# **Supplementary Information**

# Synthesis of *Gem*-Dibromo 1,3-Oxazines by NBS-Mediated Electrophilic Cyclization of Propargylic Amides

Huaxin Zhang<sup>a</sup>, Yongge Xiong<sup>a</sup>, Jiang Bai<sup>a</sup>, Ruchun Yang<sup>\*a</sup>, Xian-Rong Song<sup>a</sup> and

Qiang Xiao<sup>\*a</sup>

<sup>a</sup> Key Laboratory of Organic Chemistry of Jiangxi Province, Jiangxi Science & Technology Normal University, Nanchang, 330013, China. E-mail: <u>ouyangruchun@163.com</u>; E-mail: <u>xiaoqiang@tsinghua.org.cn</u>.

### **List of Contents**

- 1. Crystal analysis of compound 2x
- 2. General Experimental Procedure
- 3. Analytical data
- 4. <sup>1</sup>H NMR and <sup>13</sup>C NMR Spectra

# 1. Crystal analysis of compound 2x



### Datablock: 1

| Bond precision:  | C-C = 0.0069 A           | Wavelength=0.71073     |                                    |  |
|------------------|--------------------------|------------------------|------------------------------------|--|
| Cell:            | a=8.4782(13)<br>alpha=90 | b=14.044(2)<br>beta=90 | c=14.818(2)<br>gamma=90            |  |
| Temperature:     | 296 K                    |                        | -                                  |  |
|                  | Calculated               | Reported               |                                    |  |
| Volume           | 1764.4(4)                | 1764.3(5)              |                                    |  |
| Space group      | P 21 21 21               | P 21 21 21             |                                    |  |
| Hall group       | P 2ac 2ab                | P 2ac 2ab              |                                    |  |
| Moiety formula   | C18 H17 Br2 N O2         | ?                      |                                    |  |
| Sum formula      | C18 H17 Br2 N O2         | C18 H17 Br2 N O2       |                                    |  |
| Mr               | 439.13                   | 439.15                 |                                    |  |
| Dx,g cm-3        | 1.653                    | 1.653                  |                                    |  |
| Z                | 4                        | 4                      |                                    |  |
| Mu (mm-1)        | 4.603                    | 4.603                  |                                    |  |
| F000             | 872.0                    | 872.0                  |                                    |  |
| F000'            | 870.11                   |                        |                                    |  |
| h,k,lmax         | 10,16,17                 | 10,16,17               |                                    |  |
| Nref             | 3100[ 1791]              | 3085                   |                                    |  |
| Tmin, Tmax       | 0.314,0.363              |                        |                                    |  |
| Tmin'            | 0.291                    |                        |                                    |  |
| Correction metho | od= Not given            |                        |                                    |  |
| Data completenes | ss= 1.72/1.00            | Theta(max)= 24.995     |                                    |  |
| R(reflections)=  | 0.0302( 2597)            |                        | wR2(reflections) = $0.0629(-3085)$ |  |
| S = 0.919        | Npar= 20                 | 9                      | 0.0023( 3003)                      |  |

#### 2. Typical Experimental Procedure

### 2.1 General

All reagents were purchased from commercial sources and used without further treatment, unless otherwise indicated. Methonal (CH<sub>3</sub>OH) was purchased from Adamas Company, safedry, water<50ppm. <sup>1</sup>H and <sup>13</sup>C NMR spectra were recorded on Bruker 400 MHz spectrometers, chemical shifts are given in parts per million (ppm) relative to standard tetramethylsilane (0.00 ppm for <sup>1</sup> H NMR) or residual solvent peaks for <sup>13</sup> C NMR. Data collection for X-ray crystal analysis was performed on a Bruker Smart APEX-II single-crystal X-ray diffractometer using graphite monochromated Mo-K $\alpha$  radiation ( $\lambda = 0.71073$  Å) at 296 K. HRMS was obtained using a Q-TOF instrument equipped with ESI source. Standard column chromatography was performed on 200-300 mesh silica gel. using flash column chromatography techniques.

### 2.2 General procedure for the electrophilic cyclization reaction



2mL of ROH was added to a flask, then **1a-1y** (0.2 mmol) were added and the reaction was cooled to 15 °C by a magnetic refrigerator. Then NBS (70.8 mg, 0.4

mmol) was added into the resulting mixture in one pot and stirred at 15 °C for 10 min. The progress of the reaction was monitored by TLC. After completion of the reaction, quench the reaction mixture with water and use  $CH_2Cl_2$  (3 × 5mL) extraction. The combined organic layer was dried over anhydrous  $Na_2SO_4$  and concentrated under reduced pressure. The crude product was purified by column chromatography on silica gel to give the corresponding product **2a–2y**.

