{\circ}$
Absorption correction
Max. and min. transmission
Refinement method
Data / restraints / parameters
Goodness-of-fit on F^{2}
Final R indices [I>2sigma(I)]
R indices (all data)
Extinction coefficient
Largest diff. peak and hole

150(2) K
$1.54178 \AA$
Monoclinic
P 1 21/c 1
$a=12.3698(5) \AA \quad \alpha=90^{\circ}$.
$\mathrm{b}=17.4754(8) \AA \quad \beta=$
$\mathrm{c}=12.4146(5) \AA \quad \gamma=90^{\circ}$.
2376.76(18) \AA^{3}

4
$1.457 \mathrm{Mg} / \mathrm{m}^{3}$
$2.611 \mathrm{~mm}^{-1}$
1064
$0.660 \times 0.500 \times 0.480 \mathrm{~mm}^{3}$
6.47 to 72.14°.
$-14<=\mathrm{h}<=15,-21<=\mathrm{k}<=21,-15<=1<=14$
37763
$4381[\mathrm{R}(\mathrm{int})=0.0679]$
93.6 \%

Semi-empirical from equivalents
0.37 and 0.10

Full-matrix least-squares on F^{2}
4381/0/317
1.200
$R 1=0.0816, w R 2=0.2020$
$\mathrm{R} 1=0.1129, \mathrm{wR} 2=0.2545$
0.052(4)
1.529 and -1.764 e. \AA^{-3}

Reference:

1. (a) T. M. Kadayat, S. Banskota, P. Gurung, G. Bist, T. B. T. Magar, A. Shrestha, J.A. Kim, E.-S. Lee, Eur. J. Med. Chem., 2017, 137, 575-597; (b) B. Lantaño, J. M.

Aguirre, E. V. Drago, M. Bollini, D. J. de la Faba, J. D. Mufato, Synthetic Commun., 2017, 47, 2202-2214.

12. 2D NMR Analysis of 3qa, 3ra and 5n

Table S4. H NMR signal assignment of 3qa

No.	δ	No.	δ
A	9.43 (d, J=4.2 Hz, 1H)	H	$7.34-7.28(\mathrm{~m}, 2 \mathrm{H})$
B	7.92 (dd, $J=7.9,1.6 \mathrm{~Hz}, 1 \mathrm{H})$	I	7.00 (dd, $J=7.6,0.9 \mathrm{~Hz}, 1 \mathrm{H})$
C	$7.72-7.67$ (m, 1H)	J	4.35 (t, $J=8.9 \mathrm{~Hz}, 1 \mathrm{H})$
D	$7.66-7.61(\mathrm{~m}, 1 \mathrm{H})$	K	4.11 (dd, $J=10.9,8.7 \mathrm{~Hz}, 1 \mathrm{H})$
E	$7.53-7.49$ (m, 3H)	L	3.77 (t, $J=8.5 \mathrm{~Hz}, 1 \mathrm{H})$
F	$7.48-7.43$ (m, 3H)	\mathbf{M}	3.55 (td, $J=11.3,4.3 \mathrm{~Hz}, 1 \mathrm{H})$
G	$7.42-7.40$ (m, 2H)	N	3.45 (dd, $J=11.6,9.4 \mathrm{~Hz}, 1 \mathrm{H})$

Figure S1. COSY spectrum of 3qa (500 MHz , DMSO- d_{6})

Figure S2. COSY spectrum of 3qa (500 MHz , DMSO- d_{6})

Table S5. H NMR signal assignment of 3ra

$\mathbf{N o .}$	$\boldsymbol{\delta}$	$\mathbf{N o .}$	$\boldsymbol{\delta}$
\mathbf{A}	$9.46(\mathrm{~d}, J=4.2 \mathrm{~Hz}, 1 \mathrm{H})$	\mathbf{H}	$7.32(\mathrm{t}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H})$
\mathbf{B}	$7.93(\mathrm{dd}, J=7.9,1.7 \mathrm{~Hz}, 1 \mathrm{H})$	\mathbf{I}	$7.23(\mathrm{td}, J=7.6,1.6 \mathrm{~Hz}, 1 \mathrm{H})$
\mathbf{C}	$7.69(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H})$	\mathbf{J}	$7.00(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H})$
\mathbf{D}	$7.66-7.60(\mathrm{~m}, 2 \mathrm{H})$	\mathbf{K}	$4.36(\mathrm{t}, J=8.9 \mathrm{~Hz}, 1 \mathrm{H})$
\mathbf{E}	$7.55-7.51(\mathrm{~m}, 2 \mathrm{H})$	\mathbf{L}	$4.09(\mathrm{dd}, J=10.9,8.7 \mathrm{~Hz}, 1 \mathrm{H})$
\mathbf{F}	$7.50-7.44(\mathrm{~m}, 2 \mathrm{H})$	\mathbf{M}	$3.76(\mathrm{t}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H})$
\mathbf{G}	$7.42(\mathrm{t}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H})$	\mathbf{N}	$3.54(\mathrm{td}, J=11.2,4.3 \mathrm{~Hz}, 1 \mathrm{H})$
		\mathbf{O}	$3.46(\mathrm{dd}, J=11.6,9.3 \mathrm{~Hz}, 1 \mathrm{H})$

