Electronic Supplementary Material (ESI) for Organic & Biomolecular Chemistry. This journal is © The Royal Society of Chemistry 2023

Electronic Supplimentary Information

Water-based efficient alkyne transformation towards α-acetoxy/imido-ketones via oxidative coupling reactions using an alkylamine catalyst

Debasish Ghosh,^a Aniruddha Ganguly^b and Saikat Khamarui^{*c}

^aDepartment of Chemistry, Vivekananda College Madhyamgram, Kolkata-700129, India ^bDepartment of Chemistry, Scottish Church College, Kolkata-700006, India, e-mail: ani.physichem@gmail.com ^cDepartment of Chemistry, Government General Degree College at Kalna-1, Purba Bardhhaman-713405, India *Corresponding author: e-mail: saikatkhamarui21@gmail.com; Tel: 91-8017685951

<u>Serial N</u>	No. <u>Content</u>	Page Numbers
1.	Control experiments data	S-2
2.	¹ H and ¹³ C-NMR spectra of synthesised α -acetoxyketones (4a-g), α -imidoketones (5a-g), <i>N</i> -protected cathinone (6a), cathinone (7)	
	and N-benzoylphthalimide (8a)	S-3

1. Control experiments data

Detection of labeled isotope (¹⁸O) using mass spectroscopy

The synthesis of compound **5a** was performed on a 0.1 mmol scale in 1.0 ml H₂O¹⁸, following the general procedure as depicted earlier. High-resolution mass spectrometry (HRMS) analysis was then performed directly with the post-reaction mixture. The peak at 267.0784 (M⁺) confirmed the incorporation of the O¹⁸ isotope into the desired product (¹⁸O-**5a**), indicating the source of oxygen in the newly generated α -functionalised ketones.

SI Figure 1: HRMS spectrum of ¹⁸O-5a

2. ¹H and ¹³C-NMR spectra of synthesised α -acetoxyketones (4a-g), α -imidoketones (5a-g), *N*-phthalimido cathinone (6a), cathinone (7) and *N*-benzoylphthalimide (8a)

SI Figure 2: ¹H and ¹³C-NMR spectra of compound 4a

SI Figure 3: ¹H and ¹³C-NMR spectra of compound 4b

SI Figure 4: ¹H and ¹³C-NMR spectra of compound 4c

8.8.007 9.8.107 9.9.17,950 9.9.17,950 9.9.17,950 9.9.17,950 9.9.17,950 9.9.17,750 9.9.17,750 9.9.17,750 9.9.17,750 9.9.17,750 9.17,7500 9.17,7500 9.17,7500 9.17,7500 9.17,750

SI Figure 14: ¹H and ¹³C-NMR spectra of compound 5f

f1 (ppm)

S-16

SI Figure 16: ¹H and ¹³C-NMR spectra of compound 6a

f1 (ppm)

SI Figure 17: ¹H and ¹³C-NMR spectra of compound 7

78.020 8.021 8.012 8.010

0 190 170 100 f1 (ppm) 80 70 60 50 40 30 20 10 (180 160 150 140 120 110 90 130