Electronic Supplementary Material (ESI) for Organic & Biomolecular Chemistry. This journal is © The Royal Society of Chemistry 2023

Supporting Information

Iron-catalyzed alkoxyl radical-mediated C-C bond cleavage/phosphorothiolation: A new approach to functionalized *S*-alkyl phosphorothioates

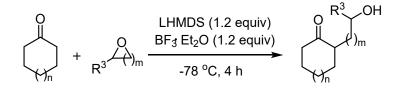
Ming Bai,^a Shuai Liu,^a Hong Xin,^a Xu Yang^b, Xin-Hua Duan,^{a,b} and Li-Na Guo*,^a

^aDepartment of Chemistry, School of Chemistry, Xi'an Key Laboratory of Sustainable Energy Material Chemistry and Engineering Research Center of Energy Storage Materials and Devices, Ministry of Education, Xi'an Jiaotong University, Xi'an 710049, P. R. China. ^bSchool of Electrical Engineering, Xi'an Jiaotong University, Xi'an, 710049, P. R. China. Email: guoln81@xjtu.edu.cn

Table of Contents

1	General Information			
2	Starting Materials			
3	Detailed Optimization of Reaction Conditions	S 7		
4	Representative Procedures for C-C Bond	S11		
	Cleavage/Phosphorothiolation	511		
5	Procedures for Derivatizations of 3aa	S13		
6	Large-Scale Synthesis of 3aa			
7	Mechanistic Investigation			
8	Characterization of Starting Material 2d			
9	Characterizations of Products 3			
10	0 Characterizations of Products 5			
11	Characterizations of Products 6aa and 7aa	S29		
12	References	S30		
13	³¹ P NMR, ¹ H NMR and ¹³ C NMR Spectra of Starting Materials			
14	¹³ P NMR, ¹ H NMR and ¹³ C NMR Spectra of Products 3 and 5			
15	⁵ ¹³ P NMR, ¹ H NMR and ¹³ C NMR Spectra of Products 6aa and 7aa			

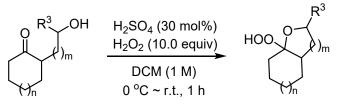
1. General Information

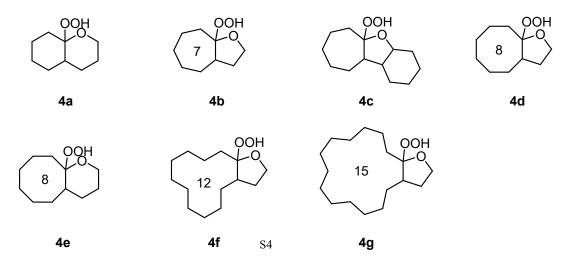

Unless otherwise noted, reagents and solvents were obtained from commercial suppliers and were used without further purification. All catalytic reactions were carried out under nitrogen in Schlenktube. Analytical TLC: aluminum backed plates pre-coated (0.25 mm) with Merck Silica Gel 60F-254. Column chromatography purifications were carried out using silica gel. Melting points were measured using open glass capillaries in a SGW® X-4A apparatus. ¹H and ¹³C NMR spectra were recorded on a Bruker 400 MHz spectrometer at ambient temperature. Coupling constants are reported in Hz with multiplicities denoted as s (singlet), d (doublet), t (triplet), q (quartet), m (multiplet) and br (broad). Infrared spectra were recorded on a Bruker V 70 and only major peaks were reported in cm⁻¹. HRMS were obtained on a WATERS I-Class VION IMS Q-Tof with an ESI source.

2. Starting Materials

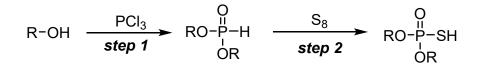
2.1 The Synthesis of Cycloalkyl Hydroperoxides 1

The cycloalkyl hydroperoxides **1a-r** were prepared according to the literature.¹ The NMR spectra of the known compounds were in full accordance with the data in the literature.


2.2 General Procedure for the Synthesis of Hemiketal Hydroperoxides 4


To a stirred solution of LHMDS (1.0 M in THF, 1.2 equiv.) in THF at -78 °C was added cyclic ketone (10 mmol, 1.0 equiv.) over 5 mins. After 1 h, epoxide (2.0 equiv.) was added to the reaction solution.

After 1 h, the BF₃·Et₂O (1.2 equiv.) was added very slowly. The reaction mixture was stirred for 2 h at


-78 °C and the reaction was quenched by the addition of saturated aqueous NH₄Cl solution at -78 °C. Layers were separated and the aqueous layer was extracted with EtOAc. The combined organic layers were washed with brine, dried over Na₂SO₄, and concentrated in vacuo. Finally, the residue was purified by column chromatography on silica gel (petroleum ether/ethyl acetate = 4:1) to obtain the α -hydroxyalkyl ketone.

To a reaction flask was added a solution of H_2O_2 (30% wt in H_2O , 10.0 equiv.), and conc. H_2SO_4 (30 mol%), then a solution of α -hydroxyalkyl ketone (1.0 equiv) in DCM (1.0 M) at 0 °C was added. The reaction mixture was stirred for 1 h at room temperature. The aqueous layer was extracted with DCM, and the combined organic layer was washed with brine, dried over Na₂SO₄, and concentrated in vacuo. Finally, the residue was purified by column chromatography on silica gel (petroleum ether/ethyl acetate = 4:1~10:1) to obtain the hemiketal hydroperoxide **4a-4g**.

2.3 General Procedure for the Synthesis of S-Hydrogen Phosphorothioates² 2a-d,
2f.

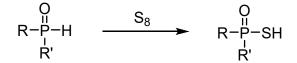
Step 1

To a solution of the appropriate alcohol (3.0 equiv.) and pyridine (2.0 equiv.) in Et_2O (0.3 M) at 0 °C was added PCl_3 (1.0 equiv.) over the course of 1 h. After complete addition, the reaction mixture was allowed to slowly warm to ambient temperature, and stirred for 16 h. The white suspension was then filtered under suction, and the residual pyridinium chloride was washed twice with Et_2O . The combined filtrates were concentrated in vacuo to yield the desired phosphonates as colorless liquids.

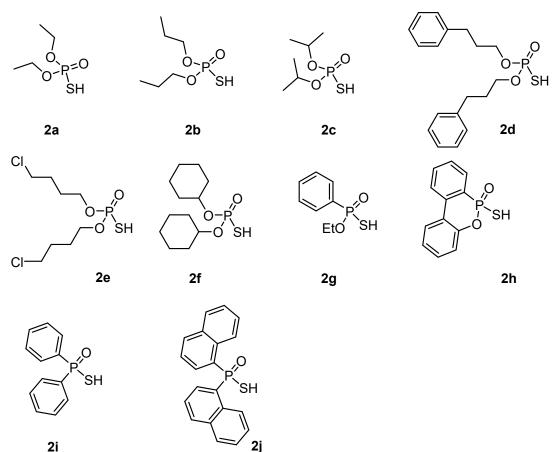
Step 2

To a two-necked round-bottom flask equipped with a reflux condenser and a rubber septum a suspension of the above phosphonate (1.0 equiv.) and solid S_8 (1.1 equiv.) in Et₂O was added under argon. Then, NEt₃ (1.1 equiv.) was added slowly. After full conversion of the phosphonate, as monitored by ³¹P NMR spectra, the suspension was diluted with Et₂O to 100 mL and then washed with aqueous HCl (100 mL, 1M), dried over MgSO₄, and concentrated in vacuo. The resulting suspension was filtered over a small cotton plug to obtain the *S*-hydrogen phosphorothioates **2a-2d** and **2f**.

2.4 General Procedure for the Synthesis of S-Hydrogen Phosphorothioate 2e.


Step 1

To a solution of 4-Chloro-1-butanol (3 equiv.) in DCM (1.5 mL) was added PCl_3 (1.0 equiv.) in DCM (0.5 M) over the course of 1h. Liberated HCl was removed by a constant nitrogen stream. After complete addition, the dropping funnel was washed with additional DCM (20 mL) and the reaction mixture was stirred for 16 h while purging nitrogen to remove all dissolved HCl. The solution was then concentrated in vacuo to yield the desired phosphonate.


Step 2

To a two-necked round-bottom flask equipped with a reflux condenser and a rubber septum a suspension of the above phosphonate (1.0 equiv.) and solid S_8 (1.1 equiv.) in Et₂O was added under argon. Then, NEt₃ (1.1 equiv.) was added slowly. After full conversion of the phosphonate, as monitored by ³¹P NMR spectroscopy, the suspension was diluted with Et₂O to 100 mL and then washed with aqueous HCl (100 mL, 1M), dried over MgSO₄, and concentrated in vacuo. The resulting suspension was filtered over a small cotton plug to obtain the *S*-hydrogen phosphorothioate **2e**.

2.5 General Procedure for the Synthesis of P(O)SH Compounds 2g-j.

The precursors of P(O)SH compounds 2g-2j were obtained from commercial suppliers. To a two-necked round-bottom flask equipped with a reflux condenser and a rubber septum a suspension of the above phosphonate (1.0 equiv.) and solid S₈ (1.1 equiv.) in Et₂O was added under argon. Then, NEt₃ (1.1 equiv.) was added slowly. After full conversion of the phosphonate precursors, as monitored by ³¹P NMR spectra, the suspension was diluted with Et₂O to 100 mL and then washed with aqueous HCl(100 mL, 1 M), dried over MgSO₄ , concentrated under reduced pressure, and finally dried under vacuum. The resulting suspension was filtered over a small cotton plug to obtain the corresponding P(O)SH compounds 2g-2j.

2i

3. Detailed Optimization of Reaction Conditions

3.1 General Procedure for Three-Component Coupling of HP(O)(OEt)₂ with S₈ and Cyclopentyl Hydroperoxide 1a

To 10 mL oven-dried Schlenk-tube equipped with a magnetic stirrer was added catalyst and S_8 (0.4 mmol, 2.0 equiv.). Then the tube was evacuated and backfilled with nitrogen for three times. Subsequently, a solution of cyclopentyl hydroperoxide **1a** (0.2 mmol, 1.0 equiv.) and HP(O)(OEt)₂ (0.4 mmol, 2.0 equiv.) in solvent (2.0 mL) was added by syringe under nitrogen atmosphere. The tube was then sealed and mixture was stirred at room temperature for schedule time. After the reaction completed, the reaction mixture was concentrated in vacuo and purified by column chromatography on silica gel (petroleum ether/ethyl acetate = 2:1) to give the desired product **3aa**.

Entry	Catalyst (mol%)	Solvent	Yield ^a (%)
1	CuI (10)	MTBE	27
2	$Cu(OAc)_2(10)$	MTBE	35
3	$Fe(OTf)_3(10)$	MTBE	10
4	FeCl ₃ ·6H ₂ O (10)	MTBE	20
5	$\operatorname{FeCl}_2(10)$	MTBE	trace
6	$Fe(OTf)_2(10)$	MTBE	27
7	$Fe(OTf)_2(10)$	EA	8
8	$Fe(OTf)_2(10)$	DME	trace
9	$Fe(OTf)_2(10)$	DCM	13
10	$Fe(OTf)_2(10)$	toluene	n.r.
11 Fe(OTf) ₂ (10)		MeOH	n.r.

3.2 Optimization of catalyst and solvent

^aReaction conditions: **1a** (0.2 mmol, 1.0 equiv.), HPO(OEt)₂ (0.4 mmol, 2.0 equiv.), S₈ (0.4 mmol, 2.0 equiv.), catalyst (10 mol%), and solvent (2.0 mL), rt 24 h, under N₂. Isolated yields.

3.3 General Procedure for Phosphorothiolation of Cyclopentyl Hydroperoxide 1a

A 10 mL oven-dried Schlenk-tube equipped with a magnetic stirrer was added catalyst, then the tube was evacuated and backfilled with nitrogen for three times. Subsequently, a solution of cyclopentyl hydroperoxide **1a** (0.2 mmol, 1.0 equiv.) and HSP(O)(OEt)₂ **2a** (0.4 mmol, 2.0 equiv.) in solvent (2.0

Entry	Catalyst (mol%)	Yield (%)	m
1	CuI (5)	64	W
2	$Cu(OAc)_2(5)$	60	ad
3	CuOTf (5)	64	by
4	$Co(acac)_2(5)$	trace	sy
5	NiCl ₂ (5)	n.r.	un
6	$Fe(OTf)_2(5)$	71	nit
7	Fe(OTf) ₂ (10)	94	n
8 Ph_OOH	Θ Fe(OTf) ₂ (15)	o ⁷⁴	0
9 +	HS POEte(OTf);(5)	DL 66	."-0
10	HS $OEt $ $MTBE, rt, N_2, 24 h$ $FeCI_3(5)$	Ph 60 S	ÒE
¹¹ 1a	$2a FeBr_2(5)$	tra 9aa	
12	$Fe(OAc)_2(5)$	57	atı

here. The tube was then sealed and mixture was stirred at room temperature for schedule time. After the reaction completed, the reaction mixture was concentrated in vacuo and purified by column chromatography on silica gel (petroleum ether/ethyl acetate = 2:1) to give the target product **3aa**.

3.4 Optimization of Phosphorothiolation of Cyclopentyl Hydroperoxide 1a

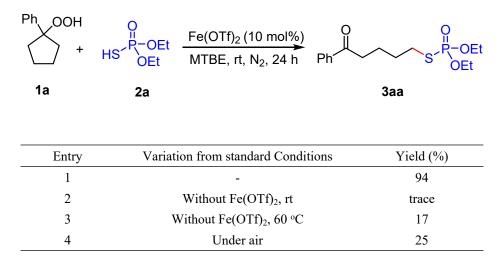
Catalyst and Amount

_

^{*a*}Reaction conditions: **1a** (0.2 mmol, 1.0 equiv.), **2a** (0.4 mmol, 2.0 equiv.), catalyst (x mol%), and MTBE (2 mL), rt 24 h, under N_2 . Isolated yields.

Solvent

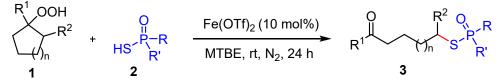
Ph OOH	HS $\stackrel{\text{O}}{\text{OEt}}$ $\stackrel{\text{Fe}(\text{OTf})_2 (10 \text{ mol}\%)}{\text{solvent, rt, N}_2, 24 \text{ h}}$	Ph S OEt
1a	2a	3aa
Entry	Solvent	Yield (%)
1	MeCN	44
2	THF	50
3	MTBE	94
4	1,4-dioxane	42
5	EtOH	38
6	EtOAc	85
7	toluene	62
8	DMSO	trace
9	DMF	trace


^{*a*}Reaction conditions: **1a** (0.2 mmol, 1.0 equiv.), **2a** (0.4 mmol, 2.0 equiv.), $Fe(OTf)_2$ (10 mol%), and solvent (2 mL), rt 24 h, under N₂. Isolated yields.

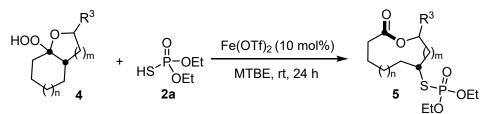
Time and Amount of 2a

Ph_OOH +	O HS ^{-P} -OEt OEt	Fe(OTf) ₂ (10 mol%) MTBE, rt, N ₂ , x h	Ph S P-OEt
1a	2a		3aa
Entry		Time (h)	Yield (%)
1		24	94
2		12	94
3		6	86
4		12	80 ^b

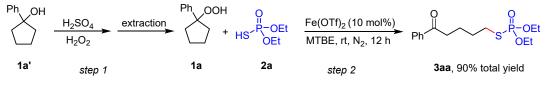
^{*a*}Reaction conditions: **1a** (0.2 mmol, 1.0 equiv.), **2a** (0.4 mmol, 2.0 equiv.), $Fe(OTf)_2$ (10 mol%), and MTBE (2 mL), rt x h, under N₂. Isolated yields. ^{*b*}**1a** (0.2 mmol, 1.0 equiv.), **2a** (0.3 mmol, 1.5 equiv.)


Control Experiments

^{*a*}Reaction conditions: **1a** (0.2 mmol, 1.0 equiv.), **2a** (0.4 mmol, 2.0 equiv.), $Fe(OTf)_2$ (10 mol%), and MTBE (2 mL), rt 24 h, under N₂. Isolated yields.


4. Representative Procedures for C-C Bond Cleavage/Phosphorothiolation

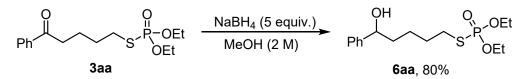
4.1 Representative Procedure for Phosphorothiolation of Cycloalkyl Hydroperoxi -des 1 with 2


To a 10 mL oven-dried Schlenk-tube equipped with a magnetic stirrer was added $Fe(OTf)_2$ (0.02 mmol, 10 mol%). Then the tube was evacuated and backfilled with nitrogen for three times. Subsequently, a solution of cycloalkyl hydroperoxide **1** (0.2 mmol, 1.0 equiv.), and *S*-hydrogen phosphorothioate **2** (0.4 mmol, 2.0 equiv.) in MTBE (2.0 mL) was added by syringe under nitrogen atmosphere. The tube was then sealed and mixture was stirred at room temperature for 24 h. After the reaction completed, the organic layer was concentrated in vacuo, and purified by column chromatography on silica gel (petroleum ether/ethyl acetate = 2:1) to give the target products **3**.

4.2 Representative Procedure for Phosphorothiolation of Hemiketal Hydroperox -ides 4 with 2a

To a 10 mL oven-dried Schlenk-tube equipped with a magnetic stirrer was added $Fe(OTf)_2$ (0.02 mmol, 10 mol%). Then the tube was evacuated and backfilled with nitrogen for three times. Subsequently, a solution of hemiketal hydroperoxide 4 (0.2 mmol, 1.0 equiv.), and diethyl thiophosphate **2a** (0.4 mmol, 2.0 equiv.) in MTBE (2.0 mL) was added by syringe under nitrogen atmosphere. The tube was then sealed and mixture was stirred at room temperature for 24 h. After the reaction completed, the organic layer was concentrated in vacuo, which was purified by column chromatography on silica gel (petroleum ether/ethyl acetate = 5:1) to give the target products **5**.

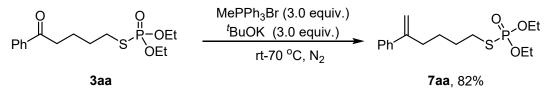
4.3 Representative Telescoped Procedure for Phosphorothiolation of Cycloalkanol

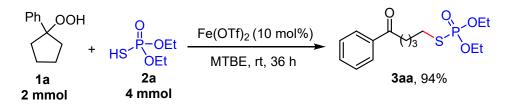

Step 1:

To a 10 mL reaction tube equipped with a magnetic stirrer was added a solution of H_2O_2 (30% wt in H_2O_1 , 10.0 equiv.), and conc. H_2SO_4 (30 mol%). Then a solution of the alcohol **1a'** (0.2 mmol, 1.0 equiv.) in DCM (1.0 M) at 0 °C was added. Then, the reaction mixture was stirred for 1 h from 0 °C to 25 °C. After the reaction completed, it was diluted with DCM (5.0 mL) and H_2O (5.0 mL). The organic layer was separated and the water layer was extracted with DCM (3 × 5 mL). The combined organic layer was washed with saturated brine, dried over Na₂SO₄ and concentrated in vacuo. The crude product **1a** was used in the next step without further purification

Step 2:

The second step procedure was followed the above-mentioned procedure 4.1, using the crude **1a** instead of the purified **1a**. The total yield of **3aa** based on the alcohol **1a**' was given in Scheme 3.

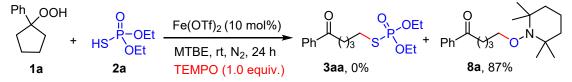

5. Procedures for Derivatizations of 3aa


5.1 Reduction of 3aa

To a 10 mL oven-dried reaction tube equipped with a magnetic stirrer was added a solution of **3aa** (0.2 mmol, 1.0 equiv.) in MeOH (4 mL). Then, NaBH₄ (1.0 mmol, 5.0 equiv.) was added slowly at 0 °C. The reaction mixture was stirred until **3aa** completely converted. After that, 20 mL of H₂O was added, and the water layer was extracted with DCM (3×5 mL). The combined organic layer was dried over Na₂SO₄ and concentrated in vacuo. Finally, the residue was purified by column chromatography on silica gel (petroleum ether/ethyl acetate = 2:1) to give the target product **6aa** (80%, 51.5 mg).

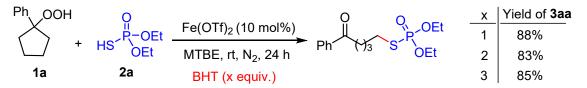
5.2 Wittig Reaction of 3aa

To the mixture of 'BuOK (0.3 mmol, 1.5 equiv.) and MePPh₃Br (0.3 mmol, 1.5 equiv.) was added anhydrous THF (1 mL) under nitrogen atmosphere. The suspension was stirred at room temperature for 1 h, and then the **3aa** (0.2 mmol, 1.0 equiv.) was added. The resulting mixture was stirred at 70 °C for 24 h. During the reaction, when the yellow reaction solution fades midway, another amount of ylide solution (prepared with 'BuOK (0.3 mmol, 1.5 equiv.) and MePPh₃Br (0.3 mmol, 1.5 equiv.) in advance) needs to be added under nitrogen atmosphere. Then the mixture was filtered. After evaporation of the organic solvent, the residue was purified by column chromatography on silica gel (petroleum ether/ethyl acetate = 2:1) to give the target product **7aa** (82%, 53.4 mg).

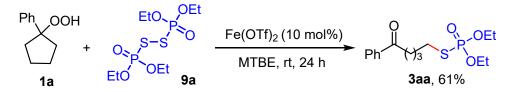


6. Large-Scale Synthesis of 3aa

To 100 mL oven-dried Schlenk-tube equipped with a magnetic stirrer was added $Fe(OTf)_2$ (0.2 mmol, 10 mol%), then the tube was evacuated and backfilled with nitrogen for three times. Subsequently, a solution of **1a** (2 mmol, 1.0 equiv.) and **2a** (4 mmol, 2.0 equiv.) in MTBE (20.0 mL) was added by syringe under nitrogen atmosphere. The tube was then sealed and mixture was stirred at room temperature for 36 h. After the reaction completed. The combined organic layer was concentrated in vacuo and purified by column chromatography on silica gel (petroleum ether/ethyl acetate = 2:1) to give the target product **3aa** in 94% yield (617.8 mg).


7. Mechanistic Investigation

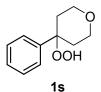
7.1 Radical Trapping Experiment


To 10 mL oven-dried Schlenk-tube equipped with a magnetic stirrer was added $Fe(OTf)_2$ (0.02 mmol, 10 mol%), and TEMPO (0.2 mmol, 1.0 equiv.). Then the tube was evacuated and backfilled with nitrogen for three times. Subsequently, a solution of cyclopentyl hydroperoxide **1a** (0.2 mmol, 1.0 equiv.) and **2a** (0.4 mmol, 2.0 equiv.) in MTBE (2.0 mL) was added by syringe under nitrogen atmosphere. The tube was then sealed and mixture was stirred at room temperature for 24 h. It was found that no **3aa** was detected, along with TEMPO-adduct **8a** isolated in 87% yield. These results indicate that a radical intermediate might be involved in this transformation.

