Electronic Supplementary Information

Gas-free alkoxycarbonylation of aryl iodides in a phosphonium-

based deep eutectic solvent with $Mo(CO)_6$ as a solid CO source

Francesco Messa,^a Andrea Nicola Paparella,^b Serena Perrone,^{a,*} and Antonio Salomone^{c,*}

^a Dipartimento di Scienze e Tecnologie Biologiche ed Ambientali, Università del Salento, Prov.le Lecce-Monteroni, I-73100 Lecce (Italy).

^b Dipartimento di Farmacia-Scienze del Farmaco, Università deli Studi di Bari "Aldo Moro", Consorzio C.I.N.M.P.I.S., Via Orabona, 4, I-70125 Bari, Italy.

^c Dipartimento di Chimica, Consorzio C.I.N.M.P.I.S., Università degli Studi di Bari "Aldo Moro", Via E. Orabona 4, I-70125 Bari (Italy).

1	General Methods
2	Table S1: Supplementary Information about the Screening of the Reaction Conditions for the
Alk	oxycarbonylation of Iodobenzene 1a with Mo(CO) ₆ in EG-based Deep Eutectic Solvents ^a S3
3	Table S2: Screening of Different Bases for the Alkoxycarbonylation of Iodobenzene 1a with
Mo	(CO) ₆ in MTPBr/EG DES ^a S4
4	Graph S1: Investigation on CO Equivalents Released by Mo(CO) ₆ S5
5	Experimental Procedure for the Alkoxycarbonylation Reaction of (Hetero)Aryl lodide 1a-t in
MT	PBr/EG or MTPBr/gly Eutectic Mixture
6	Characterization Data for Compounds 2a-t, 2u-w and 2u'-w'S6
7	¹ H NMR and ¹³ C NMR Spectra for Compounds 2a-t , 2u-w and 2u'-w' S13
8	References

1 General Methods

¹H NMR and ¹³C NMR spectra were recorded on a Bruker 400 MHz spectrometer and chemical shifts are reported in parts per million (δ). Dimethyl sulfone has been used as the internal standard for yield determination by ¹H NMR analysis of the crude reaction mixtures. The following abbreviations have been used to explain the multiplicities: s = singlet, d = doublet, t = triplet, q = quartet, m = multiplet, quin = quintuplet, sext = sextet, sep = septet, br = broad. FT-IR spectra were recorded on a Perkin-Elmer 681 spectrometer. Analytical thin-layer chromatography (TLC) was carried out on pre-coated 0.25 mm thick plates of Kieselgel 60 F254; visualisation was accomplished by UV light (254 nm) or by spraying a solution of 5% (w/v) ammonium molybdate and 0.2% (w/v) cerium(III) sulfate in 100 mL 17.6% (w/v) aq. sulphuric acid and heating to 473 K until blue spots appeared. Chromatography was conducted by using silica gel 60 with a particle size distribution 40–63 µm and 230-400 ASTM. GC-MS analyses were performed on HP 5995C model. High-resolution mass spectrometry (HRMS) analyses were performed using a Bruker microTOF QII mass spectrometer equipped with an electrospray ion source (ESI). Melting points were determined with an Electrothermal melting point apparatus. Reagents and solvents, unless otherwise specified, were purchased from Sigma-Aldrich (Sigma-Aldrich, St. Louis, MO, USA) and TCI (Tokyo Chemical Industry, Europe, N. V.) and used without any further purification. Petroleum ether refers to the 40–60 °C boiling fraction. Deep Eutectic Solvents (DES) [MePh₃PBr (MTPBr)/ethylene glycol (EG) (1:5 mol/mol); MTPBr/glycerol (gly) (1:4 mol/mol); cholinium chloride (ChCl)/EG (1:2 mol/mol); tetrabutylammonium bromide (TBAB)/EG (1:4 mol/mol)] were prepared by heating under stirring at 60–80 °C for 10–30 min the corresponding individual components until a clear eutectic mixture was obtained. Full characterization data, including copies of ¹H NMR and ¹³C NMR spectra, have been reported for all the synthesized compounds.

