Electronic Supplementary Material (ESI) for Organic & Biomolecular Chemistry. This journal is © The Royal Society of Chemistry 2023

Supporting Information

Catalyst-free Electrochemical Sulfonylation of Amines with Sulfonyl

Hydrazide in Aqueous Medium

Wei Chen*, Haojian Xu, Run Wu, Yang Chen, Pingbing Yu, Yanxi Jin

Sichuan Engineering Research Center for Biomimetic Synthesis of Natural Drugs, School of Life Science and Engineering, Southwest Jiaotong University, Chengdu, 610031, China

Corresponding Author Email: chenweicstq@163.com

Contents

1. General methods	S1
2. General procedures	
3. Optimization of reaction conditions	
4. Mechanistic investigation	S6
5. Characterization data of the products	
6. NMR of products	S21

1. General methods

Unless otherwise noted, materials were obtained from commercial suppliers and used without further Purified. Reactions were monitored by thin layer chromatography (TLC). Yields refer to products isolated after Purified by column chromatography. ¹H NMR, ¹³C NMR and ¹⁹F NMR spectra were recorded on a Bruker AV 400 MHz spectrometer using CDCl₃ or DMSO- d_6 as the solvent with TMS as the internal standard. Chemical shifts are reported in parts per million. Multiplicity was indicated as follows: s, singlet; d, doublet; t, triplet; q, quartet; m, multiplet. Coupling constants (*J*) were reported in Hz. Electrolysis experiments were performed using MESTEK DC power supply. Cyclic voltammetry was obtained from CHI 660E (Shanghai Chenhua Instrument Factory, Shanghai, China).

2. General procedure

General procedure for the synthesis of 2

$$\begin{array}{c} O \\ R - \overset{H}{\overset{}_{S}} - CI \\ \overset{H}{\overset{}_{O}} \end{array} \xrightarrow{N_{2}, N_{2}H_{4} \cdot H_{2}O} \xrightarrow{O} \begin{array}{c} H \\ \overset{H}{\overset{}_{N}} \overset{N}{\overset{}_{N}} \overset{N}{\overset{}_{N}} NH_{2} \end{array}$$

The hydrazine monohydrate (6 mmol) was added dropwise to the solution of sulfonyl chloride (2 mmol) in THF (10 mL) at 0 °C. Subsequently, the mixture was further stirred at 0 °C for 1 h. After the solvent was removed by evaporation. The pure products **2** were obtained by silica gel column chromatography with petroleum ether/ethyl acetate as eluent.

General procedure for the synthesis of 3

$$\begin{array}{c} C(+) & & \\ C(+) & & \\ I = 15 \text{ mA} \\ R_1 & R_2 & + \\ R_3 & O \\ 1 & 2 \end{array} \xrightarrow{(N-S)} NH_2 \xrightarrow{(N-Bu_4NBr (2 equiv.))}{R_2 & M_4NBr (2 equiv.)} \\ R_1 & R_2 & R_3 & \\ R_2 & N_3 & \\ R_3 & \\ NH_2 & \\ R_2 & N_3 & \\ NH_2 & \\ R_3 & \\ NH_2 & \\ R_1 & R_2 & \\ R_2 & \\ NH_2 & \\$$

In an oven-dried undivided three-necked bottle (25 mL) equipped with a stir bar, amines 1 (0.3 mmol, 1 *equiv.*), sulfonyl hydrazides 2 (0.3 mmol, 1 *equiv.*), *n*-Bu₄NBr (0.6 mmol, 2 *equiv.*), MeOH (8 mL) and H₂O (2 mL) were combined and added. Two graphite rod (ϕ 5 mm) were used as anode and cathode respectively (the electrodes were immersed 1 cm in the reaction solution). The reaction mixture was stirred and electrolyzed at a constant current of 15 mA under room temperature for 4 h. After reaction completion, the solvents were removed in vacuum, the products **3** were obtained by silica gel column chromatography.

Procedure for gram scale synthesis of 3aa

In an oven-dried undivided three-necked bottle (50 mL) equipped with a stir bar, 1,2,3,4-tetrahydroisoquinoline **1a** (5 mmol, 1 *equiv.*), *p*-toluenesulfonyl hydrazide **2a** (5 mmol, 1 *equiv.*), *n*-Bu₄NBr (10 mmol, 2 *equiv.*), MeOH (16 mL) and H₂O (4 mL) were added. Two graphite rods (ϕ 10 mm) were used as anode and cathode, respectively (the electrodes were immersed 3 cm in the reaction solution). The reaction mixture was stirred and electrolyzed at a constant current of 30 mA under room temperature for 24 h. After reaction completion, the reaction mixture was diluted with water, and extracted with ethyl acetate. The organic layers were combined, washed with brine, dried over Na₂SO₄ and concentrated under reduced pressure. The crude was purified by silica gel column (petroleum ether/ethyl acetate = 8:1) to obtain the product **3aa** (1.14g, 80%).

3. Optimization of reaction conditions

Table S1 Optimization of electrode materials^a

	NH +	electrode I = 10 mA Nal (2 <i>equiv.</i>) NH ₂ O r.t., air, 4 h undivided cell	N.S O
1a		2a	3aa
-	Entry	Electrode material	Yield $(\%)^b$
-	1	Pt(+) Pt(-)	75
	2	C(+) C(-)	80
	3	C(+) Pt(-)	64
	4	Pt(+) C(-)	57
	5	Pt(+) Ni(-)	72
	6	C(+) Ni(-)	73

^{*a*}Reaction conditions: **1a** (0.3 mmol, 1 *equiv.*), **2a** (0.3 mmol, 1 *equiv.*), NaI (0.6 mmol, 2 *equiv.*), MeOH/H₂O (v/v = 4:1, 10.0 mL), constant current (10.0 mA), air, room temperature, 4 h, undivided cell. ^{*b*}Isolated yields.

Table S2 Optimization of solvents^a

NH +	O H NNH2 O	$C(+) \square C(-)$ $I = 10 \text{ mA}$ Nal (2 equiv.) solvent $r.t., air, 4 \text{ h}$ undivided cell	
1a	2a		3aa
Entry	Solvent		Yield $(\%)^b$
1	MeOH		36
2	DMF		53
3	MeOH/H ₂ O	D (4:1)	80
4	MeOH/H ₂ O	D (2:1)	66
5	MeOH/H ₂ O	D (1:1,)	46
6	MeOH/H ₂ O	D (1:2)	22
7	MeCN/H ₂ C	D (4:1)	69
8	EtOH/H ₂ O	(4:1)	57
9	THF/H ₂ O ((4:1)	32
10	DMSO/H ₂ O	D (4:1)	38
11	DMF/H ₂ O	(4:1)	61

^{*a*}Reaction conditions: **1a** (0.3 mmol, 1 *equiv.*), **2a** (0.3 mmol, 1 *equiv.*), NaI (0.6 mmol, 2 *equiv.*), solvent (10.0 mL), constant current (10.0 mA), air, room temperature, 4 h, undivided cell. Anode: graphite rod, cathode: graphite rod. ^{*b*}Isolated yields.