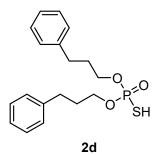
7.2 Radical Inhibiting Experiment

To 10 mL oven-dried Schlenk-tube equipped with a magnetic stirrer was added $Fe(OTf)_2$ (0.02mmol, 10 mol%) and BHT (0.2 mmol, 1.0 equiv.). Then the tube was evacuated and backfilled with nitrogen for three times. Subsequently, a solution of cyclopentyl hydroperoxide **1a** (0.2 mmol, 1.0 equiv.) and **2a** (0.4 mmol, 2.0 equiv.) in MTBE (2.0 mL) was added by syringe under nitrogen atmosphere. The tube was then sealed and mixture was stirred at room temperature for 24 h. In this case, the product **3a** could be isolated in 88% yield, which is comparable with that in the absence of BHT. Moreover, 2.0 equiv and 3.0 equiv of BHT were added to the reaction of **1a** and **2a**, respectively. It was found that the addition of BHT did not affect the yield of **3aa** obviously.

7.3 Key Intermediate Examination Experiment

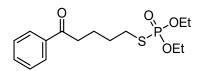

Step 1

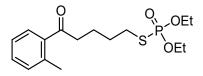
To a solution of $HSP(O)(OEt)_2$ **2a** (1.0 equiv.) in MeCN (1 M) was added TBHP (1.0 equiv., 70% aq.) by syringe. Then, the mixture was stirred for 8 h at 60 °C. After the reaction completed, the organic layer was concentrated in vacuo, and purified by column chromatography on silica gel (petroleum ether/ethyl acetate = 10:1) to give the phosphoryl persulfide **9a**.


Step 2

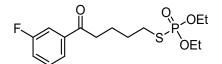
To 10 mL oven-dried Schlenk-tube equipped with a magnetic stirrer was added $Fe(OTf)_2$ (0.02mmol, 10 mol%). Then the tube was evacuated and backfilled with nitrogen for three times. Subsequently, a solution of cycloalkyl hydroperoxide **1a** (0.2 mmol, 1.0 equiv.) and phosphoryl persulfide **9a** (0.4 mmol, 2.0 equiv.) in MTBE (2.0 mL) was added by syringe under nitrogen atmosphere. The tube was then sealed and the mixture was stirred at room temperature for 24 h. After the reaction completed, the organic layer was concentrated in vacuo, and purified by column chromatography on silica gel (petroleum ether/ethyl acetate = 2:1) to give the product **3aa** in 61% yield.

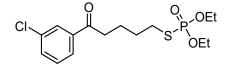
8. Characterization of Starting Material 2d

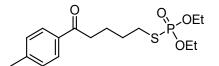

4-Hydroperoxy-4-phenyltetrahydro-2H-pyran (1s) White solid (727.5 mg, 75%). ¹H NMR (400 MHz, CDCl₃) δ 7.48 – 7.46 (m, 2H), 7.41 (t, *J* = 7.2 Hz, 2H), 7.33 (tt, *J* = 6.4, 1.2 Hz, 2H), 3.91 – 3.78 (m, 4H), 2.15 – 2.10 (m, 4H). ¹³C NMR (100 MHz, CDCl₃) δ 143.4, 128.9, 81.7, 63.7, 34.0. IR (neat): v_{max} (cm⁻¹) 3300, 2956, 1603, 1359, 1128, 834, 783. HRMS (ESI) calcd for C₁₈H₂₈O₃NPS [M+NH₄]⁺ 212.1281, found 212.1275.


O,O-Bis(3-phenylpropyl) *S*-hydrogen phosphorothioate (2d) Yellow oil (61.8 mg, 94%). ¹H NMR (400 MHz, CDCl₃) δ 7.32 – 7.28 (m, 4H), 7.22 – 7.17 (m, 6H), 5.16 – 5.13 (m, 1H), 4.14 – 4.11 (t, *J* = 8.0 Hz, 4H), 2.76 – 2.72 (t, *J* = 7.6 Hz, 4H), 2.06 – 2.00 (m, 4H). ¹³C NMR (100 MHz, CDCl₃) δ 141.1, 128.6, 128.6, 126.2, 67.5 (d, *J* = 5.3 Hz), 31.8 (d, *J* = 3.9 Hz), 31.7. ³¹P NMR (162 MHz, CDCl₃) δ 67.0. IR (neat): v_{max} (cm⁻¹) 3027, 2954, 1603, 1015, 745. HRMS (ESI) calcd for C₁₈H₂₄O₃PS [M+H]⁺ 351.1178,

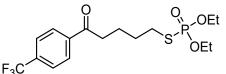
found 357.1181.


9. Characterizations of Products 3

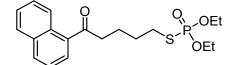

O,*O*-Diethyl *S*-(5-oxo-5-phenylpentyl) phosphorothioate (3aa) Colorless oil (61.8 mg, 94%). $R_f = 0.3$ (petroleum ether/ethyl acetate = 2:1). ¹H NMR (400 MHz, CDCl₃) δ 7.94 (d, *J* = 7.2 Hz, 2H), 7.56 (t, *J* = 7.2 Hz, 1H), 7.45 (t, *J* = 8.0 Hz, 2H), 4.21 – 4.10 (m, 4H), 3.00 (t, *J* = 6.4 Hz, 2H), 2.92 – 2.85 (m, 2H), 1.88 – 1.79 (m, 4H), 1.35 (t, *J* = 7.2 Hz, 6H). ¹³C NMR (100 MHz, CDCl₃) δ 199.7, 137.0, 133.2, 128.7, 128.1, 63.7 (d, *J* = 6.0 Hz), 37.8, 30.8 (d, *J* = 3.9 Hz), 30.5 (d, *J* = 5.4 Hz), 23.1, 16.2 (d, *J* = 7.1 Hz). ³¹P NMR (162 MHz, CDCl₃) δ 28.0. IR (neat): v_{max} (cm⁻¹) 2932, 1721, 1015, 789, 572. HRMS (ESI) calcd for C₁₅H₂₄O₄PS [M+H]⁺ 331.1127, found 331.1133.


O,O-Diethyl *S*-(5-oxo-5-(o-tolyl)pentyl) phosphorothioate (3ba) Colorless oil (55.2 mg, 80%). $R_f = 0.3$ (petroleum ether/ethyl acetate = 2:1). ¹H NMR (400 MHz, CDCl₃), 7.61 (d, *J* = 8.0 Hz, 1H), 7.37 (t, *J* = 6.4 Hz, 1H), 7.25 (t, *J* = 6.8 Hz, 2H), 4.22 - 4.11 (m, 4H), 2.94 - 2.84 (m, 4H), 2.48 (s, 3H), 1.82 - 1.79 (m, 4H), 1.36 (t, *J* = 6.8 Hz, 6H). ¹³C NMR (100 MHz, CDCl₃) δ 203.9, 138.1, 138.0, 132.1, 131.4, 128.5, 125.8, 63.7 (d, *J* = 6.0 Hz), 40.8, 30.8 (d, *J* = 3.9 Hz), 30.5 (d, *J* = 5.4 Hz), 23.3, 21.4, 16.2 (d, *J* = 7.3 Hz). ³¹P NMR (162 MHz, CDCl₃) δ 28.0. IR (neat): umax (cm⁻¹) 2929, 1685, 1455, 1016, 759, 572. HRMS (ESI) calcd for C₁₆H₂₆O₄PS [M+H]⁺ 345.1284 found 345.1286.

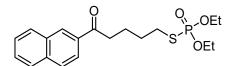
O,*O*-Diethyl *S*-(5-(3-fluorophenyl)-5-oxopentyl) phosphorothioate (3ca) Colorless oil (62.6 mg, 90%). R_f = 0.3 (petroleum ether/ethyl acetate = 2:1). ¹H NMR (400 MHz, CDCl₃) δ 7.71 (d, J = 7.6 Hz, 1H), 7.60 (t, J = 9.6 Hz, 1H), 7.45 – 7.40 (m, 1H), 7.25 – 7.22 (m, 1H), 4.20 – 4.01 (m, 4H), 2.97 (t, J = 6.4 Hz, 2H), 2.90 – 2.83 (m, 2H), 1.86– 1.75 (m, 4H), 1.36 – 1.32 (t, J = 7.2 Hz, 6H). ¹³C NMR (100 MHz, CDCl₃) δ 198.4 (d, J_F = 1.9 Hz), 163.0 (d, J_F = 246.4 Hz), 139.0 (d, J_F = 6.0 Hz), 130.4 (d, J_F = 7.6 Hz), 123.8 (d, J_F = 3.0 Hz), 120.2 (d, J_F = 21.4 Hz), 114.8 (d, J_F = 22.0 Hz), 63.6 (d, J_p = 6.0 Hz), 38.0, 30.7 (d, J_p = 3.9 Hz), 30.4 (d, J_p = 5.0 Hz), 22.9, 16.2 (d, J_p = 7.2 Hz). ³¹P NMR (162 MHz, CDCl₃) δ 28.0. IR (neat): v_{max} (cm⁻¹) 2936, 1687, 1443, 1019, 790, 573. HRMS (ESI) calcd for C₁₅H₂₃O₄FPS [M+H]⁺ 349.1033, found 349.1037

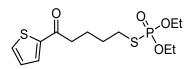


O,*O*-Diethyl *S*-(5-(3-chlorophenyl)-5-oxopentyl) phosphorothioate (3da) Colorless oil (56.2 mg, 77%). $R_f = 0.3$ (petroleum ether/ethyl acetate = 2:1). ¹H NMR (400 MHz, CDCl₃) δ 7.91 (t, *J* = 1.6 Hz, 1H), 7.83 – 7.81 (m 1H), 7.83 – 7.81 (m, 1H), 7.40 (t, *J* = 7.6 Hz, 1H), 4.23 – 4.10 (m, 4H), 2.98 (t, *J* = 6.8 Hz, 2H), 2.92 – 2.84 (m, 2H), 1.89 – 1.74 (m, 4H), 1.88 – 1.79 (m, 6H). ¹³C NMR (100 MHz, CDCl₃) δ 198.4, 138.4, 135.1, 133.1 130.1, 128.2, 126.2, 63.7 (d, *J* = 5.9 Hz), 38.0, 30.7 (d, *J* = 3.8 Hz), 30.4 (d, *J* = 5.2 Hz), 22.9, 16.2 (d, *J* = 7.4 Hz). ³¹P NMR (162 MHz, CDCl₃) δ 28.6. IR (neat): v_{max} (cm⁻¹) 2936, 1687, 1443, 1019, 790, 573. HRMS (ESI) calcd for C₁₅H₂₂O₄CIPSK [M+K]⁺ 403.0311, found 403.0297.

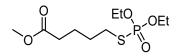


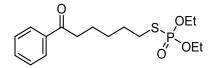
O,*O*-Diethyl *S*-(5-oxo-5-(p-tolyl)pentyl) phosphorothioate (3ea) Colorless oil (51.1 mg, 74%). R_f = 0.3 (petroleum ether/ethyl acetate = 2:1). ¹H NMR (400 MHz, CDCl₃) δ 7.76 – 7.73 (m, 2H), 7.38 – 7.32 (m, 2H), 4.22 – 4.10 (m, 4H), 2.99 (t, *J* = 6.8 Hz, 2H), 2.92 – 2.85 (m, 2H), 2.41(s, 3H), 1.89 – 1.77 (m, 4H), 1.37 – 1.34 (m, 6H). ¹³C NMR (100 MHz, CDCl₃) δ 200.0, 138.5, 137.0, 134.0, 128.65, 128.62,

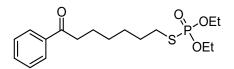

125.4, 63.7 (d, J = 5.8 Hz), 37.9, 30.8 (d, J = 3.8 Hz), 30.5 (d, J = 5.5 Hz), 23.2, 21.5, 16.2 (d, J = 7.3 Hz). ³¹P NMR (162 MHz, CDCl₃) δ 28.7. IR (neat): v_{max} (cm⁻¹) 2927, 1682, 1448, 1019, 967, 787, 574. HRMS (ESI) calcd for C₁₆H₂₆O₄PS [M+H]⁺ 345.1284, found 345.1291.


O,O-Diethyl *S*-(5-oxo-5-(4-(trifluoromethyl)phenyl)pentyl) phosphorothioate (3fa) Colorless oil (61.2 mg, 77%). $R_f = 0.3$ (petroleum ether/ethyl acetate = 2:1). ¹H NMR (400 MHz, CDCl₃), 8.04 (d, J = 8.0 Hz, 2H), 7.71 (d, J = 8.4 Hz, 2H), 4.20 – 4.09 (m, 4H), 3.02 (t, J = 6.7 Hz, 2H), 2.91 – 2.84 (m, 2H), 1.89 – 1.75 (m, 4H), 1.34 (t, J = 7.2 Hz, 6H). ¹³C NMR (100 MHz, CDCl₃) δ 198.6, 139.6, 134.5 (q, $J_F = 32.6$ Hz), 128.4, 125.8 (q, $J_F = 3.7$ Hz), 123.7 (q, $J_F = 271.1$ Hz), 63.7 (d, $J_p = 6.1$ Hz), 38.1, 30.6 (d, $J_p = 3.8$ Hz), 30.4 (d, $J_p = 5.3$ Hz), 22.8, 16.1 (d, $J_p = 7.2$ Hz). ³¹P NMR (162 MHz, CDCl₃) δ 27.9. IR (neat): v_{max} (cm⁻¹) 2937, 1692, 1251, 1016, 793, 573. HRMS (ESI) calcd for C₁₆H₂₃F₃O₄PS [M+H]⁺ 399.1001, found 399.1003.

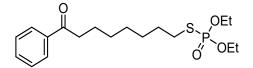

O,*O*-Diethyl *S*-(5-(naphthalen-1-yl)-5-oxopentyl) phosphorothioate (3ga) Colorless oil (59.3 mg, 78%). $R_f = 0.3$ (petroleum ether/ethyl acetate = 2:1). ¹H NMR (400 MHz, CDCl₃) δ 8.55 (d, *J* = 8.4 Hz, 1H), 7.98 (d, *J* = 8.0 Hz, 1H), 7.86 (t, *J* = 9.2 Hz, 2H), 7.60 – 7.47 (m, 3H), 4.23 – 4.10 (m, 4H), 3.09 (t, *J* = 6.8 Hz, 2H), 2.93 – 2.86 (m, 2H), 1.95 – 1.79 (m, 4H), 1.35 (t, *J* = 6.8 Hz, 6H). ¹³C NMR (100 MHz, CDCl₃) δ 204.1, 136.1, 134.1, 132.7, 130.2, 128.6, 128.0, 127.5, 126.6, 125.8, 124.5, 63.7 (d, *J* = 5.9 Hz), 41.4, 30.8 (d, *J* = 3.8 Hz), 30.5 (d, *J* = 5.4 Hz), 23.6, 16.2 (d, *J* = 7.2 Hz). ³¹P NMR (162 MHz, CDCl₃) δ 28.1. IR (neat): v_{max} (cm⁻¹) 2982, 1681, 1245, 1169, 1019, 786, 574. HRMS (ESI) calcd for C₁₉H₂₆O₄PS [M+H]⁺ 381.1284, found 381.1288.


O,*O*-Diethyl *S*-(5-(naphthalen-2-yl)-5-oxopentyl) phosphorothioate (3ha) Colorless oil (55.5 mg, 73%). $R_f = 0.3$ (petroleum ether/ethyl acetate = 2:1). ¹H NMR (400 MHz, CDCl₃) δ 8.45 (s, 1H), 8.02 – 7.94 (m, 2H), 7.87 (t, J = 8.4 Hz, 2H), 7.61 – 7.52 (m, 2H), 4.21 – 4.10 (m, 4H), 3.13 (t, J = 6.8 Hz, 2H), 2.94 – 2.87 (m, 2H), 1.93 – 1.81 (m, 4H), 1.35 (t, J = 6.8 Hz, 6H). ¹³C NMR (100 MHz, CDCl₃) δ 199.7, 135.7, 134.2, 132.6, 129.7,129.6, 128.57, 128.55, 127.9, 126.9, 123.9, 63.7 (d, J = 6.0 Hz), 37.9, 30.8 (d, J = 3.9 Hz), 30.5 (d, J = 5.5 Hz), 23.3, 16.2 (d, J = 7.2 Hz). ³¹P NMR (162 MHz, CDCl₃) δ 28.1. IR (neat): vmax (cm⁻¹) 2982, 1679, 1248, 1019, 757, 573. HRMS (ESI) calcd for C₁₉H₂₆O₄PS [M+H]⁺ 381.1284, found 381.1288.

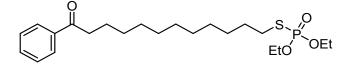

O,*O*-Diethyl *S*-(5-oxo-5-(thiophen-2-yl)pentyl) phosphorothioate (3ia) Colorless oil (48.4 mg, 72%). $R_f = 0.3$ (petroleum ether/ethyl acetate = 2:1). ¹H NMR (400 MHz, CDCl₃) δ 7.71 (d, *J* = 3.2 Hz, 1H), 7.63 (d, J = 4.8 Hz, 1H), 7.13 (t, J = 4.8 Hz, 1H), 4.23 – 4.10 (m, 4H), 2.95 – 2.84 (m, 4H), 1.90 – 1.77 (m, 4H), 1.35 (t, J = 6.8 Hz, 6H). ¹³C NMR (100 MHz, CDCl₃) δ 192.7, 144.3, 133.7, 132.0, 128.3, 63.7 (d, J = 6.0 Hz), 38.6, 30.7 (d, J = 3.8 Hz), 30.5 (d, J = 5.1 Hz), 23.5, 16.2 (d, J = 7.2 Hz). ³¹P NMR (162 MHz, CDCl₃) δ 28.0. IR (neat): vmax (cm⁻¹) 2929, 1660, 1162, 1015, 734, 574. HRMS (ESI) calcd for C₁₃H₂₂O₄PS [M+H]⁺ 337.0692, found 337.0697.


O,*O*-Diethyl *S*-(5-oxo-8-phenyloctyl) phosphorothioate (3ja) Colorless oil (66.2 mg, 89%). R_f = 0.5 (petroleum ether/ethyl acetate = 2:1). ¹H NMR (400 MHz, CDCl₃) δ 7.39 – 7.35 (m, 3H), 7.29 – 7.24 (m, 2H), 4.30 – 4.19 (m, 4H), 2.92 – 2.89 (m, 2H), 2.72 – 2.68 (m, 2H), 2.51 – 2.47 (m, 4H), 2.02 – 1.90 (m, 2H), 1.76 – 1.75 (m, 4H), 1.46 – 1.42 (m, 6H). ¹³C NMR (100 MHz, CDCl₃) δ 210.3, 141.7, 128.6, 128.5, 126.1, 63.7 (d, *J* = 6.1 Hz), 42.1, 42.0, 35.2, 30.7, 30.5, 30.4, 25.3, 22.7, 16.2 (d, *J* = 7.2 Hz). ³¹P NMR (162 MHz, CDCl₃) δ 28.0. IR (neat): umax (cm⁻¹) 2933, 1711, 1163, 1019, 754, 573. HRMS (ESI) calcd for C₁₈H₃₀O₄PS [M+H]⁺ 373.1597, found 373.1606.

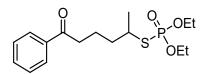
Methyl 5-((diethoxyphosphoryl)thio)pentanoate (3ka) Colorless oil (51.7 mg, 57%). $R_f = 0.5$ (petroleum ether/ethyl acetate = 2:1). ¹H NMR (400 MHz, CDCl₃) δ 4.22 – 4.09 (m, 4H), 3.66 (s, 3H), 2.86 – 2.80 (m, 2H), 2.34 – 2.31 (m, 2H), 1.74 – 1.70 (m, 4H), 1.35 (t, J = 7.2 Hz, 6H). ¹³C NMR (100 MHz, CDCl₃) δ 173.8, 63.7 (d, J = 6.0 Hz), 51.8, 33.5, 30.6 (d, J = 3.6 Hz), 30.3 (d, J = 5.5 Hz), 23.9, 16.2 (d, J = 7.5 Hz). ³¹P NMR (162 MHz, CDCl₃) δ 28.0. IR (neat): v_{max} (cm⁻¹) 2984, 1737, 1012, 750, 550. HRMS (ESI) calcd for C₁₀H₂₂O₅PS [M+H]⁺ 285.0920, found 285.0930.

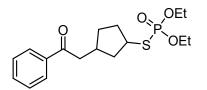


O,O-Diethyl *S*-(6-oxo-6-phenylhexyl) phosphorothioate (3la) Colorless oil (39.3 mg, 57%). $R_f = 0.3$ (petroleum ether/ethyl acetate = 2:1). ¹H NMR (400 MHz, CDCl₃) δ 7.96 – 7.93 (m, 2H), 7.55 (t, *J* = 7.2 Hz, 1H), 7.46 (t, *J* = 7.6 Hz, 2H), 4.21 – 4.09 (m, 4H), 2.98 (t, *J* = 7.2 Hz, 2H), 2.88 – 2.80 (m, 2H), 1.80 – 1.71 (m, 4H), 1.53 – 1.47 (m, 2H), 1.35 (t, *J* = 6.8 Hz, 6H). ¹³C NMR (100 MHz, CDCl₃) δ 200.2, 137.1, 133.1, 128.7, 128.1, 77.4, 63.6 (d, *J* = 5.9 Hz), 38.4, 30.8 (d, *J* = 5.2 Hz), 28.3, 23.7, 16.2 (d, *J* = 7.2 Hz). ³¹P NMR (162 MHz, CDCl₃) δ 28.2. IR (neat): v_{max} (cm⁻¹) 2933, 1683, 1019, 966, 759, 573. HRMS (ESI) calcd for C₁₆H₂₆O₄PS [M+H]⁺ 345.1284 found 345.1289.

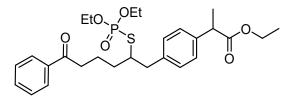


O,*O*-Diethyl *S*-(7-oxo-7-phenylheptyl) phosphorothioate (3ma) Colorless oil (52.7 mg, 74%). R_f = 0.3 (petroleum ether/ethyl acetate = 2:1). ¹H NMR (400 MHz, CDCl₃) δ 7.94 – 7.92 (m, 2H), 7.53 (t, *J* = 7.2 Hz, 1H), 7.44 (t, *J* = 7.6 Hz, 2H), 4.19 – 4.08 (m, 4H), 2.95 (t, *J* = 7.2 Hz, 2H), 2.85 – 2.77 (m, 2H). 1.76 – 1.65 (m, 4H), 1.43 – 1.38 (m, 4H), 1.33 (t, *J* = 6.8 Hz, 6H). ¹³C NMR (100 MHz, CDCl₃) δ 200.3, 137.0 133.0, 128.7, 128.1, 63.5 (d, *J* = 5.9 Hz), 38.4, 30.9 (d, *J* = 3.9 Hz), 30.7 (d, *J* = 5.7 Hz), 28.8, 28.5, 24.1,

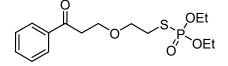

16.2 (d, J = 7.2 Hz). ³¹P NMR (162 MHz, CDCl₃) δ 28.2. IR (neat): v_{max} (cm⁻¹) 2933, 1683, 1019, 966, 756, 572. HRMS (ESI) calcd for C₁₇H₂₈O₄PS [M+H]⁺ 359.1440, found 359.1444.

