Electronic Supplementary Material (ESI) for Organic & Biomolecular Chemistry. This journal is © The Royal Society of Chemistry 2023

Supporting Information

One-pot Synthesis of Multisubstituted Propenylbenzenes from Benzyl Chlorides through Relay Catalysis of Palladium

Haiyu Wang,^[a] Sheng Zhang,^{*[a]} Xiujuan Feng,^[a] Xiaoqiang Yu,^[a] Masahiko Yamaguchi,^[a] and Ming Bao^{*[a]}

[a] State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian 116024, ChinaE-mail: shengzhang@dlut.edu.cn; mingbao@dlut.edu.cn

Table of Contents

1. Experimental Section	S2
2. Optimization Studies	S2
3. Synthesis of Starting Materials	S3
4. General Procedure for Transformation of Products	S5
5. Cyclic Voltammetry (CV) Analysis of PPh ₃ , Bu ₃ SnCl and Pd(OAc) ₂	S7
6. Characterization Data	S8
7. Copies of ¹ H and ¹³ C NMR Spectra	S20
8. References	S63

1. Experimental Section

General information:

Unless otherwise noted, all reactions were carried out in oven-dried 25-mL Schlenk tubes under a nitrogen atmosphere. An aluminum heating block placed on a stirring plate was used as the heating source. Solvents were purified by standard techniques without special instructions. ¹H and ¹³C NMR spectra were recorded on either a Bruker AvanceII-400 spectrometer (400 MHz for ¹H, 100 MHz for ¹³C); CDCl₃ and TMS were used as a solvent and an internal standard, respectively. The NMR yield was determined by ¹H NMR using 1,3,5-Trimethoxybenzene as an internal standard. The chemical shifts are reported in ppm downfield (δ) from TMS, the coupling constants J are given in Hz. The peak patterns are indicated as follows: s, singlet; d, doublet; t, triplet; q, quartet; m, multiplet. IR spectra were recorded on a NEXUS FT-IR spectrometer. High resolution mass spectra were recorded on either a Q-TOF mass spectrometry or a LTQ Orbitrap XL mass spectrometry. TLC was carried out on SiO₂ (silica gel 60 F254, Merck), and the spots were located with UV light. Flash chromatography was carried out on SiO₂ (silica gel 60, 200-300 mesh) or basic Al₂O₃ (Al₂O₃ 90, 100-200 mesh). Unless otherwise noted, starting materials are commercially available.

Cyclic voltammetry experiments were executed in undivided three-electrode cells. The potentials were measured against Ag/AgCl (3 M KCl) aqueous reference electrode. The working electrode was a 3 mm diameter glassy carbon disk, and the counter electrode was a platinum wire. The glassy carbon working electrode was polished with diamond polishing suspension between each experiment.

General Procedure:

Benzyl chloride (**1a**, 64.0 mg, 0.3 mmol) and allyltributylstannane (0.3 mmol, 100.0 mg) were added into a mixture of $Pd_2(dba)_3$ (13.7 mg, 0.015 mmol) and PPh₃ (15.7 mg, 0.06 mmol), in dry dichloromethane (2.0 mL). After the reaction mixture was stirred at room temperature for 24 h under N₂ atmosphere, 4-toluenesulfonic acid monohydrate (TsOH H₂O, 0.6 mmol, 142.0 mg) was subsequently added, and the reaction mixture was stirred at 40 °C for 12 h. Purification by basic alumina column chromatography (eluent: hexane) followed by distillation under reduced pressure to give propenylbenzene **2a** as a yellow solid in the yield of 60%.

2. Optimization Studies

A mixture of *ortho*-allylation product **2aa** and *meta*-allylation product **2aa'** was obtained in 10% yield totally when the mixture of 4-ethylbenzyl chloride **1aa** with allyltributylstannane was purified by silica gel column (Scheme S1).

Scheme S1. Effect of silica gel on dearomatization product

A mixture of 1,2-allylic rearrangement product **3aa** and 1,2-phenyl rearrangement product **3aa'** were obtained under standard reaction conditions when used 2,4-diphenylbenzyl chloride **3a** as substrate (Scheme S2).

Scheme S2. Reactions of 2,4-diphenylbenzyl chloride 3a as substrate^a

^aReaction conditions: **3a** (0.3 mmol), allyltributylstannane (0.3 mmol), Pd₂(dba)₃ (5 mol%) and PPh₃ (20 mol%) in 2.0 mL of solvent at room temperature for 24 h under N₂ atmosphere. TsOH H₂O (0.6 mmol) was subsequently added, and the reaction mixture was stirred for 12 h. ^bYields were determined by ¹H NMR using 1,3,5-trimethoxybenzene as an internal standard.

Different Lewis acids were employed to replace Bu₃SnCl under the standard reaction conditions, the results are shown in Table S1.