### 2.3 General procedure for gram scale reaction



30 mL of CH<sub>3</sub>OH was added to a flask, then **1a** (4.2 mmol) were added and the reaction was cooled to 15 °C by a magnetic refrigerator. Then NBS (1.49 g, 8.4 mmol) was added into the resulting mixture in one pot and stirred at 15 °C for 10 min. The progress of the reaction was monitored by TLC. After completion of the reaction, quench the reaction mixture with water and use CH<sub>2</sub>Cl<sub>2</sub> ( $3 \times 50$  mL) extraction. The combined organic layer was dried over anhydrous Na<sub>2</sub>SO<sub>4</sub> and concentrated under reduced pressure. The crude product was purified by column chromatography on silica gel to give the corresponding product **2a**.

#### 2.4 General procedure for the synthesis of 2a'



2 mL of CH<sub>2</sub>Cl<sub>2</sub> was added to a flask, then **1a** (0.2 mmol) was added and the reaction was cooled to 15 °C by a magnetic refrigerator. Then NBS (70.8 mg, 0.4 mmol) was added into the resulting mixture in one pot and stirred at 15 °C for 10 min. The progress of the reaction was monitored by TLC. After completion of the reaction, quench the reaction mixture with water and use CH<sub>2</sub>Cl<sub>2</sub> ( $3 \times 5$ mL) extraction. The combined organic layer was dried over anhydrous Na<sub>2</sub>SO<sub>4</sub> and concentrated under reduced pressure. The crude product was purified by column chromatography on silica gel to give the corresponding product **2a'**.

#### 3. Analytical data

#### 5,5-dibromo-6-methoxy-2,6-diphenyl-5,6-dihydro-4H-1,3-oxazine (2a)



4.46 (d, *J* = 17.9 Hz, 1H), 3.31 (s, 3H). <sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>) δ 151.7, 133.0, 132.0, 131.3, 130.2, 129.8, 128.4, 127.4, 127.3, 101.7, 65.0, 60.6, 52.6. HRMS (ESI): *m*/*z* [M+H]<sup>+</sup> calcd for C<sub>17</sub>H<sub>15</sub>Br<sub>2</sub>NO<sub>2</sub>: 423.9542; found: 423.9547.

5,5-dibromo-6-methoxy-2-phenyl-6-(p-tolyl)-5,6-dihydro-4H-1,3-oxazine (2b)



# 5,5-dibromo-6-methoxy-6-(4-methoxyphenyl)-2-phenyl-5,6-dihydro-4H-1,3-oxa zine (2c)



82% yield, 74.3 mg (0.2 mmol scale), white solid, mp 120-122 °C; <sup>1</sup>**H NMR** (400 MHz, CDCl<sub>3</sub>) δ 8.07 (d, J = 7.2 Hz, 2H), 7.76 (d, J = 8.8 Hz, 2H), 7.56 – 7.41 (m, 3H), 7.01 (d, J = 8.8 Hz, 2H), 4.88 (d, J = 17.9 Hz, 1H), 4.45 (d, J = 17.9 Hz, 1H), 3.88 (s, 3H), 3.30 (s, 3H); <sup>13</sup>C **NMR** (101 MHz, CDCl<sub>3</sub>)  $\delta$  160.6, 151.8, 132.0, 131.5, 131.3, 128.4, 127.2, 125.0, 112.8, 101.8, 66.0, 60.6, 55.3, 52.5; **HRMS** (ESI): m/z [M+H]<sup>+</sup> calcd for C<sub>18</sub>H<sub>17</sub>Br<sub>2</sub>NO<sub>3</sub>: 453.9648; found: 453.9642.

5,5-dibromo-6-(4-chlorophenyl)-6-methoxy-2-phenyl-5,6-dihydro-4H-1,3-oxazin e(2d)



1H), 4.44 (d, J = 17.9 Hz, 1H), 3.29 (s, 3H); <sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>)  $\delta$  151.4, 136.1, 131.8, 131.6, 131.4, 128.5, 127.8, 127.2, 101.4, 64.5, 60.4, 52.7; HRMS (ESI): m/z [M+H]<sup>+</sup> calcd for C<sub>17</sub>H<sub>14</sub>Br<sub>2</sub>ClNO<sub>2</sub>: 457.9153; found: 457.9148.

5,5-dibromo-6-(4-fluorophenyl)-6-methoxy-2-phenyl-5,6-dihydro-4H-1,3-oxazin e(2e)

F 78% yield, 68.8 mg (0.2 mmol scale), white solid, mp 135-137 °C; <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  8.05 (d, J = 7.3 Hz, 2H), 7.90 – Ph Br 7.77 (m, 2H), 7.56 – 7.39 (m, 3H), 7.18 (t, J = 8.7 Hz, 2H), 4.88 (d, J = 17.9 Hz, 1H), 4.44 (d, J = 17.9 Hz, 1H), 3.29 (s, 3H). <sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>)  $\delta$  163.6 (d, J = 248.0 Hz), 151.6, 132.2 (d, J = 9.0 Hz), 132.3, 131.8, 131.4, 128.9, 128.5, 127.2, 114.5 (d, *J* = 21.0 Hz), 101.4, 65.0, 60.5, 52.6; <sup>19</sup>F NMR (376 MHz, CDCl<sub>3</sub>) δ -111.50.