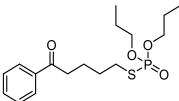

O,O-Diethyl *S*-(8-oxo-8-phenyloctyl) phosphorothioate (3na) Colorless oil (56.5 mg, 76%). $R_f = 0.3$ (petroleum ether/ethyl acetate = 2:1). ¹H NMR (400 MHz, CDCl₃) δ 7.96 – 7.93 (m, 2H), 7.55 (t, *J* = 7.6 Hz, 1H), 7.45 (t, *J* = 8.0 Hz, 2H), 4.18 – 4.12 (m, 4H), 2.96 (t, *J* = 7.6 Hz, 2H), 2.85 – 2.78 (m, 2H), 1.75 – 1.67 (m, 4H), 1.44 – 1.38 (m, 3H), 1.35 (t, *J* = 7.6 Hz, 9H). ¹³C NMR (100 MHz, CDCl₃) δ 200.5, 137.1, 133.0, 128.7, 128.1, 63.6 (d, *J* = 5.8 Hz), 38.6, 31.0 (d, *J* = 3.7 Hz), 30.8 (d, *J* = 5.7 Hz), 29.3, 29.0, 28.5, 24.3, 16.2 (d, *J* = 7.4 Hz). ³¹P NMR (162 MHz, CDCl₃) δ 28.3. IR (neat): v_{max} (cm⁻¹) 2924, 1685, 1249, 1019, 760, 573. HRMS (ESI) calcd for C₁₈H₃₀O₄PS [M+H]⁺ 373.1597, found 373.1617.

O,O-Diethyl *S*-(12-oxo-12-phenyldodecyl) phosphorothioate (3oa) Colorless oil (70.2 mg, 82%). R_f = 0.3 (petroleum ether/ethyl acetate = 2:1). ¹H NMR (400 MHz, CDCl₃) δ 7.97 – 7.95 (m, 2H), 7.57 – 7.52 (m, 1H), 7.48 – 7.44 (m, 2H), 4.23 – 4.08 (m, 4H), 2.96 (t, J = 7.2 Hz, 2H), 2.86 – 2.78 (m, 2H), 1.76 – 1.64 (m, 6H), 1.39 – 1.33 (td, J = 7.2, 0.8 Hz, 12H), 1.27 – 1.26 (m, 6H). ¹³C NMR (100 MHz, CDCl₃) δ 200.7, 137.1, 133.0, 128.6, 128.1, 68.1, 63.5 (d, J = 5.9 Hz), 38.7, 31.0 (d, J = 3.8 Hz), 30.9 (d, J = 5.7 Hz), 29.55, 29.52, 29.4, 29.1, 28.6, 25.7, 24.4, 16.2 (d, J = 7.2 Hz). ³¹P NMR (162 MHz, CDCl₃) δ 28.1. IR (neat): v_{max} (cm⁻¹) 2926, 1684, 1019, 755, 572. HRMS (ESI) calcd for C₂₂H₃₈O₄PS [M+H]⁺ 429.2223, found 429.2234.

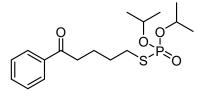


O,*O*-Diethyl *S*-(6-oxo-6-phenylhexan-2-yl) phosphorothioate (3pa) Colorless oil (64.0 mg, 93%). R_f = 0.3 (petroleum ether/ethyl acetate = 2:1). ¹H NMR (400 MHz, CDCl₃) δ 7.58 – 7.94 (m, 2H), 7.55 (t, *J* = 7.2 Hz, 1H), 7.53 (t, *J* = 7.2 Hz, 2H), 4.22 – 4.07 (m, 4H), 3.43 – 3.35 (m, 1H), 3.00 (td, *J* = 7.2, 2.4 Hz, 2H), 1.92 – 1.86 (m, 2H), 1.80 – 1.71 (m, 2H), 1.46 (d, *J* = 6.8 Hz, 3H), 1.34 (td, *J* = 6.8, 2.4 Hz, 6H). ¹³C NMR (100 MHz, CDCl₃) δ 199.9, 137.0, 133.2, 128.7, 128.1, 63.6 (d, *J* = 3.4 Hz), 42.9 (d, *J* = 3.6 Hz), 38.04, 37.97, 23.6 (d, *J* = 4.6 Hz), 21.6, 16.2 (d, *J* = 7.3 Hz). δ ³¹P NMR (162 MHz, CDCl₃) δ 27.4. IR (neat): vmax (cm⁻¹) 2928, 1684, 1019, 752, 575. HRMS (ESI) calcd for C₁₆H₂₆O₄PS [M+H]⁺ 345.1284, found 345.1291.

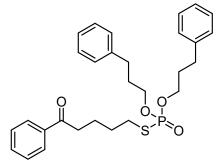



80%, 1:1 dr). $R_f = 0.3$ (petroleum ether/ethyl acetate = 2:1). ¹H NMR (400 MHz, CDCl₃) δ 7.93 (d, J = 7.6 Hz, 2H), 7.56 (t, J = 6.8 Hz, 1H), 7.45 (t, J = 7.6 Hz, 2H), 4.20 – 4.09 (m, 4H), 3.67 – 3.58 (m, 0.5 H), 3.54 – 3.44 (m, 0.5 H), 3.06 (d, J = 6.0 Hz, 1H), 3.01 (d, J = 6.8 Hz, 1H), 2.75 – 2.68 (m, 0.5H), 2.54 – 2.46 (m, 1H), 2.23 – 1.58 (m, 5.5H), 1.35 (t, J = 6.8 Hz, 6H). ¹³C NMR (100 MHz, CDCl₃) δ 199.5, 137.11, 137.08, 133.20, 133.19, 128.7, 128.2, 128.1, 63.62 (d, J = 2.5 Hz), 63.57 (d, J = 2.9 Hz), 44.9, 44.6, 44.0 (d, J = 3.4 Hz), 43.7 (d, J = 3.5 Hz), 42.3 (d, J = 7.0 Hz), 41.5 (d, 6.3 Hz), 35.5 (d, J = 7.1 Hz), 35.1, 34.7 (d, J = 6.3 Hz), 34.1, 32.0, 31.2, 16.2 (d, J = 7.2 Hz). δ ³¹P NMR (162 MHz, CDCl₃) δ 27.2, 27.0. IR (neat): umax (cm⁻¹) 2979, 1683, 1016, 754, 574. HRMS (ESI) calcd for C₂₇H₂₆O₄PS [M+H]⁺ 357.1284, found 357.1289.

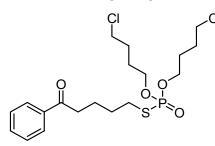
Ethyl 2-(4-(2-((diethoxyphosphoryl)thio)-6-oxo-6-phenylhexyl)phenyl)propanoate (3ra) Colorless oil (72.8 mg, 70%, 1:1 dr). $R_f = 0.3$ (petroleum ether/ethyl acetate = 2:1). ¹H NMR (400 MHz, CDCl₃) δ 7.94-7.92 (m, 2H), 7.55 (tt, J = 7.6, 0.8 Hz, 1H), 7.45 (t, J = 7.6 Hz, 2H), 7.20 (q, J = 9.6 Hz, 4H), 4.16 – 4.05 (m, 3H), 4.01 – 3.91 (m, 3H), 3.71 (q, J = 7.2 Hz, 1H), 3.54 – 3.64 (m, 1H), 3.05 – 2.91 (m, 4H), 2.07 – 1.97 (m, 1H), 1.87 – 1.72 (m, 3H), 1.46 (d, J = 7.2 Hz, 3H), 1.28 (dt, J = 11.2, 6.8 Hz, 6H), 1.20 (t, J = 7.2 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 199.9, 174.7, 139.1, 137.5, 137.0, 133.1, 129.8, 128.7, 128.1, 127.6, 63.6 (d, J = 6.4 Hz), 63.5 (d, J = 2.6 Hz), 60.8, 49.5 (d, J = 3.5 Hz), 45.3, 42.7 (d, J = 1.4 Hz), 38.2, 35.2 (d, J = 3.4 Hz), 21.3, 18.8 (d, J = 2.9 Hz), 16.2 (d, J = 4.1 Hz), 16.1 (d, J = 3.7 Hz),14.3. ³¹P NMR (162 MHz, CDCl₃) δ 27.8. IR (neat): vmax (cm⁻¹) 2935, 1730, 1685, 1164, 1017, 792, 571. HRMS (ESI) calcd for C₂₇H₃₈O₆PS [M+H]⁺ 521.2121, found 521.2127.



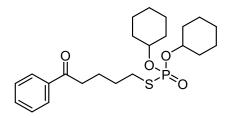
O,*O*-Diethyl *S*-(2-(3-oxo-3-phenylpropoxy)ethyl) phosphorothioate (3sa) Colorless oil (38.8 mg, 56%). R_f = 0.3 (petroleum ether/ethyl acetate = 2:1). ¹H NMR (400 MHz, CDCl₃) δ 7.95-7.93 (m, 2H), 7.55 (t, J = 7.2 Hz, 1H), 7.44 (t, J = 7.6 Hz, 2H), 4.22 – 4.07 (m, 4H), 3.89 (t, J = 6.4 Hz, 2H), 3.69 (t, J = 6.4 Hz, 2H), 3.23 (t, J = 6.4 Hz, 2H), 3.01 – 2.94 (m, 2H), 1.33 (t, J = 6.8 Hz, 6H). ¹³C NMR (100 MHz, CDCl₃) δ 198.2, 136.9, 133.3, 128.7, 128.2, 70.4 (d, J = 4.7 Hz), 66.3, 63.7(d, J = 5.9 Hz), 38.7, 30.3 (d, J = 3.7 Hz), 16.1 (d, J = 7.1 Hz). ³¹P NMR (162 MHz, CDCl₃) δ 28.2. IR (neat): vmax (cm⁻¹) 2983, 1683, 1249, 1110, 964, 789, 570. HRMS (ESI) calcd for C₅H₂₃O₅PSNa [M+Na]⁺ 369.0896, found 369.0907.



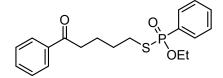
S-(5-Oxo-5-phenylpentyl) *O*,*O*-dipropyl phosphorothioate (3ab) Colorless oil (58.0 mg, 81%). $R_f = 0.3$ (petroleum ether/ethyl acetate = 3:1). ¹H NMR (400 MHz, CDCl₃) δ 7.95 (dd, *J* = 8.0, 1.2 Hz, 2H), 7.56 (tt, *J* = 6.4, 1.2 Hz, 1H), 7.46 (tt, *J* = 7.6, 1.6 Hz, 2H), 4.11 – 3.98 (m, 4H), 3.01 (t, *J* = 6.8 Hz, 2H),


2.92 – 2.85 (m, 2H), 1.85 – 1.80 (m, 2H), 1.75 – 1.70 (m, 4H), 1.28 – 1.22 (m, 2H), 0.97 (t, J = 7.2 Hz, 6H). ¹³C NMR (100 MHz, CDCl₃) δ 199.8, 137.0, 133.2, 128.8, 128.2, 69.2 (d, J = 6.4 Hz), 37.9, 30.7 (d, J = 3.9 Hz), 30.6 (d, J = 5.4 Hz), 23.7 (d, J = 7.2 Hz), 23.2, 10.2. ³¹P NMR (162 MHz, CDCl₃) δ 28.2. IR (neat): vmax (cm⁻¹) 2925, 1685, 1247, 733, 574. HRMS (ESI) calcd for C₁₇H₂₇O₄PSNa [M+Na]⁺ 381.1260, found 381.1265.

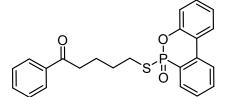
O,O-Diisopropyl *S*-(5-oxo-5-phenylpentyl) phosphorothioate (3ac) Colorless oil (54.4 mg, 76%). R_f = 0.3 (petroleum ether/ethyl acetate = 3:1). ¹H NMR (400 MHz, CDCl₃) δ 7.94 (t, *J* = 7.2 Hz, 2H), 7.56 (t, *J* = 7.2 Hz, 1H), 7.46 (t, *J* = 7.6 Hz, 2H), 4.77 – 4.79 (m, 2H), 3.00 (t, *J* = 6.4 Hz, 2H), 2.92 – 2.85 (m, 2H), 1.88 – 1.78 (m, 4H), 1.37-1.33 (m, 12H). ¹³C NMR (100 MHz, CDCl₃) δ 199.8, 136.9, 133.2, 128.8, 128.1, 72.7 (d, *J* = 6.3 Hz), 37.9, 30.9 (d, *J* = 3.9 Hz), 30.4 (d, *J* = 6.0 Hz), 24.0 (d, *J* = 4.0 Hz), 23.8 (d, *J* = 5.4 Hz), 23.2. ³¹P NMR (162 MHz, CDCl₃) δ 25.5. IR (neat): v_{max} (cm⁻¹) 2929, 1685, 1104, 769, 609. HRMS (ESI) calcd for C₁₇H₂₈O₄PS [M+H]⁺ 359.1440, found 359.1450.

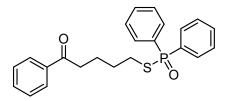


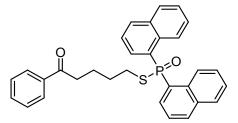
S-(5-Oxo-5-phenylpentyl) *O*,*O*-bis(3-phenylpropyl) phosphorothioate (3ad) Colorless oil (85.7 mg, 84%). R_f = 0.3 (petroleum ether/ethyl acetate = 3:1). ¹H NMR (400 MHz, CDCl₃) δ 7.95 – 7.93 (m, 2H), 7.56 (tt, *J* = 7.2, 1.6 Hz, 1H), 7.47 – 7.43 (m, 2H), 7.30 – 7.26 (m, 4H), 7.20 – 7.17 (m, 6H), 4.18 – 4.04 (m, 4H), 2.99 (t, *J* = 6.4 Hz, 2H), 2.94 – 2.87 (m, 2H), 2.73 (t, *J* = 7.2 Hz, 4H), 2.07 – 1.99 (m, 4H), 1.90 – 1.77 (m, 4H). ¹³C NMR (100 MHz, CDCl₃) δ 199.6, 141.0, 136.9, 133.2, 128.7, 128.56, 128.55, 128.1, 126.2, 66.9 (d, *J* = 6.4 Hz), 53.6, 37.8, 31.8, 30.8 (d, *J* = 3.7 Hz), 30.6 (d, *J* = 5.2 Hz), 23.1. ³¹P NMR (162 MHz, CDCl₃) δ 28.9. IR (neat): ν_{max} (cm⁻¹) 2949, 1684, 1006, 796, 748, 573. HRMS (ESI) calcd for C₂₉H₃₅O₄PSNa [M+Na]⁺ 511.2066, found 511.2074.



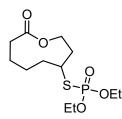
O,O-Bis(4-chlorobutyl) *S*-(5-oxo-5-phenylpentyl) phosphorothioate (3ae) Colorless oil (57.2 mg, 63%). $R_f = 0.3$ (petroleum ether/ethyl acetate = 3:1). ¹H NMR (400 MHz, CDCl₃) δ 7.95 – 7.93 (m, 2H), 7.56 (t, *J* = 7.2 Hz, 1H), 7.45 (t, *J* = 8.0 Hz, 2H), 4.18 – 4.05 (m, 4H), 3.57 (t, *J* = 6.0 Hz, 4H), 3.0 (d, *J* = 6.8 Hz, 2H), 2.92 – 2.85 (m, 2H), 1.97 – 1.79 (m, 12H). ¹³C NMR (100 MHz, CDCl₃) δ 199.6, 136.9,


133.2, 128.8, 128.1, 77.4, 66.7 (d, J = 6.1 Hz), 44.5, 37.8, 30.9 (d, J = 3.8 Hz), 30.6 (d, J = 5.2 Hz), 28.8, 27.6 (d, J = 7.2 Hz), 23.1. ³¹P NMR (162 MHz, CDCl₃) δ 29.0. IR (neat): v_{max} (cm⁻¹) 2956, 1683, 1180, 846, 736, 574. HRMS (ESI) calcd for C₁₉H₃₀Cl₂O₄PS [M+H]⁺ 455.0974, found 455.0982.

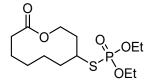

O,*O*-Dicyclohexyl *S*-(5-oxo-5-phenylpentyl) phosphorothioate (3af) Colorless oil (67.4 mg, 77%). R_f = 0.3 (petroleum ether/ethyl acetate = 3:1). ¹H NMR (400 MHz, CDCl₃) δ 7.95 (dd, J = 8.0, 0.8 Hz, 2H), 7.56 (tt, J = 6.8, 1.2 Hz, 1H), 7.46 (tt, J =8.0, 1.2 Hz, 2H), 4.49 – 4.40 (m, 2H), 3.00 (t, J = 6.4 Hz, 2H), 2.92 – 2.85 (m, 2H), 1.98 – 1.92 (m, 4H), 1.86 – 1.80 (m, 3H), 1.75 – 1.73 (m, 4H), 1.61 – 1.47 (m, 6H), 1.39 – 1.19 (m, 7H). ¹³C NMR (100 MHz, CDCl₃) δ 199.8, 137.0, 133.2, 128.7, 128.1, 37.9, 33.7 (d, J = 3.6 Hz), 33.5 (d, J = 4.7 Hz), 30.9 (d, J = 3.8 Hz), 30.4 (d, J = 6.0 Hz), 25.3, 23.7, 23.3. ³¹P NMR (162 MHz, CDCl₃) δ 25.5. IR (neat): v_{max} (cm⁻¹) 2933, 1686, 1250, 790, 609. HRMS (ESI) calcd for C₂₃H₃₅O₄PSNa [M+Na]⁺ 461.1886, found 461.1894.


O-Ethyl *S*-(5-oxo-5-phenylpentyl) phenylphosphonothioate (3ag) Colorless oil (55.0 mg, 76%). $R_f = 0.3$ (petroleum ether/ethyl acetate = 3:1). ¹H NMR (400 MHz, CDCl₃) δ 7.92 – 7.84 (m, 4H), 7.57 – 7.43 (m, 6H), 4.28 – 4.21 (m, 2H), 2.91 (t, *J* = 1.6 Hz, 2H), 2.82 – 2.75 (m, 2H), 1.80 – 1.64 (m, 4H), 1.39 (t, *J* = 6.8 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 199.7, 136.9, 133.2, 132.6 (d, *J* = 2.1 Hz), 131.3, 131.2, 128.7, 128.6, 128.1, 62.3 (d, *J* = 6.6 Hz), 37.8, 30.3 (d, *J* = 3.2 Hz), 30.2 (d, *J* = 1.7 Hz), 23.0, 16.5 (d, *J* = 6.6 Hz). ³¹P NMR (162 MHz, CDCl₃) δ 45.2. IR (neat): v_{max} (cm⁻¹) 2932, 1683, 1022, 749, 597. HRMS (ESI) calcd for C₁₉H₂₃O₃PSNa [M+Na]⁺ 385.0998, found 385.1007.

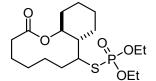
5-((6-Oxidodibenzo[c,e][1,2]oxaphosphinin-6-yl)thio)-1-phenylpentan-1-one (3ah) Colorless oil (35.1 mg, 43%). R_f = 0.3 (petroleum ether/ethyl acetate = 3:1). ¹H NMR (400 MHz, CDCl₃) δ 8.02 – 7.90 (m, 5H), 7.70 (tt, J = 7.6, 1.2 Hz, 1H), 7.57 – 7.49 (m, 2H), 7.47 – 7.43 (m, 2H), 7.40 – 7.35 (m, 1H), 7.29 – 7.28 (m, 1H), 7.25 – 7.21 (m, 1H), 2.97 – 2.87 (m, 4H), 1.79 – 1.76 (m, 4H). ¹³C NMR (100 MHz, CDCl₃) δ 199.7, 149.6 (d, J = 9.3 Hz), 136.9, 136.2 (d, J = 7.5 Hz), 133.9 (d, J = 1.8 Hz), 133.2, 130.9, 130.6 (d, J = 10.8 Hz), 128.8, 128.7, 128.1, 126.6, 125.3, 125.1, 124.0 (d, J = 11.0 Hz), 122.4 (d, J = 12.1 Hz), 120.6 (d, J = 6.6 Hz), 37.7, 30.5 (d, J = 4.6 Hz), 29.9 (d, J = 3.2 Hz), 23.0. ³¹P NMR (162 MHz, CDCl₃) δ 38.9. IR (neat): v_{max} (cm⁻¹) 2925, 1682, 1234, 1116, 755, 578. HRMS (ESI) calcd for C₂₃H₂₁O₃PSNa [M+Na]⁺ 431.0841, found 431.0849.

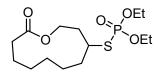


S-(5-Oxo-5-phenylpentyl) diphenylphosphinothioate (3ai) Colorless oil (35.5 mg, 45%). $R_f = 0.3$ (petroleum ether/ethyl acetate = 3:1). ¹H NMR (400 MHz, CDCl₃) δ 7.91 – 7.85 (m, 6H), 7.56 – 7.42 (m, 9H), 2.91 – 2.81 (m, 4H), 1.80 – 1.73 (m, 4H). ¹³C NMR (100 MHz, CDCl₃) δ 199.8, 136.9, 133.1, 132.4 (d, J = 2.9 Hz), 131.6, 131.5, 128.9, 128.7 (d, J = 5.1 Hz), 128.1, 37.7, 30.2 (d, J = 4.6 Hz), 29.2 (d, J = 1.7 Hz), 23.1. ³¹P NMR (162 MHz, CDCl₃) δ 43.5. IR (neat): v_{max} (cm⁻¹) 2927, 1683, 1288, 1114, 723, 568. HRMS (ESI) calcd for C₂₃H₂₃O₂PSNa [M+Na]⁺ 417.1049, found 417.1057.

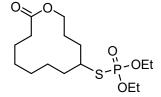


S-(5-Oxo-5-phenylpentyl) di(naphthalen-1-yl)phosphinothioate (3aj) Colorless oil (41.5 mg, 42%). $R_f = 0.3$ (petroleum ether/ethyl acetate = 3:1). ¹H NMR (400 MHz, CDCl₃) δ 8.85 – 8.83 (m, 2H), 8.11 – 8.01 (m, 4H), 7.92 – 7.87 (m, 4H), 7.54 – 7.44 (m, 9H), 3.11 – 3.04 (m, 2H), 2.93 – 2.89 (m, 2H), 1.84 – 1.80 (m, 4H). ¹³C NMR (100 MHz, CDCl₃) δ 199.8, 136.9, 134.1 (d, *J* = 9.9 Hz), 133.9, 133.3 (d, *J* = 12.3 Hz), 133.2, 133.1, 130.1, 129.0, 128.7, 128.1, 127.5, 127.1 (d, *J* = 4.6 Hz), 126.7, 124.6 (d, *J* = 5.2 Hz), 37.8, 30.3 (d, *J* = 4.3 Hz), 29.9 (d, *J* = 1.2 Hz), 23.2. ³¹P NMR (162 MHz, CDCl₃) δ 48.2. IR (neat): v_{max} (cm⁻¹) 2928, 1682, 1268, 1025, 735, 573. HRMS (ESI) calcd for C₃₁H₂₈O₂PS [M+H]⁺ 495.1542, found 495.1548.

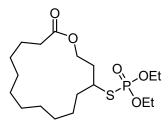

10. Characterizations of Products 5


O,*O*-Diethyl *S*-(9-oxooxonan-4-yl) phosphorothioate (5aa) Colorless oil (25.4 mg, 41%). R_f = 0.3 (petroleum ether/ethyl acetate = 4:1). ¹H NMR (400 MHz, CDCl₃) δ 4.40 – 4.27 (m, 2H), 4.20 – 4.07 (m, 4H), 3.52 - 3.46 (m, 1H), 2.34 - 2.23 (m, 3H), 2.19 - 2.11 (m, 1H), 1.82 - 1.77 (m, 3H), 1.72 - 1.60 (m, 3H), 1.34 (t, *J* = 6.8 Hz, 6H). ¹³C NMR (100 MHz, CDCl₃) δ 174.7, 63.8 (d, *J* = 3.6 Hz), 63.7 (d, *J* = 3.7 Hz), 62.6, 43.9 (d, *J* = 3.8 Hz), 35.2 (d, *J* = 5.7 Hz), 34.1, 24.4, 21.7, 16.2 (d, *J* = 7.3 Hz). ³¹P NMR (162 MHz, CDCl₃) δ 27.0. IR (neat): v_{max} (cm⁻¹) 2928, 1731, 1444, 1013, 793. HRMS (ESI) calcd for $C_{12}H_{23}O_5PSNa$ [M+Na]⁺ 333.0896, found 333.0908.