S2

2 Table S1: Supplementary Information about the Screening of the Reaction Conditions for the Alkoxycarbonylation of Iodobenzene 1a with Mo(CO)₆ in EGbased Deep Eutectic Solvents^a

Entry	DES (mL)	T (°C)	Pd-cat. (mol%)	Base (mmol)	1a Conv. ^b	2a Yield ^ь
1	MTPBr/EG (2.0 mL)	150	Pd(OAc) ₂ (5.0)	PPR (3.0)	100%	>98%
2	MTPBr/EG (2.0 mL)	150	PdCl ₂ (5.0)	PPR (3.0)	100%	78%
3	MTPBr/EG (2.0 mL)	120	Pd(OAc) ₂ (5.0)	PPR (3.0)	100%	70%
4	MTPBr/EG (2.0 mL)	80	Pd(OAc) ₂ (5.0)	PPR (3.0)	100%	71%
5	MTPBr/EG (2.0 mL)	80	Pd(OAc) ₂ (5.0)	PPR (1.5)	100%	70%
6	MTPBr/EG (2.0 mL)	150	Pd(OAc) ₂ (5.0)	-	100%	41%
7 ^c	MTPBr/EG (1.0 mL)	80	Pd(OAc) ₂ (5.0)	PPR (1.5)	100%	>98%
8 ^c	MTPBr/EG (1.0 mL)	80	Pd(OAc) ₂ (1.0)	PPR (1.5)	100%	>98%
9 ^d	MTPBr/EG (1.0 mL)	80	Pd(OAc) ₂ (0.5)	PPR (1.5)	100%	88%
10 ^d	MTPBr/EG (1.0 mL)	80	Pd(OAc) ₂ (0.5)	K ₃ PO ₄ (1.5)	100%	35%
11 ^d	MTPBr/EG (1.0 mL)	80	Pd(OAc) ₂ (0.5)	K ₂ CO ₃ (1.5)	100%	25%
12 ^d	MTPBr/EG (1.0 mL)	80	Pd(OAc) ₂ (0.5)	NaOAc (1.5)	100%	92%
13 ^d	ChCl/EG (1.0 mL)	80	Pd(OAc) ₂ (0.5)	NaOAc (1.5)	100%	41%
14 ^d	TBAB/EG (1.0 mL)	80	Pd(OAc) ₂ (0.5)	NaOAc (1.5)	100%	51%
15 ^d	EG (1.0 mL)	80	Pd(OAc) ₂ (0.5)	NaOAc (1.5)	100%	60%

PPR = piperidine.^a Reaction conditions: iodobenzene **1a** (0.5 mmol), $Mo(CO)_6$ (1.0 mmol), $Pd(OAc)_2$ (0.5-5 mol%), base (1.5-3 mmol), DES (1.0-2.0 mL) at 80-150 °C for 2 h.. ^b Calculated via ¹H NMR analysis of the crude reaction mixture using the internal standard technique (NMR internal standard: dimethyl sulfone). ^c Reaction performed with 0.5 mmol of $Mo(CO)_6$.

3 Table S2: Screening of Different Bases for the Alkoxycarbonylation of Iodobenzene 1a with Mo(CO)₆ in MTPBr/EG DES^a

Entry	Base (mmol)	1a Conv. ^b	2a Yield ^b
1	TMED (0.75)	64%	26%
2	DBU (1.5)	100%	50%
3	Et ₂ NH (1.5).	50%	<5%
4	L-Arg (1.5)	100%	9%

TMED = N,N,N',N'-Tetramethylethylenediamine; DBU = 1,8-Diazabicyclo(5.4.0)undec-7-ene. ^aReaction conditions: iodobenzene **1a** (0.5 mmol), Pd(OAc)₂ (0.5 mol%), base, Mo(CO)₆ (0.25 mmol), MTPBr/EG (1.0 mL), 80 °C, 2 h. ^bCalculated via ¹H NMR analysis of the crude reaction mixture using the internal standard technique (NMR internal standard: dimethyl sulfone).

4 Graph S1: Investigation on CO Equivalents Released by Mo(CO)₆

Entry	1a (mmol)	Mo(CO)₀ (mmol)	2a Yield ^ь
1	1	0.1	34%
2	1	0.2	69%
3	1	0.3	78%
4	1	0.4	82%
5	1	0.5	91%
6	1	0.6	85%
7	1	0.7	86%

^aReaction conditions: iodobenzene **1a** (1.0 mmol), Pd(OAc)₂ (0.5 mol%), Mo(CO)₆ (0.1-0.7 mmol), MTPBr/EG (2.0 mL), 80 °C, 2 h. ^bCalculated via ¹H NMR analysis of the crude reaction mixture using the internal standard technique (NMR internal standard: dimethyl sulfone).

5 Experimental Procedure for the Alkoxycarbonylation Reaction of (Hetero)Aryl lodide 1a-t in MTPBr/EG or MTPBr/gly Eutectic Mixture

In a 10 mL round bottom flask, (hetero)aryl iodide (**1a-r**, 0.5 mmol), Mo(CO)₆ (66.0 mg, 0.25 mmol), NaOAc·3H₂O (204.0 mg, 1.5 mmol), Pd(OAc)₂ (trimeric, FW = 673.46, 0.5 mol%, 0.0025 mmol, 1.6 mg) and MTPBr/EG or MTPBr/gly DES (1.0 mL) were sequentially added. The reaction was stirred for 2 hours at 80 °C. After this time, the reaction mixture was cooled to room temperature and water (2.5 ml) and HCl solution (10% v/v) up to pH = 2 were sequentially added. The mixture was then extracted with AcOEt (5 ml x 3) and the reunited organic phases were washed with brine, dried over anhydrous Na₂SO₄, filtered through a celite pad and evaporated under reduced pressure. The crude was purified by flash column chromatography on silica gel (using as eluent petroleum ether/AcOEt 80/20 to pure AcOEt), obtaining the desired 2-hydroxyethyl esters as pure compounds **2a-r** or the desired glycerol esters as mixture of isomers (**2u-w**, **2u'-w'**).