NH +	S, NH ₂	C(+) = 10 mA electrolyte (2 equiv.) MeOH/H ₂ O (4:1) r.t., air, 4 h undivided cell	N S O'
1a	2a		3aa
Entry	Electrolyt	e	Yield $(\%)^b$
1	<i>n</i> -Bu ₄ NBF ₄		N.d.
2	<i>n</i> -Bu ₄ NPF ₆		N.d.
3	<i>n</i> -Bu ₄ NI		42
4	<i>n</i> -Bu ₄ NBr		82
5	NaBr		37
6	KBr		35
7	NaI		80
8	KI		49
9	NH4I		36
10	DMMI		43

Table S3 Optimization of electrolytes^a

^{*a*}Reaction conditions: **1a** (0.3 mmol, 1 *equiv.*), **2a** (0.3 mmol, 1 *equiv.*), Electrolyte (0.6 mmol, 2 *equiv.*), MeOH/H₂O (v/v = 4:1, 10.0 mL), constant current (10.0 mA), air, room temperature, 4 h, undivided cell. Anode: graphite rod, cathode: graphite rod. Isolated yields. ^{*c*}N.d. = no detected. DMMI = 1,3-dimethylimidazolium iodide.

Table S4 Optimization of the amount of *n*-Bu₄NBr^a

NH	+	$C(+) \blacksquare C(-)$ $I = 10 \text{ mA}$ $n-Bu_4\text{NBr}$ $MeOH/H_2O (4:1)$ $r.t., air, 4 h$ undivided cell		Ì
1a	2a		3aa	
Entry	Amount o	f <i>n</i> -Bu ₄ NBr (<i>equiv</i> .)	Yield $(\%)^b$	
1	1		57	
2	2		82	
3	3		30	

^{*a*}Reaction conditions: **1a** (0.3 mmol, 1 *equiv.*), **2a** (0.3 mmol, 1 *equiv.*), *n*-Bu₄NBr, MeOH/H₂O (v/v = 4:1, 10.0 mL), constant current (10.0 mA), air, room temperature, 4 h, undivided cell. Anode: graphite rod, cathode: graphite rod. ^{*b*}Isolated yields.

^{*a*}Reaction conditions: **1a** (0.3 mmol, 1 *equiv.*), 2a (0.3 mmol, 1 *equiv.*), *n*-Bu₄NBr (0.6 mmol, 2 *equiv.*), H₂O/MeOH (v/v = 4:1, 10.0 mL), constant current electrolysis, air, room temperature, 4 h, undivided cell. Anode: graphite rod, cathode: graphite rod. ^{*b*}Isolated yields. ^{*c*}N.d. = no detected.

Table S6 Optimization of reaction time^a

NH	+ S NH2 -	$C(+) \square C(-)$ $I = 15 \text{ mA}$ $n-\text{Bu}_4\text{NBr} (2 \text{ equiv.})$ $MeOH/H_2O (4:1)$ $r.t., air$ $undivided cell$	
1a	2a		3aa
Entry	Time (h)		Yield $(\%)^b$
1	2		56
2	3		82
3	4		89
4	6		78

^{*a*}Reaction conditions: **1a** (0.3 mmol, 1 *equiv.*), 2a (0.3 mmol, 1 *equiv.*), *n*-Bu₄NBr (0.6 mmol, 2 *equiv.*), H₂O/MeOH (v/v = 4:1, 10.0 mL), constant current (10.0 mA), air, room temperature, undivided cell. Anode: graphite rod, cathode: graphite rod. ^{*b*}Isolated yields.

Table S7 Optimization of atmosphere^a

^{*a*}Reaction conditions: **1a** (0.3 mmol, 1 *equiv.*), 2a (0.3 mmol, 1 *equiv.*), *n*-Bu₄NBr (0.6 mmol, 2 *equiv.*), H₂O/MeOH (v/v = 4:1, 10.0 mL), constant current (10.0 mA), room temperature, 4 h, undivided cell. Anode: graphite rod, cathode: graphite rod. ^{*b*}Isolated yields.

4. Mechanistic investigation

Cyclic voltammetry experiments

Cyclic voltammetry was performed in a 25 mL three-electrode cell under air at room temperature. The working electrode was a steady glassy carbon disk electrode, the counter electrode a platinum wire. The reference was an Ag/AgCl electrode submerged in saturated aqueous KCl solution. 8 mL of methanol and 2 mL of water containing 0.1 M *n*-Bu₄NBF₄ were poured into the electrochemical cell in all experiments. The scan rate is 0.1 V/s, ranging from 0 V to 3.0 V. Background (nBu_4NBF_4 , 0.1 M in the mixed solvent); 1,2,3,4-tetrahydroisoquinoline (1a, 0.1 M in the mixed solvent); *p*-toluenesulfonyl hydrazide (2a, 0.1 M in the mixed solvent); *n*-Bu₄NBr (0.1 M in the mixed solvent) and the mixture of 1a, 2a and *n*-Bu₄NBr (0.1 M in the mixed solvent).

Figure S1 CV measurements. n-Bu₄NBF₄ was used as the electrolyte for the CV measurements.

In order to confirm whether the reaction undergoes a radical mechanism, commonly used radical scavengers such as 2,2,6,6-tetramethylpiperidinooxy (TEMPO), 1,1diphenylethylene (DPE) and butylated hydroxytoluene (BHT) was used respectively in radical capture and suppression experiments. Under the standard conditions, the radical scavenger (2.0 *equiv*. to **2a**) was added to the model reaction system at the beginning of the reaction. Additionally, after 4 h, a small amount of the reaction mixture added with TEMPO was used to measurement. The radical trapping product **6** can be observed by LCMS.

Figure S2. Mass spectrometry (LCMS) data of possible intermediate (with TEMPO).

Control experiments

To investigate the possible mechanism of this electrochemical sulfonation, a series of control experiments were conducted.

5. Characterization data of the products

2-*Tosyl*-1,2,3,4-tetrahydroisoquinoline (**3aa**): Purified by column chromatography on silica gel (8:1 petroleum ether/ethyl acetate) afforded **3aa** as a white solid (76.7 mg, 89% yield). m.p. 138~140 °C. ¹H NMR (400 MHz, CDCl₃): δ 7.73 (d, *J* = 8.2 Hz, 2H), 7.32 (d, *J* = 8.0 Hz, 2H), 7.17 – 7.11 (m, 2H), 7.10 – 7.05 (m, 1H), 7.05 – 6.99 (m, 1H), 4.24 (s, 2H), 3.35 (t, *J* = 6.0 Hz, 2H), 2.93 (t, *J* = 5.8 Hz, 2H), 2.42 (s, 3H). ¹³C NMR (100 MHz, CDCl₃): δ 143.8, 133.3, 133.2, 131.7, 129.8, 128.9, 127.9, 126.8, 126.5, 126.4, 47.6, 43.8, 29.0, 21.6. HRMS (ESI) calc for C₁₆H₁₈NO₂S ([M+H]⁺): 288.1058, Found: 288.1066.

6,7-Dimethoxy-2-tosyl-1,2,3,4-tetrahydroisoquinoline $(3ba)^1$: Purified by column chromatography on silica gel (4:1 petroleum ether/ethyl acetate) afforded **3ba** as a white solid. m.p. 134~136 °C. ¹H NMR (400 MHz, CDCl₃): δ 7.71 (d, J = 8.2 Hz, 2H), 7.31 (d, J = 8.0 Hz, 2H), 6.54 (s, 1H), 6.50 (s, 1H), 4.16 (s, 2H), 3.81 (s, 3H), 3.80 (s, 3H), 3.32 (t, J = 6.0 Hz, 2H), 2.83 (t, J = 5.8 Hz, 2H), 2.41 (s, 3H). HRMS (ESI) calc. for C₁₈H₂₂NO₄S ([M+H]⁺): 348.1270, Found: 348.1250.