	Pd ₂ (dba) ₃ (5 mol%) PPh ₃ (20 mol%)	
2a'	TsOH•H ₂ O (2.0 equiv.) Lewis acid (2.0 equiv.) CH ₂ Cl ₂ , 40 °C, 12 h	2a
entry	Lewis acid	yield (%) ^b
1	-	54
2	Bu ₃ SnCl	90
3	AlCl ₃	18
4	(CH ₃) ₃ SiCl	trace
5	TiCl ₄	0
6	SnCl ₄	0
7	CF ₃ SO ₃ La	0
8	(CH ₃) ₃ SiCl	0
9	$BF_3 O(C_2H_5)_2$	0

Table S1. Optimization of Lewis acid^a

^aReaction conditions: allylation product **2a'** (0.3 mmol), Lewis acid (0.6 mmol), $Pd_2(dba)_3$ (5 mmol%), PPh_3 (20 mmol%) and TsOH H₂O (0.6 mmol) in 2.0 mL of CH₂Cl₂ at room temperature for 12 h. ^bIsolated yield.

3. Synthesis of Starting Materials

Representative procedure for synthesis of 1a-1o (Method A)

To a solution of aryl aldehyde (5 mmol) in MeOH (20 mL) at 0 °C, NaBH₄ (0.38 g, 10 mmol) was slowly added. The reaction mixture was slowly warmed to room temperature and stirred overnight. The resulting mixture was washed with 5% HCl (aq.), brine, and H₂O, then extracted with EtOAc three times, and the combined organic layers were dried over Na₂SO₄, filtrated, and then concentrated under vacuum. The crude product was washed with hexane to afford the aryl alcohol as a white solid.

To a solution of the aryl alcohol (5 mmol) in CH_2Cl_2 (20 mL) at 0 °C, $SOCl_2$ (10 mmol) was slowly added. The reaction mixture was slowly warmed to room temperature and stirred overnight. After washed with saturated NaHCO₃ (aq.), brine, and H₂O, the combined organic layers were dried over Na₂SO₄, filtrated, and then concentrated under vacuum to give a crude product. The crude product was purified by silica gel column chromatography (eluent: hexane) to afford the desired benzyl chloride product.

Representative procedure for synthesis of 1a-1l, and 1n-1o¹

To a solution of 2-bromo-4-methylbenzaldehyde (0.50 g, 5 mmol) and Na₂CO₃ (1.38 g, 10 mmol) in 10 mL DMF/H₂O (v/v = 2:1) was added phenylboronic acid (0.67 g, 5.5 mmol), and stirred for 5 min. After Pd(OAc)₂ (56 mg, 0.25 mmol) was added, the resulting mixture was stirred overnight at room temperature under N₂ atmosphere. The resulting mixture was extracted with EtOAc three times, and then the combined organic layers were dried over Na₂SO₄. The Na₂SO₄ was removed through filtration, and the filtrate was concentrated under vacuum to afford a crude product. The crude product was purified by silica gel column chromatography (eluent: hexane/EtOAc = 20/1) to afford the desired 2-phenyl-4-methylbenzaldehyde (0.81 g, 4.15 mmol, 83% yield). The 2-(chloromethyl)-5-methyl-1,1'-biphenyl **1a** was finally obtained by means of Method A as a colorless oil (0.77 g, 71% total yield).

Representative procedure for synthesis of 1m

2,4-dimethylbenzaldehyde (0.67 g, 5 mmol) was used to synthesize 1-(chloromethyl)-2,4-dimethylbenzene 1m by means of Method A as a colorless oil (1.06 g, 77% total yield).

Procedure for synthesis of 3a²

A solution of Pd(OAc)₂ (68 mg, 0.30 mmol) and PPh₃ (0.39 g, 1.50 mmol) in 5 mL absolute ethanol and 5 mL toluene was stirred at room temperature under N₂ atmosphere for 10 min. After that period, 2,4-dichlorobenzaldehyde (0.87 g, 5 mmol), Na₂CO₃ (2.35 g, 22 mmol) and phenylboronic acid (3.05 g, 25 mmol) were sequentially added. The resulting mixture was stirred at 100 °C under N₂ atmosphere for 24 h. The resulting mixture was extracted with EtOAc three times, and then the combined organic layers were dried over Na₂SO₄. The Na₂SO₄ was removed through filtration, and the filtrate was concentrated under vacuum to afford a crude product. The crude product was purified by silica gel column chromatography (eluent: hexane/EtOAc = 20/1) to afford the desired [1,1':3',1"-terphenyl]-4'-carbaldehyde (1.03 g, 4 mmol, 80% yield). The 4'-(chloromethyl)-1,1':3',1"-terphenyl **3a** was finally obtained by means of Method A as a colorless oil (0.89 g, 64% total yield).

4. General Procedure for Transformation of Products

To a solution of **2a** (66.6 mg, 0.3 mmol) in anhydrous CH_2Cl_2 (2.0 mL), *m*-CPBA (56.9 mg, 0.33 mmol) was added at 0 °C under nitrogen atmosphere. After stirring for 4 h, the reaction mixture was quenched with a saturated with NaHCO₃ and extracted with CH_2Cl_2 three times. The organic phases were collected and dried over Na₂SO₄. The solvent was concentrated in vacuo to yield the epoxide which was directly used without any further purification. The combined organic layers were dried over

Na₂SO₄, filtrated, and concentrated in vacuo. The residue was purified by silica gel column chromatography (eluent: hexane/EtOAc = 100/1 to 50/1) to afford the epoxide product **2a-1** (35.0 mg, 49% yield)³.