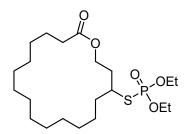
O,O-Diethyl *S*-(10-oxooxecan-4-yl) phosphorothioate (5ba) Colorless oil (44.7 mg, 69%). $R_f = 0.3$ (petroleum ether/ethyl acetate = 4:1). ¹H NMR (400 MHz, CDCl₃) δ 4.45 – 4.40 (m, 1H), 4.30 – 4.26 (m, 1H), 4.19 – 4.06 (m, 4H), 3.63 – 3.56 (m, 1H), 2.36 – 2.28 (m, 3H), 2.12 – 1.98 (m, 2H), 1.89 – 1.77 (m, 4H), 1.57 – 1.45 (m, 3H), 1.34 (t, J = 7.2 Hz, 6H). ¹³C NMR (100 MHz, CDCl₃) δ 173.6, 63.8 (d, J = 3.7 Hz), 63.7 (d, J = 3.7 Hz), 62.6, 45.7 (d, J = 3.4 Hz), 34.8, 32.2 (d, J = 7.5 Hz), 31.0 (d, J = 3.8 Hz), 27.3, 20.8, 20.5, 16.2 (d, J = 7.4 Hz). ³¹P NMR (162 MHz, CDCl₃) δ 27.2. IR (neat): vmax (cm⁻¹) 3454, 2958, 1445, 1016, 970, 790. HRMS (ESI) calcd for C₁₃H₂₆O₅PS [M+H]⁺ 325.1233, found 325.1241.



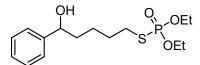
O,*O*-Diethyl *S*-((8aS,12aS)-2-oxododecahydro-2H-benzo[b]oxecin-8-yl) phosphorothioate (5ca) Colorless oil (44.7 mg, 69%, 37:4:1 dr). $R_f = 0.3$ (petroleum ether/ethyl acetate = 4:1). ¹H NMR (400 MHz, CDCl₃) δ 4.55 – 4.49 (m, 1H), 4.20 – 4.02 (m, 4H), 3.06 – 2.78 (m, 1H), 2.50 – 2.44 (m, 1H), 2.40 – 2.44 (m, 1H), 2.28 – 2.21 (m, 1H), 2.04 – 1.98 (m, 2H), 1.92 – 1.85 (m, 1H), 1.75 – 1.60 (m, 7H), 1.51 – 1.47 (m, 1H), 1.32 (td, *J* = 7.2, 0.4 Hz, 6H), 1.30 – 1.08 (m, 4H), 1.06 – 0.95 (m, 1H). ¹³C NMR (100 MHz, CDCl₃) δ 174.2, 63.6 (d, *J* = 6.5 Hz), 63.5 (d, *J* = 6.6 Hz), 53.5 (d, *J* = 2.9 Hz), 45.8 (d, *J* = 5.8 Hz), 35.0, 34.5, 33.0, 32.1, 26.6, 25.5, 24.7, 23.3, 21.9, 16.2 (d, *J*=7.3 Hz). ³¹P NMR (162 MHz, CDCl₃) δ 29.3, 28.8, 28.5. IR (neat): v_{max} (cm⁻¹) 2933, 2860, 1449, 1154, 1017, 754. HRMS (ESI) calcd for C₁₇H₃₂O₅PS [M+H]⁺ 379.1703, found 379.1708.

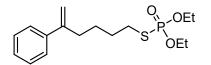


O,O-Diethyl S-(11-oxooxacycloundecan-4-yl) phosphorothioate (5da) Colorless oil (37.9 mg, 56%).


R_f = 0.3 (petroleum ether/ethyl acetate = 4:1). ¹H NMR (400 MHz, CDCl₃) δ 4.27 – 4.06 (m, 6H), 3.55 – 3.45 (m, 1H), 2.35 – 2.27 (m, 3H), 2.20 – 2.11 (m, 2H), 1.77 – 1.57 (m, 4H), 1.53 – 1.47 (m, 2H), 1.42 – 1.31 (m, 9H). ¹³C NMR (100 MHz, CDCl₃) δ 173.5, 63.8, 63.7 (d, J = 5.4 Hz), 62.1, 45.1 (d, J = 3.4 Hz), 35.3, 33.2 (d, J = 4.1 Hz), 32.4 (d, J = 7.5 Hz), 25.7, 24.6, 21.4, 20.6, 16.1 (d, J = 7.2 Hz). ³¹P NMR (162 MHz, CDCl₃) δ 27.1. IR (neat): v_{max} (cm⁻¹) 2935, 1730, 1443, 1156, 1016, 760. HRMS (ESI) calcd for C₁₄H₂₇O₅PSNa [M+Na]⁺ 361.1209, found 361.1214.

O,*O*-Diethyl *S*-(12-oxooxacyclododecan-4-yl) phosphorothioate(5ea) Colorless oil (19.4 mg, 27%). $R_f = 0.3$ (petroleum ether/ethyl acetate = 4:1). ¹H NMR (400 MHz, CDCl₃) δ 4.53 – 4.48 (m, 1H), 4.22 – 4.11 (m, 4H), 4.01 – 3.95 (m, 1H), 3.57 – 3.49 (m, 1H), 2.46 – 2.31(m, 2H), 2.04 – 1.94 (m, 2H), 1.82 – 1.71 (m, 5H), 1.64 – 1.53 (m, 3H), 1.47 – 1.43 (m, 2H), 1.36 (t, *J* =6.8 Hz, 8H). ¹³C NMR (100 MHz, CDCl₃) δ 173.8, 64.2, 63.6 (d, *J* = 5.7 Hz), 44.7 (d, *J* = 3.5 Hz), 34.1, 33.3 (d, *J* = 3.7 Hz), 31.0 (d, *J* = 6.9 Hz), 25.3, 24.7, 24.0, 23.6, 22.7, 16.2 (d, *J* = 7.3 Hz). ³¹P NMR (162 MHz, CDCl₃) δ 28.5. IR (neat): v_{max} (cm⁻¹) 2939, 1732, 1447, 1145, 1017, 791. HRMS (ESI) calcd for C₁₅H₂₉O₅PSLi [M+Li]⁺ 359.1628, found 359.1629.

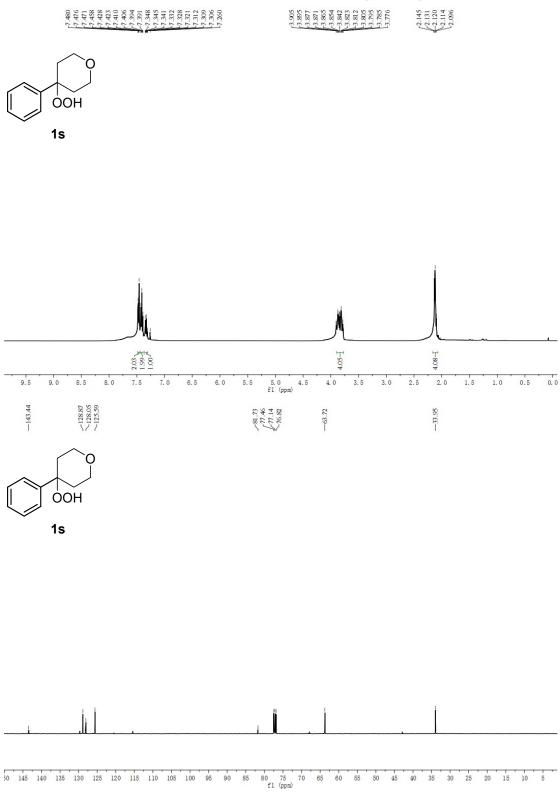

O,*O*-Diethyl *S*-(15-oxooxacyclopentadecan-4-yl) phosphorothioate (5fa) Colorless oil (37.8 mg, 48%). $R_f = 0.3$ (petroleum ether/ethyl acetate = 4:1). ¹H NMR (400 MHz, CDCl₃) δ 4.33 – 4.27 (m, 1H), 4.20 – 4.08 (m, 5H), 3.37 – 3.29 (m, 1H), 2.35 – 2.31 (m, 2H), 2.15 – 2.04 (m, 3H), 1.83 – 1.76 (m, 1H), 1.68 – 1.61 (m, 3H), 1.59 – 1.42 (m, 3H), 1.34 (td, *J* = 7.2, 0.8 Hz, 6H), 1.33 – 1.29 (m, 10H). ¹³C NMR (100 MHz, CDCl₃) δ 174.2, 63.7 (d, *J* = 2.6 Hz), 63.6 (d, *J* = 3.0 Hz), 61.9, 44.6 (d, *J* = 3.7 Hz), 35.9 (d, *J* = 3.9 Hz), 34.4 (d, *J* = 5.9 Hz), 34.0, 27.6, 26.6, 26.42, 26.36, 26.2, 25.9, 25.2, 24.6, 16.2 (d, *J* = 7.2 Hz). ³¹P NMR (162 MHz, CDCl₃) δ 26.9. IR (neat): v_{max} (cm⁻¹) 2928, 2856, 1734, 1444, 1165, 1016, 793. HRMS (ESI) calcd for C₁₈H₃₆O₅PS [M+H]⁺ 395.2016, found 395.2024.


O,*O*-Diethyl *S*-(18-oxooxacyclooctadecan-4-yl) phosphorothioate (5ga) Colorless oil (35.8 mg, 41%). $R_f = 0.3$ (petroleum ether/ethyl acetate = 4:1). ¹H NMR (400 MHz, CDCl₃) δ 4.35 – 4.29 (m, 1H), 4.22 – 4.08 (m, 5H), 3.38 – 3.29 (m, 1H), 2.30 (td, *J* = 7.6, 1.2 Hz, 2H), 2.09 – 1.97 (m, 3H), 1.79 – 1.58 (m, 5H), 1.53 – 1.40 (m, 4H), 1.34 (t, *J* = 7.2 Hz, 6H), 1.28 – 1.23 (m, 14H). ¹³C NMR (100 MHz, CDCl₃) δ

173.8, 63.7 (d, J = 6.4 Hz), 61.6, 44.8 (d, J = 3.6 Hz), 36.2 (d, J = 4.8 Hz), 34.8 (d, J = 5.0 Hz), 34.5, 27.9, 27.8, 27.7, 27.4, 27.1, 27.0, 26.84, 26.80, 26.6, 25.8, 24.6, 16.2 (d, J = 7.3 Hz). ³¹P NMR (162 MHz, CDCl₃) δ 27.0. IR (neat): v_{max} (cm⁻¹) 2926, 2855, 1735, 1460, 1247, 1017, 794. HRMS (ESI) calcd for C₂₁H₄₂O₅PS [M+H]⁺ 437.2485, found 437.2496.

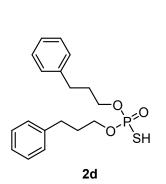
11. Characterizations of Products 6aa and 7aa.

O,O-Diethyl *S*-(5-hydroxy-5-phenylpentyl) phosphorothioate (6aa) Colorless oil (53.1 mg, 80%). R_f = 0.3 (petroleum ether/ethyl acetate = 2:1). ¹H NMR (400 MHz, CDCl₃) δ 7.34 – 7.32 (m, 4H), 7.29 – 7.26 (m,1H), 4.68 – 4.65 (m, 1H), 4.19 – 4.06 (m, 4H), 2.84 – 2.77 (m, 2H), 2.25 – 2.02 (m, 1H), 1.86 – 1.68 (m, 4H), 1.59 – 1.38 (m, 2H), 1.34 (t, J = 6.8 Hz, 6H). ¹³C NMR (100 MHz, CDCl₃) δ 144.9, 128.5, 127.6, 125.9, 74.2, 63.6 (d, J = 5.8 Hz), 38.5, 30.7 (d, J = 3.2 Hz), 30.6 (d, J = 1.7 Hz), 24.8, 16.1 (d, J = 7.2 Hz). ³¹P NMR (162 MHz, CDCl₃) δ 28.9. IR (neat): v_{max} (cm⁻¹) 3410, 2984, 1239, 1016, 792. HRMS (ESI) calcd for C₁₅H₂₆O₄PS [M+H]⁺ 333.1284, found 333.1286.


O,*O*-Diethyl *S*-(5-phenylhex-5-en-1-yl) phosphorothioate (7aa) Colorless oil (53.8 mg, 82%). $R_f = 0.3$ (petroleum ether/ethyl acetate = 2:1). ¹H NMR (400 MHz, CDCl₃) δ 7.33 – 7.31 (m, 2H), 7.25 (t, *J* = 7.2 Hz, 2H), 7.20 (t, *J* = 7.6 Hz, 1H), 5.20 (d, *J* = 0.9 Hz, 1H), 4.99 (d, *J* = 0.9 Hz, 1H), 4.15 – 3.99 (m, 4H), 2.78 – 2.71 (m, 2H), 2.46 (t, *J* = 7.6 Hz, 2H), 1.68 – 1.61 (m, 2H), 1.52 – 1.48 (m, 2H), 1.27 (t, *J* = 7.2 Hz, 6H). ¹³C NMR (100 MHz, CDCl₃) δ148.0, 141.0, 128.4, 127.5, 126.2, 112.8, 63.6 (d, *J* = 5.8 Hz), 34.8, 30.8 (d, *J* = 3.8 Hz), 30.5 (d, *J* = 5.5 Hz), 27.1, 16.2 (d, *J* = 7.3 Hz). ³¹P NMR (162 MHz, CDCl₃) δ 28.8. IR (neat): v_{max} (cm⁻¹) 2983, 1258, 1018, 968, 753. HRMS (ESI) calcd for C₁₆H₂₆O₃PS [M+H]⁺ 329.1335, found 329.1334.

12. References

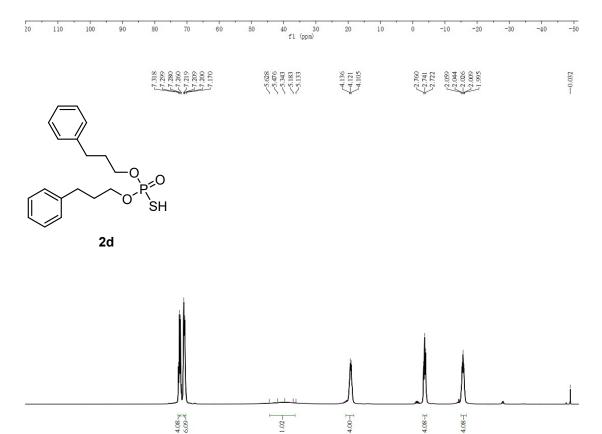
- 1 (a) S. Liu, M. Bai, P. F. Xu, Q. X. Sun, X. H. Duan, et al., Copper-catalyzed radical ring-opening halogenation with HX, *Chem Commun*, 2021, **57**, 8652-8655. (b) S. Liu, P. Ma, L. Zhang, S. Shen, H.-J. Miao, L. Liu, K. N. Houk, X.-H. Duan, L.-N. Guo, Cheap metal catalyzed ring expansion/cross-coupling cascade: A new route to functionalized medium-sized and macrolactones, *Chem. Sci.*, 2023, DOI: 10.1039/D2SC06157K
- 2 (a) N. Santschi and A. Togni, Electrophilic trifluoromethylation of S-hydrogen phosphorothioates, *J. Org. Chem*, 2011, **76**, 4189-4193. (b) M. J. Bodner, R. M. Phelan, M. F. Freeman, R. Li and C. A. Townsend, Non-heme iron oxygenases generate natural structural diversity in carbapenem antibiotics, *J. Am. Chem. Soc*, 2010, **132**, 12-13.


13. ³¹P NMR, ¹H NMR and ¹³C NMR Spectra of Starting Materials

¹H NMR (400 MHz, CDCl₃) and ¹³C NMR (100 MHz, CDCl₃) spectra of product 1s

³¹P NMR (162 MHz, CDCl₃), ¹H NMR (400 MHz, CDCl₃) and ¹³C NMR (100 MHz, CDCl₃) spectra of product **2d**

-66.95


10.0

9.5

9.0

8.5 8.0

5.5 5.0 fl (ppm)

4.5

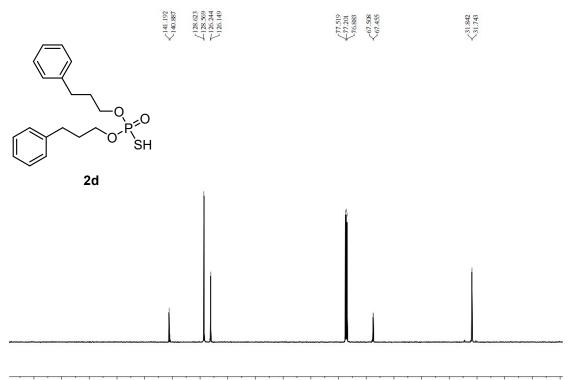
4.0 3.5

6.0

7.5 7.0 6.5

2.0

1.5


1. 0

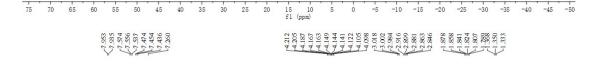
0.5

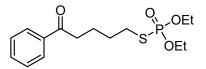
0.0

2.5

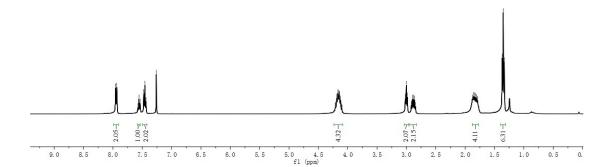
3. 0

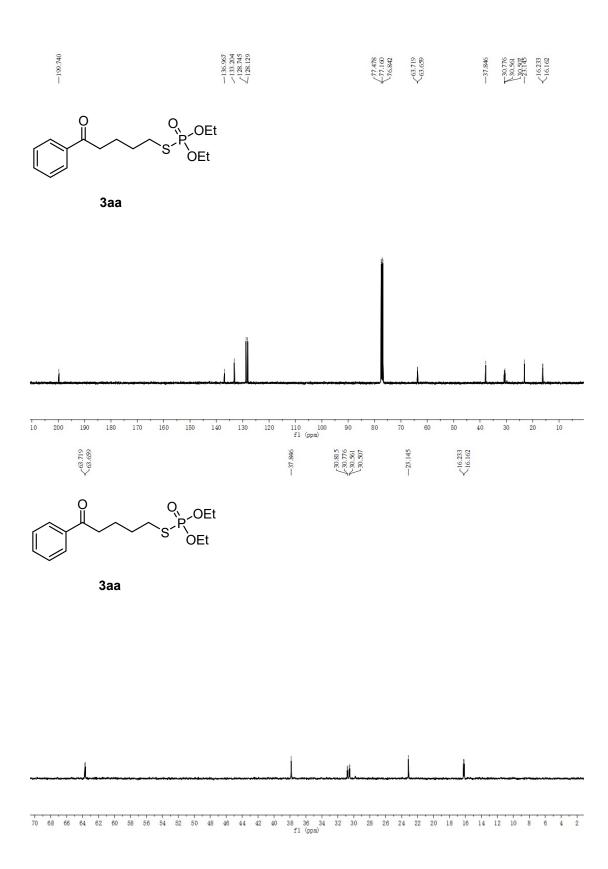
190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 fl (ppm)

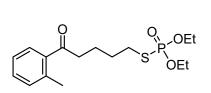

15.³¹P NMR, ¹H NMR and ¹³C NMR Spectra of Products 3 and 5

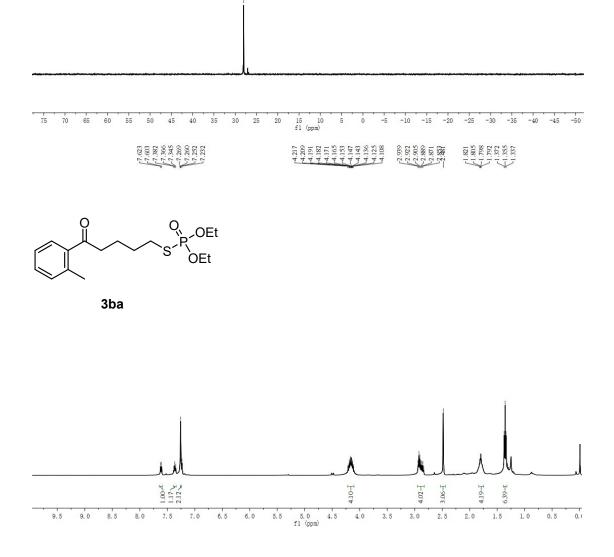

³¹P NMR (162 MHz, CDCl₃), ¹H NMR (400 MHz, CDCl₃) and ¹³C NMR (100 MHz, CDCl₃) spectra of product **3aa**

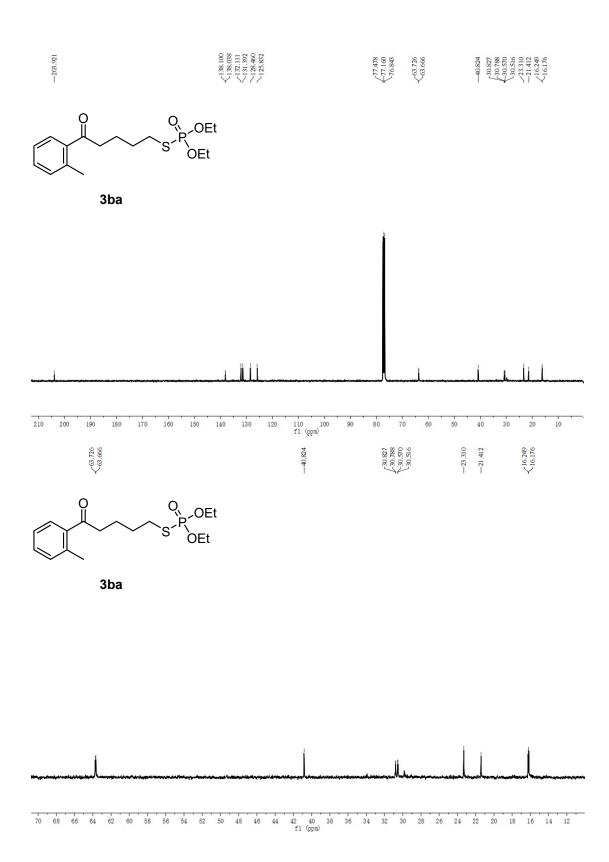
-28.04


0 || O_{v∽}∠OEt ÒEt

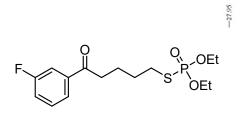

3aa

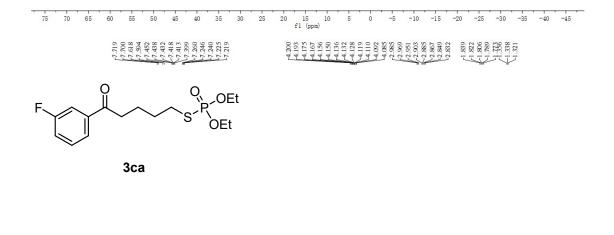

3aa

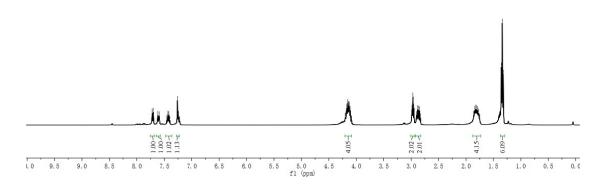


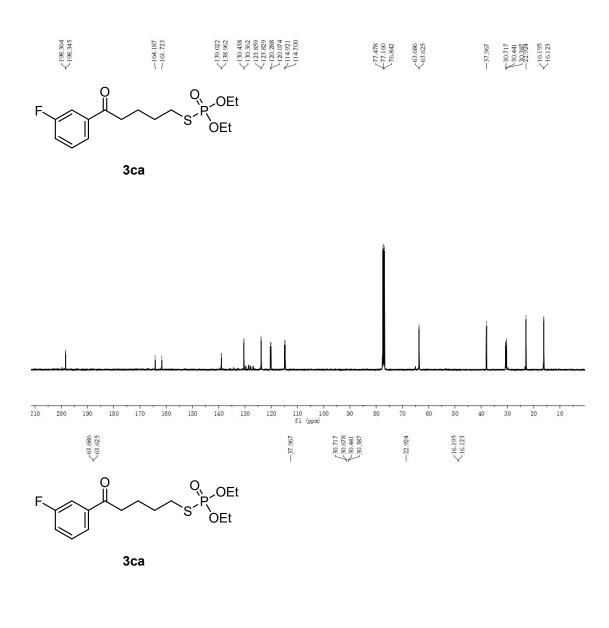

³¹P NMR (162 MHz, CDCl₃), ¹H NMR (400 MHz, CDCl₃) and ¹³C NMR (100 MHz, CDCl₃) spectra of product **3ba**