6-Bromo-2-tosyl-1,2,3,4-tetrahydroisoquinoline (**3ca**): Purified by column chromatography on silica gel (8:1 petroleum ether/ethyl acetate) afforded **3ca** as a white solid (68.6 mg, 63% yield). m.p. 154~156 °C. ¹H NMR (400 MHz, CDCl₃): δ 7.71 (d, J = 8.2 Hz, 2H), 7.32 (d, J = 8.0 Hz, 2H), 7.28 – 7.21 (m, 2H), 6.90 (d, J = 8.2 Hz, 1H), 4.18 (s, 2H), 3.33 (t, J = 6.0 Hz, 2H), 2.89 (t, J = 5.8 Hz, 2H), 2.42 (s, 3H). ¹³C NMR (100 MHz, CDCl₃): δ 144.0, 135.5, 133.4, 131.7, 130.9, 129.9, 129.6, 128.1, 127.8, 120.5, 47.3, 43.5, 28.8, 21.6. HRMS (ESI) calc. for C₁₆H₁₇BrNO₂S ([M+H]⁺): 366.0163, Found: 366.0171.

1-Methyl-2-tosyl-1,2,3,4-tetrahydroisoquinoline (**3da**): Purified by column chromatography on silica gel (10:1 petroleum ether/ethyl acetate) afforded **3da** as a

colorless liquid (60.4 mg, 67% yield). ¹H NMR (400 MHz, CDCl₃): δ 7.67 (d, J = 8.3 Hz, 2H), 7.19 (d, J = 8.0 Hz, 2H), 7.16 – 7.02 (m, 3H), 6.98 (d, J = 7.4 Hz, 1H), 5.14 (q, J = 6.8 Hz, 1H), 3.90 – 3.82 (m, 1H), 3.49 – 3.37 (m, 1H), 2.78 – 2.58 (m, 2H), 2.36 (s, 3H), 1.47 (d, J = 6.8 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃): δ 143.2, 138.1, 137.9, 132.9, 129.7, 129.1, 127.1, 126.8, 126.7, 126.4, 52.2, 38.7, 28.0, 23.6, 21.5. HRMS (ESI) calc. for C₁₇H₂₀NO₂S ([M+H]⁺): 302.1215, Found: 302.1222.

1-Phenyl-2-tosyl-1,2,3,4-tetrahydroisoquinoline $(3ea)^2$: Purified by column chromatography on silica gel (10:1 petroleum ether/ethyl acetate) afforded **3ea** as a white solid (68.5 mg, 63% yield). m.p. 154~156 °C. ¹H NMR (400 MHz, CDCl₃): δ 7.55 (d, J = 8.2 Hz, 2H), 7.29 – 7.22 (m, 3H), 7.21 – 7.17 (m, 2H), 7.16 – 7.10 (m, 2H), 7.08 (d, J = 8.2 Hz, 2H), 7.01 – 6.96 (m, 2H), 6.23 (s, 1H), 3.80 – 3.72 (m, 1H), 3.36 – 3.27 (m, 1H), 2.73 – 2.62 (m, 1H), 2.60 – 2.53 (m, 1H), 2.32 (s, 3H). HRMS (ESI) calc. for C₂₂H₂₂NO₂S ([M+H]⁺): 364.1371, Found: 364.1380.

1-Tosylpyrrolidine (**3fa**)³: Purified by column chromatography on silica gel (8:1 petroleum ether/ethyl acetate) afforded **3fa** as a white solid (59.1 mg, 88% yield). m.p. 132~134 °C. ¹H NMR (400 MHz, CDCl₃): δ 7.71 (d, *J* = 8.0 Hz, 2H), 7.31 (d, *J* = 8.0 Hz, 2H), 3.22 (t, *J* = 6.6 Hz, 4H), 2.42 (s, 3H), 1.74 (t, *J* = 6.8 Hz, 4H). HRMS (ESI) calc. for C₁₁H₁₆NO₂S ([M+H]⁺): 226.0902, Found: 226.0897.

2-Phenyl-1-tosylpyrrolidine (**3ga**): Purified by column chromatography on silica gel (8:1 petroleum ether/ethyl acetate) afforded **3ga** as a white solid (73.1 mg, 81% yield). m.p. 110~112 °C. ¹H NMR (400 MHz, CDCl₃): δ 7.66 (d, J = 8.0 Hz, 2H), 7.33 – 7.25 (m, 6H), 7.24 – 7.18 (m, 1H), 4.78 (dd, J = 8.0, 3.6 Hz, 1H), 3.65 – 3.57 (m, 1H), 3.47 – 3.38 (m, 1H), 2.41 (s, 3H), 2.05 – 1.93 (m, 1H), 1.90 – 1.76 (m, 2H), 1.71 – 1.61 (m, 1H). ¹³C NMR (100 MHz, CDCl₃) δ 143.4, 143.2, 135.3, 129.7, 128.4, 127.6, 127.1, 126.3, 63.4, 49.5, 35.9, 24.1, 21.6. HRMS (ESI) calc. for C₁₇H₂₀NO₂S ([M+H]⁺): 302.1215, Found: 302.1222.

4-Methyl-1-tosylpiperidine (**3ha**)⁴: Purified by column chromatography on silica gel (8:1 petroleum ether/ethyl acetate) afforded **3ha** as a white solid (62.0 mg, 82% yield). m.p. 164~166 °C. ¹H NMR (400 MHz, CDCl₃): δ 7.63 (d, J = 8.2 Hz, 2H), 7.30 (d, J = 8.0 Hz, 2H), 3.75 – 3.68 (m, 2H), 2.42 (s, 3H), 2.27 – 2.17 (m, 2H), 1.68 – 1.61 (m, 2H), 1.31 – 1.23 (m, 3H), 0.89 (d, J = 5.6 Hz, 3H). HRMS (ESI) calc. for C₁₃H₂₀NO₂S ([M+H]⁺): 254.1215, Found: 254.1187.

4-Phenyl-1-tosylpiperidine (**3ia**)⁴: Purified by column chromatography on silica gel (8:1 petroleum ether/ethyl acetate) afforded **3ia** as a white solid (72.3 mg, 77% yield). m.p. 150~152 °C. ¹H NMR (400 MHz, CDCl₃): δ 7.69 (d, J = 8.2 Hz, 2H), 7.35 (d, J = 8.0 Hz, 2H), 7.34 – 7.25 (m, 2H), 7.25 – 7.16 (m, 1H), 7.18 – 7.11 (m, 2H), 3.97 – 3.90 (m, 2H), 2.45 (s, 3H), 2.43 – 2.39 (m, 1H), 2.39 – 2.31 (m, 2H), 1.91 – 1.81 (m, 4H). HRMS (ESI) calc. for C₁₈H₂₂NO₂S ([M+H]⁺): 316.1371, Found: 316.1383.

8-*Tosyl-1,4-dioxa-8-azaspiro*[4.5]*decane* (**3ja**): Purified by column chromatography on silica gel (2:1 petroleum ether/ethyl acetate) afforded **3ja** as a white solid (69.7 mg, 79% yield). m.p. 114~116 °C. ¹H NMR (400 MHz, CDCl₃): δ 7.64 (d, *J* = 8.2 Hz, 2H), 7.31 (d, *J* = 8.0 Hz, 2H), 3.89 (s, 4H), 3.14 (t, *J* = 5.8 Hz, 4H), 2.42 (s, 3H), 1.77 (t, *J* = 5.8 Hz, 4H). ¹³C NMR (100 MHz, CDCl₃) δ 143.6, 133.7, 129.8, 127.7, 106.2, 64.5, 44.6, 34.6, 21.6. HRMS (ESI) calc. for C₁₄H₂₀NO₄S ([M+H]⁺): 298.1113, Found: 298.1104.