When the diiodo arenes **1s-t** were used as the substrates, the following procedure was employed: in a 10 mL round bottom flask, diiodo arene (**1s-t**, 0.5 mmol), Mo(CO)₆ (132.0 mg, 0.5 mmol), NaOAc·3H₂O (408.0 mg, 3.0 mmol), Pd(OAc)₂ (trimeric, FW = 673.46, 1.0 mol%, 0.005 mmol, 3.12 mg) and MTPBr/EG DES (2.0 mL). The reaction was stirred for 2 hours at 80 °C. The work-up procedure and purification process are similar to those ones described above for the substrates **1ar**.

6 Characterization Data for Compounds 2a-t, 2u-w and 2u'-w'

2-hydroxyethyl benzoate 2a¹: pale yellow oil, 92%. ¹H NMR (400.12 MHz, CDCl₃): δ 8.07–8.04 (m, 2H), 7.58–7.54 (m, 1H), 7.45–7.41 (m, 2H), 4.46–4.44 (m, 2H), 3.96 – 3.93 (m, 2H), 2.42 (br s, 1H); ¹³C NMR (100.62 MHz, CDCl₃): δ

167.0, 133.2, 129.7, 128.4, 126.8, 66.6, 61.3; FT-IR (Film, cm⁻¹): 3430, 2951, 1719, 1602, 1455, 1120. GC/MS (70 eV) m/z (%): 166 (M⁺, 5), 123 (90), 105 (100), 77 (85), 51 (40). HRMS (ESI) m/z calc. for $[C_9H_{10}O_3 + Na]^+$: 189.0522; found: 189.0525.

2-hydroxyethyl 4-methoxybenzoate 2b¹: pale yellow oil, 88%. ¹H NMR (400.12 MHz, CDCl₃): δ 8.01–7.98 (m, 2H), 6.92–6.88 (m, 2H), 4.43–4.40 (m, 2H), 3.94–3.91 (m, 2H), 3.85 (s, 3H); ¹³C NMR (100.62 MHz, CDCl₃): δ

166.7, 163.5, 131.7, 122.1, 113.6, 66.3, 61.3, 55.4; FT-IR (Film, cm-1): 3440, 2936, 1719, 1599, 1455, 1110. GC/MS (70 eV) m/z (%): 196 (M⁺, 20), 152 (80), 135 (100), 92 (30), 77 (45), 51 (10). HRMS (ESI) m/z calc. for [C₁₀H₁₂O₄ + Na]⁺: 219.0628; found: 219.0631.

2-hydroxyethyl 2-methylbenzoate 2c²: orange oil, 88%. ¹H NMR (400.12 MHz, CDCl3): *δ* 7.92–7.90 (m, 1H), 7.38–7.34 (m, 1H), 7.21–7.17 (m, 2H), 4.39–4.36 (m, 2H), 3.90–3.88 (m, 2H), 3.03 (br s, 1H), 2.57 (s, 3H); ¹³C NMR (100.62 MHz,

CDCl₃): δ 167.9, 140.2, 132.1, 131.6, 130.6, 129.2, 125.6, 66.2, 61.0, 21.7; FT-IR (Film, cm⁻¹): 3319, 3008, 1718, 1602, 1568, 1379, 1261, 1120, 735. GC/MS (70 eV) *m/z* (%): 180 (M⁺, 26), 137 (19) 119 (100), 118 (98), 91 (77), 65 (41). HRMS (ESI) *m/z* calc. for $[C_{10}H_{12}O_3 + Na]^+$: 203.0679; found: 203.0677.

2-hydroxyethyl 4-hydroxybenzoate 2d³: white cristal, m.p. 133-135 °C, 99%. ¹H NMR (400.12 MHz, Acetone-d₆): δ 9.15 (br s, 1H), 7.93–7.91 (m, 2H), 6.92–6.90 (m, 2H), 4.32–4.29 (m, 2H), 3.85–3.82 (m, 2H), 2.88 (br s,

1H); ¹³C NMR (100.62 MHz, Acetone-d₆): δ 165.7, 161.6, 131.6, 121.7, 115.0, 66.0, 60.0; FT-IR (KBr, cm⁻¹): 3402, 2915, 1709, 1217, 809. GC/MS (70 eV) *m/z* (%): 182 (M⁺, 12), 133 (27), 132 (30), 121 (100), 93 (31), 65 (29). HRMS (ESI) *m/z* calc. for [C₉H₁₀O₄ + Na]⁺: 205.0471; found: 205.0475.