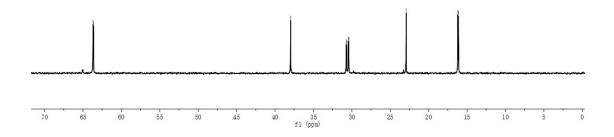
-28.02

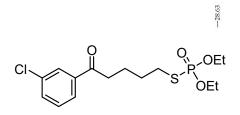




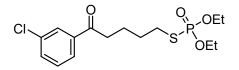


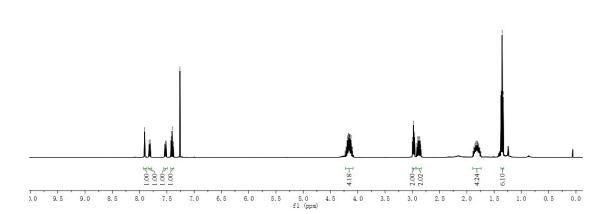

³¹P NMR (162 MHz, CDCl₃), ¹H NMR (400 MHz, CDCl₃) and ¹³C NMR (100 MHz, CDCl₃) spectra of product **3ca**

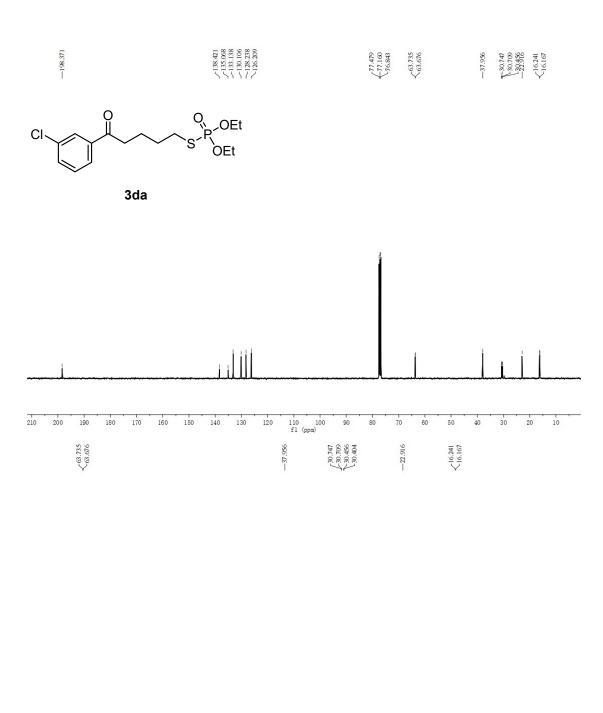




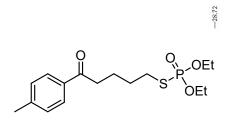
³¹P NMR (162 MHz, CDCl₃), ¹H NMR (400 MHz, CDCl₃) and ¹³C NMR (100 MHz, CDCl₃) spectra of product **3da**

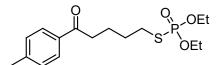



 70
 65
 60
 55
 70
 70
 70
 70
 70
 70
 70
 70
 70
 70
 70
 70
 70
 70
 70
 70
 70
 70
 70
 70
 70
 70
 70
 70
 70
 70
 70
 70
 70
 70
 70
 70
 70
 70
 70
 70
 70
 70
 70
 70
 70
 70
 70
 70
 70
 70
 70
 70
 70
 70
 70
 70
 70
 70
 70
 70
 70
 70
 70
 70
 70
 70
 70
 70
 70
 70
 70
 70
 70
 70
 70
 70
 70
 70
 70
 70
 70
 70
 70
 70
 70
 70
 70
 70
 70
 70
 70
 70
 70
 70
 70
 70
 70
 70

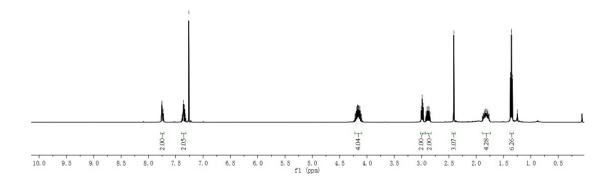

 70

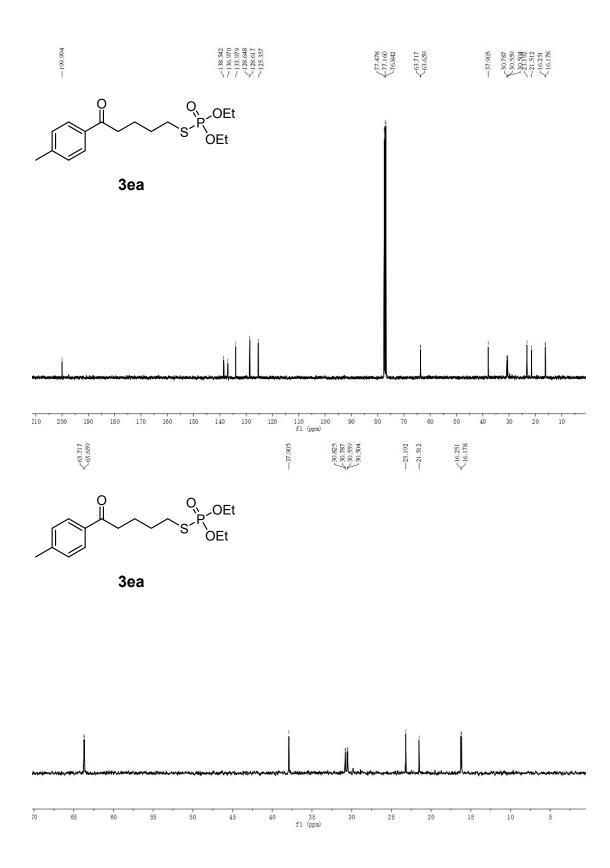
 <th 70<



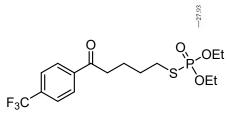

<u></u>	38 36 34 32 30 28 26 24 fl (ppm)	22 20 18 16 14 12 10 8 6 4 2

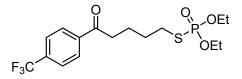
³¹P NMR (162 MHz, CDCl₃), ¹H NMR (400 MHz, CDCl₃) and ¹³C NMR (100 MHz, CDCl₃) spectra of product **3ea**



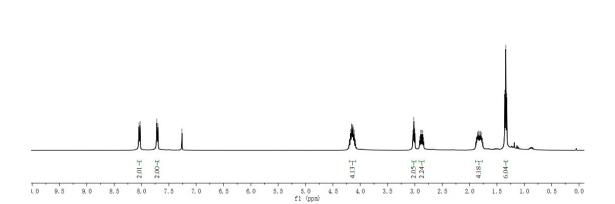

3ea

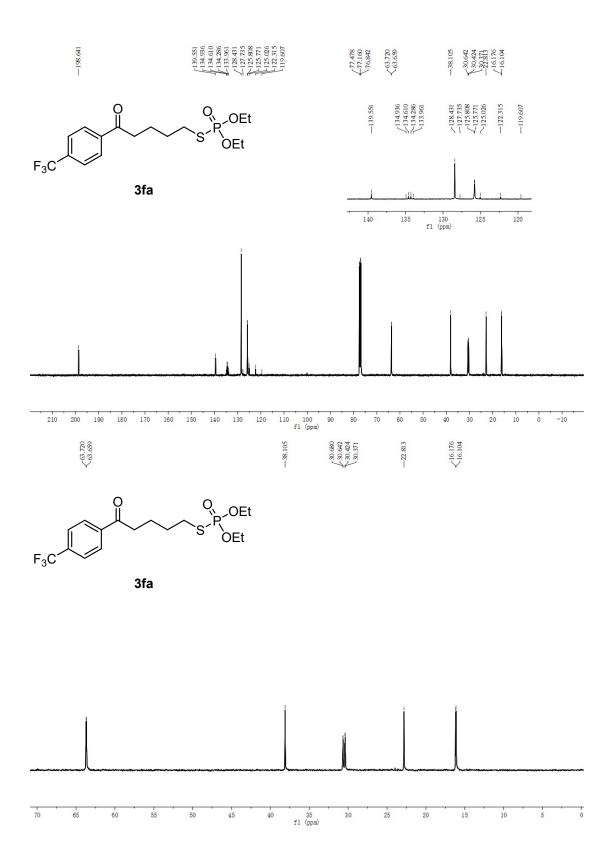
55 15 10 fl (ppm) -40 -45 -5 70 65 60 50 45 40 35 30 25 20 -5 -10 -15 -20 -25 -30 -35 5 0 -7.755 -7.753 -7.753 -7.384 -7.384 -7.384 -7.359 -7.359 -7.359 -7.359 -7.359 -7.359 -7.359 -7.359 -7.359 -7.755 -7.753 -7.755 -7.753 -7.755 -7.753 -7.753 -7.753 -7.753 -7.753 -7.7555 -7.7555 -7.7555 -7.7555 -7.7555 -7.7555 -7.7555 -7.7555 -7.7555 1,246 1,246 1,246 1,246 1,246 1,246



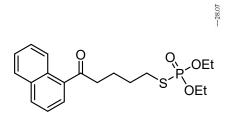


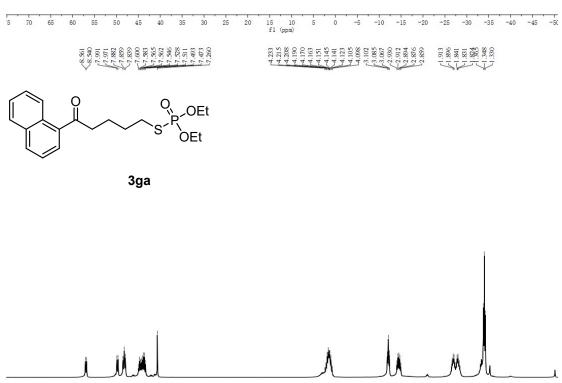
³¹P NMR (162 MHz, CDCl₃), ¹H NMR (400 MHz, CDCl₃) and ¹³C NMR (100 MHz, CDCl₃) spectra of product **3fa**

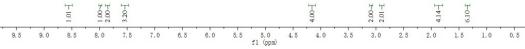




70 65 60 55 35 30 25 20 15 10 fl (ppm) -40 -45 -8 50 45 40 -10 -15 -25 -30 -35 -5 -20 5 ò 4,200 4,103 4,103 4,103 4,103 4,1154,115 4,1154,115 4,115 4,115 4,115 4,115 4,1154,115 4,115 4,115 4,115 4,1154,115 4,115 4,1154,115 4,115 4,115 4,1154,115 4,115 4,1154,115 4,115 4,1154,115 4,115 4,1154,115 4,115 4,1154,115 4,115 4,1154,115 4,115 4,1154,115 4,1154,115 4,1154,115 4,1154,115 4,1154,115 4,1154,115 4,1154,115 4,115 8.046 8.026 7.720 -7.260 1338

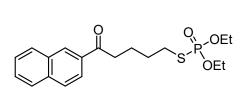




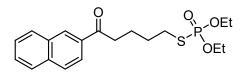


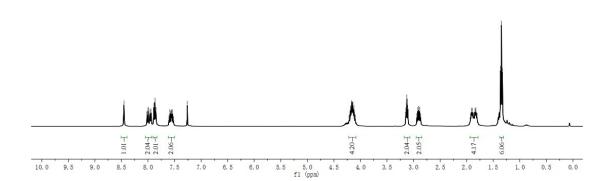

³¹P NMR (162 MHz, CDCl₃), ¹H NMR (400 MHz, CDCl₃) and ¹³C NMR (100 MHz, CDCl₃) spectra of product **3ga**

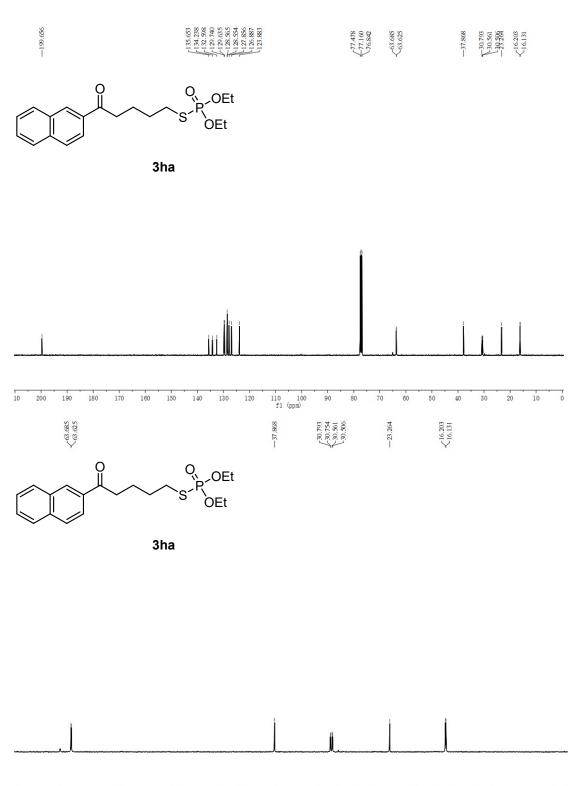
3ga

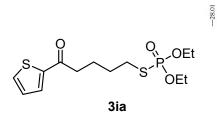


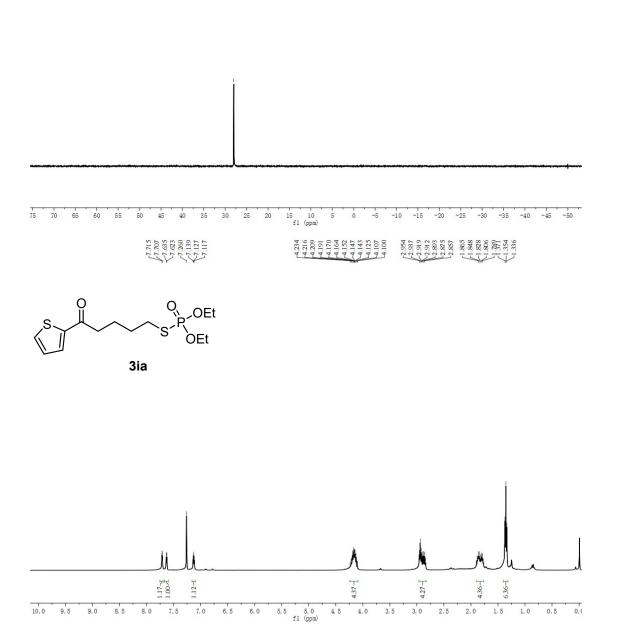
³¹P NMR (162 MHz, CDCl₃), ¹H NMR (400 MHz, CDCl₃) and ¹³C NMR (100 MHz, CDCl₃) spectra of product **3ha**


-28.05

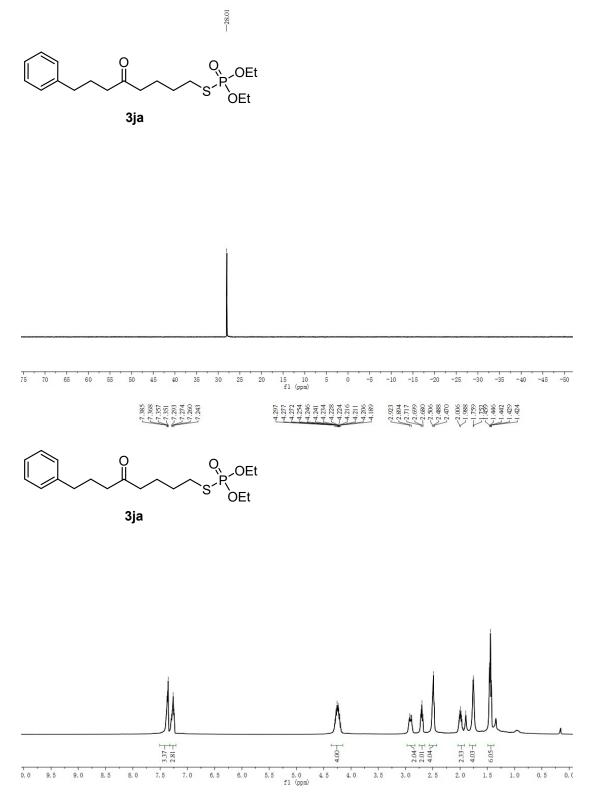


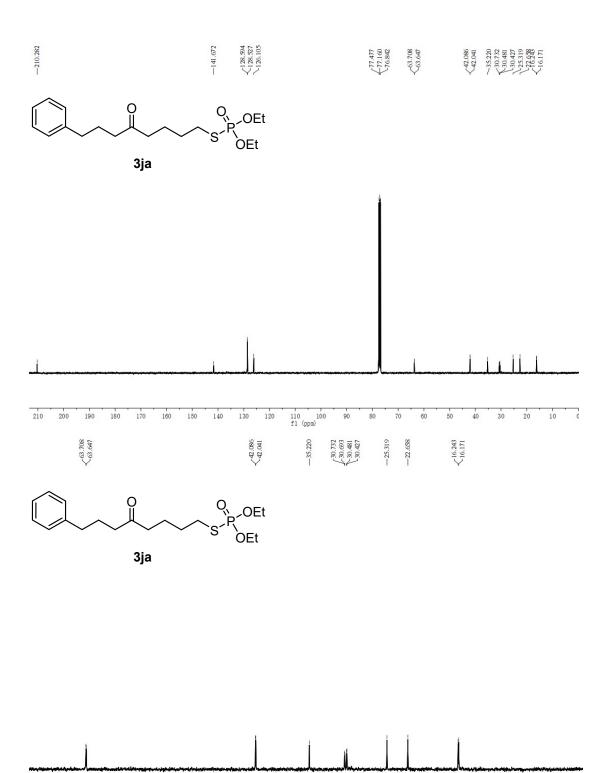

75 70 65 60 55 50 45 40 35 30 25 20 15 10 5 0 -5 -10 -15 -20 -25 -30 -35 -40 -45 -50 f1 (ppm)



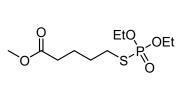




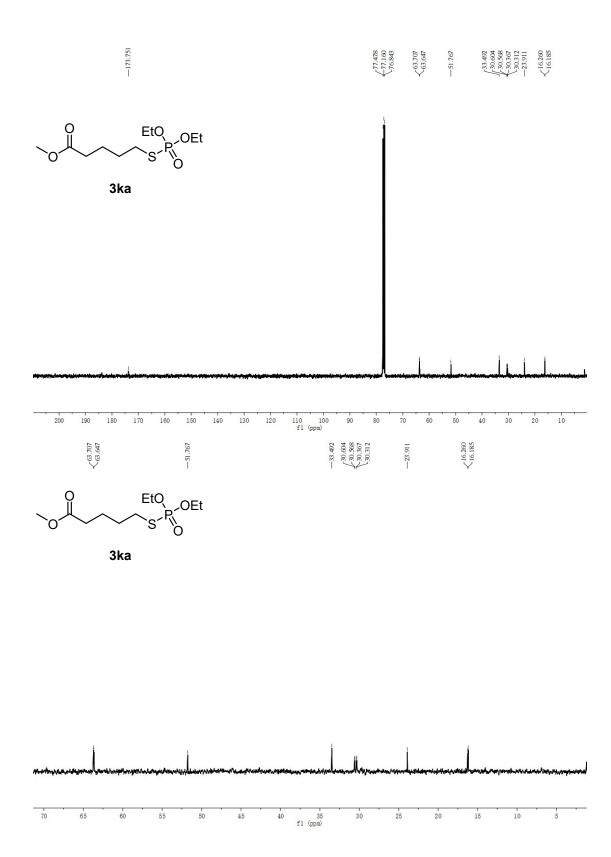

³¹P NMR (162 MHz, CDCl₃), ¹H NMR (400 MHz, CDCl₃) and ¹³C NMR (100 MHz, CDCl₃) spectra of product **3ia**



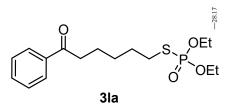
³¹P NMR (162 MHz, CDCl₃), ¹H NMR (400 MHz, CDCl₃) and ¹³C NMR (100 MHz, CDCl₃) spectra of product **3ja**

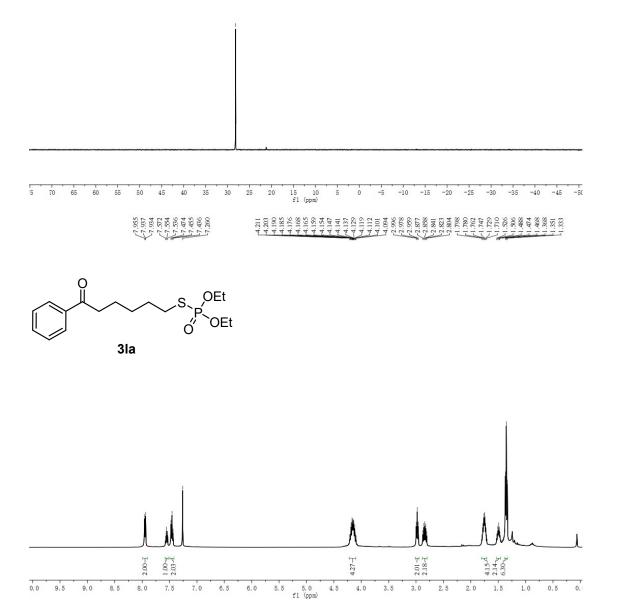


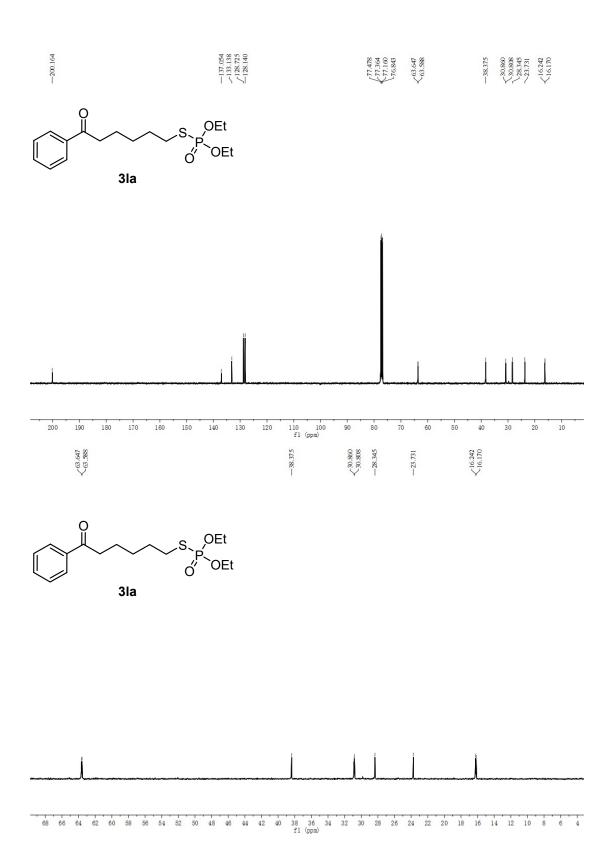
	· · ·	· · ·		· · ·		_				· · · ·	<u> </u>		_	_	_	· · ·	 · · ·		· · · ·		· · ·	· · ·	· · ·			_		· · ·	_				
70	68	66	64	62	60	58	56	54	52	50	48	46	44	42	40			32	30	28	26	24	22	20	18	16	14	12	10	8	6	4	2
fl (ppm)																																	