4-Tosylmorpholine $(3ka)^5$: Purified by column chromatography on silica gel (8:1 petroleum ether/ethyl acetate) afforded **3ka** as a white solid (67.9 mg, 94% yield). m.p. 144~146 °C. ¹H NMR (400 MHz, CDCl₃): δ 7.63 (d, J = 8.2 Hz, 2H), 7.34 (d, J = 8.0 Hz, 2H), 3.73 (t, J = 4.8 Hz, 4H), 2.98 (t, J = 4.8 Hz, 4H), 2.44 (s, 3H). HRMS (ESI) calc. for C₁₁H₁₆NO₃S ([M+H]⁺): 242.0851, Found: 242.0844.

4-Tosylthiomorpholine $(3la)^5$: Purified by column chromatography on silica gel (8:1 petroleum ether/ethyl acetate) afforded **3la** as a white solid (40.7 mg, 53% yield). m.p.

126~128 °C. ¹H NMR (400 MHz, CDCl₃): δ 7.61 (d, J = 8.2 Hz, 2H), 7.32 (d, J = 8.0 Hz, 2H), 3.32 (t, J = 5.0 Hz, 4H), 2.69 (t, J = 5.0 Hz, 4H), 2.43 (s, 3H). HRMS (ESI) calc. for C₁₁H₁₆NO₂S₂ ([M+H]⁺): 258.0622, Found: 258.0618.

1-Methyl-4-tosylpiperazine $(3ma)^5$: Purified by column chromatography on silica gel (2:1 petroleum ether/ethyl acetate) afforded **3ma** as a white solid (62.8 mg, 83% yield). m.p. 140~142 °C. ¹H NMR (400 MHz, CDCl₃): δ 7.62 (d, J = 8.2 Hz, 2H), 7.31 (d, J = 8.0 Hz, 2H), 3.01 (t, J = 5.0 Hz, 4H), 2.46 (t, J = 5.0 Hz, 4H), 2.41 (s, 3H), 2.25 (s, 3H). HRMS (ESI) calc. for C₁₃H₂₀NO₂S ([M+H]⁺): 255.1167, Found: 255.1151.

1-Phenyl-4-tosylpiperazine (**3na**): Purified by column chromatography on silica gel (4:1 petroleum ether/ethyl acetate) afforded **3na** as a white solid (72.8 mg, 77% yield). m.p. 198~200 °C. ¹H NMR (400 MHz, CDCl₃): δ 7.71 (d, *J* = 8.2 Hz, 2H), 7.37 (d, *J* = 8.0 Hz, 2H), 7.31 – 7.26 (m, 2H), 6.96 – 6.86 (m, 3H), 3.32 – 3.23 (m, 4H), 3.22 – 3.14 (m, 4H), 2.47 (s, 3H). ¹³C NMR (100 MHz, CDCl₃): δ 150.8, 144.0, 129.9, 129.4, 128.0, 120.9, 117.0, 49.3, 46.2, 21.7. HRMS (ESI) calc. for C₁₇H₂₁N₂O₂S ([M+H]⁺): 317.1324, Found: 317.1313.

N-Benzyl-N,4-dimethylbenzenesulfonamide $(3oa)^1$: Purified by column chromatography on silica gel (8:1 petroleum ether/ethyl acetate) afforded **3oa** as a white solid (68.2 mg, 83% yield). m.p. 90~92 °C. ¹H NMR (400 MHz, CDCl₃): δ 7.73 (d, J = 8.2 Hz, 2H), 7.36 (d, J = 8.0 Hz, 2H), 7.34 – 7.28 (m, 5H), 4.13 (s, 2H), 2.58 (s, 3H), 2.46 (s, 3H). HRMS (ESI) calc. for C₁₅H₁₈NO₂S ([M+H]⁺): 276.1058, Found: 276.1060.

N, *N*-*Diallyl-p-toluenesulfonamide* (**3pa**): Purified by column chromatography on silica gel (8:1 petroleum ether/ethyl acetate) afforded **3pa** as a colorless oil (46.7 mg, 62% yield). ¹H NMR (400 MHz, DMSO- d_6): δ 7.62 (d, *J* = 8.0 Hz, 2H), 7.21 (d, *J* = 7.9 Hz, 2H), 5.59 – 5.43 (m, 2H), 5.14 – 4.95 (m, 4H), 3.72 (d, *J* = 6.2 Hz, 4H), 2.34 (s, 3H).

¹³C NMR (100 MHz, CDCl₃): δ 143.3, 137.4, 132.7, 129.8, 127.2, 119.1, 49.4, 21.6. HRMS (ESI) calc. for C₁₃H₁₈NO₂S ([M+H]⁺): 252.1058, Found: 252.1061.

N, *N*-*Diethyl-4-methylbenzenesulfonamide* (**3qa**): Purified by column chromatography on silica gel (8:1 petroleum ether/ethyl acetate) afforded **3qa** as a white solid (33.9 mg, 50% yield). m.p. 58~60 °C. ¹H NMR (400 MHz, CDCl₃): δ 7.68 (d, *J* = 8.2 Hz, 2H), 7.27 (d, *J* = 8.0 Hz, 2H), 3.21 (q, *J* = 7.2 Hz, 4H), 2.41 (s, 3H), 1.11 (t, *J* = 7.2 Hz, 6H). ¹³C NMR (100 MHz, CDCl₃): δ 143.0, 137.6, 129.7, 127.2, 42.1, 21.6, 14.3. HRMS (ESI) calc. for C₁₁H₁₈NO₂S ([M+H]⁺): 228.1058, Found: 228.1068.

N, *N*-*Dibutyl-4-methylbenzenesulfonamide* (**3ra**): Purified by column chromatography on silica gel (8:1 petroleum ether/ethyl acetate) afforded **3ra** as a white solid (48.2 mg, 57% yield). m.p. 166~168 °C. ¹H NMR (400 MHz, CDCl₃): δ 7.68 (d, *J* = 8.2 Hz, 2H), 7.28 (d, *J* = 8.0 Hz, 2H), 3.08 (t, *J* = 7.6 Hz, 4H), 2.41 (s, 3H), 1.49 (p, *J* = 7.6 Hz, 4H), 1.28 (h, *J* = 7.6 Hz, 5H), 0.89 (t, *J* = 7.2 Hz, 6H). ¹³C NMR (100 MHz, CDCl₃): δ 142.9, 137.2, 129.6, 127.2, 48.1, 30.9, 21.6, 20.0, 13.8. HRMS (ESI) calc. for C₁₅H₂₆NO₂S ([M+H]⁺): 284.1684, Found: 284.1692.

N, *N*-*Dibenzyl-4-methylbenzenesulfonamide* (**3sa**): Purified by column chromatography on silica gel (8:1 petroleum ether/ethyl acetate) afforded 3sa as a white solid (69.3 mg, 66% yield). m.p. 138~140 °C. ¹H NMR (400 MHz, CDCl₃): δ 7.74 (d, J = 8.2 Hz, 2H), 7.31 (d, J = 8.0 Hz, 2H), 7.23 – 7.20 (m, 6H), 7.07 – 7.03 (m, 4H), 4.31 (s, 4H), 2.45 (s, 3H). ¹³C NMR (100 MHz, CDCl₃): δ 143.4, 137.8, 135.8, 129.8, 128.7, 128.5, 127.8, 127.4, 50.6, 21.7. HRMS (ESI) calc. for C₂₁H₂₂NO₂S ([M+H]⁺): 352.1371, Found: 352.1370.