HRMS (ESI): *m*/*z* [M+H]<sup>+</sup> calcd for C<sub>17</sub>H<sub>14</sub>Br<sub>2</sub>FNO<sub>2</sub>: 441.9448; found: 441.9454.

5,5-dibromo-6-(4-(tert-butyl)phenyl)-6-methoxy-2-phenyl-5,6-dihydro-4H-1,3-o xazine(2f)



(101 MHz, CDCl<sub>3</sub>) δ 152.7, 151.8, 132.0, 131.2, 129.9, 128.4, 127.3, 124.4, 101.8,
65.4, 60.7, 52.6, 34.7, 31.3; HRMS (ESI): *m*/*z* [M+H]<sup>+</sup> calcd for C<sub>21</sub>H<sub>23</sub>Br<sub>2</sub>NO<sub>2</sub>:
480.0168; found: 480.0168.

Ethyl-4-(5,5-dibromo-6-methoxy-2-phenyl-5,6-dihydro-4H-1,3-oxazin-6-yl)benz

oate(2g)



45% yield, 44.6 mg (0.2 mmol scale), white solid, mp 111-112 °C; <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  8.17 (d, *J* = 8.5 Hz, 2H), 8.09 – 8.02 (m, 2H), 7.92 (d, *J* = 8.5 Hz, 2H), 7.57

- 7.41 (m, 3H), 4.89 (d, J = 17.9 Hz, 1H), 4.55 – 4.37 (m, 3H), 3.29 (s, 3H), 1.42 (t, J = 7.1 Hz, 3H); <sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>) δ 166.1, 151.4, 137.6, 131.8×2, 131.4, 130.3, 128.6, 128.5, 127.3, 101.6, 63.9, 61.2, 60.4, 52.8, 14.5. HRMS (ESI): m/z

[M+H]<sup>+</sup> calcd for C<sub>20</sub>H<sub>19</sub>Br<sub>2</sub>NO<sub>3</sub>: 495.9754; found: 495.9750.

# 5,5-dibromo-6-(3-chlorophenyl)-6-methoxy-2-phenyl-5,6-dihydro-4H-1,3-oxazin e (2h)



(m, 5H), 4.88 (d, J = 17.9 Hz, 1H), 4.44 (d, J = 17.9 Hz, 1H), 3.30 (s, 3H); <sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>)  $\delta$  151.4, 135.2, 133.7, 131.7, 131.4, 130.3, 130.0, 128.7, 128.5, 128.4, 127.3, 101.1, 64.1, 60.5, 52.8; HRMS (ESI): m/z [M+H]<sup>+</sup> calcd for C<sub>17</sub>H<sub>14</sub>Br<sub>2</sub>ClNO<sub>2</sub>: 457.9153; found: 457.9147.

#### 5,5-dibromo-6-methoxy-2-phenyl-6-(m-tolyl)-5,6-dihydro-4H-1,3-oxazine (2i)



78% yield, 68.2 mg (0.2 mmol scale), white solid, mp
106-108 °C; <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>) δ 8.14 – 8.04 (m,
2H), 7.65 (s, 2H), 7.56 – 7.29 (m, 5H), 4.91 (d, J = 17.9 Hz,

1H), 4.46 (d, J = 17.9 Hz, 1H), 3.31 (s, 3H), 2.48 (s, 3H); <sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>)  $\delta$  151.8, 137.1, 132.8, 132.0, 131.3, 130.7, 130.5, 128.4, 127.3×2, 101.7, 65.0, 60.7, 52.6, 21.7. HRMS (ESI): m/z [M+H]<sup>+</sup> calcd for C<sub>18</sub>H<sub>17</sub>Br<sub>2</sub>NO<sub>2</sub>: 437.9699; found: 437.9691.

5,5-dibromo-6-methoxy-6-(3-methoxyphenyl)-2-phenyl-5,6-dihydro-4H-1,3-oxa zine (2j)



79% yield, 71.6 mg (0.2 mmol scale), white solid, mp 130-132 °C; <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  8.13 – 8.03 (m, 2H), 7.55 – 7.35 (m, 6H), 7.10 – 7.02 (m, 1H), 4.90 (d, *J* =

17.9 Hz, 1H), 4.45 (d, J = 17.9 Hz, 1H), 3.88 (s, 3H), 3.31 (s, 3H), <sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>)  $\delta$  158.9, 151.6, 134.6, 131.9, 131.3, 128.4, 127.2, 122.6, 116.4, 114.9, 101.6, 64.7, 60.7, 55.4, 52.6. **HRMS** (ESI): m/z [M+H]<sup>+</sup> calcd for C<sub>18</sub>H<sub>17</sub>Br<sub>2</sub>NO<sub>3</sub>: 453.9648; found: 453.9645.

