Electronic Supplementary Material (ESI) for Organic & Biomolecular Chemistry. This journal is © The Royal Society of Chemistry 2023

Supporting Information

Cu-Promoted Reaction of β-Keto Trifluoromethyl Amines Enabling

Stereoselective Synthesis of Trifluoromethylated Aziridines

Nana Wang,^a Youlong Du,^a Haibo Mei,^{a,*} Jorge Escorihuela^b and Jianlin Han^{a,*}

^aJiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China.

^b Departamento de Química Orgánica, Universitat de València, Avda. Vicente Andrés Estellés s/n, Burjassot 46100, Valencia, Spain

Email: meihb@njfu.edu.cn; hanjl@njfu.edu.cn

1. General information	S2
2. General procedure for the preparation of amines 1a-u	
3. Table S1. Optimization of reaction conditions	
4. General procedure for synthesis of aziridine	
5. Large scale synthesis	S5

6. Reaction conducted in DMF/D ₂ O	
7. X-ray crystallography of 2a	S7
8. Characterization data of compounds 2	
9. Computational details	
10. ¹ H, ¹³ C and ¹⁹ F NMR spectra	

1. General information

All the commercial reagents including solvents were used directly without further purification. Amines 1a-y were synthesized according to the literature¹. All the experiments were monitored by thin layer chromatography (TLC) with UV light. The TLC employed 0.25 mm silica gel coated on glass plates. Purification of products was carried out by silica gel 60 F-254 TLC plates of 20 cm \times 20 cm and column chromatography with silica gel 60 (300-400 mesh). Melting points were recorded without correction on RY-1G of Tianjin Xintianguang instrument company. NMR spectra were recorded on Bruker 400 MHz and 600 MHz spectrometers. High resolution mass spectra (HRMS) were measured on Agilent 6210 ESI/TOF MS instrument. The X-ray data were collected at 100 K on a Rigaku Oxford Diffraction Supernova Dual Source, Cu at Zero equipped with an AtlasS2 CCD using Cu Kα radiation.

Reference:

(1) Mei, H.; Xiong, Y.; Han, J.; Pan, Y. Org. Biomol. Chem. 2011, 9, 1402-1406.

2. General procedure for the preparation of amines 1a-u¹

Into a vial was taken ketone (8.5 mmol, 1.7 equiv) and anhydrous THF (20.0 mL). The reaction vial was cooled to -78 °C and LDA (2 M in THF, 4.68 mL) was added dropwise with stirring. After 40 min at -78 °C, sulfinglimine (5.0 mmol) dissolved in anhydrous THF (5.0 mL) was added dropwise.

Stirring was continued at -78 °C for 2 h, then the reaction was quenched with saturated NH₄Cl (10.0 mL), followed by H₂O (10.0 mL) and the mixture was brought to room temperature. The organic layer was taken and the aqueous layer was extracted with EtOAc (3 × 15 mL). The combined organic layers were dried with anhydrous Na₂SO₄, filtered and the solvent was removed to give the crude Mannich adduct, which was purified by the silica gel column (petroleum ether:EtOAc = 4 : 1). Mannich adduct (1.0 mmol) and MeOH (10 mL) were placed in a round-bottom flask and aq HCl (36%, 2 mL) was added. The reaction was stirred at room temperature for 8 h. Volatiles were removed under reduced pressure. The residue was dissolved in CH₂Cl₂ (10 mL) and Et₃N (30.0 mmol) was added. The mixture was stirred at room temperature for 1 h, then H₂O (10 mL) was added. The organic layer was taken, washed with H₂O (3 × 10 mL), dried with anhydrous Na₂SO₄, filtered and the solvent was purified by by the silica gel column (petroleum ether:EtOAc = 4 : 1).

		3 NH ₂ —	Cul, 1,10-phei solvent,	nanthroline, acid	O	CF ₃
~	1a				2a	п I
	CuI	phen	acid			
entry	(equiv)	(equiv)	(equiv)	solvent	T (°C)	yield (%) ^b
1	0.5	0.5	1	DMF: H ₂ O = 10: 1	rt	65
2	0	1	1	DMF: $H_2O = 10: 1$	rt	nr
3	1	1	1	DMF: H ₂ O = 10: 1	rt	79
4	2	2	1	DMF: H ₂ O = 10: 1	rt	72
5	1	1	0	DMF: H ₂ O = 10: 1	rt	53
6	1	1	0.5	DMF: H ₂ O = 10: 1	rt	72
7	1	1	2	DMF: H ₂ O = 10: 1	rt	79
8	1	1	1	DMF	rt	57
9	1	1	1	DCM	rt	trace
10	1	1	1	THF	rt	trace
11	1	1	1	DCM: H ₂ O = 10: 1	rt	trace
12	1	1	1	THF: $H_2O = 10: 1$	rt	36
13	1	1	1	DMF: H ₂ O = 10: 1	60	54
14	1	1	1	DMF: H ₂ O = 10: 1	0	37
15	1	1	1	DMF: H ₂ O = 10: 1	rt	58 ^c
16	1	1	CH ₃ CO ₂ H	DMF: H ₂ O = 10: 1	rt	77 ^d