N-Ethyl-4-methylbenzenesulfonamide (**3ta**): Purified by column chromatography on silica gel (8:1 petroleum ether/ethyl acetate) afforded **3ta** as a white solid (69.5 mg, 70% yield). m.p. 58~60 °C. ¹H NMR (400 MHz, CDCl₃): δ 7.78 (d, *J* = 8.2 Hz, 2H), 7.30 (d, *J* = 8.0 Hz, 2H), 5.15 (s, 1H), 2.97 (p, *J* = 7.0 Hz, 2H), 2.42 (s, 3H), 1.08 (t, *J* = 7.2 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃): δ 143.4, 137.1, 129.7, 127.2, 38.3, 21.5, 15.0. HRMS (ESI) calc. for C₉H₁₄NO₂S ([M+H]⁺): 200.0745, Found: 200.0758.

N-Cyclohexyl-4-methylbenzenesulfonamide $(3ua)^1$: Purified by column chromatography on silica gel (8:1 petroleum ether/ethyl acetate) afforded **3ua** as a white solid (47.4 mg, 60% yield). m.p. 84~86 °C. ¹H NMR (400 MHz, CDCl₃): δ 7.77 (d, J = 8.4 Hz, 2H), 7.28 (d, J = 8.0 Hz, 2H), 4.71 (br, 1H), 3.16 – 3.06 (m, 1H), 2.42 (s, 3H), 1.78 – 1.70 (m, 2H), 1.68 – 1.58 (m, 2H), 1.53 – 1.45 (m, 1H), 1.27 – 1.03 (m, 5H). HRMS (ESI) calc. for C₁₃H₂₀NO₂S ([M+H]⁺): 254.1215, Found: 254.1201

N-Benzyl-4-methylbenzenesulfonamide $(3va)^1$: Purified by column chromatography on silica gel (4:1 petroleum ether/ethyl acetate) afforded 3va as a white solid (61.4 mg, 79% yield). m.p. 108~110 °C. ¹H NMR (400 MHz, CDCl₃): δ 7.77 (d, J = 8.2 Hz, 2H), 7.32 (d, J = 8.0 Hz, 2H), 7.30 – 7.18 (m, 5H), 4.67 (br, 1H), 4.13 (d, J = 6.2 Hz, 2H), 2.45 (s, 3H). HRMS (ESI) calc. for C₉H₁₄NO₂S ([M+H]⁺): 200.0745, Found: 200.0758.

2-(*Phenylsulfonyl*)-1,2,3,4-tetrahydroisoquinoline $(3ab)^6$: Purified by column chromatography on silica gel (8:1 petroleum ether/ethyl acetate) afforded **3ab** as a white solid (72.4 mg, 89% yield). m.p. 152~154 °C. ¹H NMR (400 MHz, CDCl₃): δ 7.87 – 7.83 (m, 2H), 7.62 – 7.51 (m, 3H), 7.16 – 7.11 (m, 2H), 7.10 – 7.06 (m, 1H), 7.05 – 7.01 (m, 1H), 4.28 (s, 2H), 3.39 (t, *J* = 6.0 Hz, 2H), 2.93 (t, *J* = 6.0 Hz, 2H). HRMS (ESI) calc. for C₁₅H₁₆NO₂S ([M+H]⁺): 274. 0902, Found: 274. 0908.

2-((4-Methoxyphenyl)sulfonyl)-1,2,3,4-tetrahydroisoquinoline $(3ac)^7$: Purified by column chromatography on silica gel (8:1 petroleum ether/ethyl acetate) afforded **3ac** as a white solid (69.5 mg, 77% yield). m.p. 122~124 °C. ¹H NMR (400 MHz, CDCl₃): δ 7.81 – 7.75 (m, 2H), 7.17 – 7.11 (m, 2H), 7.10 – 7.06 (m, 1H), 7.04 – 7.01 (m, 1H), 7.01 – 6.96 (m, 2H), 4.25 (s, 2H), 3.86 (s, 3H), 3.35 (t, *J* = 6.0 Hz, 2H), 2.93 (t, *J* = 6.0 Hz, 2H). HRMS (ESI) calc. for C₁₆H₁₈NO₃S ([M+H]⁺): 304.1007, Found: 304.0996.

2-((4-(tert-Butyl)phenyl)sulfonyl)-1,2,3,4-tetrahydroisoquinoline (**3ad**)⁷: Purified by column chromatography on silica gel (8:1 petroleum ether/ethyl acetate) afforded **3ad** as a white solid (72.4 mg, 74% yield). m.p. 150~152 °C. ¹H NMR (400 MHz, CDCl₃): δ 7.79 – 7.74 (m, 2H), 7.56 – 7.51 (m, 2H), 7.17 – 7.10 (m, 2H), 7.10 – 7.00 (m, 2H), 4.27 (s, 2H), 3.38 (t, *J* = 6.0 Hz, 2H), 2.94 (t, *J* = 6.0 Hz, 2H), 1.33 (s, 9H). HRMS (ESI) calc. for C₁₉H₂₄NO₂S ([M+H]⁺): 330.1528, Found: 330.1537.

2-(o-Tolylsulfonyl)-1,2,3,4-tetrahydroisoquinoline (**3ae**): Purified by column chromatography on silica gel (8:1 petroleum ether/ethyl acetate) afforded **3ae** as a white solid (65.5 mg, 76% yield). m.p. 138~140 °C. ¹H NMR (400 MHz, CDCl₃): δ 7.99 (d, J = 7.8 Hz, 1H), 7.49 – 7.43 (m, 1H), 7.36 – 7.28 (m, 2H), 7.20 – 7.14 (m, 2H), 7.13 – 7.02 (m, 2H), 4.40 (s, 2H), 3.53 (t, J = 6.0 Hz, 2H), 2.90 (t, J = 5.8 Hz, 2H), 2.63 (s, 3H). ¹³C NMR (100 MHz, CDCl₃): δ 138.2, 136.4, 133.4, 133.0, 132.9, 132.0, 130.3, 129.1, 126.9, 126.5, 126.2, 46.7, 42.9, 29.0, 20.7. HRMS (ESI) calc. for C₁₆H₁₈NO₂S ([M+H]⁺): 288.1058, Found: 288.1031.

2-((4-Fluorophenyl)sulfonyl)-1,2,3,4-tetrahydroisoquinoline (**3af**)⁷: Purified by column chromatography on silica gel (8:1 petroleum ether/ethyl acetate) afforded **3af** as a white solid (65.6 mg, 75% yield). m.p. 152~154 °C. ¹H NMR (400 MHz, CDCl₃): δ 7.89 – 7.82 (m, 2H), 7.24 – 7.17 (m, 2H), 7.17 – 7.12 (m, 2H), 7.10 – 7.01 (m, 2H), 4.28 (s, 2H), 3.39 (t, *J* = 6.0 Hz, 2H), 2.92 (t, *J* = 6.0 Hz, 2H). ¹⁹F NMR (376 MHz, CDCl₃): δ -105.00. HRMS (ESI) calc. for C₁₅H₁₅FNO₂S ([M+H]⁺): 292.0808, Found: 292.0825.