2-hydroxyethyl 4-(trifluoromethyl)benzoate 2e⁶: yellow oil, 99%. ¹H NMR (400.12 MHz, CDCl₃): δ 8.18–8.15 (m, 2H), 7.71–7.69 (m, 2H), 4.51–4.48 (m, 2H), 3.99–3.97 (m, 2H), 2.55 (br s, 1H); ¹³C NMR (100.62 MHz, CDCl₃):

 δ 165.6, 134.6 (q, J = 32.7 Hz), 133.0 (q, J = 1.2 Hz), 130.0, 125.4 (q, J = 3.8 Hz) 123.5 (q, J = 272.7), 67.0, 61.1; FT-IR (Film, cm⁻¹): 3440, 1726, 1465, 1692, 1463, 1285, 775; GC/MS (70 eV) *m/z* (%): 234 (M⁺, 2), 215 (4), 191 (38), 173 (100), 145 (57), 95 (9), 77 (7), 51 (5). HRMS (ESI) *m/z* calc. for [C₁₀H₉F₃O₃ + Na]⁺: 257.0396; found: 257.0399.

2-hydroxyethyl 4-acetylbenzoate 2f: pale yellow oil, 75%. ¹H NMR (400.12 MHz, CDCl₃): δ 8.08–8.06 (m, 2H), 7.92–7.90 (m, 2H), 4.43–4.41 (m, 2H), 3.93–3.90 (m, 2H), 3.11 (br s, 1H), 2.58 (s, 3H); ¹³C NMR (100.62 MHz, CDCl₃): δ 197.7, 165.9, 140.1, 133.6, 129.8, 128.1, 66.9, 60.8, 26.8;

FT-IR (Film, cm-1): 3436, 2894, 1732, 1698, 1599, 1455, 1137. GC/MS (70 eV) m/z (%): 208 (M⁺, 2), 193 (55), 165 (90), 147 (100), 119 (20), 104 (20), 91 (20), 76 (15), 51 (40). HRMS (ESI) m/z calc. for $[C_{11}H_{12}O_4 + Na]^+$: 231.0628; found: 231.0631.

4-((2-hydroxyethoxy)carbonyl)benzoic acid 2g: white solid, m.p. 180-182 °C, 76%. ¹H NMR (400 MHz, Acetone-d₆): δ 8.18–8.13 (m, 4H), 4.43– 4.41 (m, 2H), 3.91–3.89 (m, 2H); ¹³C NMR (100 MHz, Acetone-d₆): δ 166.9, 166.2, 135.3, 135.1, 130.5, 130.4, 67.9, 60.8; FT-IR (KBr, cm⁻¹):

3431, 3050–2501 (multiple peak), 1715, 1686, 1275, 1120, 819. HRMS (ESI) *m/z* calc. for [C₁₀H₁₀O₅ + Na]⁺: 233.0420; found: 233.0423.

2-hydroxyethyl methyl terephthalate 2h⁴: white solid, m.p. 80-82 °C, 94%. ¹H NMR (400.12 MHz, CDCl₃): δ 8.13–8.07 (m, 4H), 4.49–4.47 (m, 2H), 3.98–3.96 (m, 2H), 3.94 (s, 3H), 2.25 (br s, 1H); ¹³C NMR (100.62 MHz, CDCl₃): δ 166.2, 166.0, 134.0, 133.6, 129.6, 129.5, 66.9, 61.1, 52.4;

FT-IR (KBr, cm⁻¹): 3453, 2961, 2883, 1715, 1695, 1580, 1432, 1275, 1106, 791. GC/MS (70 eV) *m/z* (%): 224 (M⁺, 4), 193 (27), 181 (88), 163 (100), 149 (28), 135 (36), 104 (21), 76 (20), 51 (8). HRMS (ESI) *m/z* calc. for [C₁₁H₁₂O₅ + Na]⁺: 247.0577; found: 247.0579.

2-hydroxyethyl 2-cyanobenzoate 2i: pale yellow oil, 76%. ¹H NMR (400.12 MHz, CDCl₃): δ 8.18–8.16 (m, 1H), 7.77–7.75 (m, 1H), 7.70–7.63 (m, 2H), 4.48–4.46 (m, 2H), 3.97–3.95 (m, 2H), 2.90 (br s, 1H); ¹³C NMR (100.62 MHz, CDCl₃):

δ 163.9, 134.5, 132.9, 132.8, 132.4, 131.6, 118.6, 112.4, 68.0, 60.6; FT-IR (Film, cm⁻¹): 3430, 3010, 2966, 2226, 1724, 1256, 1069, 1012, 793, 759; GC/MS (70 eV) *m/z* (%): 191 (M⁺, 5), 161 (33), 148 (19), 130 (100), 103 (72), 76 (24), 51 (10). HRMS (ESI) *m/z* calc. for [C₁₀H₉NO₃ + Na]⁺: 214.0475; found: 214.0478.

