Electronic Supplementary Material (ESI) for Organic & Biomolecular Chemistry. This journal is © The Royal Society of Chemistry 2023

Supporting Information

Copper-Catalyzed Reaction of Benzoxazinanones with Sulfilimines: Access to 2-Ethynyl-benzoimidazoles via an Abnormal Skeletal Rearrangement

Tao Zhang, Yifeng Ni and Jiangtao Sun*

Jiangsu Key Laboratory of Advanced Catalytic Materials & Technology, School of Petrochemical Engineering, Changzhou University,

1 Gehu Road, 213164 Changzhou, China

E-mail: jtsun@cczu.edu.cn

Table of Contents

- 1. General information
- 2. General procedure for Scheme 2
- 3. General procedure for Scheme 3
- 4. X-ray crystallographic data of **3a** and **3r**
- 5. References
- 6. NMR Spectra of compounds

General information

All of the reactions were carried out in flame-dried tubes under argon atmosphere. Solvents were dried prior to use. Commercially obtained reagents were used as received. Analytical thin layer chromatography (TLC) was carried out using pre-coated (0.20 mm thickness) silica gel plates with F_{254} indicator. For column chromatography, 200-300 mesh silica gel was used. ¹H NMR were recorded on Bruker 300 MHz, 400 MHz spectrometer in CDCl₃. ¹³C NMR were recorded on Bruker 75 MHz or 100 MHz spectrometer in CDCl₃. ¹⁹F NMR were recorded on Bruker 282 MHz or 377 MHz spectrometer in CDCl₃. Data for ¹H NMR spectra were reported relative to tetramethylsilane (TMS) as an internal standard (0 ppm), and were reported as follows: chemical shift (δ ppm), multiplicity, coupling constant (Hz) and integration. Multiplicities are denoted as follows: s = singlet, d = doublet, t = triplet, q = quartet, dd = doublet of doublets and m = multiplet. Data for ¹³C NMR spectra were reported relative to CDCl₃ as an internal standard (77.16 ppm), and were reported in terms of chemical shift (δ ppm). High resolution mass spectra (HRMS) were performed on Agilent 6540 QTOF or Agilent 6230A TOF mass spectrometer (ESI). Melting points were determined on a SGW X-4B melting point apparatus without correction. The Ethynyl benzoxazinanones **1**^[1], aza-sulfur ylides **2**^[2] were prepared according to reported methods.

General procedure for Scheme 2

To a dry tube was added Cu(OTf)₂ (3.6 mg, 0.01 mmol, 10 mol%), **1a** (0.15 mmol, 1.5 equiv), **2** (0.1 mmol, 1.0 equiv), DIPEA(26 μ l, 0.15 mmol, 1.5 equiv) and anhydrous CHCl₃ (1.5 mL) under argon atmosphere. Then, the mixture was stirred at 30 °C in a heating block for 12 h. The reaction mixture was concentrated under vacuum; the crude residue was purified by silica gel column chromatography to give products **3**.

2-ethynyl-1-((4-nitrophenyl)sulfonyl)-3-phenyl-2,3-dihydro-1H-benzo[d]imidazole (3a):

Prepared via **general procedure 2** from N,1,1-triphenyl- λ^4 -sulfanimine (27.7 mg, 0.1 mmol, 1.0 equiv), 4-ethynyl-1-thionitroso-1,4-dihydro-2H-benzo[d][1,3]oxazin-2-one (53.7 mg, 0.15 mmol, 1.5 equiv) and DIPEA (26 μl , 0.15 mmol, 1.5 equiv) according to the general procedure in the presence of Cu(OTf)₂ 3.6 mg, 0.01 mmol, 10 mol%), purified by silica gel column chromatography (petroleum ether/ EtOAc = 40:1 to 10:1) and obtained as a yellow solid (38.5 mg, 95%), mp: 126-127 °C.

 $\mathbf{R}_{\mathbf{f}}$ (Petroleum ether/ EtOAc = 4:1) = 0.7

¹**H NMR** (400 MHz, Chloroform-*d*) δ 8.06-7.92 (m, 2H), 7.72 (dd, *J* = 7.9, 1.3 Hz, 1H), 7.58 (d, *J* = 8.8 Hz, 2H), 7.22 (dt, *J* = 6.6, 1.9 Hz, 3H), 7.11-7.01 (m, 2H), 6.95 (dd, *J* = 8.0, 1.1 Hz, 1H), 6.79 (dd, *J* = 7.6, 1.5 Hz, 2H), 6.20 (d, *J* = 2.0 Hz, 1H), 2.63 (d, *J* = 2.0 Hz, 1H).

¹³C NMR (100 MHz, CDCl₃) δ 150.5, 141.4, 140.6, 137.5, 130.6, 129.4, 128.4, 127.7, 123.9, 123.6, 121.8, 120.2, 117.1, 113.1, 78.4, 74.3, 73.1.

HRMS (ESI) m/z: [M+Na]⁺ calcd for C₂₁H₁₅FN₃O₄SNa 428.0675, found 428.0674.

2-ethynyl-1-(2-fluorocyclohexa-1,3-dien-1-yl)-3-((4-nitrophenyl)sulfonyl)-2,3-dihydro-1H-benz o[d]imidazole (3b):

Prepared via **general procedure 2** from N-(2-fluorophenyl)-1,1-diphenyl- λ^4 -sulfanimine (29.5 mg, 0.1 mmol, 1.0 equiv), 4-ethynyl-1-thionitroso-1,4-dihydro-2H-benzo[d][1,3]oxazin-2-one (53.7 mg, 0.15 mmol, 1.5 equiv) and DIPEA (26 μl , 0.15 mmol, 1.5 equiv) according to the general procedure in the presence of Cu(OTf)₂ 3.6 mg, 0.01 mmol, 10 mol%), purified by silica gel column chromatography (petroleum ether/ EtOAc = 40:1 to 10:1) and obtained as a yellow solid (34.4 mg, 81%), mp: 168-169 °C.

 $\mathbf{R}_{\mathbf{f}}$ (Petroleum ether/ EtOAc = 5:1) = 0.5

¹**H NMR** (400 MHz, Chloroform-*d*) δ 8.11-7.98 (m, 2H), 7.76-7.64 (m, 2H), 7.59 (dd, *J* = 7.8, 1.3 Hz, 1H), 7.19-7.14 (m, 1H), 7.08 (s, 1H), 7.05 (d, *J* = 1.6 Hz, 3H), 6.89 (td, *J* = 7.7, 1.2 Hz, 1H), 6.54 (d, *J* = 7.9 Hz, 1H), 6.29 (d, *J* = 2.0 Hz, 1H), 2.37 (d, *J* = 1.9 Hz, 1H).