# 5,5-dibromo-6-methoxy-6-(2-methoxyphenyl)-2-phenyl-5,6-dihydro-4H-1,3-oxa

zine (2k)



76% yield, 68.9 mg (0.2 mmol scale), white solid, mp 140-142 °C; <sup>1</sup>**H NMR** (400 MHz, CDCl<sub>3</sub>) δ 8.13 – 8.02 (m, 2H), 7.90 – 7.78 (m, 1H), 7.55 – 7.37 (m, 4H), 7.17 – 6.98 (m,

2H), 4.89 (d, J = 17.8 Hz, 1H), 4.40 (d, J = 17.8 Hz, 1H), 3.90 (s, 3H), 3.39 (s, 3H); <sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>)  $\delta$  158.4, 151.8, 134.1, 132.3, 131.6, 131.1, 128.3, 127.3, 120.2, 119.5, 112.2, 103.0, 64.6, 60.8, 55.4, 52.7; **HRMS** (ESI): m/z [M+H]<sup>+</sup> calcd for C<sub>18</sub>H<sub>17</sub>Br<sub>2</sub>NO<sub>3</sub>: 453.9648; found: 453.9642.

# 5,5-dibromo-6-(3,5-dimethylphenyl)-6-methoxy-2-phenyl-5,6-dihydro-4H-1,3-o xazine (2l)



73% yield, 64.7 mg (0.2 mmol scale), white solid, mp 115-117 °C; <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  8.13 – 7.99 (m,

2H), 7.77 (d, J = 7.9 Hz, 1H), 7.55 – 7.40 (m, 3H), 7.20 – 7.07 (m, 2H), 4.91 (d, J = 17.9 Hz, 1H), 4.46 (d, J = 17.9 Hz, 1H), 3.31 (s, 3H), 2.74 (s, 3H), 2.39 (s, 3H); <sup>13</sup>C **NMR** (101 MHz, CDCl<sub>3</sub>)  $\delta$  151.6, 139.6, 133.8, 132.1, 131.3, 128.4, 127.8, 127.4, 125.7, 96.6, 66.0, 61.4, 52.4, 26.9, 21.0; **HRMS** (ESI): m/z [M+H]<sup>+</sup> calcd for C<sub>19</sub>H<sub>19</sub>Br<sub>2</sub>NO<sub>2</sub>: 451.9856; found: 451.9848.

5,5-dibromo-2-(2-fluorophenyl)-6-methoxy-6-phenyl-5,6-dihydro-4H-1,3-oxazin e (2m)



4H), 7.25 – 7.12 (m, 2H), 4.90 (d, J = 17.8 Hz, 1H), 4.45 (d, J = 17.8 Hz, 1H), 3.35 (s, 3H); <sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>)  $\delta$  160.9 (d, J = 254.0 Hz), 150.8, 132.7, 132.5 (d, J = 8.0 Hz), 130.8, 130.2, 129.7, 127.4, 124.1, 116.8 (d, J = 22.0 Hz), 102.2, 64.6, 60.6, 52.9; <sup>19</sup>F NMR (376 MHz, CDCl<sub>3</sub>)  $\delta$  -111.31; HRMS (ESI): m/z [M+H]<sup>+</sup> calcd for C<sub>17</sub>H<sub>14</sub>Br<sub>2</sub>FNO<sub>2</sub>: 441.9448; found: 441.9437.

5,5-dibromo-2-(2-bromophenyl)-6-methoxy-6-phenyl-5,6-dihydro-4H-1,3-oxazi ne (2n)



73% yield, 73.1 mg (0.2 mmol scale), white solid, mp
136-138 °C; <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>) δ 7.86 - 7.79 (m,
2H), 7.69 - 7.62 (m, 2H), 7.49 - 7.42 (m, 3H), 7.38 (td, J =

7.5, 1.0 Hz, 1H), 7.34 – 7.27 (m, 1H), 4.90 (d, J = 17.6 Hz, 1H), 4.45 (d, J = 17.6 Hz, 1H), 3.36 (s, 3H); <sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>)  $\delta$  153.1, 134.9, 133.6, 132.6, 131.1, 130.5, 130.3, 129.8, 127.3, 120.9, 102.6, 64.4, 60.4, 53.1; HRMS (ESI): m/z [M+H]<sup>+</sup> calcd for C<sub>17</sub>H<sub>14</sub>Br<sub>3</sub>NO<sub>2</sub>: 501.8648; found: 501.8655.

5,5-dibromo-2-(2-iodophenyl)-6-methoxy-6-phenyl-5,6-dihydro-4H-1,3-oxazine (20)



81% yield, 88.9 mg (0.2 mmol scale), white solid, mp 135-136 °C; <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  7.96 (d, J = 7.9

Hz, 1H), 7.82 (dd, *J* = 7.3, 2.3 Hz, 2H), 7.61 (dd, *J* = 7.7, 1.4

Hz, 1H), 7.50 - 7.36 (m, 4H), 7.17 - 7.08 (m, 1H), 4.90 (d, J = 17.8 Hz, 1H), 4.46 (d, J = 17.8 Hz, 1H), 3.37 (s, 3H); <sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>)  $\delta$  153.8, 140.5, 138.3, 132.6, 131.2, 130.3, 129.8, 129.6, 128.0, 127.3, 102.6, 94.2, 64.4, 60.3, 53.2; HRMS (ESI): m/z [M+H]<sup>+</sup> calcd for C<sub>17</sub>H<sub>14</sub>Br<sub>2</sub>INO<sub>2</sub>: 549.8509; found: 549.8507.