2-hydroxyethyl 4-cyanobenzoate 2j⁵: pale yellow oil, 84%. ¹H NMR (400.12 MHz, CDCl₃): δ 8.16–8.13 (m, 2H), 7.72–7.70 (m, 2H), 4.48–4.45 (m, 2H), 3.96–3.93 (m, 2H), 2.47 (br s, 1H); ¹³C NMR (100.62 MHz, CDCl₃):

δ 165.1, 133.8, 132.2, 130.2, 117.9, 116.3, 67.2, 60.7; FT-IR (Film, cm⁻¹): 3433, 3012, 2967, 2228, 1723, 1258, 1070, 1013, 812, 759; GC/MS (70 eV) *m/z* (%): 191 (M⁺, 3), 160 (16), 148 (73), 130 (100), 102 (82), 75 (29), 51 (22). HRMS (ESI) *m/z* calc. for [C₁₀H₉NO₃ + Na]⁺: 214.0475; found: 214.0479.

2-hydroxyethyl 4-nitrobenzoate 2k⁶: pale yellow wax, 53%. ¹H NMR (400.12 MHz, CDCl₃): δ 8.27–8.20 (m, 4H), 4.50–4.48 (m, 2H), 3.98–3.96 (m, 2H); ¹³C NMR (100.62 MHz, CDCl₃): δ 164.9, 150.5, 135.2, 130.8,

123.5, 67.3, 60.8; FT-IR (KBr, cm⁻¹): 3334, 3115, 1724, 1530, 1461, 1361, 1285, 823. GC/MS (70 eV) *m/z* (%): 211 (M⁺, 1), 181 (5), 168 (85), 164 (20), 150 (100), 104 (50), 76 (45), 50 (20). HRMS (ESI) *m/z* calc. for [C₉H₉NO₅ + Na]⁺: 234.0373; found: 234.0378.

2-hydroxyethyl 4-fluoro-3-formylbenzoate 2l: pale red oil, 65%. ¹H NMR (400.12 MHz, CDCl₃): δ 10.28 (s, 1H), 8.50–8.48 (m, 1H), 8.28–8.25 (m, 1H), 7.23–7.19 (m, 1H), 4.44–4.42 (m, 2H), 3.94–3.92 (m, 2H), 2.99 (br s, 1H); ¹³C NMR (100.62 MHz, CDCl₃): δ 186.4 (d, *J* = 6.0 Hz), 167.0 (d, *J* = 266.0 Hz),

164.9, 137.6 (d, J = 10.5 Hz), 130.9 (d, J = 3.0 Hz), 127.0 (d, J = 3.4 Hz), 123.9 (d, J = 9.0 Hz), 117.0 (d, J = 21.4 Hz), 67.1, 60.8; FT-IR (Film, cm⁻¹): 3454, 3066, 2957, 2876, 1709, 1672, 1609, 1265, 1218, 759; GC/MS (70 eV) m/z (%): 212 (M⁺, 2), 169 (86), 151 (100), 123 (49) 95 (36), 75 (43); HRMS (ESI) m/z calc. for $[C_{10}H_9FO_4 + Na]^+$: 235.0377; found: 235.0380.

2-hydroxyethyl 3-chlorobenzoate 2m⁷: pale yellow oil, 75%. ¹H NMR (400.12 MHz, CDCl₃): δ 8.02–8.01 (m, 1H), 7.93–7.91 (m, 1H), 7.53–7.50 (m, 1H), 7.38–7.34 (m, 1H), 4.46–4.43 (m, 2H), 3.95–3.93 (m, 2H), 2.49 (br s, 1H); ¹³C NMR (100.62 MHz, CDCl₃): δ 165.7, 134.5, 133.1, 131.5, 129.7, 129.6, 127.8, 66.9,

61.0; FT-IR (Film, cm⁻¹): 3418, 3004, 2897, 1722, 1192, 1183, 782. GC/MS (70 eV) *m/z* (%):202 (M⁺+2, 2), 200 (M⁺, 5), 169 (8) 157 (63), 139 (100), 111 (62), 75 (47), 51 (20). HRMS (ESI) *m/z* calc. for [C₉H₉ClO₃ + Na]⁺: 223.0132; found: 223.0134.