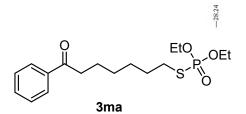

³¹P NMR (162 MHz, CDCl₃), ¹H NMR (400 MHz, CDCl₃) and ¹³C NMR (100 MHz, CDCl₃) spectra of product **3ka**

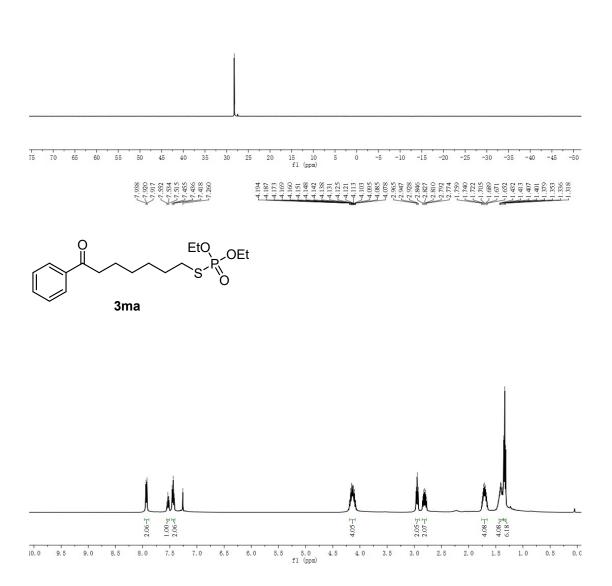
-27.95

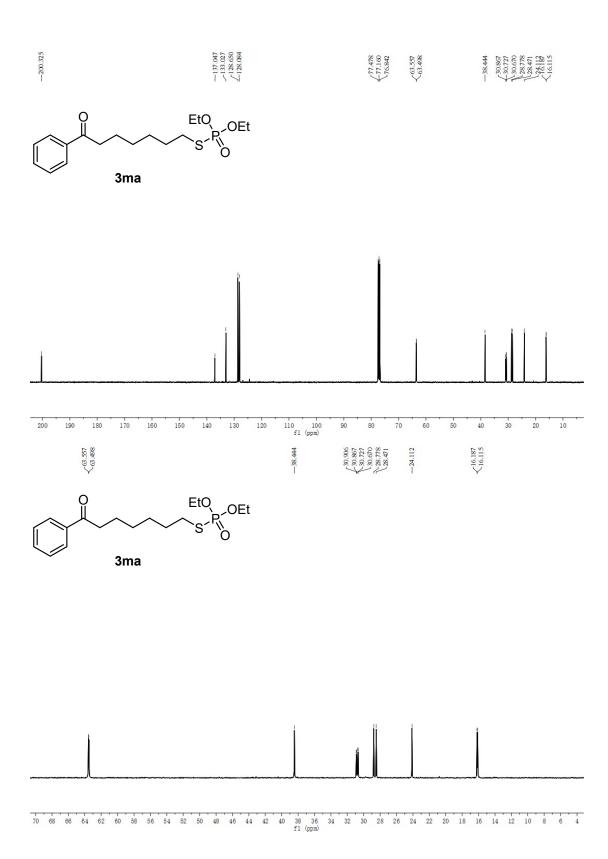


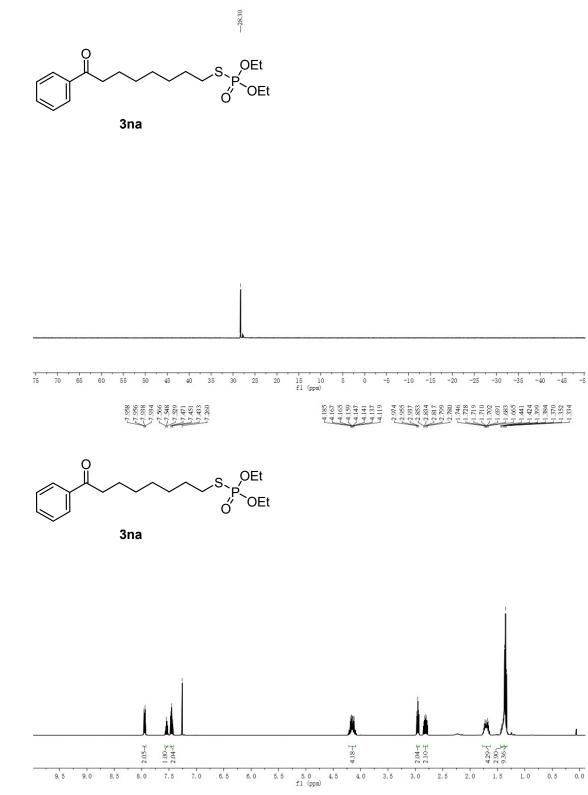


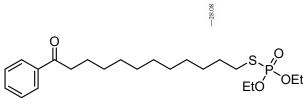



³¹P NMR (162 MHz, CDCl₃), ¹H NMR (400 MHz, CDCl₃) and ¹³C NMR (100 MHz, CDCl₃) spectra of product **3la**



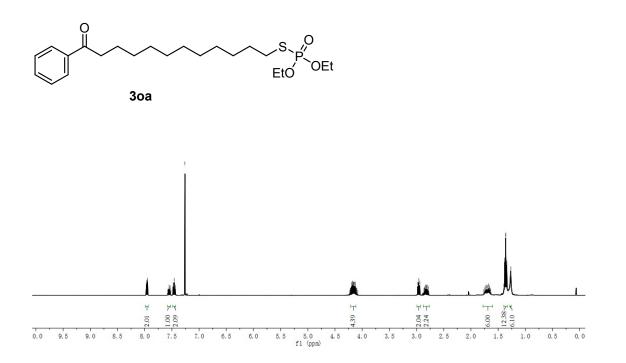


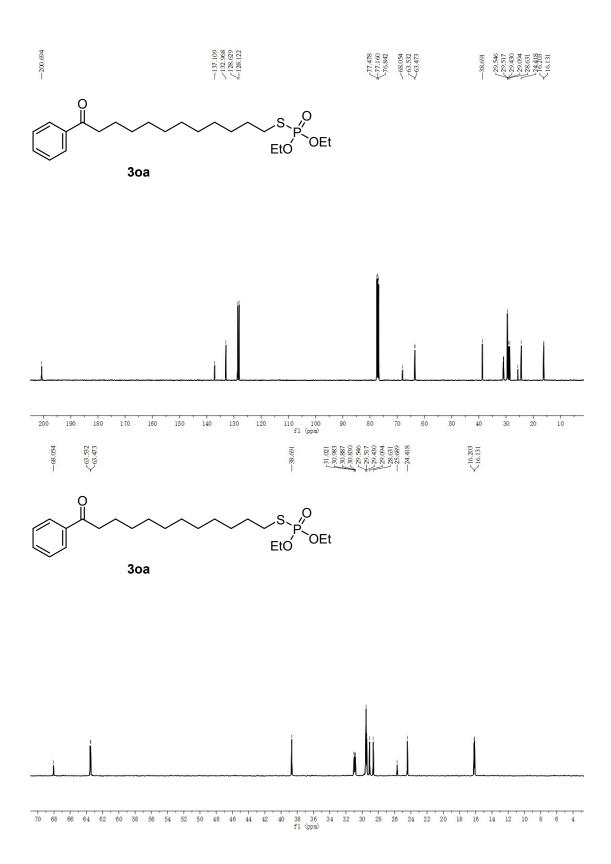

³¹P NMR (162 MHz, CDCl₃), ¹H NMR (400 MHz, CDCl₃) and ¹³C NMR (100 MHz, CDCl₃) spectra of product **3ma**

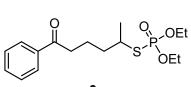


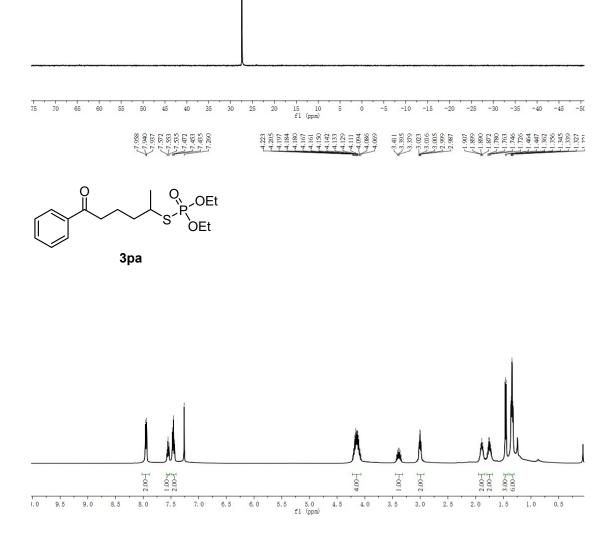
³¹P NMR (162 MHz, CDCl₃), ¹H NMR (400 MHz, CDCl₃) and ¹³C NMR (100 MHz, CDCl₃) spectra of product **3na**

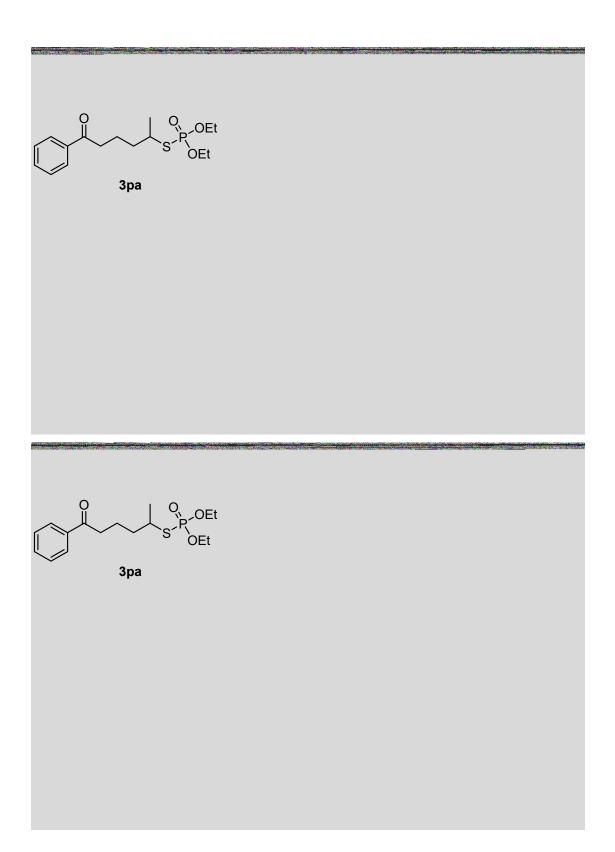



³¹P NMR (162 MHz, CDCl₃), ¹H NMR (400 MHz, CDCl₃) and ¹³C NMR (100 MHz, CDCl₃) spectra of product **30a**

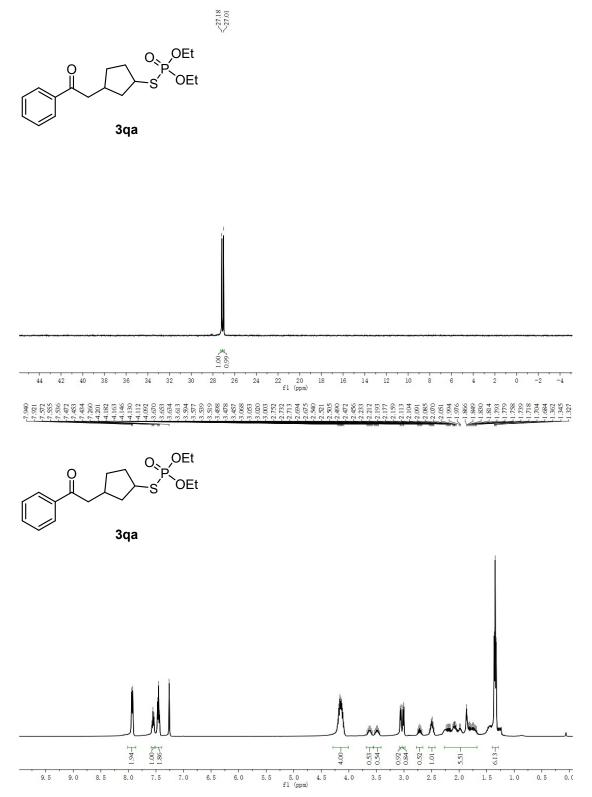


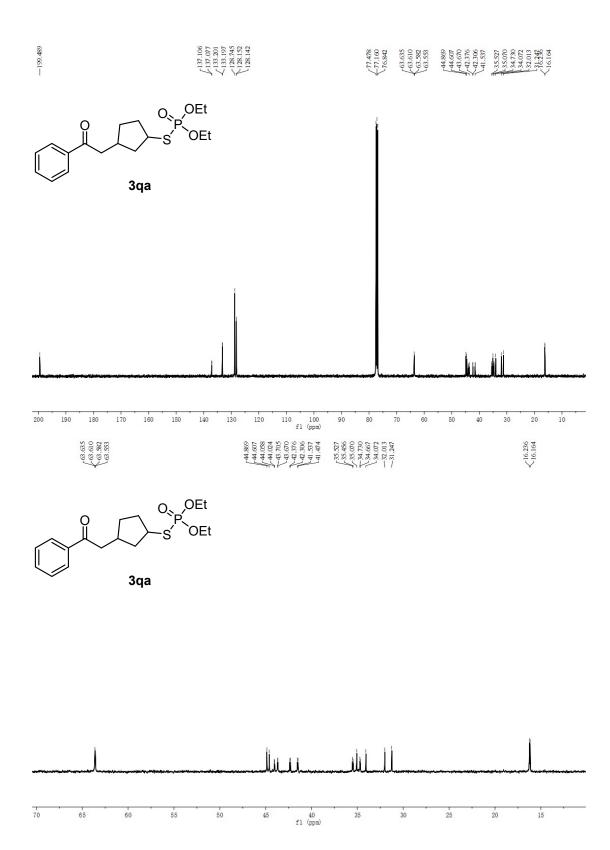


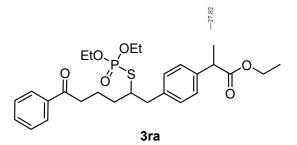



³¹P NMR (162 MHz, CDCl₃), ¹H NMR (400 MHz, CDCl₃) and ¹³C NMR (100 MHz, CDCl₃) spectra of product **3pa**

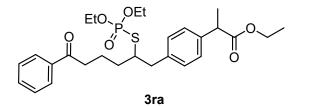
-27.42

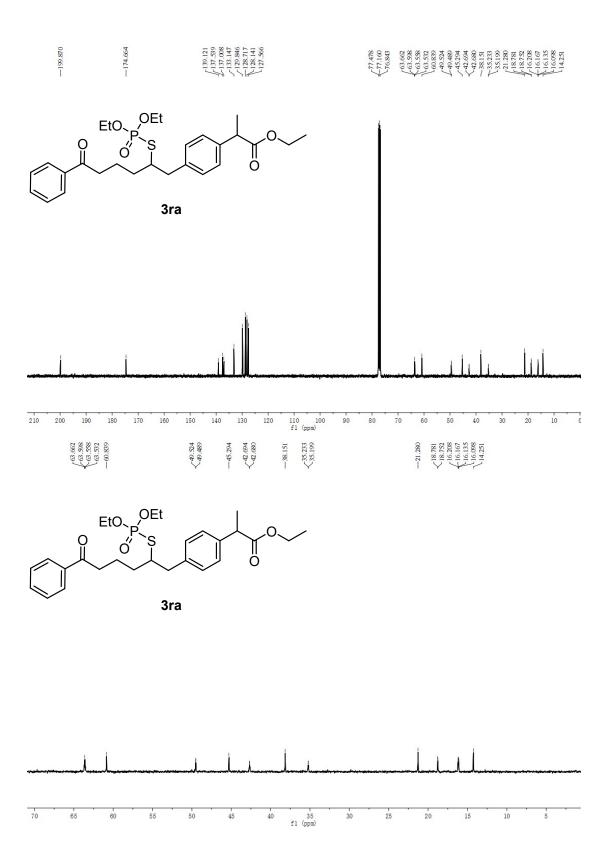


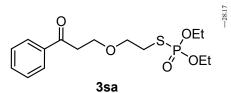


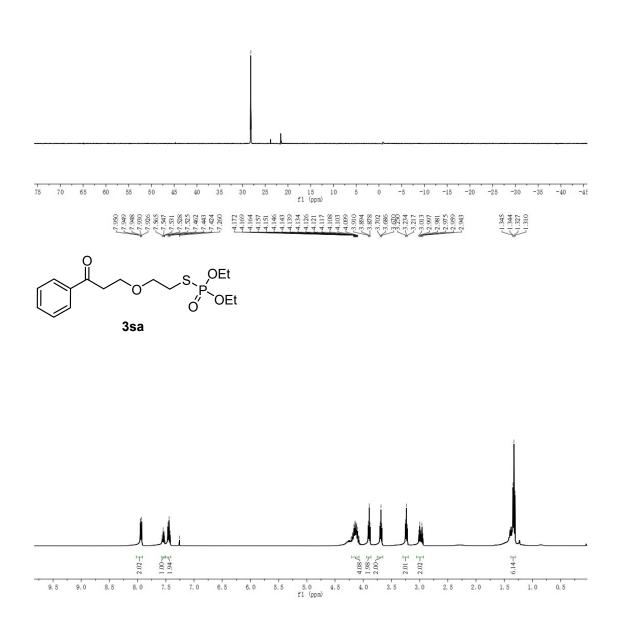


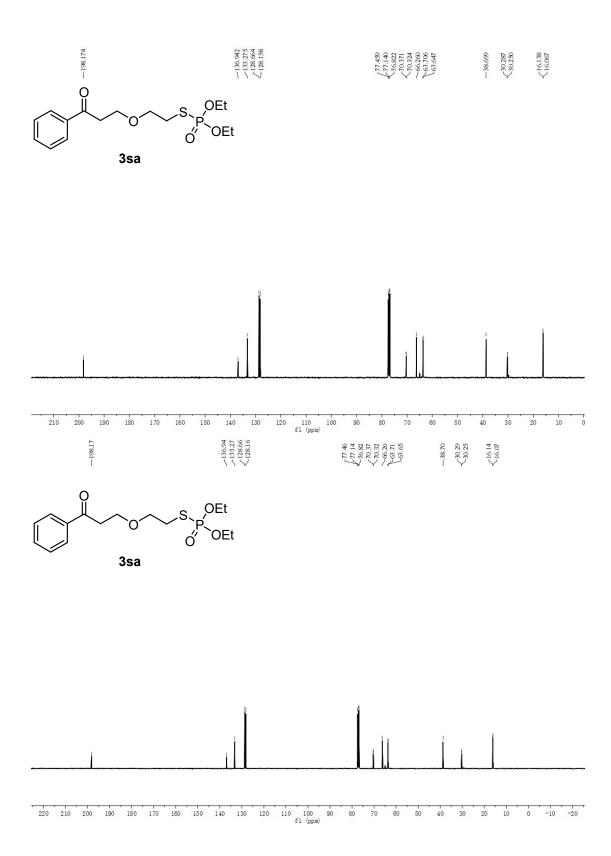
³¹P NMR (162 MHz, CDCl₃), ¹H NMR (400 MHz, CDCl₃) and ¹³C NMR (100 MHz, CDCl₃) spectra of product **3qa**

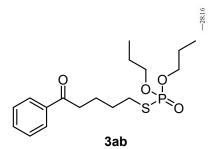


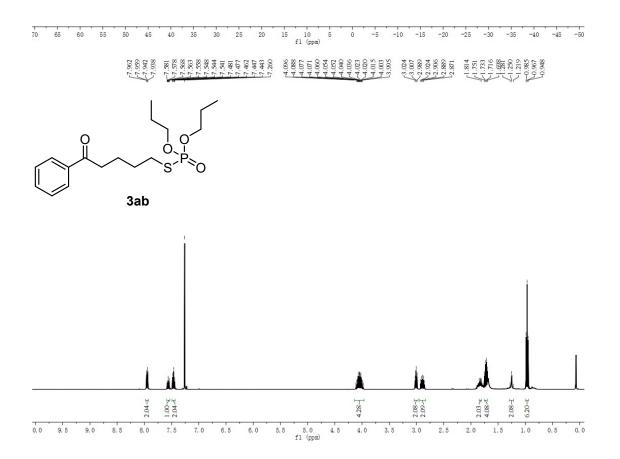

³¹P NMR (162 MHz, CDCl₃), ¹H NMR (400 MHz, CDCl₃) and ¹³C NMR (100 MHz, CDCl₃) spectra of product **3ra**