3. Table S1. Optimization of reaction conditions^a

17	1	1	H_2SO_4	DMF: $H_2O = 10: 1$	rt	13 ^e
----	---	---	-----------	---------------------	----	-----------------

^{*a*} Reaction conditions: β-amino ketone **1a** (0.1 mmol), CuI, 1,10-phenanthroline, acid and solvent (2.2 mL) were dissolved in a vial, and stirred for 18 h. ^{*b*} Isolated yield based on amine **1a**. ^{*c*} Under nitrogen atmosphere. ^{*d*} CH₃CO₂H (0.1 mmol) was used. ^{*e*} H₂SO₄ (0.1 mmol) was used.

4. General procedure for synthesis of aziridine

β-Keto amine 1 (0.2 mmol), CuI (0.2 mmol), 1,10-phenanthroline (0.2 mmol), PhCO₂H (0.2 mmol) and DMF/H₂O (4.4 mL, DMF : H₂O = 10:1) were taken into a vail. The mixture was stirred at room temperature. After 18 h, the reaction was quenched with H₂O (20 mL). Then organic layer was taken and the aqueous layer was extracted with EtOAc (3 × 10 mL). The combined organic layers were dried with anhydrous Na₂SO₄, filtered and the solvent was removed in vacuum. The product **2** was purified by TLC plate of 20 cm × 20 cm using petroleum ether/ethyl acetate (8:1, v/v) as eluent.

5. Large scale synthesis

Amine 1a (5 mmol), CuI (5 mmol), phen (5 mmol), PhCO₂H (5 mmol) and DMF/H₂O (22 mL, DMF:H₂O = 10:1) were taken into a flask. The mixture was stirred at room temperature. After 18 h, the reaction was quenched with H₂O (30 mL). Then organic layer was taken and the aqueous

layer was extracted with EtOAc (3 \times 20 mL). The combined organic layers were dried with anhydrous Na₂SO₄, filtered and the solvent was removed in vacuum. The product **2a** was purified by column chromatography using petroleum ether/ethyl acetate (8:1, v/v) as eluent (0.817 g, 76% yield).

6. Reaction conducted in DMF/D₂O

 β -Keto amine **1a** (0.1 mmol), CuI (0.1 mmol), 1,10-phenanthroline (0.1 mmol), PhCO₂H (0.1 mmol) and DMF/D₂O (2.2 mL, DMF:D₂O = 10:1) were taken into a vail. The mixture was stirred at room temperature. After 18 h, the reaction was quenched with H₂O (20 mL). Then organic layer was taken and the aqueous layer was extracted with EtOAc (3 × 10 mL). The combined organic layers were dried with anhydrous Na₂SO₄, filtered and the solvent was removed in vacuum. The product **2a** was purified by TLC plate of 20 cm × 20 cm using petroleum ether/ethyl acetate (8:1, v/v) as eluent.

¹H NMR of **D-2a** (400 MHz, CDCl₃)

7. X-ray crystallography of 2a

Figure S2. ORTEP diagram showing of 2a

(CCDC number is 2245954, the ellipsoids are drawn at a 30% probability level)

Suitable crystals of compound 2a were obtained by slowly evaporating a mixture of petroleum ether

and ethyl acetate solution at ambient temperature.

8. Characterization data of 2

Compound **2a**: 34.0 mg, 79% yield, white solid, mp 80-82 °C. ¹H NMR (400 MHz, CDCl₃): $\delta = 8.06-8.04$ (m, 2H), 7.72-7.68 (m, 1H), 7.59-7.55 (m, 2H), 3.75 (d, J = 8.00 Hz, 1H), 2.81-2.78 (m, 1H), 2.41-2.37 (m, 1H). ¹³C NMR (100 MHz, CDCl₃): $\delta = 194.1$, 135.1, 134.6, 129.1, 128.5, 127.1 (q, J = 271.5 Hz), 39.1 (q, J = 40.3 Hz), 34.6. ¹⁹F NMR (376 MHz, CDCl₃): $\delta = -71.5$ (s, 3F). HRMS (ESI) m/z: [M+H]⁺ calcd for C₁₀H₉F₃NO⁺ 216.0631, found 216.0625.