Figure S3. COSY spectrum of 3ra (500 MHz , DMSO- d_{6})

Figure S4. COSY spectrum of 3ra (500 MHz , DMSO- d_{6})

Table S6. H NMR signal assignment of $\mathbf{5 n}$

No.	$\boldsymbol{\delta}$	No.	$\boldsymbol{\delta}$
A	$7.84(\mathrm{dd}, J=8.1,1.7 \mathrm{~Hz}, 1 \mathrm{H})$	\mathbf{I}	$7.20-7.13(\mathrm{~m}, 1 \mathrm{H})$
B	$7.74(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H})$	\mathbf{J}	$7.11-7.01(\mathrm{~m}, 2 \mathrm{H})$
C	$7.63(\mathrm{td}, J=7.5,1.3 \mathrm{~Hz}, 1 \mathrm{H})$	\mathbf{K}	$6.93(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H})$
D	$7.54(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H})$	\mathbf{L}	$6.84(\mathrm{t}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H})$
\mathbf{E}	$7.52-7.46(\mathrm{~m}, 1 \mathrm{H})$	\mathbf{M}	$4.83(\mathrm{dd}, J=10.8,8.4 \mathrm{~Hz}, 1 \mathrm{H})$
F	$7.44(\mathrm{dd}, J=8.0,1.3 \mathrm{~Hz}, 1 \mathrm{H})$	\mathbf{N}	$4.53(\mathrm{~d}, J=9.6 \mathrm{~Hz}, 1 \mathrm{H})$
G	$7.39-7.36(\mathrm{~m}, 2 \mathrm{H})$	\mathbf{O}	$4.02(\mathrm{t}, J=9.0 \mathrm{~Hz}, 1 \mathrm{H})$
H	$7.33-7.21(\mathrm{~m}, 4 \mathrm{H})$	\mathbf{P}	$3.53(\mathrm{~d}, J=10.8 \mathrm{~Hz}, 1 \mathrm{H})$

Figure S5. COSY spectrum of $\mathbf{5 n}\left(500 \mathrm{MHz}\right.$, DMSO- d_{6})

Figure S6. COSY spectrum of $\mathbf{5 n}\left(500 \mathrm{MHz}\right.$, DMSO- d_{6})
13. NMR spectra

${ }^{13} \mathrm{C}$ NMR spectrum of $\mathbf{3 a a}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.$)

${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{3 b a}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{13} \mathrm{C}$ NMR spectrum of $\mathbf{3} \mathbf{b a}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.$)

${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{3 c a}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{13} \mathrm{C}$ NMR spectrum of $\mathbf{3} \mathbf{c a}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{3 d a}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{13} \mathrm{C}$ NMR spectrum of $\mathbf{3 d a}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{3 e a}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{13} \mathrm{C}$ NMR spectrum of $\mathbf{3 e a}\left(125 \mathrm{MHz}\right.$, DMSO- $\left.d_{6}\right)$

${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{3 f a}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{13} \mathrm{C}$ NMR spectrum of $\mathbf{3 f a}\left(125 \mathrm{MHz}\right.$, DMSO- $\left.d_{6}\right)$

${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{3 g a}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{13} \mathrm{C}$ NMR spectrum of $\mathbf{3 g a}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{13} \mathrm{C}$ NMR spectrum of $\mathbf{3} \mathbf{h a}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{3 i a}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{13} \mathrm{C}$ NMR spectrum of $\mathbf{3 i a}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{3} \mathbf{j} \mathbf{a}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.$)

${ }^{13} \mathrm{C}$ NMR spectrum of $\mathbf{3} \mathbf{j a}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{3 k a}\left(500 \mathrm{MHz}\right.$, DMSO- d_{6})

${ }^{13} \mathrm{C}$ NMR spectrum of $\mathbf{3 k a}\left(125 \mathrm{MHz}\right.$, DMSO- $\left.d_{6}\right)$

${ }^{1} \mathrm{H}$ NMR spectrum of 31a $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{13} \mathrm{C}$ NMR spectrum of $\mathbf{3 1 a}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{3 m a}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.$)

(
${ }^{13} \mathrm{C}$ NMR spectrum of $\mathbf{3 m a}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{3 n a}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{13} \mathrm{C}$ NMR spectrum of $\mathbf{3 n a}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{3 o a}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{13} \mathrm{C}$ NMR spectrum of $\mathbf{3 0 a}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{3 p a}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{13} \mathrm{C}$ NMR spectrum of $\mathbf{3 p a}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{3 q a}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{13} \mathrm{C}$ NMR spectrum of $\mathbf{3 q a}\left(125 \mathrm{MHz}\right.$, DMSO- $\left.d_{6}\right)$