¹³C NMR (100 MHz, CDCl₃) δ 155.6, 150.6, 141.4, 139.2, 129.6, 128.8, 127.4, 127.3, 124.6, 124.5, 124.4, 123.9, 121.1, 119.4, 116.9, 116.7, 110.7, 74.9, 72.2, 72.1.

¹⁹**F NMR** (377 MHz, CDCl3) δ (ppm) = -121.1.

HRMS (ESI) m/z: [M+H]⁺ calcd for C₂₁H₁₅FN₃O₄S 424.0762, found 424.0758.

2-ethynyl-1-((4-nitrophenyl)sulfonyl)-3-(o-tolyl)-2,3-dihydro-1H-benzo[d]imidazole (3c):

Prepared via **general procedure 2** from 1,1-diphenyl-N-(o-tolyl)- λ^4 -sulfanimine (29.1 mg, 0.1 mmol, 1.0 equiv), 4-ethynyl-1-thionitroso-1,4-dihydro-2H-benzo[d][1,3]oxazin-2-one (53.7 mg, 0.15 mmol, 1.5 equiv) and DIPEA (26 μl , 0.15 mmol, 1.5 equiv) according to the general procedure in the presence of Cu(OTf)₂ 3.6 mg, 0.01 mmol, 10 mol%), purified by silica gel column chromatography (petroleum ether/ EtOAc = 30:1 to 10:1) and obtained as a red solid (36.0 mg, 86%), mp: 168-169 °C.

 $\mathbf{R}_{\mathbf{f}}$ (Petroleum ether/ EtOAc = 5:1) = 0.4

¹H NMR (400 MHz, Chloroform-*d*) δ 8.31-8.23 (m, 2H), 7.94-7.86 (m, 2H), 7.67 (dd, *J* = 7.9, 1.2 Hz, 1H), 7.27-7.18 (m, 2H), 7.12 (s, 1H), 7.06 (td, *J* = 7.7, 1.2 Hz, 1H), 6.96 (dd, *J* = 7.7, 1.2 Hz, 1H), 6.37 (dd, *J* = 7.8, 1.2 Hz, 1H), 6.15 (d, *J* = 1.9 Hz, 1H), 2.54 (d, *J* = 1.9 Hz, 1H), 1.94 (s, 3H).
¹³C NMR (100 MHz, CDCl₃) δ 150.6, 142.3, 141.4, 135.8, 131.5, 129.3, 128.7, 127.6, 127.0, 126.9, 124.2, 123.6, 120.3, 117.6, 77.9, 75.7, 72.2, 17.9.

HRMS (ESI) m/z: $[M+H]^+$ calcd for C₂₅H₂₄N₃O₄S 420.1013, found 420.1011.

1-([1,1'-biphenyl]-2-yl)-2-ethynyl-3-((4-nitrophenyl)sulfonyl)-2,3-dihydro-1H-benzo[d]imidazol e (3d):

Prepared via **general procedure 2** from N-([1,1'-biphenyl]-2-yl)-1,1-diphenyl- λ^4 -sulfanimine (35.3 mg, 0.1 mmol, 1.0 equiv), 4-ethynyl-1-thionitroso-1,4-dihydro-2H-benzo[d][1,3]oxazin-2 -one (53.7 mg, 0.15 mmol, 1.5 equiv) and DIPEA (26 μl , 0.15 mmol, 1.5 equiv) according to the general procedure in the presence of Cu(OTf)₂ 3.6 mg, 0.01 mmol, 10 mol%), purified by silica gel column chromatography (petroleum ether/ EtOAc = 30:1 to 10:1) and obtained as a yellow solid (46.2 mg, 96%), mp: 155-156 °C.

 $\mathbf{R}_{\mathbf{f}}$ (Petroleum ether/ EtOAc = 5:1) = 0.4

¹**H NMR** (400 MHz, Chloroform-*d*) δ 8.20 (d, *J* = 8.9 Hz, 2H), 7.62 (d, *J* = 8.9 Hz, 2H), 7.53 (dd, *J* = 7.9, 1.2 Hz, 1H), 7.47-7.34 (m, 5H), 7.31-7.26 (m, 4H), 7.03 (td, *J* = 7.7, 1.2 Hz, 1H), 6.88 (td, *J* = 7.7, 1.2 Hz, 1H), 6.69 (dd, *J* = 7.8, 1.1 Hz, 1H), 5.69 (d, *J* = 1.9 Hz, 1H), 2.42 (d, *J* = 3.9 Hz, 1H).

¹³C NMR (100 MHz, CDCl₃) δ 150.3, 142.5, 140.5, 140.1, 139.3, 131.5, 129.2, 128.6, 128.6, 128.4, 128.4, 127.5, 127.4, 126.4, 126.0, 124.4, 120.2, 115.4, 109.9, 77.5, 76.0, 71.9.

HRMS (ESI) m/z: $[M+H]^+$ calcd for $C_{27}H_{20}N_3O_4S$ 482.1169, found 482.1166.

2-ethynyl-1-((4-nitrophenyl)sulfonyl)-3-(p-tolyl)-2,3-dihydro-1H-benzo[d]imidazole (3e):

Prepared via **general procedure 2** from 1,1-diphenyl-N-(p-tolyl)- λ^4 -sulfanimine (29.1 mg, 0.1 mmol, 1.0 equiv), 4-ethynyl-1-thionitroso-1,4-dihydro-2H-benzo[d][1,3]oxazin-2-one (53.7 mg, 0.15 mmol, 1.5 equiv) and DIPEA (26 μl , 0.15 mmol, 1.5 equiv) according to the general procedure in the presence of Cu(OTf)₂ 3.6 mg, 0.01 mmol, 10 mol%), purified by silica gel column chromatography (petroleum ether/ EtOAc = 40:1 to 10:1) and obtained as a yellow solid (30.2 mg, 72%), mp: 96-97 °C.

 $\mathbf{R}_{\mathbf{f}}$ (Petroleum ether/ EtOAc = 5:1) = 0.5

¹**H NMR** (400 MHz, Chloroform-*d*) δ 7.99-7.81 (m, 2H), 7.58 (dd, J = 7.9, 1.2 Hz, 1H), 7.56-7.45 (m, 2H), 7.07 (td, J = 7.8, 1.3 Hz, 1H), 6.99-6.84 (m, 3H), 6.76 (dd, J = 7.9, 1.1 Hz, 1H), 6.65-6.50 (m, 2H), 6.05 (d, J = 2.0 Hz, 1H), 2.50 (d, J = 2.0 Hz, 1H), 2.20 (s, 3H).