2-((4-Chlorophenyl)sulfonyl)-1,2,3,4-tetrahydroisoquinoline $(3ag)^7$: Purified by column chromatography on silica gel (8:1 petroleum ether/ethyl acetate) afforded **3ag** as a white solid (80.5 mg, 88% yield). m.p. 150~152 °C. ¹H NMR (400 MHz, CDCl₃): δ 7.81 – 7.74 (m, 2H), 7.52 – 7.46 (m, 2H), 7.18 – 7.13 (m, 2H), 7.10 – 7.06 (m, 1H),

7.05 – 6.99 (m, 1H), 4.28 (s, 2H), 3.39 (t, J = 6.0 Hz, 2H), 2.92 (t, J = 6.0 Hz, 2H). HRMS (ESI) calc. for C₁₅H₁₅ClNO₂S ([M+H]⁺): 308.0512, Found: 308.0535.

2-((4-Bromophenyl)sulfonyl)-1,2,3,4-tetrahydroisoquinoline $(3ah)^7$: Purified by column chromatography on silica gel (8:1 petroleum ether/ethyl acetate) afforded **3ah** as a white solid (79.5 mg, 76% yield). m.p. 148~150 °C. ¹H NMR (400 MHz, CDCl₃): δ 7.74 – 7.62 (m, 4H), 7.18 – 7.12 (m, 2H), 7.10 – 7.06 (m, 1H), 7.05 – 6.99 (m, 1H), 4.28 (s, 2H), 3.38 (t, *J* = 6.0 Hz, 2H), 2.92 (t, *J* = 6.0 Hz, 2H). HRMS (ESI) calc. for C₁₅H₁₅BrNO₂S ([M+H]⁺): 352.0007, Found: 352.0006.

2-((3-Bromophenyl)sulfonyl)-1,2,3,4-tetrahydroisoquinoline (**3ai**): Purified by column chromatography on silica gel (8:1 petroleum ether/ethyl acetate) afforded **3ai** as a white solid (73.2 mg, 70% yield). m.p. 136~138 °C. ¹H NMR (400 MHz, CDCl₃): δ 8.00 – 7.97 (m, 1H), 7.79 – 7.75 (m, 1H), 7.73 – 7.69 (m, 1H), 7.43 – 7.38 (m, 1H), 7.19 – 7.12 (m, 2H), 7.11 – 7.02 (m, 2H), 4.30 (s, 2H), 3.41 (t, *J* = 6.0 Hz, 2H), 2.93 (t, *J* = 6.0 Hz, 2H). ¹³C NMR (100 MHz, CDCl₃): δ 138.9, 136.0, 133.1, 131.4, 130.7, 130.6, 129.0, 127.1, 126.6, 126.5, 126.3, 123.3, 47.6, 43.9, 28.9. HRMS (ESI) calc. for C₁₅H₁₅BrNO₂S ([M+H]⁺): 352.0007, Found: 352.0014.

2-((2-Bromophenyl)sulfonyl)-1,2,3,4-tetrahydroisoquinoline (**3aj**): Purified by column chromatography on silica gel (8:1 petroleum ether/ethyl acetate) afforded **3aj** as a white solid (64.0 mg, 61% yield). m.p. 144~146 °C. ¹H NMR (400 MHz, CDCl₃): δ 8.18 (dd, J = 7.9, 1.8 Hz, 1H), 7.72 (dt, J = 7.9, 1.3 Hz, 1H), 7.46 (td, J = 7.7, 1.3 Hz, 1H), 7.39 (td, J = 7.6, 1.8 Hz, 1H), 7.20 – 7.14 (m, 2H), 7.14 – 7.08 (m, 1H), 7.08 – 7.02 (m, 1H), 4.52 (s, 2H), 3.63 (t, J = 5.9 Hz, 2H), 2.92 (t, J = 5.9 Hz, 2H). ¹³C NMR (100 MHz, CDCl₃): δ 138.3, 135.8, 133.7, 133.5, 132.4, 132.1, 129.1, 127.6, 126.9, 126.5, 126.3, 120.6, 46.9, 43.3, 29.0. C₁₅H₁₅BrNO₂S ([M+H]⁺): 352.0007, Found: 352.0017.

2-((4-(Trifluoromethyl)phenyl)sulfonyl)-1,2,3,4-tetrahydroisoquinoline (**3ak**)⁷: Purified by column chromatography on silica gel (8:1 petroleum ether/ethyl acetate)

afforded **3ak** as a white solid (62.2 mg, 61% yield). m.p. 152~154 °C. ¹H NMR (400 MHz, CDCl₃): δ 7.97 (d, J = 8.2 Hz, 2H), 7.79 (d, J = 8.2 Hz, 2H), 7.18 – 7.12 (m, 2H), 7.10 – 7.01 (m, 2H), 4.32 (s, 2H), 3.43 (t, J = 6.0 Hz, 2H), 2.93 (t, J = 6.0 Hz, 2H). ¹⁹F NMR (376 MHz, CDCl₃): δ -63.13. HRMS (ESI) calc. for C₁₆H₁₅F₃NO₂S ([M+H]⁺): 342.0776, Found: 342.0801.

2-(Mesitylsulfonyl)-1,2,3,4-tetrahydroisoquinoline (3al): Purified by column chromatography on silica gel (8:1 petroleum ether/ethyl acetate) afforded 3al as a white solid (68.9 mg, 73% yield). m.p. 120~122 °C. ¹H NMR (400 MHz, CDCl₃): δ 7.19 – 7.14 (m, 2H), 7.13 – 7.08 (m, 1H), 7.08 – 7.03 (m, 1H), 6.96 (s, 2H), 4.36 (s, 2H), 3.47 (t, *J* = 6.0 Hz, 2H), 2.87 (t, *J* = 5.8 Hz, 2H), 2.64 (s, 6H), 2.30 (s, 3H). ¹³C NMR (100 MHz, CDCl₃): δ 142.8, 140.7, 133.5, 132.2, 132.1, 131.9, 129.1, 126.8, 126.6, 126.4, 45.9, 42.1, 28.8, 23.0, 21.1. HRMS (ESI) calc. for C₁₈H₂₂NO₂S ([M+H]⁺): 316.1371, Found: 316.1362.

2-((3,5-Difluorophenyl)sulfonyl)-1,2,3,4-tetrahydroisoquinoline (**3am**): Purified by column chromatography on silica gel (10:1 petroleum ether/ethyl acetate) afforded **3am** as a white solid (72.4 mg, 79% yield). m.p. 158~160 °C. ¹H NMR (400 MHz, CDCl₃): δ 7.40 – 7.35 (m, 2H), 7.20 – 7.14 (m, 2H), 7.12 – 7.01 (m, 3H), 4.32 (s, 2H), 3.43 (t, *J* = 6.0 Hz, 2H), 2.95 (t, *J* = 5.8 Hz, 2H). ¹³C NMR (100 MHz, CDCl₃): δ 163.0 (d, ¹*J*_{CF} = 255.1Hz), 140.3 (t, ³*J*_{CF} = 7.9 Hz), 132.9, 131.2, 129.0, 127.2, 126.7, 126.4, 111.2 (d, ²*J*_{CF} = 11.4 Hz), 111.2 (d, ²*J*_{CF} = 28.0 Hz), 108.6 (t, ²*J*_{CF} = 25.0 Hz), 47.6, 43.9, 28.8. ¹⁹F NMR (376 MHz, CDCl₃): δ -105.44. HRMS (ESI) calc. for C₁₅H₁₄F₂NO₂S ([M+H]⁺): 310.0713, Found: 310.0738.