2-hydroxyethyl 4-bromobenzoate 2n⁵: yellow oil, 76%. ¹H NMR (400.12 MHz, CDCl₃): δ 7.88–7.86 (m, 2H), 7.54–7.51 (m, 2H), 4.42–4.39 (m, 2H), 3.92–3.90 (m, 2H), 2.84 (br s, 1H); ¹³C NMR (100.62 MHz, CDCl₃): δ 166.1,

131.6, 131.1, 128.7, 128.2, 66.7, 60.8; FT-IR (Film, cm⁻¹): 3441, 3099, 1723, 1609, 1451, 1275, 757. GC/MS (70 eV) *m/z* (%): 246 (M⁺+2, 2), 244 (M⁺, 2), 201 (58), 183 (100), 157 (43), 104 (12), 76 (32), 51 (8). HRMS (ESI) *m/z* calc. for [C₉H₉BrO₃ + Na] ⁺: 266.9627; found: 266.9630.

2-hydroxyethyl 1-naphtoate 2o¹: yellow oil, 81%. ¹H NMR (400.12 MHz, CDCl₃): δ 8.91–8.89 (m, 1H), 8.21–8.19 (m, 1H), 8.01–7.99 (m, 1H), 7.88–7.85 (m, 1H), 7.63–7.44 (m, 3H), 4.52–4.50 (m, 2H), 3.98–3.96 (m, 2H), 2.65 (s, 1H); ¹³C NMR (100.62 MHz, CDCl₃): δ 167.8, 133.8, 133.5, 131.2, 130.3, 128.5, 127.8,

126.7, 126.2, 125.6, 124.4, 66.6, 61.2; FT-IR (Film, cm⁻¹): 3499, 2978, 1710, 1601, 1518, 1118, 693. GC/MS (70 eV) *m/z* (%): 216 (M⁺, 50), 172 (75), 155 (100), 127 (90), 101 (10), 77 (15), 51 (10). HRMS (ESI) *m/z* calc. for [C₁₃H₁₂O₃ + Na]⁺: 239.0679; found: 239.0683.

2-hydroxyethyl nicotinate 2p: yellow oil, 63%. ¹H NMR (400.12 MHz, CDCl₃): δ 9.183–9.176 (m, 1H), 8.72–8.70 (m, 1H), 8.30–8.27 (m, 1H), 7.39-7.36 (m, 1H), 4.47–4.45 (m, 2H), 3.96–3.93 (m, 2H); ¹³C NMR (100.62 MHz, CDCl₃): δ 165.2,

152.9 150.4, 137.5, 126.1, 123.5, 67.0, 60.6; FT-IR (Film, cm⁻¹): 3401, 1726, 1587, 1293, 1250, 1075, 801. GC/MS (70 eV) *m/z* (%): 167 (M⁺, 3), 136 (18), 124 (89), 106 (100), 78 (77), 51 (38). HRMS (ESI) *m/z* calc. for [C₈H₉NO₃ + Na]⁺: 190.0475; found: 190.0477.

2-hydroxyethyl 1-benzyl-1H-indole-5-carboxylate 2q: yellow oil, 64%. ¹H NMR (400.12 MHz, CDCl₃): δ 8.45–8.44 (m, 1H), 7.91–7.88 (m, 1H), 7.33– 7.27 (m, 4H), 7.193–7.186 (m, 1H), 7.10–7.08 (m, 2H), 6.66–6.65 (m, 1H), 5.34 (s, 2H), 4.49–4.46 (m, 2H), 3.98–3.95 (m, 2H), 2.36 (br s, 1H); ¹³C NMR (100.62 MHz, CDCl₃): δ 168.0, 138.8, 136.8, 129.7, 128.8, 128.2, 127.8,

126.7, 124.2, 123.1, 121.2, 109.4, 103.3, 66.4, 61.6, 50.2; FT-IR (Film, cm⁻¹): 3234, 3033, 2957, 2880, 1696, 1609, 1275, 754; GC/MS (70 eV) *m/z* (%): 295 (M⁺, 2), 292 (100), 275 (6), 251 (11), 201 (28), 158 (76), 132 (19), 106 (36), 91 (92), 77 (15), 65 (22), 51 (12). HRMS (ESI) *m/z* calc. for [C₁₈H₁₇NO₃ + Na]⁺: 318.1101; found: 318.1104.