5,5-dibromo-6-methoxy-2-(3-methoxyphenyl)-6-phenyl-5,6-dihydro-4H-1,3-oxa zine (2p)

Hz, 3H), 7.36 (t, *J* = 8.0 Hz, 1H), 7.11 – 7.03 (m, 1H), 4.90 (d, *J* = 17.9 Hz, 1H), 4.45 (d, *J* = 17.9 Hz, 1H), 3.87 (s, 3H), 3.30 (s, 3H); <sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>) δ 159.7, 151.6, 133.3, 132.9, 130.2, 129.8, 129.4, 127.4, 119.6, 117.5, 112.3, 101.7, 64.9, 60.6, 55.4, 52.7. **HRMS** (ESI): *m*/*z* [M+H]<sup>+</sup> calcd for C<sub>18</sub>H<sub>17</sub>Br<sub>2</sub>NO<sub>3</sub>: 453.9648; found: 453.9638.

# 5,5-dibromo-6-methoxy-6-phenyl-2-(3-(trifluoromethyl)phenyl)-5,6-dihydro-4H -1,3-oxazine (2q)

7.8 Hz, 1H), 7.56 – 7.48 (m, 3H), 4.92 (d, J = 18.0 Hz, 1H), 4.48 (d, J = 18.0 Hz, 1H), 3.31 (s, 3H); <sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>)  $\delta$  150.6, 132.8, 131.1(q, J = 32.0 Hz), 130.4, 130.1, 129.9, 129.0, 127.8(q, J = 3.3 Hz), 127.6, 124.2 (q, J = 3.8 Hz), 123.8 (q, J = 271.0 Hz), 102.0, 64.4, 60.6, 52.8; <sup>19</sup>F NMR (376 MHz, CDCl<sub>3</sub>)  $\delta$  -62.63; HRMS (ESI): m/z [M+H]<sup>+</sup> calcd for C<sub>18</sub>H<sub>14</sub>Br<sub>2</sub>F<sub>3</sub>NO<sub>2</sub>: 491.9416; found: 491.9421.

# 5,5-dibromo-2-(4-chlorophenyl)-6-methoxy-6-phenyl-5,6-dihydro-4H-1,3-oxazin e (2r)

 **NMR** (101 MHz, CDCl<sub>3</sub>) δ 150.9, 137.6, 132.8, 130.4, 130.2, 129.8, 128.7, 128.6, 127.5, 101.8, 64.6, 60.6, 52.7; **HRMS** (ESI): *m*/*z* [M+H]<sup>+</sup> calcd for C<sub>17</sub>H<sub>14</sub>Br<sub>2</sub>ClNO<sub>2</sub>: 457.9153; found: 457.9161.

#### 5,5-dibromo-6-methoxy-6-phenyl-2-(p-tolyl)-5,6-dihydro-4H-1,3-oxazine (2s)

H<sub>3</sub>C Ph Br Br Br Br  $120-122 \,^{\circ}C; \,^{1}H \,^{NMR} (400 \,^{MHz}, CDCl_3) \,^{\circ}\delta \,^{7.96} (d, J = 120-122 \,^{\circ}C; \,^{1}H \,^{NMR} (400 \,^{MHz}, CDCl_3) \,^{\circ}\delta \,^{7.96} (d, J = 120-122 \,^{\circ}C; \,^{1}H \,^{NMR} (400 \,^{MHz}, CDCl_3) \,^{\circ}\delta \,^{7.96} (d, J = 120-122 \,^{\circ}C; \,^{1}H \,^{NMR} (400 \,^{MHz}, CDCl_3) \,^{\circ}\delta \,^{7.96} (d, J = 120-122 \,^{\circ}C; \,^{1}H \,^{NMR} (400 \,^{MHz}, CDCl_3) \,^{\circ}\delta \,^{1}S1.8 \,^{1}H_2, 1H_2, 1H_2, 1H_3, 1H_2, 1H_3, 1H_2, 1H_3, 1H_$ 

### 5,5-dibromo-2-cyclohexyl-6-methoxy-6-phenyl-5,6-dihydro-4H-1,3-oxazine (2t)



63% yield, 54.1 mg (0.2 mmol scale), white solid, mp 95-97 °C; <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>) δ 7.71 (dd, J = 6.5, 2.9 Hz,