¹³C NMR (100 MHz, CDCl₃) δ 150.5, 140.7, 138.9, 138.1, 133.7, 130.4, 129.9, 128.4, 127.6, 123.9, 121.4, 120.0, 117.9, 112.8, 78.5, 74.3, 73.3, 20.7.

I-(4-ethylphenyl)-2-ethynyl-3-((4-nitrophenyl)sulfonyl)-2,3-dihydro-1H-benzo[d]imidazole (3f): Prepared via **general procedure 2** from N-(4-ethylphenyl)-1,1-diphenyl- λ^4 -sulfanimine (30.5 mg, 0.1 mmol, 1.0 equiv), 4-ethynyl-1-thionitroso-1,4-dihydro-2H-benzo[d][1,3]oxazin-2-one (53.7 mg, 0.15 mmol, 1.5 equiv) and DIPEA (26 μl, 0.15 mmol, 1.5 equiv) according to the general procedure in the presence of Cu(OTf)₂ 3.6 mg, 0.01 mmol, 10 mol%), purified by silica gel column chromatography (petroleum ether/ EtOAc = 40:1 to 10:1) and obtained as a yellow solid (32.5 mg, 75%), mp: 84-85 °C.

 $\mathbf{R}_{\mathbf{f}}$ (Petroleum ether/ EtOAc = 5:1) = 0.6

¹**H NMR** (400 MHz, Chloroform-*d*) δ 7.89 (d, *J* = 8.8 Hz, 2H), 7.59 (dd, *J* = 7.9, 1.3 Hz, 1H), 7.53-7.44 (m, 2H), 7.08 (td, *J* = 7.8, 1.3 Hz, 1H), 6.93 (td, *J* = 8.1, 1.6 Hz, 3H), 6.77 (dd, *J* = 8.0, 1.2 Hz, 1H), 6.64-6.55 (m, 2H), 6.05 (d, *J* = 2.0 Hz, 1H), 2.58-2.39 (m, 3H), 1.13 (t, *J* = 7.6 Hz, 3H).

¹³C NMR (100 MHz, CDCl₃) δ 150.5, 140.7, 140.1, 139.0, 138.1, 130.4, 128.7, 128.4, 127.6, 123.8, 121.4, 120.0, 117.7, 112.8, 78.5, 74.3, 73.2, 28.1, 15.5.

HRMS (ESI) m/z: $[M+H]^+$ calcd for $C_{23}H_{20}N_3O_4S$ 434.1169, found 434.1169.

2-ethynyl-1-(4-isopropylphenyl)-3-((4-nitrophenyl)sulfonyl)-2,3-dihydro-1H-benzo[d]imidazole (3g):

Prepared via **general procedure 2** from N-(4-isopropylphenyl)-1,1-diphenyl- λ^4 -sulfanimine (31.9 mg, 0.1 mmol, 1.0 equiv), 4-ethynyl-1-thionitroso-1,4-dihydro-2H-benzo[d][1,3]oxazin-2-one (53.7 mg, 0.15 mmol, 1.5 equiv) and DIPEA (26 μl , 0.15 mmol, 1.5 equiv) according to the general procedure in the presence of Cu(OTf)₂ 3.6 mg, 0.01 mmol, 10 mol%), purified by silica gel column chromatography (petroleum ether/ EtOAc = 50:1 to 10:1) and obtained as a yellow solid (23.2 mg, 52%), mp: 138-139 °C.

 $\mathbf{R}_{\mathbf{f}}$ (Petroleum ether/ EtOAc = 5:1) = 0.7

¹**H NMR** (400 MHz, Chloroform-*d*) δ 7.95-7.81 (m, 2H), 7.58 (dd, *J* = 7.8, 1.2 Hz, 1H), 7.52-7.45 (m, 2H), 7.06 (dd, *J* = 7.7, 1.3 Hz, 1H), 7.00-6.90 (m, 3H), 6.78 (dd, *J* = 7.9, 1.1 Hz, 1H), 6.65-6.53 (m, 2H), 6.05 (d, *J* = 2.0 Hz, 1H), 2.75 (p, *J* = 6.9 Hz, 1H), 2.49 (d, *J* = 2.0 Hz, 1H), 1.13 (dd, *J* = 6.9, 2.0 Hz, 6H).

¹³C NMR (100 MHz, CDCl₃) δ 150.5, 144.6, 140.7, 139.1, 138.0, 130.4, 128.4, 127.7, 127.3, 123.8, 121.4, 120.1, 117.5, 112.8, 78.6, 74.2, 73.2, 33.4, 23.9, 23.9.

HRMS (ESI) m/z: $[M+H]^+$ calcd for C₂₄H₂₂N₃O₄S 448.1326, found 448.1326.

1-(4-(tert-butyl)phenyl)-2-ethynyl-3-((4-nitrophenyl)sulfonyl)-2,3-dihydro-1H-benzo[d]imidazol e (3h):

Prepared via **general procedure 2** from N-(4-(tert-butyl)phenyl)-1,1-diphenyl- λ^4 -sulfanimine (33.3 mg, 0.1 mmol, 1.0 equiv), 4-ethynyl-1-thionitroso-1,4-dihydro-2H-benzo[d][1,3]oxazin-2 -one (53.7 mg, 0.15 mmol, 1.5 equiv) and DIPEA (26 μl , 0.15 mmol, 1.5 equiv) according to the general procedure in the presence of Cu(OTf)₂ 3.6 mg, 0.01 mmol, 10 mol%), purified by silica gel column chromatography (petroleum ether/ EtOAc = 30:1 to 10:1) and obtained as a yellow solid (25.8 mg, 56%), mp: 116-117 °C.

 $\mathbf{R}_{\mathbf{f}}$ (Petroleum ether/ EtOAc = 5:1) = 0.6

¹H NMR (400 MHz, Chloroform-*d*) δ 7.85 (d, *J* = 8.9 Hz, 2H), 7.59 (dd, *J* = 7.8, 1.2 Hz, 1H), 7.46 (d, *J* = 8.8 Hz, 2H), 7.09 (d, *J* = 8.6 Hz, 3H), 6.93 (d, *J* = 1.2 Hz, 1H), 6.80 (dd, *J* = 7.9, 1.1 Hz, 1H), 6.59 (d, *J* = 8.7 Hz, 2H), 6.05 (d, *J* = 2.0 Hz, 1H), 2.50 (d, *J* = 2.0 Hz, 1H), 1.20 (s, 9H).
¹³C NMR (100 MHz, CDCl₃) δ 150.5, 146.8, 140.6, 138.8, 138.0, 130.5, 128.4, 127.7, 126.2, 123.8, 121.5, 120.2, 116.9, 113.0, 78.6, 74.2, 73.1, 34.3, 31.2.