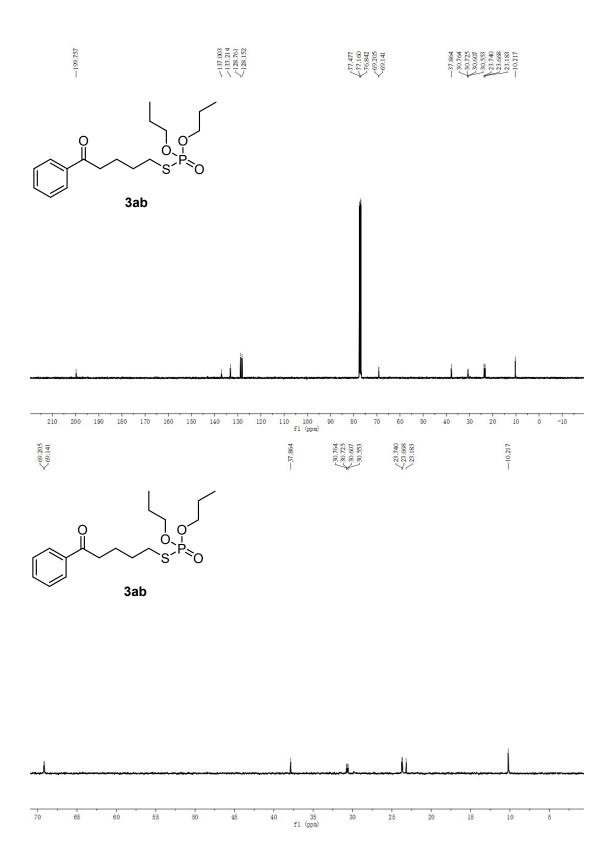


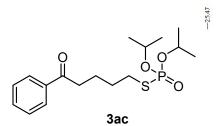


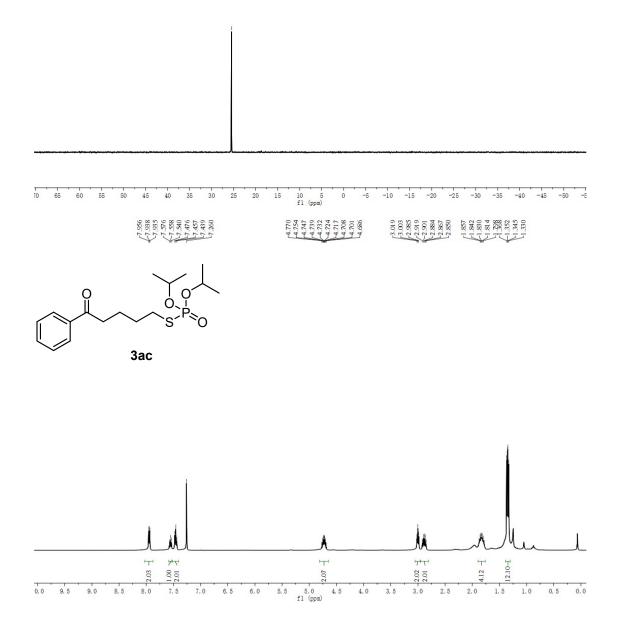

1.00 Å 2.02 Å 4.14 Y 2.01 H 1.06<u>-</u> 3.26<u>-</u>] 3.06 ≤ 6.39 ∑ 3.03 ∑ 3.18/ 4.09-2.0 7.5 3. 0 1. 5 0. (8.0 6.5 5.0 4.5 fl (ppm) 4.0 3.5 2.5 1.0 0.5 9.5 9.0 8.5 7.0 6. 0 5.5

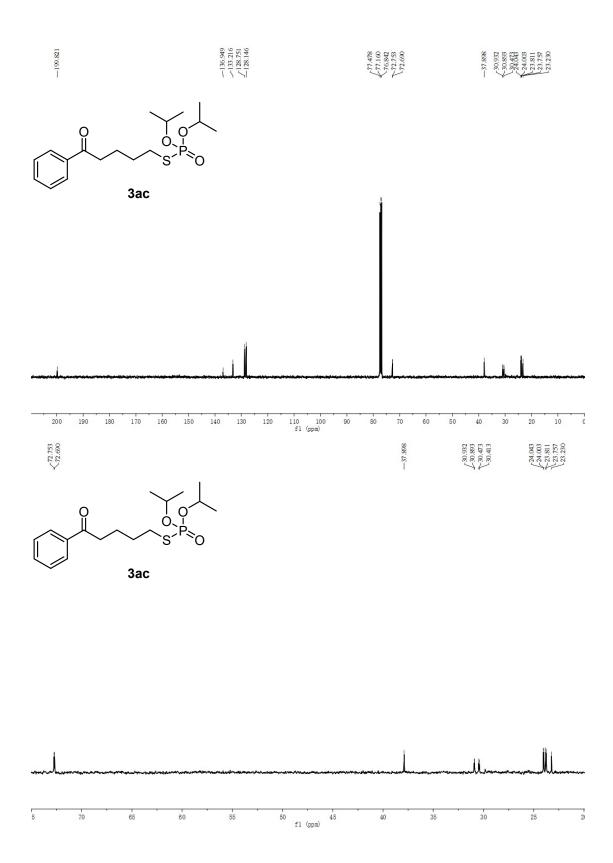

³¹P NMR (162 MHz, CDCl₃), ¹H NMR (400 MHz, CDCl₃) and ¹³C NMR (100 MHz, CDCl₃) spectra of product **3sa**

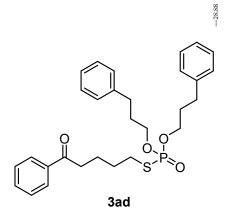


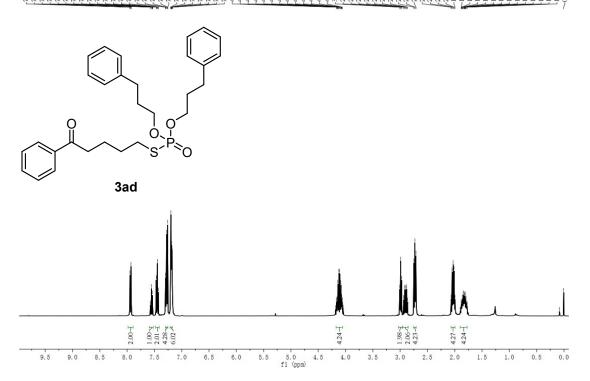


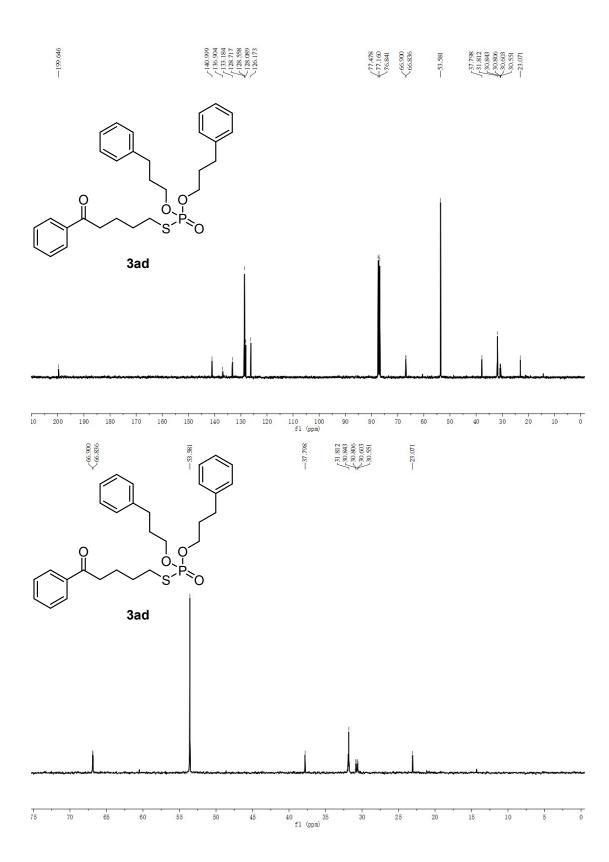

³¹P NMR (162 MHz, CDCl₃), ¹H NMR (400 MHz, CDCl₃) and ¹³C NMR (100 MHz, CDCl₃) spectra of product **3ab**



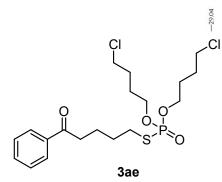


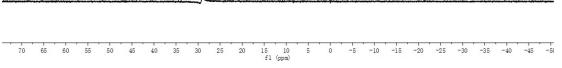

³¹P NMR (162 MHz, CDCl₃), ¹H NMR (400 MHz, CDCl₃) and ¹³C NMR (100 MHz, CDCl₃) spectra of product **3ac**

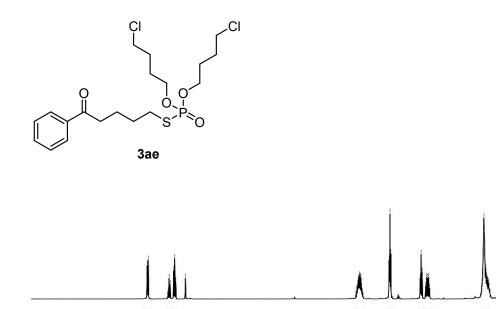


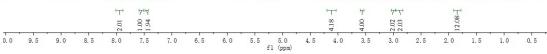


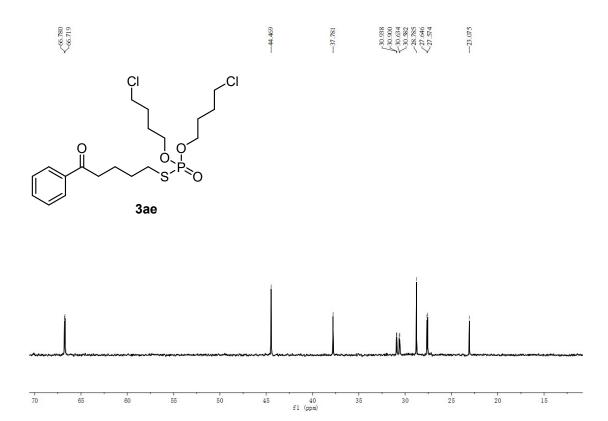
³¹P NMR (162 MHz, CDCl₃), ¹H NMR (400 MHz, CDCl₃) and ¹³C NMR (100 MHz, CDCl₃) spectra of product **3ad**

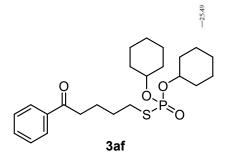


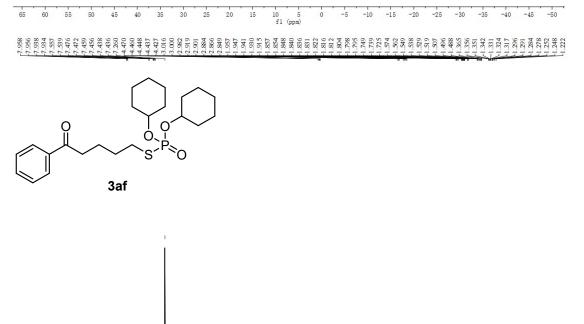

15 10 fl (ppm) 70 65 30 25 20 -10 60 55 50 45 40 35 5 0 -5 -15 -20 -25 -30 -35 -40 -45 7, 399 7, 397 7, 397 7, 397 7, 397 7, 397 7, 397 7, 397 7, 397 7, 397 7, 397 7, 397 7, 397 7, 397 7, 397 7, 397 7, 397 7, 397 7, 397 7, 397 7, 207 7, 207

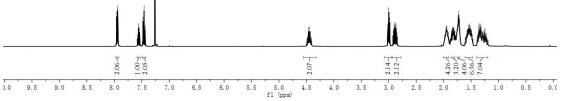


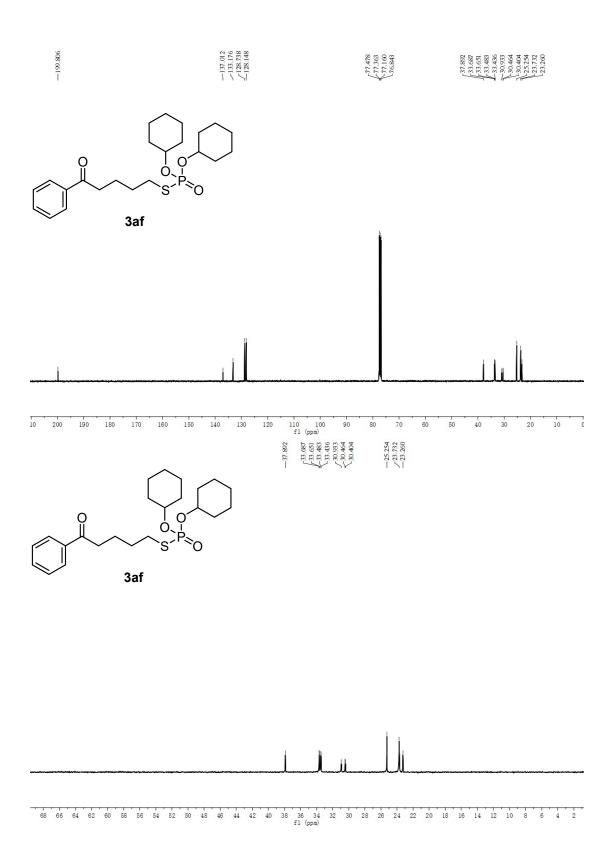

³¹P NMR (162 MHz, CDCl₃), ¹H NMR (400 MHz, CDCl₃) and ¹³C NMR (100 MHz, CDCl₃) spectra of product **3ae**



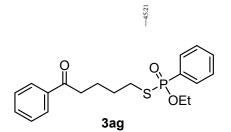

27, 2349 27, 2349 27, 2575 27, 2575 25, 25

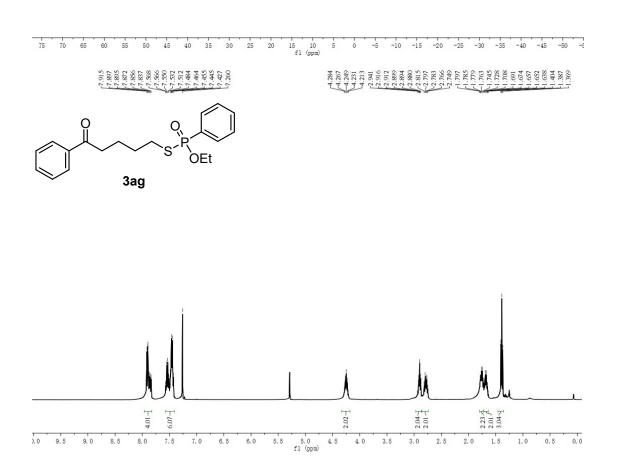


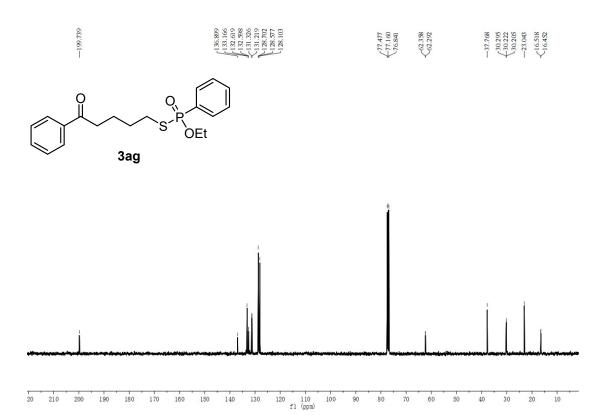


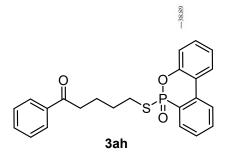


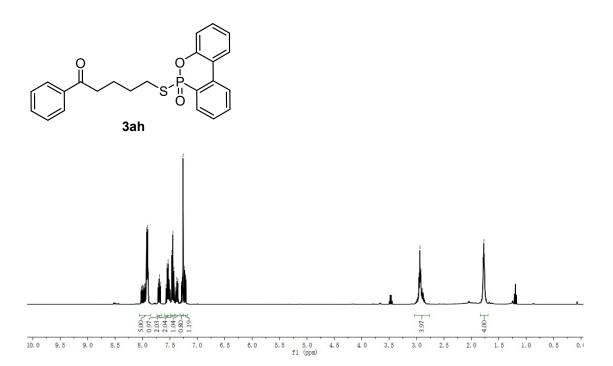
³¹P NMR (162 MHz, CDCl₃), ¹H NMR (400 MHz, CDCl₃) and ¹³C NMR (100 MHz, CDCl₃) spectra of product **3af**

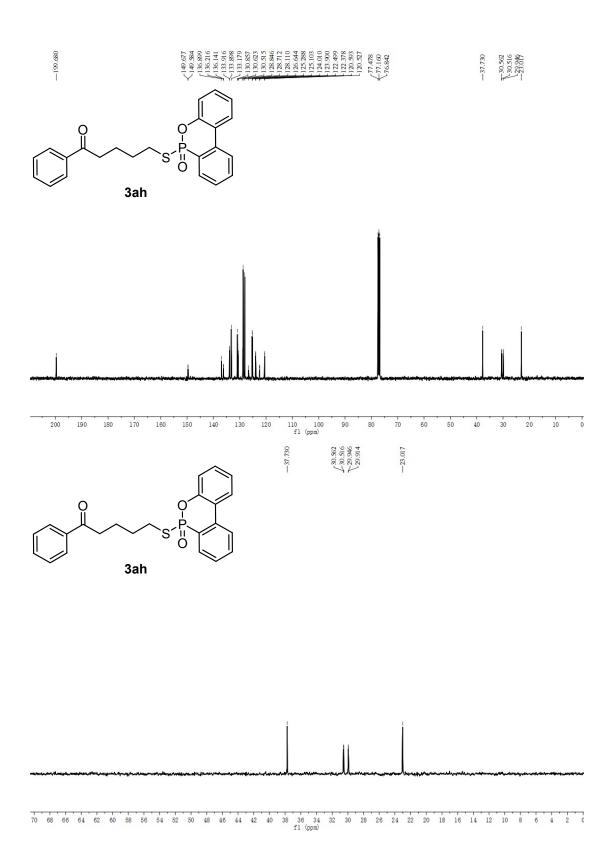




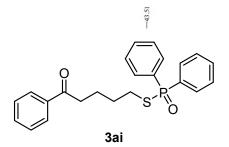


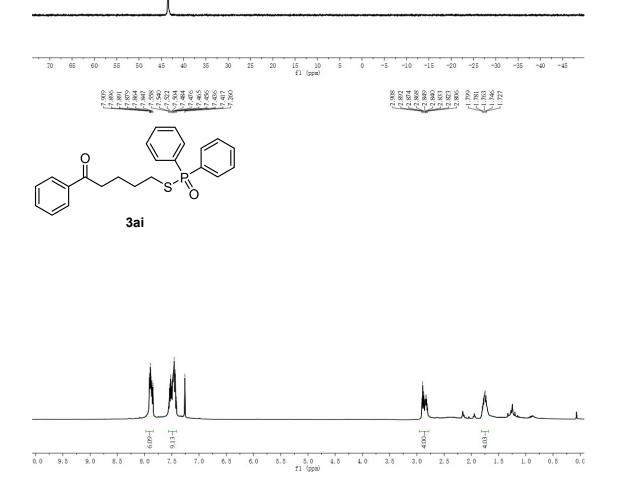

³¹P NMR (162 MHz, CDCl₃), ¹H NMR (400 MHz, CDCl₃) and ¹³C NMR (100 MHz, CDCl₃) spectra of product **3ag**

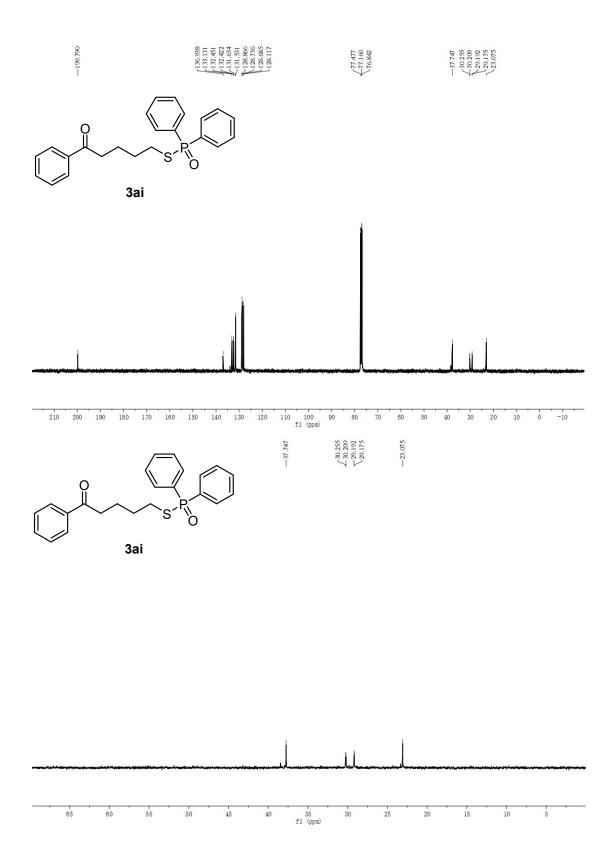


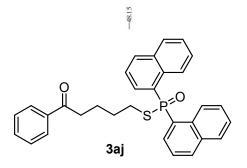


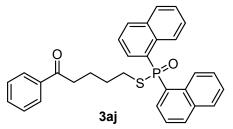
³¹P NMR (162 MHz, CDCl₃), ¹H NMR (400 MHz, CDCl₃) and ¹³C NMR (100 MHz, CDCl₃) spectra of product **3ah**

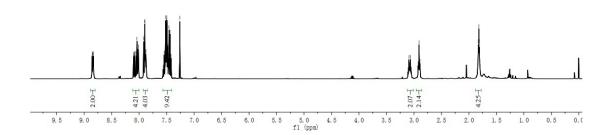


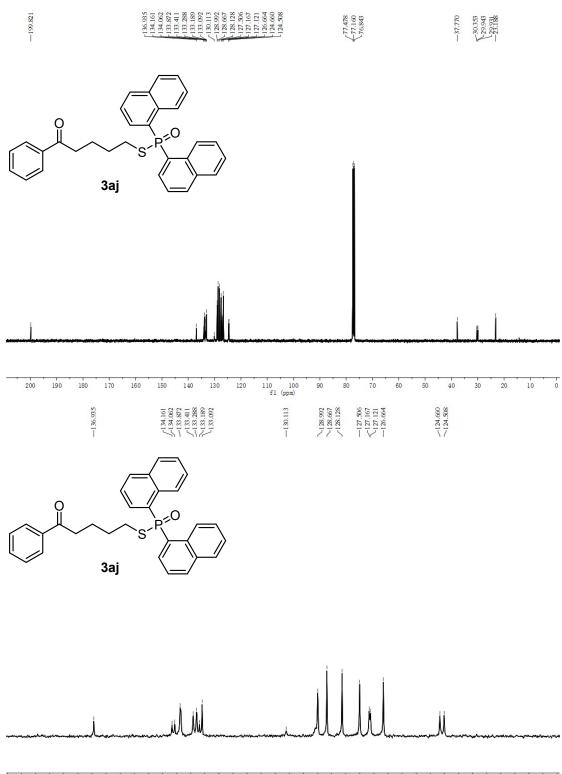




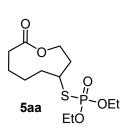

³¹P NMR (162 MHz, CDCl₃), ¹H NMR (400 MHz, CDCl₃) and ¹³C NMR (100 MHz, CDCl₃) spectra of product **3ai**

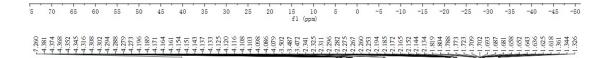


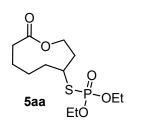


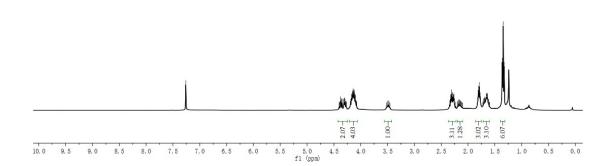

³¹P NMR (162 MHz, CDCl₃), ¹H NMR (400 MHz, CDCl₃) and ¹³C NMR (100 MHz, CDCl₃) spectra of product **3aj**