Compound **2b**: 36.9 mg, 81% yield, white solid, mp 74-76 °C. ¹H NMR (400 MHz, CDCl₃): δ = 7.97 (d, *J* = 8.24 Hz, 2H), 7.38 (d, *J* = 8.00 Hz, 2H), 3.74-3.72 (m, 1H), 2.80-2.75 (m, 1H), 2.49 (s, 3H), 2.39-2.35 (m, 1H). ¹³C NMR (100 MHz, CDCl₃): δ = 193.5, 145.9, 132.6, 129.8, 128.6, 124.4 (d, *J* = 271.7 Hz), 38.6 (d, *J* = 40.2 Hz), 34.5, 21.9. ¹⁹F NMR (376 MHz, CDCl₃): δ = -71.5 (s, 3F). HRMS (ESI) m/z: [M+H]⁺ calcd for C₁₁H₁₁F₃NO⁺ 230.0787, found 230.0785.

Compound **2c**: 42.5 mg, 87% yield, white solid, mp 47-49 °C. ¹H NMR (400 MHz, CDCl₃): $\delta = 8.00$ (d, J = 8.04 Hz, 2H), 7.40 (d, J = 7.92 Hz, 2H), 3.74 (d, J = 7.92 Hz, 1H), 2.80-2.74 (m, 3H), 2.40-2.36 (m, 1H), 1.32-1.28 (m, 3H). ¹³C NMR (100 MHz, CDCl₃): $\delta = 193.5$, 152.0, 132.8, 128.7, 128.6, 124.4 (d, J = 271.9 Hz), 38.9 (q, J = 40.3 Hz), 34.5, 29.1, 15.1. ¹⁹F NMR (376 MHz, CDCl₃): $\delta = -71.5$ (s, 3F). HRMS (ESI) m/z: [M+H]⁺ calcd for C₁₂H₁₃F₃NO⁺ 244.0944, found 244.0942.

Compound **2d**: 41.7 mg, 77% yield, white solid, mp 68-71 °C. ¹H NMR (400 MHz, CDCl₃): δ = 8.02 (d, *J* = 8.40 Hz, 2H), 7.60 (d, *J* = 8.44 Hz, 2H), 3.76-3.73 (m, 1H), 2.80-2.74 (m, 1H), 2.41-2.36 (m, 1H), 1.39 (s, 9H). ¹³C NMR (100 MHz, CDCl₃): δ = 193.5, 158.8, 132.5, 128.5, 127.1 (q, *J* = 271.8 Hz), 126.1, 38.9 (q, *J* = 40.2 Hz), 35.4, 34.5, 31.0. ¹⁹F NMR (376 MHz, CDCl₃): δ = -71.5 (s, 3F). HRMS (ESI) m/z: [M+H]⁺ calcd for C₁₄H₁₇F₃NO⁺ 272.1257, found 272.1256.

Compound **2e**: 44.7 mg, 91% yield, white solid, mp 64-66 °C. ¹H NMR (400 MHz, CDCl₃): δ = 8.05 (d, *J* = 8.40 Hz, 2H), 7.04 (d, *J* = 8.44 Hz, 2H), 3.92 (s, 3H), 3.70 (d, *J* = 7.88 Hz, 1H), 2.76 (s, 1H), 2.36 (s, 1H). ¹³C NMR (100 MHz, CDCl₃): δ = 192.1, 164.8, 130.9, 128.1, 127.2 (t, *J* = 271.8 Hz), 114.3, 55.6, 38.8 (q, *J* = 40.3 Hz), 34.2. ¹⁹F NMR (376 MHz, CDCl₃): δ = -71.4 (s, 3F). HRMS (ESI) m/z: [M+H]⁺ calcd for C₁₁H₁₀F₃N₂O⁺ 246.0736, found 246.0737.

Compound **2f**: 46.9 mg, 90% yield, white solid, mp 103-106 °C. ¹H NMR (400 MHz, CDCl₃): δ = 8.04-8.00 (m, 2H), 7.02-6.99 (m, 2H), 4.17-4.12 (m, 2H), 3.70-3.67 (m, 1H), 2.78-2.74 (m, 1H), 2.37-2.33 (m, 1H), 1.49 (t, *J* = 7.00 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃): δ = 192.0, 164.2, 130.9, 127.9, 124.5 (d, *J* = 271.6 Hz), 114.7, 64.0, 38.7 (q, *J* = 40.3 Hz), 34.2, 14.6. ¹⁹F NMR (376 MHz, CDCl₃): δ = -71.4 (s, 3F). HRMS (ESI) m/z: [M+H]⁺ calcd for C₁₂H₁₃F₃NO₂⁺ 260.0893, found 260.0892.