2H), 7.50 – 7.40 (m, 3H), 4.61 (d, J = 17.2 Hz, 1H), 4.14 (d, J = 17.2 Hz, 1H), 3.24 (s, 3H), 2.33 (ddd, J = 11.6, 7.5, 3.2 Hz, 1H), 2.02 (t, J = 14.2 Hz, 2H), 1.85 – 1.75 (m, 2H), 1.72-1.69 (m, 1H), 1.53 (ddd, J = 14.9, 12.7, 3.1 Hz, 2H), 1.38 – 1.20 (m, 3H); <sup>13</sup>**C NMR** (101 MHz, CDCl<sub>3</sub>)  $\delta$  159.7, 133.1, 130.1, 129.6, 127.3, 100.9, 65.5, 59.6, 52.4, 43.6, 30.0, 29.8, 25.9, 25.7; **HRMS** (ESI): m/z [M+H]<sup>+</sup> calcd for C<sub>17</sub>H<sub>21</sub>Br<sub>2</sub>NO<sub>2</sub>: 430.0012; found: 430.0019.

5,5-dibromo-6-methoxy-2-phenethyl-6-phenyl-5,6-dihydro-4H-1,3-oxazine (2u)

<sup>MeO</sup> Ph <sup>Br</sup> <sup>Br</sup> <sup>Br</sup> <sup>Br</sup> <sup>Br</sup> <sup>Br</sup> <sup>S8%</sup> yield, 52.3 mg (0.2 mmol scale), white solid, mp 90-92 <sup>o</sup>C; <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  7.67 (d, J = 7.5 Hz, 2H), 7.43 (d, J = 6.3 Hz, 3H), 7.29 (d, J = 7.3 Hz, 4H), 7.24 – 7.18 (m, 1H), 4.64 (d, J =17.2 Hz, 1H), 4.18 (d, J = 17.3 Hz, 1H), 3.19 (s, 3H), 3.06 (t, J = 8.0 Hz, 2H), 2.73-2.67 (m, 2H); <sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>)  $\delta$  156.2, 140.6, 132.8, 130.1, 129.6, 128.5, 128.4, 127.3, 126.2, 101.3, 65.1, 59.8, 52.4, 35.9, 32.2; HRMS (ESI): m/z[M+H]<sup>+</sup> calcd for C<sub>19</sub>H<sub>19</sub>Br<sub>2</sub>NO<sub>2</sub>: 451.9856; found: 451.9850.

(E)-5,5-dibromo-6-methoxy-6-phenyl-2-styryl-5,6-dihydro-4H-1,3-oxazine (2v)

Ph Ph 75% yield, 67.3 mg (0.2 mmol scale), white solid, mp 108-109 °C; <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  7.84 (dd, J = 6.1, 2.5 Hz, 2H), 7.54-7.51 (m, 6H), 7.41-7.35 (m, 2H), 6.60 (d, J = 16.2 Hz, 1H), 4.86 (d, J = 18.1 Hz, 1H), 4.41 (d, J = 18.1 Hz, 1H), 3.31 (s, 3H); <sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>)  $\delta$  152.3, 137.6, 135.1, 132.9, 130.2, 129.7, 129.5, 128.8, 127.5, 127.4, 121.1, 101.4, 64.8, 60.8, 52.5; HRMS (ESI): m/z [M+H]<sup>+</sup> calcd for C<sub>19</sub>H<sub>17</sub>Br<sub>2</sub>NO<sub>2</sub>: 449.9699; found: 449.9693.

# 5,5-dibromo-6-methoxy-6-phenyl-2-(thiophen-2-yl)-5,6-dihydro-4H-1,3-oxazine

(2w)



°C; <sup>1</sup>**H** NMR (400 MHz, CDCl<sub>3</sub>) δ 7.90 (dd, *J* = 6.5, 3.1 Hz, 2H), 7.85 – 7.72 (m, 1H), 7.67 – 7.49 (m, 4H), 7.16 (dd, *J* = 4.9, 3.8 Hz, 1H), 4.94 (d, *J* = 17.9 Hz, 1H), 4.47 (d, *J* = 17.9 Hz, 1H), 3.38 (s, 3H); <sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>) δ 148.6, 136.0, 132.7, 130.1, 129.8, 129.6, 128.8, 127.5, 127.4, 101.9, 64.6, 60.4, 52.6; **HRMS** (ESI): *m*/*z* [M+H]<sup>+</sup> calcd for C<sub>15</sub>H<sub>13</sub>Br<sub>2</sub>NO<sub>2</sub>S: 429.9107; found: 429.9113.