HRMS (ESI) m/z: $[M+H]^+$ calcd for C₂₅H₂₄N₃O₄S 482.1482, found 482.1483.

1-(4-butylphenyl)-2-ethynyl-3-((4-nitrophenyl)sulfonyl)-2,3-dihydro-1H-benzo[d]imidazole (3i): Prepared via **general procedure 2** from N-(4-butylphenyl)-1,1-diphenyl-λ⁴-sulfanimine (33.3 mg, 0.1 mmol, 1.0 equiv), 4-ethynyl-1-thionitroso-1,4-dihydro-2H-benzo[d][1,3]oxazin-2-one (53.7 mg, 0.15 mmol, 1.5 equiv) and DIPEA (26 μl , 0.15 mmol, 1.5 equiv) according to the general procedure in the presence of Cu(OTf)₂ 3.6 mg, 0.01 mmol, 10 mol%), purified by silica gel column chromatography (petroleum ether/ EtOAc = 50:1 to 10:1) and obtained as a yellow solid (34.6 mg, 75%), mp: 118-119 °C.

 $\mathbf{R}_{\mathbf{f}}$ (Petroleum ether/ EtOAc = 5:1) = 0.7

¹**H NMR** (400 MHz, Chloroform-*d*) δ 7.99-7.81 (m, 2H), 7.64-7.54 (dd, J = 7.8, 1.2 Hz, 1H), 7.54-7.43 (m, 2H), 7.13-7.05 (td, J = 7.8, 1.3 Hz, 1H), 6.98-6.83 (m, 3H), 6.82-6.71 (dd, J = 7.9, 1.1 Hz, 1H), 6.66-6.49 (m, 2H), 6.12-5.82 (d, J = 2.0 Hz, 1H), 2.52-2.49 (d, J = 2.0 Hz, 1H), 2.49-2.41 (m, 2H), 1.52-1.43 (t, J = 7.9 Hz, 2H), 1.31-1.22 (m, 2H), 0.92-0.82 (t, J = 7.3 Hz, 3H). ¹³**C NMR** (100 MHz, CDCl₃) δ 150.5, 140.7, 139.0, 138.8, 138.1, 130.4, 129.2, 128.4, 127.6, 123.8, 121.4, 120.0, 117.6, 112.8, 78.6, 74.2, 73.2, 34.8, 33.6, 22.3, 13.9.

HRMS (ESI) m/z: [M+H]⁺ calcd for C₂₅H₂₄N₃O₄S 462.1482, found 462.1479.

1-([1,1'-biphenyl]-4-yl)-2-ethynyl-3-((4-nitrophenyl)sulfonyl)-2,3-dihydro-1H-benzo[d]imidazol e (3j):

Prepared via **general procedure 2** from N-([1,1'-biphenyl]-4-yl)-1,1-diphenyl- λ^4 -sulfanimine (35.3 mg, 0.1 mmol, 1.0 equiv), 4-ethynyl-1-thionitroso-1,4-dihydro-2H-benzo[d][1,3]oxazin-2 -one (53.7 mg, 0.15 mmol, 1.5 equiv) and DIPEA (26 μl , 0.15 mmol, 1.5 equiv) according to the general procedure in the presence of Cu(OTf)₂ 3.6 mg, 0.01 mmol, 10 mol%), purified by silica gel column chromatography (petroleum ether/ EtOAc = 40:1 to 10:1) and obtained as a yellow solid (38.0 mg, 79%), mp: 140-141 °C.

 $\mathbf{R}_{\mathbf{f}}$ (Petroleum ether/ EtOAc = 5:1) = 0.6

¹**H NMR** (300 MHz, Chloroform-*d*) δ 8.00 (d, *J* = 8.5 Hz, 2H), 7.71 (d, *J* = 7.8 Hz, 1H), 7.63-7.53 (m, 4H), 7.51-7.41 (m, 4H), 7.38 (d, *J* = 7.2 Hz, 1H), 7.21 (d, *J* = 7.8 Hz, 1H), 7.08 (d, *J* = 7.7 Hz, 1H), 6.97 (d, *J* = 7.9 Hz, 1H), 6.86 (d, *J* = 8.4 Hz, 2H), 6.24 (d, *J* = 2.0 Hz, 1H), 2.64 (d, *J* = 1.9 Hz, 1H).

¹³C NMR (75 MHz, CDCl₃) δ 150.5, 140.7, 140.3, 139.9, 137.4, 136.5, 130.5, 128.9, 128.4, 128.0, 127.7, 127.3, 126.6, 123.9, 121.8, 120.2, 117.3, 112.9, 78.3, 74.5, 72.9.

HRMS (ESI) m/z: $[M+H]^+$ calcd for $C_{27}H_{20}N_3O_4S$ 482.1169, found 482.1170.

1-(4-chlorophenyl)-2-ethynyl-3-((4-nitrophenyl)sulfonyl)-2,3-dihydro-1H-benzo[d]imidazole (3k):

Prepared via **general procedure 2** from N-(4-chlorophenyl)-1,1-diphenyl- λ^4 -sulfanimine (31.1 mg, 0.1 mmol, 1.0 equiv), 4-ethynyl-1-thionitroso-1,4-dihydro-2H-benzo[d][1,3]oxazin-2-one (53.7 mg, 0.15 mmol, 1.5 equiv) and DIPEA (26 μl , 0.15 mmol, 1.5 equiv) according to the general procedure in the presence of Cu(OTf)₂ 3.6 mg, 0.01 mmol, 10 mol%), purified by silica gel column chromatography (petroleum ether/ EtOAc = 50:1 to 10:1) and obtained as a red solid (42.1 mg, 96%), mp: 150-151 °C.

 $\mathbf{R}_{\mathbf{f}}$ (Petroleum ether/ EtOAc = 5:1) = 0.7

¹**H NMR** (400 MHz, Chloroform-*d*) δ 8.07 (d, *J* = 8.8 Hz, 2H), 7.69 (d, *J* = 1.3 Hz, 1H), 7.65 (d, *J* = 8.8 Hz, 2H), 7.27-7.16 (m, 3H), 7.07 (td, *J* = 7.8, 1.2 Hz, 1H), 6.88 (dd, *J* = 7.9, 1.2 Hz, 1H), 6.85-6.76 (m, 2H), 6.19 (d, *J* = 2.0 Hz, 1H), 2.63 (d, *J* = 2.0 Hz, 1H).

¹³C NMR (100 MHz, CDCl₃) δ 150.6, 140.9, 139.6, 137.3, 130.4, 129.5, 129.0, 128.5, 127.6, 123.9, 121.9, 119.9, 119.0, 112.4, 78.0, 74.8, 72.8.