2-hydroxyethyl 1*H***-indole-5-carboxylate 2r:** pale red oil, 55%. ¹H NMR (400.12 MHz, CDCl₃): δ 8.64 (br s, 1H), 8.43 (s, 1H), 7.91–7.89 (m, 1H), 7.40–7.38 (m, 1H), 7.27–7.26 (m, 1H), 6.64–6.63 (m, 1H), 4.49–4.47 (m,

2H), 3.99–3.97 (m, 2H), 2.40 (br s, 1H); ¹³C NMR (100.62 MHz, CDCl₃): δ 168.2, 138.6, 127.5, 125.7, 123.9, 123.4, 121.4, 110.8, 104.0, 66.4, 61.7; FT-IR (Film, cm⁻¹): 3401, 3267, 3100, 2971, 2928, 1662, 1237, 749; GC/MS (70 eV) *m/z* (%): 205 (M⁺, 9), 161 (56), 144 (100), 116 (62), 89 (34), 63 (13). HRMS (ESI) *m/z* calc. for [C₁₁H₁₁NO₃ + Na]⁺: 228.0631; found: 228.0634.

Bis(2-hydroxyethyl) [1,1'-biphenyl]-4,4'-dicarboxylate 2s: pale yellow solid, m.p. 115-116 °C, 99%. ¹H NMR (400.12 MHz, Acetone-d₆): δ 8.18–8.15 (m, 4H), 7.90–7.87 (m, 4H), 4.42–4.40 (m, 4H), 3.92–3.88 (m, 4H); ¹³C NMR

(100.62 MHz, Acetone-d₆): δ 166.6, 144.9, 131.02, 130.98, 128.1, 67.6, 60.9; FT-IR (Film, cm⁻¹): 3428, 2941, 2880, 1716, 1699, 1412, 1291, 1077, 875, 718. HRMS (ESI) *m/z* calc. for [C₁₈H₁₈O₆ + Na]⁺: 353.0996; found: 353.0999.

Bis(2-hydroxyethyl) terephthalate 2t⁸: withe solid, m.p. 106-109 °C, 93%. ¹H NMR (400.12 MHz, DMSO-d₆): δ 8.12 (s, 4H), 4.98 (bs s, 2H), 4.33–4.30 (m, 4H), 3.73–3.71 (m, 4H); ¹³C NMR (100.62 MHz, DMSO-d₆): δ 165.2, 133.8, 129.6, 67.1, 59.1; FT-IR (Film,

cm⁻¹): 3431, 2950, 2877, 1704, 1721, 1412, 1299, 1102, 851, 718; HRMS (ESI) *m/z* calc. for [C₁₂H₁₄O₆ + Na]⁺: 277.0683; found: 277.0685.

Mixture of 2,3-dihydroxypropyl benzoate (2u)⁹ and 1,3-dihydroxypropan-2-yl benzoate (2u')¹⁰: 84%, 2u:2u' = 88:12, pale yellow liquid. ¹H NMR

(400.12 MHz, CDCl₃): δ 8.03–7.99 (m, 2H **2u**, 2H **2u'**), 7.55–7.50 (m, 1H **2u**, 1H **2u'**), 7.42–7.37 (m, 2H **2u**, 2H **2u'**), 5.14 (quin, *J* = 4.9 Hz, 1H **2u'**), 4.36 (d, *J* = 5.5 Hz, 2H **2u**), 4.08–4.02 (m, 1H **2u**), 3.92–3.90 (m, 4H **2u'**), 3.78 (br s, 1H **2u**), 3.77–3.73 (m, 1H **2u**), 3.68–3.63 (m, 1H **2u**), 3.42 (bs s, 1H **2u**), 2.66 (br s, 2H **2u'**). ¹³C NMR (100.62 MHz, CDCl₃): δ 166.9 (**2u**), 166.7 (**2u'**), 133.28 (**2u'**), 133.25 (2u), 129.7 (**2u'**), 129.6 (**2u**, **2u'**), 129.4 (**2u**), 128.38 (**2u**), 128.36 (**2u'**), 75.6 (**2u'**), 70.2 (**2u**), 65.6 (**2u**), 63.4(**2u**), 61.8 (**2u'**). FT-IR (Film, cm⁻¹): 3415 (br), 3065, 2950, 2886, 1715, 1452, 1275, 1116, 1070, 710. HRMS (ESI) *m/z* calc. for [C₁₀H₁₂O₄ + Na]⁺: 219.0628; found: 219.0631.

Mixtureof2,3-dihydroxypropyl4-cyanobenzoate(2v)and1,3-dihydroxypropan-2-yl4-cyanobenzoate(2v'):76%,2v:2v' = 86:14, pale yellow waxy solid. ¹H