#### 5,5-dibromo-6-ethoxy-2,6-diphenyl-5,6-dihydro-4H-1,3-oxazine (2x)

Ph  $(400 \text{ MHz}, \text{CDCl}_3) \delta 8.05 \text{ (d, } J = 7.3 \text{ Hz}, 2\text{H}), 7.85 \text{ (dd, } J = 6.3, 2.7 \text{ Hz}, 2\text{H}), 7.55 - 7.40 \text{ (m, 6H)}, 4.93 \text{ (d, } J = 17.8 \text{ Hz}, 1\text{H}), 4.44 \text{ (d, } J = 17.8 \text{ Hz}, 1\text{H}), 3.53 \text{ (q, } J = 7.0 \text{ Hz}, 2\text{H}), 1.14 \text{ (t, } J = 7.0 \text{ Hz}, 3\text{H}); {}^{13}\text{C} \text{ NMR} \text{ (101 MHz}, \text{CDCl}_3) \delta 152.0, 133.8, 132.1, 131.3, 130.0, 129.7, 128.4, 127.4, 127.3, 101.5, 65.3, 61.4, 60.6, 15.1;$ **HRMS**(ESI): <math>m/z [M+H]<sup>+</sup> calcd for C<sub>18</sub>H<sub>17</sub>Br<sub>2</sub>NO<sub>2</sub>:437.9699; found: 437.9697.

# 5,5-dibromo-6-(methoxy-d3)-6-(4-methoxyphenyl)-2-phenyl-5,6-dihydro-4H-1,3 -oxazine (2y)



80% yield, 73.1 mg (0.2 mmol scale), white solid, mp 118-121 °C; <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>) δ 8.10 – 8.03 (m, 2H), 7.76 (d, J = 8.9 Hz, 2H), 7.53-7.43 (m, 3H), 7.01 (d, J

= 8.9 Hz, 2H), 4.89 (d, *J* = 17.9 Hz, 1H), 4.45 (d, *J* = 17.9 Hz, 1H), 3.88 (s, 3H); <sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>) δ 160.6, 151.8, 132.1, 131.5, 131.2, 128.4, 127.2, 125.1, 112.8, 101.7, 66.0, 60.6, 55.3; **HRMS** (EI): *m*/*z* [M+H]<sup>+</sup> calcd for C<sub>18</sub>H<sub>14</sub>D<sub>3</sub>Br<sub>2</sub>NO<sub>3</sub>: 456.9836; found: 456.9832.

### 5-bromo-2,6-diphenyl-4H-1,3-oxazine (2a')

# 4. <sup>1</sup>H and <sup>13</sup>C NMR Spectrum







5,5-dibromo-6-methoxy-2-phenyl-6-(p-tolyl)-5,6-dihydro-4H-1,3-oxazine (2b)

# 5,5-dibromo-6-methoxy-6-(4-methoxyphenyl)-2-phenyl-5,6-dihydro-4H-1,3-oxa





5,5-dibromo-6-(4-chlorophenyl)-6-methoxy-2-phenyl-5,6-dihydro-4H-1,3-oxazin



e(2d)

5,5-dibromo-6-(4-fluorophenyl)-6-methoxy-2-phenyl-5,6-dihydro-4H-1,3-oxazin



e(2e)

10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 fl (ppm)

# 5,5-dibromo-6-(4-(tert-butyl)phenyl)-6-methoxy-2-phenyl-5,6-dihydro-4H-1,3-o





Ethyl-4-(5,5-dibromo-6-methoxy-2-phenyl-5,6-dihydro-4H-1,3-oxazin-6-yl)benz

oate(2g)



5,5-dibromo-6-(3-chlorophenyl)-6-methoxy-2-phenyl-5,6-dihydro-4H-1,3-oxazin







5,5-dibromo-6-methoxy-2-phenyl-6-(m-tolyl)-5,6-dihydro-4H-1,3-oxazine (2i)

5,5-dibromo-6-methoxy-6-(3-methoxyphenyl)-2-phenyl-5,6-dihydro-4H-1,3-oxa





5,5-dibromo-6-methoxy-6-(2-methoxyphenyl)-2-phenyl-5,6-dihydro-4H-1,3-oxa

![](_page_28_Figure_1.jpeg)

![](_page_28_Figure_2.jpeg)

5, 5-dibromo-6-(3, 5-dimethylphenyl)-6-methoxy-2-phenyl-5, 6-dihydro-4H-1, 3-o

![](_page_29_Figure_1.jpeg)

![](_page_29_Figure_2.jpeg)

5,5-dibromo-2-(2-fluorophenyl)-6-methoxy-6-phenyl-5,6-dihydro-4H-1,3-oxazin

![](_page_30_Figure_1.jpeg)

e (2m)

10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 f1 (ppm)

5, 5-dibromo-2-(2-bromophenyl)-6-methoxy-6-phenyl-5, 6-dihydro-4H-1, 3-oxazi

![](_page_32_Figure_1.jpeg)

![](_page_32_Figure_2.jpeg)

5, 5-dibromo-2-(2-iodophenyl)-6-methoxy-6-phenyl-5, 6-dihydro-4H-1, 3-oxazine

![](_page_33_Figure_1.jpeg)

(20)

5,5-dibromo-6-methoxy-2-(3-methoxyphenyl)-6-phenyl-5,6-dihydro-4H-1,3-oxa

![](_page_34_Figure_1.jpeg)

![](_page_34_Figure_2.jpeg)