${ }^{13} \mathrm{C}$ NMR spectrum of $\mathbf{3 r a}$ (125 MHz , DMSO- d_{6})

${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{3 a b}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{13} \mathrm{C}$ NMR spectrum of $\mathbf{3 a b}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{3 a c}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{13} \mathrm{C}$ NMR spectrum of $\mathbf{3 a c}\left(125 \mathrm{MHz}\right.$, DMSO- d_{6})

${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{3 a d}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.$)

${ }^{13} \mathrm{C}$ NMR spectrum of $\mathbf{3 a d}\left(125 \mathrm{MHz}\right.$, DMSO- d_{6})

${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{3 a e}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{13} \mathrm{C}$ NMR spectrum of $\mathbf{3 a e}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{3 a f}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$
(

${ }^{13} \mathrm{C}$ NMR spectrum of $\mathbf{3 a f}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{3 a g}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.$)

${ }^{13} \mathrm{C}$ NMR spectrum of $\mathbf{3 a g}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{3 a h}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$
(
${ }^{13} \mathrm{C}$ NMR spectrum of $\mathbf{3} \mathbf{a h}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{3 a i}\left(40 \mathrm{~s} 0 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{13} \mathrm{C}$ NMR spectrum of $\mathbf{3 a i}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{3 a j}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.$)

${ }^{13} \mathrm{C}$ NMR spectrum of $\mathbf{3 a j}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{3 a k}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{13} \mathrm{C}$ NMR spectrum of $\mathbf{3 a k}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{3 a l}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{13} \mathrm{C}$ NMR spectrum of $\mathbf{3 a l}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{5 a}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{13} \mathrm{C}$ NMR spectrum of $\mathbf{5 a}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{5 b}\left(500 \mathrm{MHz}\right.$, DMSO- $\left.d_{6}\right)$

${ }^{13} \mathrm{C}$ NMR spectrum of $\mathbf{5 b}\left(125 \mathrm{MHz}, \mathrm{DMSO}-d_{6}\right)$

${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{5 c}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{13} \mathrm{C}$ NMR spectrum of $\mathbf{5 c}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{5 d}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

FJY-IC-3187.1.fid
${ }^{13} \mathrm{C}$ NMR spectrum of $\mathbf{5 d}\left(125 \mathrm{MHz}\right.$, DMSO- $\left.d_{6}\right)$

${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{5 e}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{13} \mathrm{C}$ NMR spectrum of $\mathbf{5 e}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{5 f}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{13} \mathrm{C}$ NMR spectrum of $\mathbf{5 f}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{5 g}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{13} \mathrm{C}$ NMR spectrum of $\mathbf{5 g}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{5 h}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{13} \mathrm{C}$ NMR spectrum of $\mathbf{5} \mathbf{h}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{5 i}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{13} \mathrm{C}$ NMR spectrum of $\mathbf{5 i}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{5 j}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{13} \mathrm{C}$ NMR spectrum of $\mathbf{5 j}$ (125 MHz , DMSO- d_{6})

${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{5 k}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{13} \mathrm{C}$ NMR spectrum of $\mathbf{5 k}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{5 1}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{13} \mathrm{C}$ NMR spectrum of $\mathbf{5 1}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{5 m}\left(500 \mathrm{MHz}\right.$, DMSO- $\left.d_{6}\right)$

${ }^{13} \mathrm{C}$ NMR spectrum of $\mathbf{5 m}\left(125 \mathrm{MHz}\right.$, DMSO- $\left.d_{6}\right)$

${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{5 n}\left(400 \mathrm{MHz}\right.$, DMSO- $\left.d_{6}\right)$

${ }^{13} \mathrm{C}$ NMR spectrum of $\mathbf{5 n}\left(125 \mathrm{MHz}\right.$, DMSO- $\left.d_{6}\right)$

${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{5 0}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{13} \mathrm{C}$ NMR spectrum of $\mathbf{5 0}\left(125 \mathrm{MHz}\right.$, DMSO- $\left.d_{6}\right)$

${ }^{13} \mathrm{C}$ NMR spectrum of $6\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{1} \mathrm{H}$ NMR spectrum of $7\left(500 \mathrm{MHz}\right.$, DMSO- $\left.d_{6}\right)$

${ }^{13} \mathrm{C}$ NMR spectrum of 7 (125 MHz , DMSO- d_{6})

${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{8}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{13} \mathrm{C}$ NMR spectrum of $\mathbf{8}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{1} \mathrm{H}$ NMR spectrum of $9\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{13} \mathrm{C}$ NMR spectrum of $9\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