HRMS (ESI) m/z: $[M+H]^+$ calcd for $C_{21}H_{15}CIN_3O_4S$ 440.0466, found 440.0462.

1-(4-bromophenyl)-2-ethynyl-3-((4-nitrophenyl)sulfonyl)-2,3-dihydro-1H-benzo[d]imidazole (3l):

Prepared via **general procedure 2** from N-(4-bromophenyl)-1,1-diphenyl- λ^4 -sulfanimine (35.5 mg, 0.1 mmol, 1.0 equiv), 4-ethynyl-1-thionitroso-1,4-dihydro-2H-benzo[d][1,3]oxazin-2-one (53.7 mg, 0.15 mmol, 1.5 equiv) and DIPEA (26 μl , 0.15 mmol, 1.5 equiv) according to the general procedure in the presence of Cu(OTf)₂ 3.6 mg, 0.01 mmol, 10 mol%), purified by silica gel column chromatography (petroleum ether/ EtOAc = 40:1 to 10:1) and obtained as a red solid (47.4 mg, 98%), mp: 152-153 °C.

 $\mathbf{R}_{\mathbf{f}}$ (Petroleum ether/ EtOAc = 5:1) = 0.5

¹**H NMR** (400 MHz, Chloroform-*d*) δ 8.11-8.00 (m, 2H), 7.69 (dd, *J* = 7.9, 1.3 Hz, 1H), 7.67-7.54 (m, 2H), 7.38-7.29 (m, 2H), 7.26-7.16 (m, 1H), 7.12-7.03 (m, 1H), 6.90 (dd, *J* = 7.9, 1.2 Hz, 1H), 6.79-6.69 (m, 2H), 6.20 (d, *J* = 2.0 Hz, 1H), 2.64 (d, *J* = 2.0 Hz, 1H).

¹³C NMR (100 MHz, CDCl₃) δ 150.6, 140.8, 140.1, 137.2, 132.4, 130.5, 128.5, 127.6, 123.9, 122.1, 119.9, 119.2, 116.3, 112.6, 78.0, 74.9, 72.7.

HRMS (ESI) m/z: $[M+H]^+$ calcd for $C_{21}H_{15}BrN_3O_4S$ 483.9961, found 483.9957.

2-ethynyl-1-((4-nitrophenyl)sulfonyl)-3-(4-(trifluoromethoxy)phenyl)-2,3-dihydro-1H-benzo[d]i midazole (3m):

Prepared via **general procedure 2** from 1,1-diphenyl-N-(4-(trifluoromethoxy)phenyl)- λ^4 -sulfanimine (36.1 mg, 0.1 mmol, 1.0 equiv), 4-ethynyl-1-thionitroso-1,4-dihydro-2H-benzo [d][1,3]oxazin-2-one (53.7 mg, 0.15 mmol, 1.5 equiv) and DIPEA (26 μ l, 0.15 mmol, 1.5 equiv) according to the general procedure in the presence of Cu(OTf)₂ 3.6 mg, 0.01 mmol, 10 mol%), purified by silica gel column chromatography (petroleum ether/ EtOAc = 50:1 to 10:1) and obtained as a yellow solid (43.0 mg, 88%), mp: 77-78 °C.

 $\mathbf{R}_{\mathbf{f}}$ (Petroleum ether/ EtOAc = 5:1) = 0.7

¹H NMR (400 MHz, Chloroform-*d*) δ 8.03-7.88 (m, 2H), 7.63-7.47 (m, 3H), 7.08 (dd, *J* = 7.8, 1.3 Hz, 1H), 7.06-6.90 (m, 3H), 6.85- 6.71 (m, 3H), 6.10 (d, *J* = 2.0 Hz, 1H), 2.53 (d, *J* = 2.0 Hz, 1H).
¹³C NMR (100 MHz, CDCl₃) δ 150.6, 144.8, 140.9, 139.6, 137.3, 130.4, 128.5, 127.6, 123.9, 122.4, 122.1, 120.4 (q, *J* = 255.7 Hz), 119.9, 118.8, 112.4, 78.0, 74.9, 72.8.

¹⁹**F NMR** (377 MHz, CDCl3) δ (ppm) = -58.2.

HRMS (ESI) m/z: $[M+H]^+$ calcd for $C_{22}H_{15}F_3N_3O_5S$ 490.0679, found 490.0677.

2-ethynyl-1-((4-nitrophenyl)sulfonyl)-3-(4-vinylphenyl)-2,3-dihydro-1H-benzo[d]imidazole (3n): Prepared via general procedure 2 from 1,1-diphenyl-N-(4-vinylphenyl)- λ^4 -sulfanimine (30.3 mg, 0.1 mmol, 1.0 equiv), 4-ethynyl-1-thionitroso-1,4-dihydro-2H-benzo[d][1,3]oxazin-2-one (53.7 mg, 0.15 mmol, 1.5 equiv) and DIPEA (26 μl , 0.15 mmol, 1.5 equiv) according to the general procedure in the presence of Cu(OTf)₂ 3.6 mg, 0.01 mmol, 10 mol%), purified by silica gel column chromatography (petroleum ether/ EtOAc = 40:1 to 10:1) and obtained as a yellow solid (21.6 mg, 50%), mp: 92-93 °C.

 $\mathbf{R}_{\mathbf{f}}$ (Petroleum ether/ EtOAc = 5:1) = 0.5

¹**H NMR** (400 MHz, Chloroform-*d*) δ 7.95-7.79 (m, 2H), 7.60 (dd, *J* = 7.9, 1.3 Hz, 1H), 7.52-7.42 (m, 2H), 7.18-7.06 (m, 3H), 6.96 (td, *J* = 7.8, 1.2 Hz, 1H), 6.83 (d, *J* = 8.0 Hz, 1H), 6.63 (d, *J* = 8.5 Hz, 2H), 6.54 (dd, *J* = 17.6, 10.9 Hz, 1H), 6.09 (d, *J* = 2.0 Hz, 1H), 5.57 (d, *J* = 17.6 Hz, 1H), 5.13 (d, *J* = 10.9 Hz, 1H), 2.52 (d, *J* = 2.0 Hz, 1H).

¹³C NMR (100 MHz, CDCl₃) δ 150.5, 140.7, 140.5, 137.4, 135.5, 133.1, 130.6, 128.4, 127.7, 127.2, 123.9, 121.9, 120.2, 117.0, 113.4, 113.2, 78.3, 74.5, 72.9.

HRMS (ESI) m/z: $[M+H]^+$ calcd for C₂₃H₁₈N₃O₄S 432.1013, found 432.1014.