Compound **2g**: 31.9 mg, 64% yield, white solid, mp 65-68 °C. ¹H NMR (400 MHz, CDCl₃): δ = 8.01-7.97 (m, 2H), 7.56-7.53 (m, 2H), 3.70-3.68 (m, 1H), 2.84-2.78 (m, 1H), 2.41 (t, *J* = 8.52 Hz, 1H). ¹³C NMR (100 MHz, CDCl₃): δ = 193.0, 141.4, 133.4, 129.8, 129.5, 127.0 (q, *J* = 271.7 Hz), 39.2 (q, *J* = 40.5 Hz), 34.5. ¹⁹F NMR (376 MHz, CDCl₃): δ = -71.5 (s, 3F). HRMS (ESI) m/z: [M+H]⁺ calcd for C₁₀H₈ClF₃NO⁺ 250.0241, found 250.0240.

Compound **2h**: 33.8 mg, 72% yield, white solid, mp 73-76 °C. ¹H NMR (400 MHz, CDCl₃): δ = 8.11-8.07 (m, 2H), 7.27-7.23 (m, 2H), 3.71-3.69 (m, 1H), 2.83-2.78 (m, 1H), 2.41 (t, *J* = 8.56 Hz, 1H). ¹³C NMR (100 MHz, CDCl₃): δ = 192.5, 168.0 (d, *J* = 256.3 Hz), 131.6 (d, *J* = 3.1 Hz), 131.3 (d, *J* = 9.8 Hz), 127.0 (q, *J* = 271.4 Hz), 116.5 (d, *J* = 22.1 Hz), 39.1 (q, *J* = 40.4 Hz), 34.5. ¹⁹F NMR (376 MHz, CDCl₃): δ = -71.5 (s, 3F), -101.8 (s, 1F). HRMS (ESI) m/z: [M+H]⁺ calcd for C₁₁H₈F₃N₂⁺ 234.0537, found 234.0530.

Compound **2i**: 37.4 mg, 66% yield, white solid, mp 48-52 °C. ¹H NMR (400 MHz, CDCl₃): $\delta = 8.17$ (d, J = 8.12 Hz, 2H), 7.85 (d, J = 8.20 Hz, 2H), 3.75-3.73 (m, 1H), 2.90-2.82 (m, 1H), 2.45-2.41 (m, 1H). ¹³C NMR (100 MHz, CDCl₃): $\delta = 193.6$, 137.6, 136.0 (d, J = 33.0 Hz), 128.8, 127.4 (q, J = 271.2 Hz), 126.9 (q, J = 271.8 Hz), 126.2 (q, J = 3.6 Hz), 39.5 (q, J = 40.6 Hz), 34.8. ¹⁹F NMR (376 MHz, CDCl₃): $\delta = -63.4$ (s, 3F), -71.6 (s, 3F). HRMS (ESI) m/z: [M+H]⁺ calcd for C₁₁H₈F₆NO⁺ 284.0505, found 284.0503.

Compound **2j**: 45.3 mg, 78% yield, white solid, mp 97-99 °C. ¹H NMR (400 MHz, CDCl₃): δ = 8.15-8.13 (m, 2H), 7.81-7.79 (m, 2H), 7.69-7.66 (m, 2H), 7.55-7.51 (m, 2H), 7.49-7.44 (m, 1H), 3.81-3.78 (m, 1H), 2.86-2.81 (m, 1H), 2.44 (t, *J* = 8.72 Hz, 1H). ¹³C NMR (100 MHz, CDCl₃): δ = 193.6, 147.4, 139.4, 133.7, 129.1, 128.7, 127.7, 127.3, 124.4, 121.7, 39.1 (q, *J* = 40.2 Hz), 34.6. ¹⁹F NMR (376 MHz, CDCl₃): δ = -71.4 (s, 3F). HRMS (ESI) m/z: [M+H]⁺ calcd for C₁₆H₁₃F₃NO⁺ 292.0944, found 292.0934.

Compound **2k**: 36.5 mg, 80% yield, white solid, mp 65-68 °C. ¹H NMR (400 MHz, CDCl₃): $\delta =$ 7.86-7.84 (m, 2H), 7.52-7.43 (m, 2H), 3.74-3.72 (m, 1H), 2.82-2.75 (m, 1H), 2.47 (s, 3H), 2.40 (t, J = 8.48 Hz, 1H). ¹³C NMR (100 MHz, CDCl₃): $\delta = 194.2$, 139.1, 135.5, 135.1, 129.0, 128.9, 125.8, 124.4 (d, J = 271.4 Hz), 39.1 (q, J = 40.2 Hz), 34.6, 21.3. ¹⁹F NMR (376 MHz, CDCl₃): $\delta = -71.5$ (s, 3F). HRMS (ESI) m/z: [M+H]⁺ calcd for C₁₁H₁₁F₃NO⁺ 230.0787, found 230.0785.