2-([1,1'-Biphenyl]-4-ylsulfonyl)-1,2,3,4-tetrahydroisoquinoline (**3an**): Purified by column chromatography on silica gel (8:1 petroleum ether/ethyl acetate) afforded **3an** as a white solid (83.6 mg, 80% yield). m.p. 126~128 °C. ¹H NMR (400 MHz, CDCl₃): δ 7.92 (d, J = 8.4 Hz, 2H), 7.74 (d, J = 8.4 Hz, 2H), 7.62 – 7.57 (m, 2H), 7.52 – 7.46 (m, 2H), 7.45 – 7.39 (m, 1H), 7.19 – 7.12 (m, 2H), 7.12 – 7.02 (m, 2H), 4.33 (s, 2H), 3.44 (t, J = 6.0 Hz, 2H), 2.95 (t, J = 6.0 Hz, 2H). ¹³C NMR (101 MHz, CDCl₃): δ 145.8,

139.3, 135.2, 133.2, 131.7, 129.2, 128.9, 128.6, 128.3, 127.8, 127.4, 126.9, 126.5, 47.7, 43.9, 28.9. HRMS (ESI) calc. for C₂₁H₂₀NO₂S ([M+H]⁺): 350.1215, Found: 350.1244.

2-(*Naphthalen-2-ylsulfonyl*)-1,2,3,4-tetrahydroisoquinoline (**3ao**): Purified by column chromatography on silica gel (8:1 petroleum ether/ethyl acetate) afforded **3ao** as a white solid (71.0 mg, 74% yield). m.p. 150~152 °C. ¹H NMR (400 MHz, CDCl₃): δ 8.43 (s, 1H), 8.01 – 7.95 (m, 2H), 7.91 (d, J = 8.2 Hz, 1H), 7.85 – 7.80 (m, 1H), 7.67 – 7.59 (m, 2H), 7.16 – 7.09 (m, 2H), 7.09 – 7.00 (m, 2H), 4.34 (s, 2H), 3.45 (t, J = 6.0 Hz, 2H), 2.93 (t, J = 6.0 Hz, 2H). ¹³C NMR (101 MHz, CDCl₃): δ 134.9, 133.5, 133.1, 132.2, 131.6, 129.4, 129.3, 129.1, 128.9, 128.9, 128.0, 127.7, 126.8, 126.4, 122.9, 47.6, 43.9, 28.9. HRMS (ESI) calc. for C₁₉H₁₈NO₂S ([M+H]⁺): 324.1058, Found: 324.1031.

2-((2,3-Dihydrobenzofuran-5-yl)sulfonyl)-1,2,3,4-tetrahydroisoquinoline (3ap): Purified by column chromatography on silica gel (8:1 petroleum ether/ethyl acetate) afforded **3ap** as a white solid (75.5 mg, 80% yield). m.p. 132~134 °C. ¹H NMR (400 MHz, CDCl₃): δ 7.64 (d, J = 9.0 Hz, 2H), 7.18 – 7.00 (m, 4H), 6.85 (d, J = 8.2 Hz, 1H), 4.66 (t, J = 8.8 Hz, 2H), 4.25 (s, 2H), 3.35 (t, J = 5.9 Hz, 2H), 3.26 (t, J = 8.8 Hz, 2H), 2.93 (t, J = 5.9 Hz, 2H). ¹³C NMR (101 MHz, CDCl₃): δ 164.1, 133.3, 131.9, 129.4, 128.9, 128.5, 128.1, 126.8, 126.5, 126.4, 125.1, 109.6, 72.4, 47.7, 43.9, 29.2, 29.0. HRMS (ESI) calc. for C₁₇H₁₈NO₃S ([M+H]⁺): 316.1007, Found: 316.1001.

2-(*Pyridin-3-ylsulfonyl*)-1,2,3,4-tetrahydroisoquinoline (**3aq**): Purified by column chromatography on silica gel (2:1 petroleum ether/ethyl acetate) afforded **3aq** as a white solid (64.1 mg, 78% yield). m.p. 144~146 °C. ¹H NMR (400 MHz, CDCl₃): δ 9.06 (d, J = 2.2 Hz, 1H), 8.80 (dd, J = 4.8, 1.6 Hz, 1H), 8.11 (dt, J = 8.0, 2.0 Hz, 1H), 7.46 (dd, J = 7.8, 4.8 Hz, 1H), 7.17 – 7.13 (m, 2H), 7.09 – 7.02 (m, 2H), 4.34 (s, 2H), 3.45 (t, J = 6.0 Hz, 2H), 2.93 (t, J = 6.0 Hz, 2H). ¹³C NMR (101 MHz, CDCl₃): δ 153.5, 148.5, 135.3, 133.8, 133.0, 131.2, 129.0, 127.1, 126.7, 126.4, 123.8, 47.5, 43.8, 28.7. HRMS (ESI) calc. for C₁₄H₁₅N₂O₂S ([M+H]⁺): 275.0854, Found: 275.0844.

2-(*Thiophen-2-ylsulfonyl*)-1,2,3,4-tetrahydroisoquinoline (**3ar**): Purified by column chromatography on silica gel (8:1 petroleum ether/ethyl acetate) afforded **3ar** as a white solid (62.4 mg, 75% yield). m.p. 118~120 °C. ¹H NMR (400 MHz, CDCl₃): δ 7.65 – 7.57 (m, 2H), 7.20 – 7.12 (m, 3H), 7.12 – 7.03 (m, 2H), 4.33 (s, 2H), 3.41 (t, *J* = 6.0 Hz, 2H), 2.97 (t, *J* = 5.8 Hz, 2H). ¹³C NMR (100 MHz, CDCl₃): δ 133.2, 132.6, 132.2, 131.6, 128.9, 127.7, 127.0, 126.6, 126.6, 47.7, 44.0, 29.0. HRMS (ESI) calc. for C₁₄H₁₅N₂O₂S ([M+H]⁺): 280.0466, Found: 280.0452.

3-(1-Tosylpyrrolidin-2-yl)pyridine (**5a**): Purified by column chromatography on silica gel (80:1 dichloromethane/methanol) afforded **5a** as a white solid (78.8 mg, 87% yield). m.p. 104~106 °C. ¹H NMR (400 MHz, CDCl₃): δ 8.54 (s, 1H), 8.49 (d, *J* = 4.4 Hz, 1H), 7.75 – 7.64 (m, 3H), 7.34 – 7.22 (m, 3H), 4.76 (t, *J* = 6.2 Hz, 1H), 3.67 – 3.59 (m, 1H), 3.47 – 3.38 (m, 1H), 2.43 (s, 3H), 2.11 – 1.99 (m, 1H), 1.92 – 1.76 (m, 2H), 1.74 – 1.62 (m, 1H). ¹³C NMR (100 MHz, CDCl₃): δ 148.6, 148.0, 143.8, 138.6, 134.7, 134.1, 129.8, 127.6, 123.4, 61.2, 49.5, 35.8, 24.1, 21.6. HRMS (ESI) calc. for C₁₆H₁₉N₂O₂S ([M+H]⁺): 303.1167, Found: 303.1173.