2-ethynyl-1-((4-nitrophenyl)sulfonyl)-3-(m-tolyl)-2,3-dihydro-1H-benzo[d]imidazole (3o):

Prepared via **general procedure 2** from 1,1-diphenyl-N-(m-tolyl)- λ^4 -sulfanimine (29.1 mg, 0.1 mmol, 1.0 equiv), 4-ethynyl-1-thionitroso-1,4-dihydro-2H-benzo[d][1,3]oxazin-2-one (53.7 mg, 0.15 mmol, 1.5 equiv) and DIPEA (26 μl , 0.15 mmol, 1.5 equiv) according to the general procedure in the presence of Cu(OTf)₂ 3.6 mg, 0.01 mmol, 10 mol%), purified by silica gel column chromatography (petroleum ether/ EtOAc = 40:1 to 10:1) and obtained as a yellow solid (38.4 mg, 92%), mp: 124-125 °C.

 $\mathbf{R}_{\mathbf{f}}$ (Petroleum ether/ EtOAc = 5:1) = 0.5

¹**H NMR** (400 MHz, Chloroform-*d*) δ 7.94-7.84 (m, 2H), 7.59 (dd, *J* = 7.9, 1.3 Hz, 1H), 7.50-7.43 (m, 2H), 7.10 (td, *J* = 7.8, 1.3 Hz, 1H), 7.01-6.90 (m, 2H), 6.82 (dd, *J* = 7.9, 1.2 Hz, 1H), 6.78-6.70 (m, 1H), 6.55-6.41 (m, 2H), 6.08 (d, *J* = 2.0 Hz, 1H), 2.52 (d, *J* = 2.0 Hz, 1H), 2.15 (s, 3H).

¹³C NMR (100 MHz, CDCl₃) δ 150.4, 141.4, 140.7, 139.5, 137.7, 130.5, 129.2, 128.4, 127.7, 124.5, 123.8, 121.7, 120.2, 117.5, 114.2, 113.2, 78.6, 74.2, 73.1, 21.3.

HRMS (ESI) m/z: [M+H]⁺ calcd for C₂₂H₁₈N₃O₄S 420.1013, found 420.101.

1-(3,5-dimethylphenyl)-2-ethynyl-3-((4-nitrophenyl)sulfonyl)-2,3-dihydro-1H-benzo[d]imidazole (3p):

Prepared via **general procedure 2** from N-(3,5-dimethylphenyl)-1,1-diphenyl- λ^4 -sulfanimine (30.5 mg, 0.1 mmol, 1.0 equiv), 4-ethynyl-1-thionitroso-1,4-dihydro-2H-benzo[d][1,3]oxazin-2 -one (53.7 mg, 0.15 mmol, 1.5 equiv) and DIPEA (26 μl , 0.15 mmol, 1.5 equiv) according to the general procedure in the presence of Cu(OTf)₂ 3.6 mg, 0.01 mmol, 10 mol%), purified by silica gel column chromatography (petroleum ether/ EtOAc = 40:1 to 10:1) and obtained as a yellow solid (39.0 mg, 90%), mp: 194-195 °C.

 $\mathbf{R}_{\mathbf{f}}$ (Petroleum ether/ EtOAc = 5:1) = 0.5

¹**H NMR** (400 MHz, Chloroform-*d*) δ 8.09-7.96 (m, 2H), 7.70 (dd, *J* = 7.8, 1.3 Hz, 1H), 7.63-7.52 (m, 2H), 7.21 (td, *J* = 7.8, 1.3 Hz, 1H), 7.05 (td, *J* = 7.7, 1.2 Hz, 1H), 6.92 (dd, *J* = 8.0, 1.1 Hz, 1H), 6.69 (s, 1H), 6.36 (d, *J* = 1.5 Hz, 2H), 6.19 (d, *J* = 2.0 Hz, 1H), 2.63 (d, *J* = 2.0 Hz, 1H), 2.22 (s, 6H).

¹³C NMR (100 MHz, CDCl₃) δ 150.3, 141.4, 140.8, 139.3, 137.8, 130.5, 128.5, 127.7, 125.4, 123.7, 121.5, 120.2, 114.8, 113.2, 78.7, 77.3, 74.1, 73.1, 21.2.

HRMS (ESI) m/z: $[M+H]^+$ calcd for $C_{23}H_{20}N_3O_4S$ 434.1169, found 434.1169.

1-(4-chloro-3-methoxyphenyl)-2-ethynyl-3-((4-nitrophenyl)sulfonyl)-2,3-dihydro-1H-benzo[d]i midazole (3q):

Prepared via **general procedure 2** from N-(4-chloro-3-methoxyphenyl)-1,1-diphenyl- λ^4 -Sulf -animine (34.1 mg, 0.1 mmol, 1.0 equiv), 4-ethynyl-1-thionitroso-1,4-dihydro-2H-benzo[d] [1,3]oxazin-2-one (53.7 mg, 0.15 mmol, 1.5 equiv) and DIPEA (26 μl , 0.15 mmol, 1.5 equiv) according to the general procedure in the presence of Cu(OTf)₂ 3.6 mg, 0.01 mmol, 10 mol%), purified by silica gel column chromatography (petroleum ether/ EtOAc = 40:1 to 10:1) and obtained as a yellow solid (38.5 mg, 82%), mp: 180-181 °C.

 $\mathbf{R}_{\mathbf{f}}$ (Petroleum ether/ EtOAc = 5:1) = 0.5

¹H NMR (400 MHz, Chloroform-*d*) δ 8.16-8.07 (m, 2H), 7.68 (td, *J* = 7.3, 1.6 Hz, 3H), 7.25-7.14 (m, 2H), 7.08 (dd, *J* = 7.8, 1.2 Hz, 1H), 6.90 (dd, *J* = 7.9, 1.2 Hz, 1H), 6.48 (d, *J* = 2.5 Hz, 1H), 6.36 (dd, *J* = 8.5, 2.5 Hz, 1H), 6.24 (d, *J* = 2.0 Hz, 1H), 3.83 (s, 3H), 2.65 (d, *J* = 1.9 Hz, 1H).
¹³C NMR (100 MHz, CDCl₃) δ 155.7, 150.5, 141.1, 140.8, 130.6, 130.5, 128.5, 127.6, 123.9, 122.0, 119.8, 112.4, 110.5, 102.2, 78.1, 77.3, 74.9, 72.9, 56.1.

HRMS (ESI) m/z: $[M+H]^+$ calcd for $C_{22}H_{17}CIN_3O_5S$ 470.0572, found 470.0570.