Compound **21**: 30.9 mg, 62% yield, white solid, mp 81-84 °C. ¹H NMR (400 MHz, CDCl₃): δ = 8.01 (t, *J* = 1.8 Hz, 1H), 7.95-7.92 (m, 1H), 7.69-7.66 (m, 1H), 7.55 (t, *J* = 7.92 Hz, 1H), 3.71-3.68 (m, 1H), 2.86-2.79 (m, 1H), 2.41 (t, *J* = 8.6 Hz, 1H). ¹³C NMR (100 MHz, CDCl₃): δ = 193.2, 136.5, 135.6, 134.6, 130.5, 128.5, 126.9 (d, *J* = 271.7 Hz), 126.6, 39.4 (q, *J* = 40.5 Hz), 34.6. ¹⁹F NMR

 $(376 \text{ MHz}, \text{CDCl}_3): \delta = -71.5 \text{ (s, 3F)}. \text{ HRMS (ESI) m/z}: [M+H]^+ \text{ calcd for } C_{10}H_8\text{ClF}_3\text{NO}^+ 250.0241,$ found250.0241.

Compound **2m**: 32.5 mg, 71% yield, white solid, mp 56-59 °C. ¹H NMR (400 MHz, CDCl₃): δ = 7.86 (d, *J* = 7.72 Hz, 1H), 7.54 (t, *J* = 7.52 Hz, 1H), 7.41-7.34 (m, 2H), 3.59 ((d, *J* = 8.08 Hz, 1H)), 2.81-2.77 (m, 1H), 2.57 (s, 3H), 2.41 (t, *J* = 8.16 Hz, 1H). ¹³C NMR (100 MHz, CDCl₃): δ = 196.6, 139.5, 134.9, 133.1, 132.4, 129.6, 126.2, 124.4 (d, *J* = 271.6 Hz), 39.2 (q, *J* = 40.2 Hz), 36.7, 21.3. ¹⁹F NMR (376 MHz, CDCl₃): δ = -71.4 (s, 3F). HRMS (ESI) m/z: [M+H]⁺ calcd for C₁₁H₁₁F₃NO⁺ 230.0787, found 230.0786.

Compound **2n**: 38.3 mg, 79% yield, white solid, mp 45-47 °C. ¹H NMR (400 MHz, CDCl₃): δ = 7.65 (s, 2H), 7.33 (s, 1H), 3.73 (d, *J* = 8.00 Hz, 1H), 2. 77 (s, 1H), 2.43 (s, 6H), 2.38 (t, *J* = 8.64 Hz, 1H). ¹³C NMR (100 MHz, CDCl₃): δ = 194.4, 138.9, 136.3, 135.2, 126.2, 124.4 (d, *J* = 271.6 Hz), 39.0 (q, *J* = 40.3 Hz), 34.6, 21.2. ¹⁹F NMR (376 MHz, CDCl₃): δ = -71.5 (s, 3F). HRMS (ESI) m/z: [M+H]⁺ calcd for C₁₂H₁₃F₃NO⁺ 244.0944, found 244.0942.

Compound **20**: 22.6 mg, 47% yield, white solid, mp 110-113 °C. ¹H NMR (400 MHz, CDCl₃): δ = 8.16 (d, *J* = 7.96 Hz, 2H), 7.90 (d, *J* = 8.00 Hz, 2H), 3.73 (d, *J* = 7.96 Hz, 1H), 2.86 (s, 1H), 2.45 (t, *J* = 8.48 Hz, 1H). ¹³C NMR (100 MHz, CDCl₃): δ = 193.3, 137.9, 132.9, 128.9, 124.1 (d, *J* = 271.8

Hz), 117.9, 117.5, 39.7 (q, J = 40.4 Hz), 34.8. ¹⁹F NMR (376 MHz, CDCl₃): $\delta = -71.5$ (s, 3F). HRMS (ESI) m/z: [M+H]⁺ calcd for C₁₁H₈F₃N₂O⁺ 241.0583, found 241.0575.

Compound **2p**: 36.4 mg, 67% yield, white solid, mp 88-90 °C. ¹H NMR (400 MHz, CDCl₃): $\delta = 8.23$ (d, J = 8.36 Hz, 2H), 8.11 (d, J = 8.48 Hz, 2H), 3.99 (s, 3H), 3.76-3.74 (m, 1H), 2.88-2.81 (m, 1H), 2.43 (t, J = 8.72 Hz, 1H). ¹³C NMR (100 MHz, CDCl₃): $\delta = 193.9$, 165.8, 138.1, 135.3, 130.2, 128.4, 124.2 (d, J = 271.7 Hz), 52.7, 39.4 (q, J = 40.5 Hz), 34.8. ¹⁹F NMR (376 MHz, CDCl₃): $\delta = -71.5$ (s, 3F). HRMS (ESI) m/z: [M+H]⁺ calcd for C₁₂H₁₁F₃NO₃⁺ 274.0686, found 274.0679.