8-*Chloro-11-(1-tosylpiperidin-4-ylidene)-6*, *11-dihydro-5H-benzo[5,6]cyclohepta[1,2-b]pyridine* (**5b**): Purified by column chromatography on silica gel (4:1 petroleum ether/ethyl acetate) afforded **5b** as a white solid (103.1 mg, 74% yield). m.p. 198~200 °C. ¹H NMR (400 MHz, CDCl₃): δ 8.35 (d, *J* = 4.6 Hz, 1H), 7.63 (d, *J* = 8.2 Hz, 2H), 7.40 (d, *J* = 7.6 Hz, 1H), 7.31 (d, *J* = 8.0 Hz, 2H), 7.14 – 7.05 (m, 3H), 7.00 (d, *J* = 8.0 Hz, 1H), 3.32 – 3.16 (m, 4H), 3.00 – 2.90 (m, 2H), 2.83 – 2.68 (m, 2H), 2.64 – 2.55 (m, 1H), 2.52 – 2.45 (m, 1H), 2.43 (s, 3H), 2.38 – 2.28 (m, 2H). ¹³C NMR (100 MHz, CDCl₃): δ 156.8, 146.8, 143.7, 139.6, 137.7, 137.4, 135.9, 134.8, 133.5, 133.4, 133.1, 130.5, 129.8, 129.1, 127.7, 126.3, 122.5, 47.4, 30.3, 30.0, 21.6. HRMS (ESI) calc. for C₂₆H₂₆ClN₂O₂S ([M+H]⁺): 465.1404, Found: 465.1415.

3-(4-Tosylpiperazin-1-yl)benzo[d]isothiazole (**5c**): Purified by column chromatography on silica gel (4:1 petroleum ether/ethyl acetate) afforded **5c** as a white solid (46.8 mg, 42% yield). m.p. 130~132 °C. ¹H NMR (400 MHz, CDCl₃): δ 7.82 –

7.73 (m, 2H), 7.69 (d, J = 8.0 Hz, 2H), 7.49 – 7.41 (m, 1H), 7.40 – 7.28 (m, 3H), 3.61 (t, J = 4.8 Hz, 4H), 3.24 (t, J = 5.2 Hz, 4H), 2.44 (s, 3H). ¹³C NMR (100 MHz, CDCl₃): δ 163.1, 153.0, 144.0, 132.7, 129.9, 128.0, 127.8, 127.8, 124.2, 123.5, 120.8, 49.5, 45.9, 21.7. HRMS (ESI) calc. for C₁₈H₂₀N₃O₂S₂ ([M+H]⁺): 374.0997, Found: 374.0991.

l-((4-Methoxyphenyl)sulfonyl)-4-(4-methylbenzyl)piperazine (**5d**): Purified by column chromatography on silica gel (2:1 petroleum ether/ethyl acetate) afforded **5d** as a white solid (72.8 mg, 68% yield). m.p. 88~90 °C. ¹H NMR (400 MHz, CDCl₃): δ 7.68 (d, *J* = 9.0 Hz, 2H), 7.14 – 7.06 (m, 4H), 6.98 (d, *J* = 8.9 Hz, 2H), 3.87 (d, *J* = 1.2 Hz, 3H), 3.44 (s, 2H), 3.00 (t, *J* = 4.9 Hz, 4H), 2.50 (t, *J* = 5.0 Hz, 4H), 2.31 (s, 3H). ¹³C NMR (100 MHz, CDCl₃): δ 163.2, 137.1, 134.5, 130.1, 129.2, 129.1, 127.3, 114.3, 62.5, 55.7, 52.2, 46.2, 21.2. HRMS (ESI) calc. for C19H₂₅N₂O₃S ([M+H]⁺): 361.1586, Found: 361.1592.

l-((4-Chlorophenyl)sulfonyl)-4-(4-methylbenzyl)piperazine (**5e**): Purified by column chromatography on silica gel (2:1 petroleum ether/ethyl acetate) afforded 5e as a white solid (57.8 mg, 53% yield). m.p. 84~86 °C. ¹H NMR (400 MHz, CDCl₃): δ 7.72 – 7.64 (m, 2H), 7.54 – 7.46 (m, 2H), 7.15 – 7.05 (m, 4H), 3.45 (s, 2H), 3.02 (t, *J* = 5.0 Hz, 4H), 2.51 (t, *J* = 5.0 Hz, 4H), 2.32 (s, 3H). ¹³C NMR (100 MHz, CDCl₃): δ 139.52, 137.11, 134.37, 134.25, 129.46, 129.33, 129.15, 129.14, 62.39, 52.07, 46.20, 21.20. HRMS (ESI) calc. for C₁₈H₂₂ClN₂O₂S ([M+H]⁺): 365.1091, Found: 365.1079.

references

1. Y.-y. Jiang, Q.-Q. Wang, S. Liang, L.-M. Hu, R. D. Little and C.-C. Zeng, *The Journal of Organic Chemistry*, 2016, **81**, 4713-4719.

2. S. Herold, D. Bafaluy and K. Muñiz, Green Chemistry, 2018, 20, 3191-3196.

3. X. Pan, J. Gao, J. Liu, J. Lai, H. Jiang and G. Yuan, Green Chemistry, 2015, 17, 1400-1403.

4. F. Toriyama, J. Cornella, L. Wimmer, T.-G. Chen, D. D. Dixon, G. Creech and P. S. Baran, *Journal of the American Chemical Society*, 2016, **138**, 11132-11135.

5. S. Yotphan, L. Sumunnee, D. Beukeaw, C. Buathongjan and V. Reutrakul, *Organic & Biomolecular Chemistry*, 2016, **14**, 590-597.

6. H. Zhu, Y. Shen, Q. Deng and T. Tu, Chemical Communications, 2015, 51, 16573-16576.

7. R. J. Pagliero, R. Mercado, V. McCracken, M. R. Mazzieri and M. J. Nieto, *Letters in Drug Design & Discovery*, 2011, **8**, 778-791.

6. NMR of Products

2-tosyl-1,2,3,4-tetrahydroisoquinoline (3aa)

¹H NMR spectrum of 3ba

S23

S24

S25

2-phenyl-1-tosylpyrrolidine (3ga)

S26

¹H NMR spectrum of 3la

1-methyl-4-tosylpiperazine (3ma)

¹H NMR spectrum of 3na

S31

N,N-Diallyl-*p*-toluenesulfonamide (3pa)

N,N-diethyl-4-methylbenzenesulfonamide (3qa)

¹H NMR spectrum of 3va

4.5

4.0

3.5

3.0

7.5 7.0

6.5

6.0

5.5

5.0

9.0

8.5

8.0

2.5

2.0

1.5

1.0 0.5

0.0

¹H NMR spectrum of 3ac

¹H NMR spectrum of 3ae

¹H NMR spectrum of 3af

2-((4-bromophenyl)sulfonyl)-1,2,3,4-tetrahydroisoquinoline (3ah)

¹⁹F NMR spectrum of 3am

S49

2-((2,3-dihydrobenzofuran-5-yl)sulfonyl)-1,2,3,4-tetrahydroisoquinoline (3ap)

2-(thiophen-2-ylsulfonyl)-1,2,3,4-tetrahydroisoquinoline (3ar)

8-chloro-11-(1-tosylpiperidin-4-ylidene)-6,11-dihydro-5H-

benzo[5,6]cyclohepta[1,2-b]pyridine (5b)

S55

1-((4-chlorophenyl)sulfonyl)-4-(4-methylbenzyl)piperazine (5e)