General procedure for Scheme 3

To a dry tube was added Cu(OTf)₂ (3.6 mg, 0.01 mmol, 10 mol%), **1** (0.15 mmol, 1.5 equiv), **2a** (0.1 mmol, 1.0 equiv), DIPEA(26 μ l, 0.15 mmol, 1.5 equiv) and anhydrous CHCl₃ (1.5 mL) under argon atmosphere. Then, the mixture was stirred at 30 °C in a heating block for 12 h. The reaction mixture was concentrated under vacuum; the crude residue was purified by silica gel column chromatography to give products **3**.

2-ethynyl-1-phenyl-3-tosyl-2,3-dihydro-1H-benzo[d]imidazole (3r):

Prepared via **general procedure 3** from N,1,1-triphenyl- λ^4 -sulfanimine (27.7 mg, 0.1 mmol, 1.0 equiv), 4-ethynyl-1-tosyl-1,4-dihydro-2H-benzo[d][1,3]oxazin-2-one (49.1 mg, 0.15 mmol, 1.5 equiv) and DIPEA (26 μl , 0.15 mmol, 1.5 equiv) according to the general procedure in the presence of Cu(OTf)₂ 3.6 mg, 0.01 mmol, 10 mol%), purified by silica gel column chromatography (petroleum ether/ EtOAc = 50:1 to 10:1) and obtained as a white solid (29.5 mg, 79%), mp: 160-161 °C.

 $\mathbf{R}_{\mathbf{f}}$ (Petroleum ether/ EtOAc = 4:1) = 0.8

¹**H NMR** (300 MHz, Chloroform-*d*) δ 7.68 (d, *J* = 7.8 Hz, 1H), 7.29 (d, *J* = 8.4 Hz, 2H), 7.20 (d, *J* = 8.4 Hz, 2H), 7.12 (s, 1H), 7.08-6.92 (m, 4H), 6.92-6.86 (m, 1H), 6.86-6.76 (m, 2H), 6.19 (d, *J* = 2.0 Hz, 1H), 2.58 (d, *J* = 2.0 Hz, 1H), 2.27 (s, 3H).

¹³**C NMR** (75 MHz, CDCl₃) δ 144.6, 141.5, 137.8, 132.3, 131.3, 129.4, 129.1, 127.2, 126.8, 123.1, 121.1, 120.0, 117.7, 112.1, 79.3, 73.7, 72.9, 21.5.

HRMS (ESI) m/z: [M+Na]⁺ calcd for C₂₂H₁₈N₂O₂SNa 397.0981, found 397.0979.

2-ethynyl-1-(methylsulfonyl)-3-phenyl-2,3-dihydro-1H-benzo[d]imidazole (3s):

Prepared via **general procedure 3** from N,1,1-triphenyl- λ^4 -sulfanimine (27.7 mg, 0.1 mmol, 1.0 equiv), 4-ethynyl-1-(methylsulfonyl)-1,4-dihydro-2H-benzo[d][1,3]oxazin-2-one (37.7 mg, 0.15 mmol, 1.5 equiv) and DIPEA (26 μ l, 0.15 mmol, 1.5 equiv) according to the general procedure in the presence of Cu(OTf)₂ 3.6 mg, 0.01 mmol, 10 mol%), purified by silica gel column chromatography (petroleum ether/ EtOAc = 20:1 to 10:1) and obtained as a white solid (28.3 mg, 95%), mp: 121-122 °C.

 $\mathbf{R}_{\mathbf{f}}$ (Petroleum ether/ EtOAc = 5:1) = 0.3

¹**H NMR** (400 MHz, Chloroform-*d*) δ 7.37-7.24 (m, 5H), 7.10-7.04 (m, 1H), 7.04-6.96 (m, 2H), 6.88-6.79 (m, 1H), 6.30 (d, *J* = 1.9 Hz, 1H), 2.85 (s, 3H), 2.54 (d, *J* = 1.9 Hz, 1H).

¹³C NMR (100 MHz, CDCl₃) δ 140.8, 137.1, 131.0, 129.7, 125.7, 124.1, 121.1, 119.3, 116.4, 111.3, 78.7, 74.9, 72.3, 37.1.

HRMS (ESI) m/z: $[M+Na]^+$ calcd for $C_{16}H_{14}N_2O_2SNa$ 321.0668, found 321.0668.

2-ethynyl-1-phenyl-3-(phenylsulfonyl)-2,3-dihydro-1H-benzo[d]imidazole (3t):

Prepared via **general procedure 3** from N,1,1-triphenyl- λ^4 -sulfanimine (27.7 mg, 0.1 mmol, 1.0 equiv), 4-ethynyl-1-(phenylsulfonyl)-1,4-dihydro-2H-benzo[d][1,3]oxazin-2-one (47.0 mg, 0.15 mmol, 1.5 equiv) and DIPEA (26 μ l, 0.15 mmol, 1.5 equiv) according to the general procedure in the presence of Cu(OTf)₂ 3.6 mg, 0.01 mmol, 10 mol%), purified by silica gel column chromatography (petroleum ether/ EtOAc = 50:1 to 10:1) and obtained as a white solid (29.2 mg, 81%), mp: 131-132 °C.

 $\mathbf{R}_{\mathbf{f}}$ (Petroleum ether/ EtOAc = 5:1) = 0.8

¹**H NMR** (400 MHz, Chloroform-*d*) δ 7.69 (dd, *J* = 7.9, 1.3 Hz, 1H), 7.50-7.41 (m, 3H), 7.23 (dtd, *J* = 8.4, 7.5, 2.0 Hz, 4H), 7.13 (td, *J* = 7.7, 1.3 Hz, 1H), 7.08-6.95 (m, 2H), 6.90-6.81 (m, 3H), 6.25 (d, *J* = 2.0 Hz, 1H), 2.60 (d, *J* = 2.0 Hz, 1H).

¹³C NMR (100 MHz, CDCl₃) δ 141.2, 137.9, 135.5, 133.6, 131.1, 129.3, 128.8, 127.2, 126.9, 123.4, 121.0, 119.9, 118.1, 111.7, 79.2, 73.9, 72.7.

HRMS (ESI) m/z: $[M+H]^+$ calcd for $C_{21}H_{16}N_2O_2S$ 361.1005, found 361.1003.

2-ethynyl-1-(naphthalen-2-ylsulfonyl)-3-phenyl-2,3-dihydro-1H-benzo[d]imidazole (3u):

Prepared via **general procedure 3** from N,1,1-triphenyl- λ^4 -sulfanimine (27.7 mg, 0.1 mmol, 1.0 equiv), 4-ethynyl-1-(naphthalen-2-ylsulfonyl)-1,4-dihydro-2H-benzo[d][1,3]oxazin-2-one (54.5 mg, 0.15 mmol, 1.5 equiv) and DIPEA (26 μl , 0.15 mmol, 1.5 equiv) according to the general procedure in the presence of Cu(OTf)₂ 3.6 mg, 0.01 mmol, 10 mol%), purified by silica gel column chromatography (petroleum ether/ EtOAc = 40:1 to 10:1) and obtained as a white solid (36.5 mg, 89%), mp: 138-139 °C.