Compound **2q**: 55.8 mg, 93% yield, white solid, mp 138-141 °C. ¹H NMR (400 MHz, CDCl₃): δ = 8.00-7.96 (m, 2H), 6.95-6.91 (m, 2H), 3.90-3.87 (m, 4H), 3.69-3.66 (m, 1H), 3.41-3.38 (m, 4H), 2.78-2.71 (m, 1H), 2.36 (t, *J* = 8.72 Hz, 1H). ¹³C NMR (100 MHz, CDCl₃): δ = 191.2, 155.1, 130.8, 127.3 (t, *J* = 271.4 Hz), 125.4, 113.2, 66.4, 47.1, 38.6 (q, *J* = 40.3 Hz), 34.0. ¹⁹F NMR (376 MHz, CDCl₃): δ = -71.4 (s, 3F). HRMS (ESI) m/z: [M+H]⁺ calcd for C₁₄H₁₆F₃N₂O₂⁺ 301.1158, found 301.1156.

Compound 2r: 38.9 mg, 73% yield, white solid, mp 80-83 °C. ¹H NMR (400 MHz, CDCl₃): $\delta =$

8.58 (s, 1H), 8.07-8.03 (m, 2H), 7.98-7.92 (m, 2H), 7.71-7.61 (m, 2H), 3.91-3.89 (m, 1H), 2.91-2.84 (m, 1H), 2.48 (t, J = 8.20 Hz, 1H). ¹³C NMR (100 MHz, CDCl₃): $\delta = 193.9$, 136.2, 132.5, 132.4, 130.9, 129.9, 129.4, 129.1, 127.9, 127.3, 124.5 (d, J = 271.8 Hz), 123.4, 39.2 (q, J = 40.3 Hz), 34.6. ¹⁹F NMR (376 MHz, CDCl₃): $\delta = -71.3$ (s, 3F). HRMS (ESI) m/z: [M+H]⁺ calcd for C₁₄H₁₁F₃NO⁺ 266.0787, found 266.0777.

Compound **2s**: 47.1 mg, 92% yield, white solid, mp 81-84 °C. ¹H NMR (400 MHz, CDCl₃): δ = 7.91 (s, 2H), 6.91 (d, *J* = 8.56 Hz, 1H), 4.74 (t, *J* = 8.68 Hz, 2H), 3.67 (d, *J* = 7.96 Hz, 1H), 3.33 (t, *J* = 8.72 Hz, 2H), 2.74 (s, 1H), 2.37 (t, *J* = 8.48 Hz, 1H). ¹³C NMR (100 MHz, CDCl₃): δ = 191.8, 165.8, 130.8, 128.5, 128.4, 127.2 (q, *J* = 271.6 Hz), 125.8, 109.7, 72.5, 38.7 (q, *J* = 40.2 Hz), 34.2, 28.8. ¹⁹F NMR (376 MHz, CDCl₃): δ = -71.4 (s, 3F). HRMS (ESI) m/z: [M+H]⁺ calcd for C₁₂H₁₁F₃NO₂⁺ 258.0736, found 258.0735.

Compound **2t**: 27.7 mg, 67% yield, white solid, mp 87-89 °C. ¹H NMR (400 MHz, CDCl₃): δ = 7.77 (s, 1H), 7.45 (s, 1H), 6.69 (s, 1H), 3.68 (d, *J* = 7.92 Hz, 1H), 2.86 (s, 1H), 2.23 (s, 1H). ¹³C NMR (100 MHz, CDCl₃): δ = 182.4, 151.5, 148.3, 124.2 (d, *J* = 271.7 Hz), 119.7, 113.1, 38.9 (q, *J* = 40.4 Hz), 34.4. ¹⁹F NMR (376 MHz, CDCl₃): δ = -71.6 (s, 3F). HRMS (ESI) m/z: [M+H]⁺ calcd for C₈H₇F₃NO₂⁺ 206.0423, found 206.0422.