# 5,5-dibromo-6-methoxy-6-phenyl-2-(3-(trifluoromethyl)phenyl)-5,6-dihydro-4H

### -1,3-oxazine (2q)

![](_page_35_Figure_2.jpeg)

10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 f1 (ppm)

---62.63

5,5-dibromo-2-(4-chlorophenyl)-6-methoxy-6-phenyl-5,6-dihydro-4H-1,3-oxazin

![](_page_37_Figure_1.jpeg)

e (2r)

![](_page_38_Figure_0.jpeg)

5,5-dibromo-6-methoxy-6-phenyl-2-(p-tolyl)-5,6-dihydro-4H-1,3-oxazine (2s)

![](_page_39_Figure_0.jpeg)

### 5,5-dibromo-2-cyclohexyl-6-methoxy-6-phenyl-5,6-dihydro-4H-1,3-oxazine (2t)

![](_page_40_Figure_0.jpeg)

| 6683<br>440<br>233<br>235<br>234<br>211 | 663<br>620<br>205 | 186<br>077<br>056<br>037<br>037<br>726<br>687<br>667 |
|-----------------------------------------|-------------------|------------------------------------------------------|
|                                         | 44 44             |                                                      |

![](_page_40_Figure_2.jpeg)

![](_page_41_Figure_0.jpeg)

![](_page_41_Figure_1.jpeg)

# 5,5-dibromo-6-methoxy-6-phenyl-2-(thiophen-2-yl)-5,6-dihydro-4H-1,3-oxazine

![](_page_42_Figure_1.jpeg)

(2w)

![](_page_43_Figure_0.jpeg)

![](_page_43_Figure_1.jpeg)

# 5,5-dibromo-6-(methoxy-d3)-6-(4-methoxyphenyl)-2-phenyl-5,6-dihydro-4H-1,3

-oxazine (2y)

| 8.079<br>8.079<br>8.077<br>8.077<br>8.077<br>7.775<br>7.775<br>7.775<br>7.775<br>7.775<br>7.775<br>7.775<br>7.775<br>7.775<br>7.775<br>7.775<br>7.775<br>7.775<br>7.775<br>7.775<br>7.775<br>7.775<br>7.775<br>7.775<br>7.775<br>7.775<br>7.775<br>7.775<br>7.775<br>7.775<br>7.775<br>7.775<br>7.775<br>7.775<br>7.775<br>7.775<br>7.775<br>7.775<br>7.775<br>7.775<br>7.775<br>7.775<br>7.775<br>7.775<br>7.775<br>7.775<br>7.775<br>7.775<br>7.775<br>7.775<br>7.775<br>7.775<br>7.775<br>7.775<br>7.775<br>7.775<br>7.775<br>7.775<br>7.775<br>7.775<br>7.775<br>7.775<br>7.775<br>7.775<br>7.775<br>7.775<br>7.775<br>7.775<br>7.775<br>7.775<br>7.775<br>7.775<br>7.775<br>7.775<br>7.775<br>7.775<br>7.775<br>7.775<br>7.775<br>7.775<br>7.775<br>7.775<br>7.775<br>7.775<br>7.775<br>7.775<br>7.775<br>7.775<br>7.775<br>7.775<br>7.775<br>7.775<br>7.775<br>7.775<br>7.775<br>7.775<br>7.775<br>7.775<br>7.775<br>7.775<br>7.775<br>7.775<br>7.775<br>7.775<br>7.775<br>7.775<br>7.755<br>7.755<br>7.775<br>7.755<br>7.755<br>7.755<br>7.755<br>7.755<br>7.755<br>7.755<br>7.755<br>7.755<br>7.755<br>7.755<br>7.755<br>7.755<br>7.755<br>7.755<br>7.755<br>7.755<br>7.755<br>7.755<br>7.755<br>7.755<br>7.755<br>7.755<br>7.755<br>7.755<br>7.755<br>7.755<br>7.755<br>7.755<br>7.755<br>7.755<br>7.755<br>7.755<br>7.755<br>7.755<br>7.755<br>7.755<br>7.755<br>7.755<br>7.755<br>7.755<br>7.755<br>7.755<br>7.755<br>7.755<br>7.755<br>7.755<br>7.755<br>7.755<br>7.755<br>7.755<br>7.755<br>7.7555<br>7.7555<br>7.7555<br>7.7555<br>7.7555<br>7.7555<br>7.7555<br>7.75555<br>7.7555<br>7.7555<br>7.7555<br>7.7555<br>7.75555<br>7.75555<br>7.75555<br>7.75555<br>7.75555<br>7.75555<br>7.755557<br>7.755557<br>7.755577<br>7.755577<br>7.7555777<br>7.755577777777 | ~4.909<br>~4.864 | 4.471 | 3.884 |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|-------|-------|
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|-------|-------|

![](_page_44_Figure_3.jpeg)

![](_page_45_Figure_0.jpeg)

![](_page_45_Figure_1.jpeg)