 $\mathbf{R}_{\mathbf{f}}$ (Petroleum ether/ EtOAc = 5:1) = 0.7

¹**H NMR** (400 MHz, Chloroform-*d*) δ 7.86 (d, *J* = 1.9 Hz, 1H), 7.65 (dt, *J* = 8.0, 1.6 Hz, 2H), 7.52-7.46 (m, 3H), 7.41-7.36 (m, 1H), 7.22 (dd, *J* = 8.7, 1.9 Hz, 1H), 6.99 (dd, *J* = 7.8, 1.4 Hz, 1H), 6.92 (dd, *J* = 7.7, 1.3 Hz, 1H), 6.80 (dd, *J* = 8.5, 7.1 Hz, 2H), 6.73-6.63 (m, 2H), 6.49-6.42 (m, 2H), 6.17 (d, *J* = 2.0 Hz, 1H), 2.49 (d, *J* = 2.0 Hz, 1H).

¹³C NMR (100 MHz, CDCl₃) δ 141.5, 137.8, 135.1, 132.1, 131.8, 131.4, 129.1, 129.0, 129.0, 128.9, 128.9, 127.6, 127.4, 127.0, 123.1, 122.1, 121.3, 120.2, 117.3, 112.4, 79.3, 73.8, 73.1.
HRMS (ESI) m/z: [M+H]⁺ calcd for C₂₅H₁₉N₂O₂S 411.1162, found 411.1163.

X-ray crystallographic data of 3a and 3r

The crystal structures have been deposited at the Cambridge Crystallographic Data Centre (2255981, **3a**) and (2252236, **3r**). The data can be obtained free of charge via the internet at <u>https://www.ccdc.cam.ac.uk/structures/</u>. The measurements were taken in a Bruker APEX-II CCD diffractometer. The data were integrated by Bruker APEX2 with multi-scan absorption corrections. The structure solution and refinement were processed by SHELXL(2018/3).

Method of crystallization: A solution of **3a** in CHCl₃ and petroleum ether was evaporated the solvent slowly at room temperature.

Crystal data structure for 3a

X-ray structure of **3a**. Thermal ellipsoids are shown at the 50% level.

Empirical formula	C21H15N3O4S	
Formula weight	405.42	
Temperature	301 K	
Wavelength	1.54184 Å	
Crystal system	Monoclinic	
Space group	P 2 ₁ /n	
Unit cell dimensions	a = 9.1583(2) Å	$\alpha = 90^{\circ}$
	b = 21.8770(4) Å	$\beta = 114.233(2)^{\circ}$
	c = 10.2542(2) Å	$\gamma = 90$ °
Volume	1873.46(7) Å ³	
Ζ	4	
Density (calculated)	1.437 g/cm ³	
Absorption coefficient	1.837 mm ⁻¹	
Crystal size	0.20x 0.20 x 0.20 mm ³	
θ range for data collection	5.144 to 77.261°	
Reflections collected	12222	
Independent reflections	$3785 (R_{int} = 0.0225)$	
Max. and min. transmission	0.972 and 0.978	
restraints / parameters	0 / 263	
Goodness-of-fit on F ²	1.054	
Final R indices $[I > 2\sigma(I)]$	$R_1 = 0.0380, wR_2 = 0.1045$	
R indices (all data)	$R_1 = 0.0400, w R_2 = 0.1060$	
Largest diff. peak and hole	0.227 and -0.417 e.Å ⁻³	

Method of crystallization: A solution of 3r in CHCl₃ and petroleum ether was evaporated the solvent slowly at room temperature.

Crystal data structure for 3r

X-ray structure of **3r**. Thermal ellipsoids are shown at the 50% level.

Empirical formula	C22H18N2O2S	
Formula weight	374.44	
Temperature	213 К	
Wavelength	01.34139 Å	
Crystal system	Monoclinic	
Space group	'P 21/c'	
Unit cell dimensions	a = 9.1365(2) Å	$\alpha = 90^{\circ}$
	b = 21.8460(4) Å	$\beta = 116.0440(10)^{\circ}$
	c = 10.2421(2) Å	$\gamma = 90^{\circ}$
Volume	1836.70(7) Å ³	
Ζ	4	
Density (calculated)	1.354 g/cm ³	
Absorption coefficient	1.125 mm ⁻¹	
F(000)	784.0	
Crystal size	0.07x 0.07 x 0.05 mm ³	
θ range for data collection	9.374 to 109.898°	
Index ranges	$-10 \le h \le 11, -26 \le k \le 26, -12 \le l \le 12$	

Reflections collected	19091
Independent reflections	$3476 (R_{int} = 0.0417)$
Completeness to $\theta = 67.679^{\circ}$	99.9 %
Max. and min. transmission	0.972 and 0.978
Data / restraints / parameters	3476 / 0 / 245
Goodness-of-fit on F ²	1.050
Final R indices $[I > 2\sigma(I)]$	$R_1 = 0.0351, wR_2 = 0.0922$
R indices (all data)	$R_1 = 0.0389, wR_2 = 0.0948$
Largest diff. peak and hole	0.22 and -0.38 e.Å ⁻³

References

[1] a) D. Zhong, F. Jiang, S.-Y, Shen, L. Wang, W. Wang, Y.-G. Wu, Y.-M, Xiao, H.-C. Guo, *Angew. Chem. Int. Ed.* 2020, **362**, 5026-5030; b) T.-R. Li, B.-Y. Cheng, Y.-N. Wang, M.-M. Zhang, L.-Q. Lu, W.-J. Xiao, *Angew. Chem. Int. Ed.* 2016, **55**, 12422-12426; c) Q. Wang, T.-R. Li, L.-Q. Lu, M.-M. Li, K. Zhang, W.-J. Xiao, *J. Am. Chem. Soc.* 2016, **138**, 8360-8363.

[2] a) T.-T. Meng, T.-X. Wang, T.-Z. Jia, J. Am. Chem. Soc. 2022, 144, 12476-12487; b) X. Tian,
L. Song, M. Rudolph, Frank. Rominger, T. Oeser, A. S. K. Hashmi, Angew. Chem. Int. Ed. 2019,
58, 3589-3593; c) S. Yoshida, T. Yano, Y. Misawa, Y. Sugimura, K. Igawa, S. Shimizu, K. Tomooka, T. Hosoya, J. Am. Chem. Soc. 2015, 137, 14071-14074.