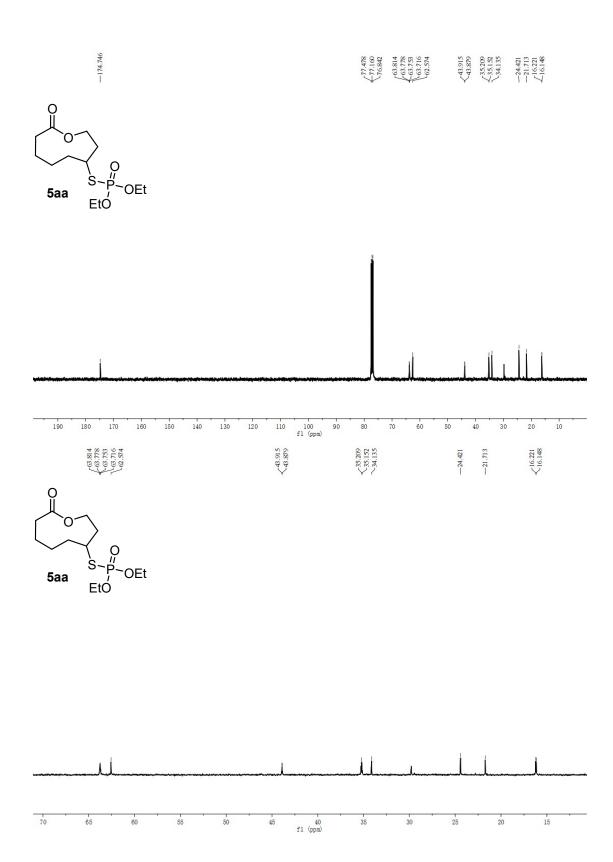
75 70 65 15 10 fl (ppm) -35 -40 -45 -50 60 55 50 -5 -10 -15 -20 45 40 35 30 25 20 5 0 -25 -30 8.854 8.842 8.831

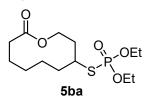


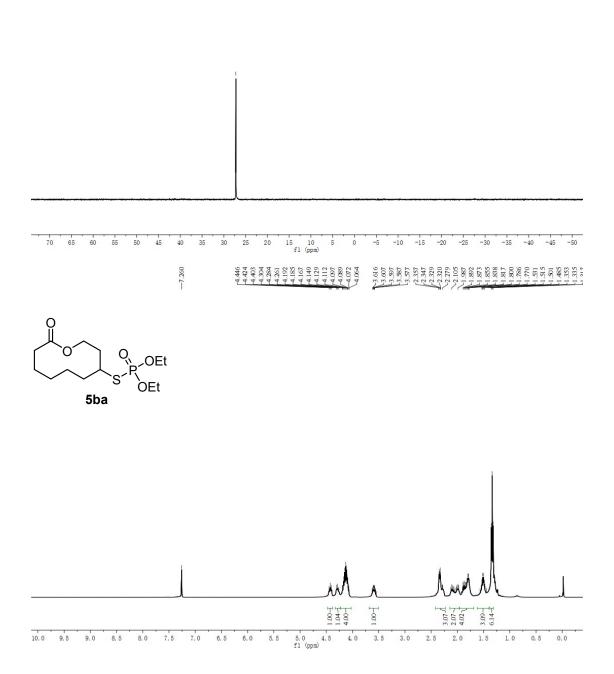


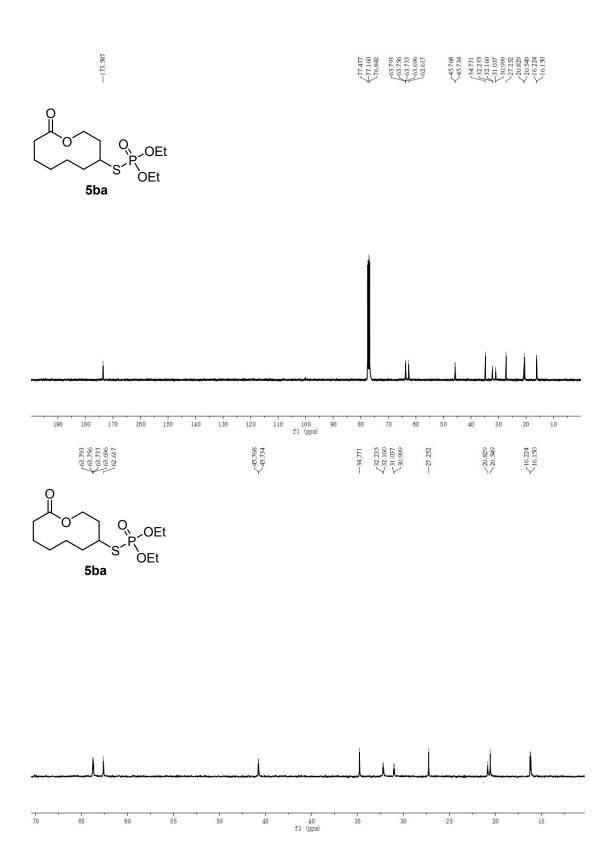

131 130 fl (ppm)


³¹P NMR (162 MHz, CDCl₃), ¹H NMR (400 MHz, CDCl₃) and ¹³C NMR (100 MHz, CDCl₃) spectra of product **5aa**

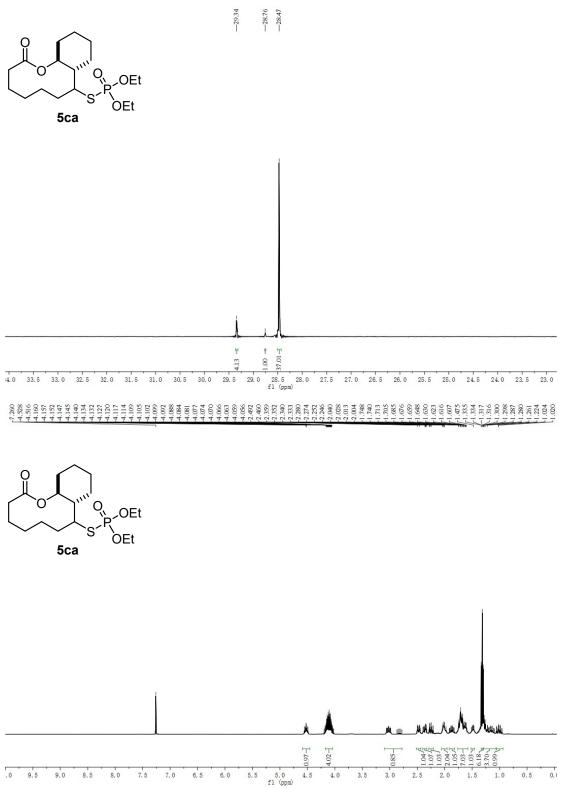

-26.95

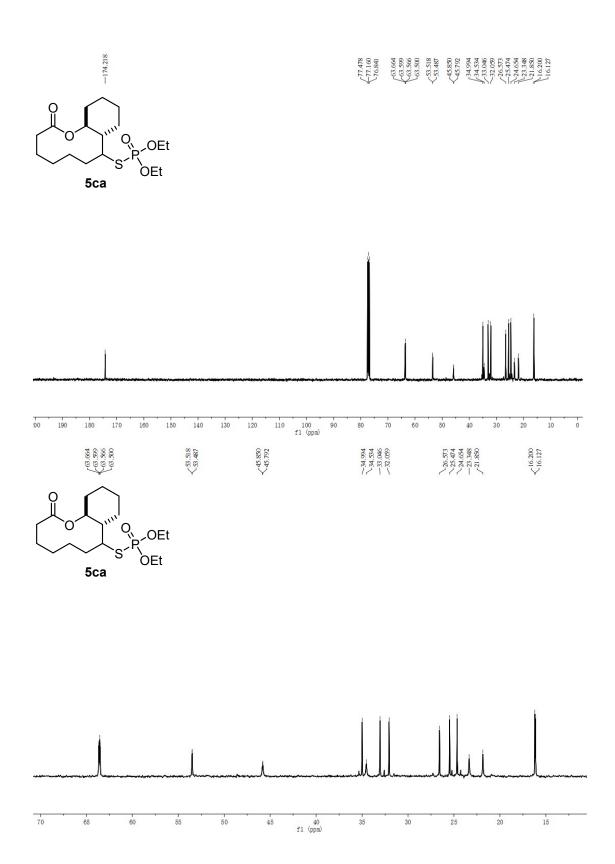




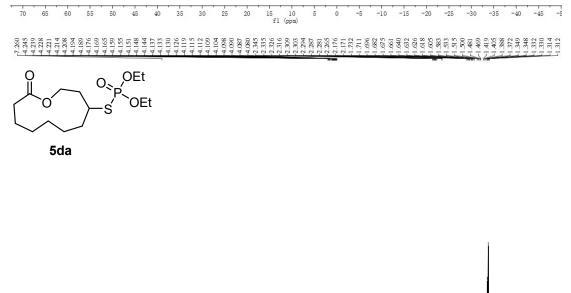


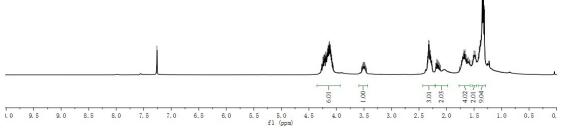
³¹P NMR (162 MHz, CDCl₃), ¹H NMR (400 MHz, CDCl₃) and ¹³C NMR (100 MHz, CDCl₃) spectra of product **5ba**

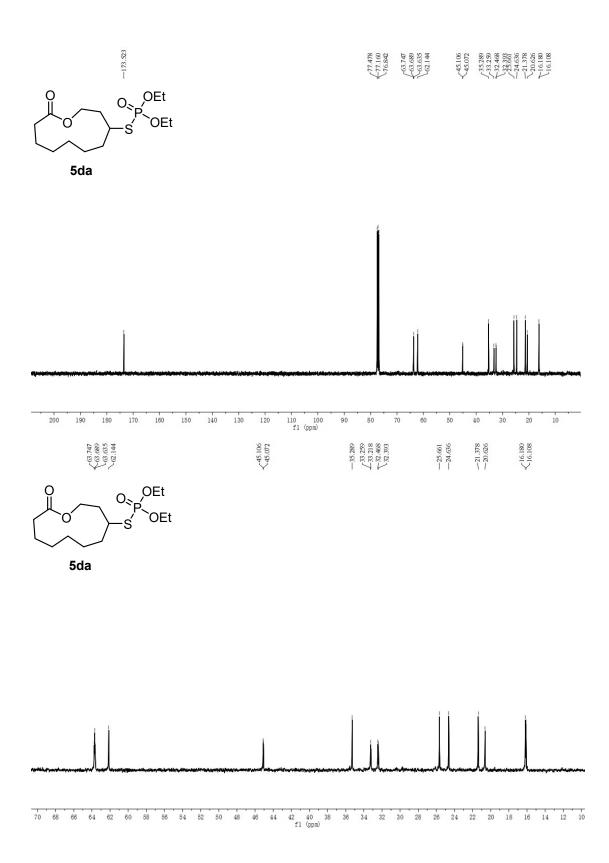

-27.24



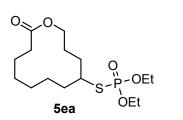
³¹P NMR (162 MHz, CDCl₃), ¹H NMR (400 MHz, CDCl₃) and ¹³C NMR (100 MHz, CDCl₃) spectra of product **5ca**

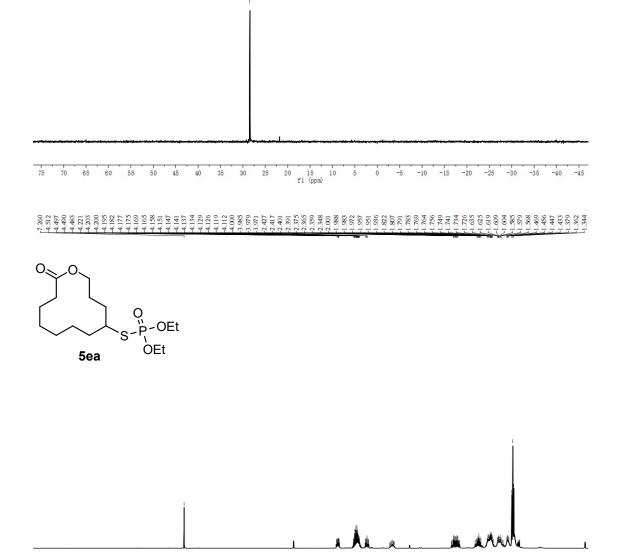


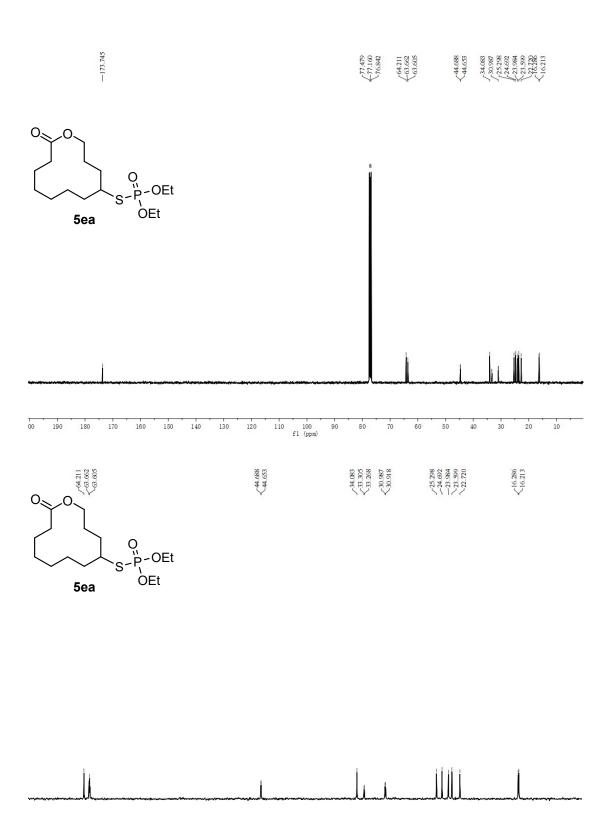

³¹P NMR (162 MHz, CDCl₃), ¹H NMR (400 MHz, CDCl₃) and ¹³C NMR (100 MHz, CDCl₃) spectra of product **5da**


-27.14

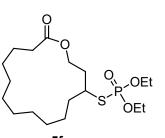
O_{≈p}́OEt OEt Ś


5da

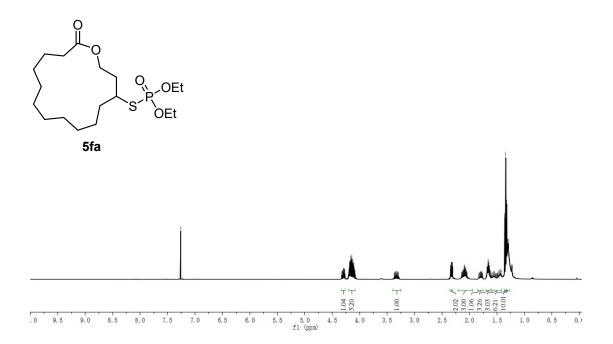


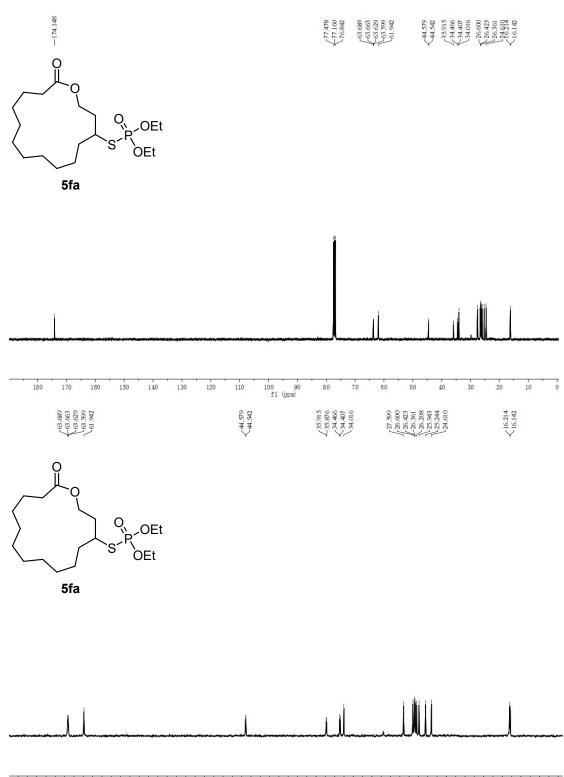


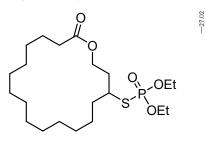
³¹P NMR (162 MHz, CDCl₃), ¹H NMR (400 MHz, CDCl₃) and ¹³C NMR (100 MHz, CDCl₃) spectra of product **5ea**



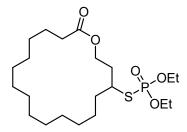
70 68 66 64 62 60 58 56 54 52 50 48 46 44 42 40 38 36 34 32 30 28 26 24 22 20 18 16 14 12 10 fl (ppm)


³¹P NMR (162 MHz, CDCl₃), ¹H NMR (400 MHz, CDCl₃) and ¹³C NMR (100 MHz, CDCl₃) spectra of product **5fa**

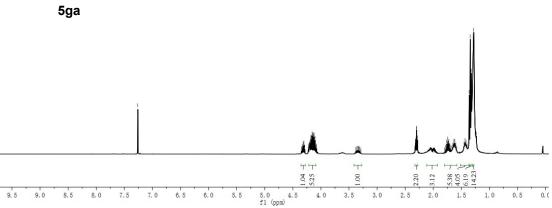

-26.94

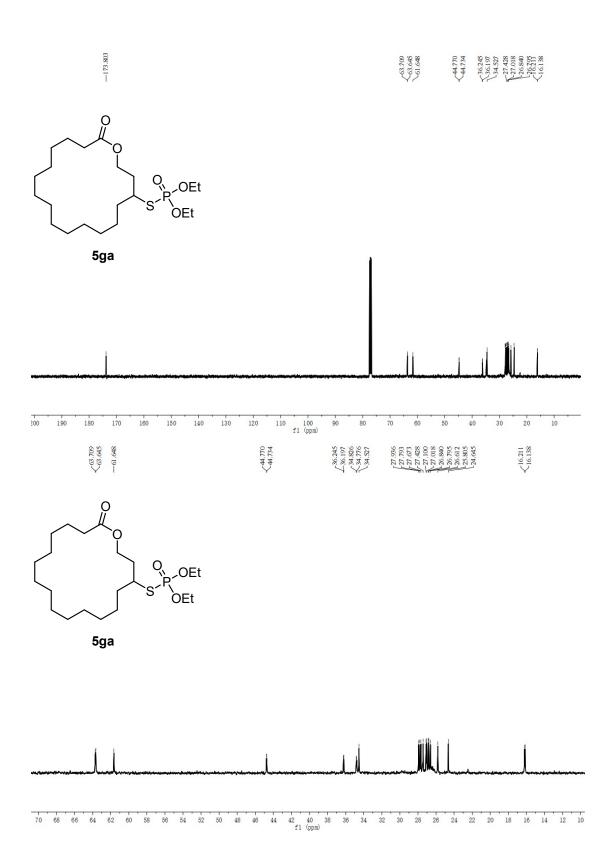

5fa

70	65	60	55	50	45	40	35	30	25	20	15 f1	10 (ppm)	5	0	-5	-10	-15	-20	-25	-30	-35	-40	-45
-7.260 -4.318 -4.309	4.301 4.297 4.289	4.272	4.188	4.178	-4.163 -4.157	4.148 4.145 4.143	4.140 4.131 4.127	4.124	4.109	4.009	-4.084 -2.346	2.332	-2.323 -2.312	-2.310 -2.115	2.098	-2.003	-1.001 -1.678 -1.676	-1.660 -1.653 -1.645	-1.630 -1.624 -1.456	-1.437 -1.422 -1.360	-1.358 -1.343	-1.334	-1.325 -1.323 -1.303

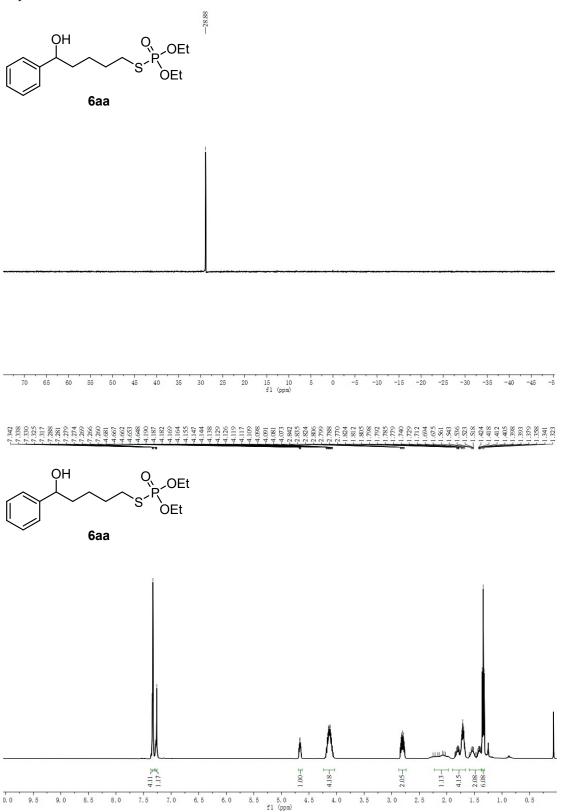


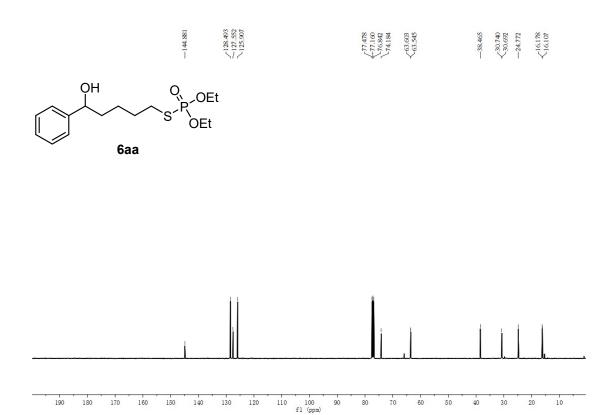
68 66 64 62 60 58 56 54 52 50 48 46 44 42 40 38 36 34 32 30 28 26 24 22 20 18 16 14 12 f1 (ppm) ³¹P NMR (162 MHz, CDCl₃), ¹H NMR (400 MHz, CDCl₃) and ¹³C NMR (100 MHz, CDCl₃) spectra of product 5ga



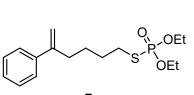


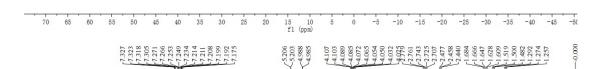
70 45 40 30 25 20 15 10 5 fl (ppm) 65 60 55 50 35 -5 -10 -15 -20 -25 -30 -45 -50 0 -35 -40 -7.26

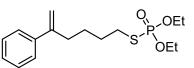


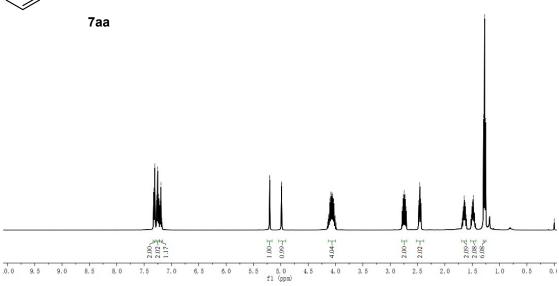


15. ³¹P NMR, ¹H NMR and ¹³C NMR Spectra of Products 6aa and 7aa


³¹P NMR (162 MHz, CDCl₃), ¹H NMR (400 MHz, CDCl₃) and ¹³C NMR (100 MHz, CDCl₃) spectra of product **6aa**




 ^{31}P NMR (162 MHz, CDCl₃), ^{1}H NMR (400 MHz, CDCl₃) and ^{13}C NMR (100 MHz, CDCl₃) spectra of product 7


-28.82