NMR (400.12 MHz, CDCl₃): δ 8.18–8.13 (m, 2H **2v**, 2H **2v'**), 7.76–7.72 (m, 2H **2v**, 2H **2v'**), 5.20 (quin, J = 4.8 Hz, 1H **2v'**), 4.48–4.40 (m, 2H **2v**), 4.12–4.07 (m, 1H **2v**), 3.98 (d, J = 4.8 Hz, 4H **2v'**), 3.81–3.77 (m, 1H **2v**), 3.71–3.67 (m, 1H **2v**), 2.93 (br s, 1H **2v**), 2.49 (br s, 1H **2v**), 1.88 (br s, 2H **2v'**). ¹³C NMR (100.62 MHz, CDCl₃): δ 165.2 (**2v**), 164.9 (**2v**'), 133.6 (**2v**'), 133.4 (**2v**'), 132.25 (**2v**), 132.22 (**2v**'), 130.23 (**2v**), 130.16 (**2v**), 129.7 (**2v**'), 128.4 (**2v**'), 117.8 (**2v**), 116.6 (**2v**), 76.2 (**2v**'), 70.0 (**2v**), 66.3 (**2v**), 63.3 (**2v**), 62.2 (**2v**'). FT-IR (KBr, cm⁻¹): 3253 (br), 3045, 2940, 2887, 2238, 1716, 1271, 1118, 1046, 859, 766. HRMS (ESI) *m/z* calc. for $[C_{11}H_{11}NO_4 + Na]^+$: 244.0580; found: 244.0584.

Mixture of 2,3-dihydroxypropyl methyl terephthalate (2w) and 1,3dihydroxypropan-2-yl methyl terephthalate (2w'): 71%, 2w:2w' =

87:13, white waxy solid. ¹H NMR (400.12 MHz, CDCl₃): δ 8.13–8.07 (m, 4H **2w**, 4H **2w'**), 5.19 (quin, *J* = 4.7 Hz, 1H **2w'**), 4.48–4.40 (m, 2H **2w**), 4.13–4.40 (m, 1H **2w**), 3.99 (d, *J* = 4.6 Hz, 4H **2w'**), 3.95 (s, 3H **2w**, 3H **2w'**), 3.81–3.78 (m, 1H **2w**), 3.72–3.68 (m, 1H **2w**), 2.88 (br s, 1H **2w**), 2.41 (br s, 1H **2w**), 1.77 (br s, 2H **2w'**). ¹³C NMR (100.62 MHz, CDCl₃): δ 166.2 (**2w**), 166.1 (**2w**), 165.8 (2C **2w'**), 134.3 (**2w**), 133.5 (2C **2w'**), 133.4 (**2w**), 129.74 (**2w'**), 129.70 (**2w**), 129.63 (**2w**), 129.60 (**2w'**), 76.1 (**2w'**), 70.3 (**2w**), 66.1 (**2w**), 63.4 (**2w**), 62.4 (**2w'**), 52.5 (**2w**, **2w'**). FT-IR (KBr, cm⁻¹): 3368 (br), 2959, 2904, 1719, 1449, 1408, 1262, 1104, 1019, 802, 727. HRMS (ESI) *m/z* calc. for [C₁₂H₁₄O₆ + Na]⁺: 277.0683; found: 277.0681.

7 ¹H NMR and ¹³C NMR Spectra for Compounds 2a-t, 2u-w and 2u'-w'

 1 H NMR 400.12 MHz, CDCl₃

S13

S40

¹³C NMR 100.62 MHz, Acetone-d₆

¹³C NMR 100.62 MHz, CDCl₃

¹³C NMR 100.62 MHz, CDCl₃

¹H NMR 400.12 MHz, CDCl₃

¹³C NMR 100.62 MHz, CDCl₃

8 References

⁵ P. L. Wang, H. Z. Shen, H. H. Cheng, H. Gao, P. H. Li. *Green Chem.*, **2020**, *22* (20), 6783–6791.

- ⁹ E. M. Rustoy, A. Dana, *Lett Org Chem* **2015**, *13*, 71–75.
- ¹⁰ A. Sakakura, S. Umemura, K. Ishihara, *Adv Synth Catal* **2011**, *353*, 1938–1942.

¹ H. Sharghi, M. Sarvari. J. Org. Chem., **2003**, 68(10), 4096–4099.

² R. Lubczak, J. Lubczak. J. Appl. Polym. Sci., **2005**, 96 (4), 1357–1367.

³ T. S. Wu, Y. L. Leu, Y. Y. Chan. Chem. Pharm. Bull., **1999**, 47(4), 571–573.

⁴ N. Yasukawa, S. Asai, M. Kato, Y. Monguchi, H. Sajiki, Y. Sawama. Org. Lett., 2016, 18 (21), 5604–5607.

⁶ T. Yasukawa, H. Miyamura, S. Kobayashi. Chem. Asian J., **2011**, 6 (2), 621–627.

⁷ C. Kuhakarn, W. Panchan, S. Chiampanichayakul, N. Samakkanad, M. Pohmakotr, V. Reutrakul, T. Jaipetch. *Synthesis*, **2009**, *06*, 929–934.

⁸ Z. Fehér, J. Kiss, P. Kisszékelyi, J. Molnár, P. Huszthy, L. Kárpáti, J. Kupai. *Green Chem.*, **2022**, *24* (21), 8447–8459.