Compound **2u**: 30.6 mg, 69% yield, white solid, mp 85-89 °C. ¹H NMR (400 MHz, CDCl₃): $\delta = 8.31$ (s, 1H), 7.65-7.64 (m, 1H), 7.45 (s, 1H), 3.60 (d, J = 7.92 Hz, 1H), 2.82 (s, 1H), 2.30 (s, 1H). ¹³C NMR (100 MHz, CDCl₃): $\delta = 187.9$, 140.2, 134.2, 127.5, 126.6, 124.3 (d, J = 271.7 Hz), 38.9 (q, J = 40.4 Hz), 35.4. ¹⁹F NMR (376 MHz, CDCl₃): $\delta = -71.5$ (s, 3F). HRMS (ESI) m/z: [M+H]⁺ calcd for C₈H₇F₃NOS⁺ 222.0195, found 222.0194.

9. Computational details

DFT calculations were carried out with the Gaussian 16 software package. Geometry optimization calculations were performed with the B3LYP functional including the Empirical Dispersion D3. The optimized geometries were confirmed to be minima (no imaginary frequencies) by frequency calculations.

trans-2a

1

0.140000000

Zero-	point correction=		0.166416 (Hartree/Particle)
Thermal correction to Energy=			0.178886
Thermal correction to Enthalpy=			0.179830
Ther	nal correction to Gibbs	Free Energy=	0.125642
Sum	of electronic and zero-	point Energies=	-815.421269
Sum	of electronic and therm	al Energies=	-815.408799
Sum	of electronic and therm	al Enthalpies=	-815.407855
Sum	of electronic and therm	al Free Energies=	-815.462043
6	-1.951700000	3.893729000	3.250105000
6	-1.579046000	5.124187000	2.715315000
6	-1.173337000	5.220739000	1.386034000
6	-1.144463000	4.075567000	0.575990000
6	-1.536163000	2.842105000	1.121164000
6	-1.929947000	2.750791000	2.448501000
1	-2.262190000	3.823640000	4.286687000
1	-1.607413000	6.015271000	3.331997000
1	-0.905977000	6.180846000	0.967314000
1	-1.522938000	1.968785000	0.481318000
1	-2.222627000	1.791915000	2.860725000
6	-0.737625000	4.074450000	-0.864353000
6	0.070899000	5.187485000	-1.494253000
6	1.249532000	5.802869000	-0.816130000
1	1.477858000	5.543659000	0.212473000
6	2.479678000	6.095658000	-1.627654000
9	3.209486000	7.079694000	-1.061794000
9	2.166831000	6.501398000	-2.882297000
9	3.270085000	5.012417000	-1.730212000
7	0.038413000	6.584121000	-1.014753000
8	-0.982612000	3.123930000	-1.584023000
1	0.166231000	5.028145000	-2.563466000

-1.809084000

7.211751000

	^	
C15-	1	я
c_{ib}	-	u

Zero	-point correction=		0.166079 (Hartree/Particle)
Thermal correction to Energy=		0.178587	
Ther	mal correction to Enthalpy=	=	0.179531
Ther	mal correction to Gibbs Fre	e Energy=	0.124967
Sum	of electronic and zero-poin	t Energies=	-815.416885
Sum	of electronic and thermal E	Energies=	-815.404378
Sum	of electronic and thermal E	Enthalpies=	-815.403433
Sum	of electronic and thermal F	Free Energies=	-815.457997
6	-3.920802000	3.582601000	-2.103602000
6	-3.415217000	4.712983000	-1.466232000
6	-2.061845000	4.796793000	-1.150099000
6	-1.200068000	3.738489000	-1.470997000
6	-1.718619000	2.604196000	-2.116952000
6	-3.067638000	2.526681000	-2.430440000
1	-4.975466000	3.523756000	-2.349100000
1	-4.074932000	5.536836000	-1.218783000
1	-1.665589000	5.683831000	-0.679602000
1	-1.040984000	1.795755000	-2.360783000
1	-3.457650000	1.646586000	-2.928869000
6	0.256637000	3.721612000	-1.154038000
6	0.970076000	4.814085000	-0.364063000
6	1.642194000	5.990467000	-0.988275000
1	2.620864000	6.270531000	-0.609929000
6	1.499761000	6.348136000	-2.443107000
9	1.592617000	7.685333000	-2.613269000
9	0.328682000	5.951171000	-2.968573000
9	2.490732000	5.780944000	-3.161258000
7	0.460730000	6.174031000	-0.157345000
1	0.703838000	6.531235000	0.761323000
8	0.965513000	2.781140000	-1.458983000
1	1.549963000	4.356337000	0.433981000

10. ¹H, ¹³C, ¹⁹F and ³¹P NMR spectra

¹H NMR (400 MHz, CDCl₃) of **2a**:

¹H NMR (400 MHz, CDCl₃) of **2b**:

¹³C NMR (100 MHz, CDCl₃) of **2b**:

¹⁹F NMR (376 MHz, CDCl₃) of **2b**:

---71.4813

20 10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -110 -130 -150 -170 -190 -210 f1 (ppm) ¹H NMR (400 MHz, CDCl₃) of **2c**:

¹³C NMR (100 MHz, CDCl₃) of **2c**:

^{110 100} f1 (ppm) Ċ 150 140

¹H NMR (400 MHz, CDCl₃) of **2d**:

¹³C NMR (100 MHz, CDCl₃) of **2d**:

¹⁹F NMR (376 MHz, CDCl₃) of **2d**:

---71. 4946

¹H NMR (400 MHz, CDCl₃) of **2e**:

¹³C NMR (100 MHz, CDCl₃) of **2e**:

¹⁹F NMR (376 MHz, CDCl₃) of **2e**:

¹H NMR (400 MHz, CDCl₃) of **2f**:

¹³C NMR (100 MHz, CDCl₃) of **2f**:

¹⁹F NMR (376 MHz, CDCl₃) of **2f**:

---71.4477

20 10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -110 -130 -150 -170 -190 -210 f1 (ppm) ¹H NMR (400 MHz, CDCl₃) of **2g**:

¹³C NMR (100 MHz, CDCl₃) of **2g**:

— 193, 0155	- 141.3960 - 133.3669 - 133.3669 - 133.569 - 130.5196 - 138.507 - 131.5195 - 131.5195	2,0,2008 2,0,2008 2,07,200 2,0000 2,000 2,000 2,0000 2,00000 2,00000000
-------------	--	---

¹H NMR (400 MHz, CDCl₃) of **2h**:

¹³C NMR (100 MHz, CDCl₃) of **2h**:

¹⁹F NMR (376 MHz, CDCl₃) of **2h**:

¹H NMR (400 MHz, CDCl₃) of **2i**:

¹³C NMR (100 MHz, CDCl₃) of **2i**:

^{210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0} f1 (ppm)

¹⁹F NMR (376 MHz, CDCl₃) of **2i**:

¹H NMR (400 MHz, CDCl₃) of **2j**:

¹³C NMR (100 MHz, CDCl₃) of **2j**:

¹⁹F NMR (376 MHz, CDCl₃) of **2j**:

---71.4037

20 10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -110 -130 -150 -170 -190 -210 f1 (ppm) ¹H NMR (400 MHz, CDCl₃) of **2k**:

¹³C NMR (100 MHz, CDCl₃) of **2k**:

¹³C NMR (100 MHz, CDCl₃) of **2l**:

¹⁹F NMR (376 MHz, CDCl₃) of **2l**:

--71.5197

20 10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -110 -130 -150 -170 -190 -210 f1 (ppm)

¹H NMR (400 MHz, CDCl₃) of **2m**:

¹³C NMR (100 MHz, CDCl₃) of **2m**:

¹H NMR (400 MHz, CDCl₃) of **2n**:

¹³C NMR (100 MHz, CDCl₃) of **2n**:

¹⁹F NMR (376 MHz, CDCl₃) of **2n**:

---71.4600

20 10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -110 -130 -150 -170 -190 -210 f1 (ppm)

¹³C NMR (100 MHz, CDCl₃) of **20**:

¹⁹F NMR (376 MHz, CDCl₃) of **20**:

¹H NMR (400 MHz, CDCl₃) of **2p**:

¹³C NMR (100 MHz, CDCl₃) of **2p**:

¹⁹F NMR (376 MHz, CDCl₃) of **2p**:

---71. 5306

¹H NMR (400 MHz, CDCl₃) of **2q**:

¹H NMR (400 MHz, CDCl₃) of **2r**:

¹³C NMR (100 MHz, CDCl₃) of **2r**:

20 10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -110 -130 -150 -170 -190 -210 f1 (ppm)

¹³C NMR (100 MHz, CDCl₃) of **2s**:

- 191. 8198 - 165. 8130	130, 8398 132, 2029 128, 5029 128, 5029 127, 2070 121, 776 111, 0608 1121, 776 1121, 7	- 72. 5282	38, 6872 38, 6872 37, 8832 37, 4826 37, 4826 37, 4826 37, 4826 37, 4826 37, 4828
----------------------------	--	------------	--

¹³C NMR (100 MHz, CDCl₃) of **2t**:

¹⁹F NMR (376 MHz, CDCl₃) of **2t**:

---71.6021

20 10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -110 -130 -150 -170 -190 -210 f1 (ppm)

¹H NMR (400 MHz, CDCl₃) of **2u**:

¹³C NMR (100 MHz, CDCl₃) of **2u**:

¹⁹F NMR (376 MHz, CDCl₃) of **2u**:

20 10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -110 -130 -150 -170 -190 -210 f1 (ppm)