To a solution of **2a** (66.6 mg, 0.3 mmol) in DMSO (2.0 mL), water (10.8 mg, 0.6 mmol) was added under nitrogen atmosphere and cooled to ca. 10 °C. With stirring, NBS (106.8 mg, 0.6 mmol) was added as one portion. After a short induction period of 2-3 min a yellow color developed and the solution became quite warm. Stirring for an additional 25 min was followed by quenching of the reaction mixture with NaHCO₃ and extracted with EtOAc three times. The residue was purified by silica gel column chromatography (eluent: hexane/EtOAc = 20/1 to 10/1) to afford the bromohydrin product **2a-2** (61.1 mg, 64% yield)⁴.

To a solution of IBX (168.0 mg, 0.6 mmol) and iodine (83.8 mg, 0.33 mmol) in dry DMSO (2.0 mL) stirred at room temperature was added **2a** (66.6 mg, 0.3 mmol) in one charge. The reaction mixture was stirred at room temperature overnight. Then it was diluted with CH₂Cl₂ (15 mL) and washed with saturated aqueous NaHCO₃–Na₂S₂O₃. Then the resulting mixture was extracted with EtOAc three times. The residue was purified by silica gel column chromatography (eluent: hexane/EtOAc = 50/1) to afford the diketone product **2a-3** (28.7 mg, 38% yield)⁵.

An oven-dried Schlenk tube was charge with FeCl_2 (3.8 mg, 0.03 mmol), DDQ (204.6 mg, 0.9 mmol), **2a** (66.6 mg, 0.3 mmol), Me₃SiN₃ (69.1 mg, 0.6 mmol) and DCE (2.0 mL). The reaction mixture was stirred at 60 °C under air for 2 h. After cooling down to room temperature and concentrating in vacuum, the residue was purified by silica gel column chromatography (eluent: hexane/EtOAc = 50/1) to afford the alkenyl nitriles product **2a-4** (37.8 mg, 54% yield)⁶.

An oven-dried Schlenk tube was charge with $PdCl_2$ (5.3 mg, 0.03 mmol), DDQ (204.6 mg, 0.9 mmol), **2a** (66.6 mg, 0.3 mmol), H₂O (8.1 mg, 0.45 mmol) and DCE (2.0 mL). The reaction mixture was stirred at 50 °C for 2 h. After cooling down to room temperature and concentrating in vacuum, the residue was purified by silica gel column chromatography (eluent: hexane/EtOAc = 50/1 to 20/1) to afford the alkenyl aldehydes product **2a-5** (46.8 mg, 66% yield)⁷.

Bu₃SnC1 PPh_3 40 40 Current (µA) Current (µA) 20 -20 -20 -0.5 1.5 0.0 0.5 1.0 1.5 -0.5 0.0 0.5 1.0 Potential (V vs. Ag/AgCl) Potential (V vs. Ag/AgCl) Pd(OAc), 40 Current (µA) -20 -0.5 0.0 0.5 1.0 1.5 Potential (V vs. Ag/AgCl)

5. Cyclic Voltammetry (CV) Analysis of PPh₃, Bu₃SnCl and Pd(OAc)₂

Figure S1. Top left: CV of 2 mM PPh₃ in CH₂Cl₂ with Bu₄NPF₆ (0.1 M) as a supporting electrolyte. Top right: CV of 2 mM Bu₃SnCl in CH₂Cl₂ with Bu₄NPF₆ (0.1 M) as a supporting electrolyte. Bottom left: CV of 1 mM Pd(OAc)₂ in CH₂Cl₂ with Bu₄NPF₆ (0.1 M) as a supporting electrolyte. Scan rate = 0.1 V/s. The redox feature of PPh₃ onsets at ca. 1.3 V. No redox features of Bu₃SnCl appears in this voltage range. The redox feature of Pd(OAc)₂ onsets at ca. -0.4 V.

6. Characterization Data

2-(Chloromethyl)-5-methyl-1,1'-biphenyl (1a)

1a

Colorless oil (0.70 g, 59% yield), ¹H NMR (400 MHz, CDCl₃) δ 7.47–7.31 (m, 6H), 7.22–7.13 (m, 1H), 7.09 (s, 1H), 4.49 (s, 2H), 2.36 (s, 3H); ¹³C{¹H} NMR (100 MHz, CDCl₃) δ 142.0, 140.4, 138.5, 132.1, 131.0, 130.5, 129.1, 128.7, 128.3, 127.4, 44.5, 21.2; IR (neat): v_{max} 3027, 2924, 1611, 1488, 1444, 1262, 824, 780, 737, 701, 668 cm⁻¹; HRMS (EI) m/z: [M]⁺ Calcd for C₁₄H₁₃Cl 216.0706; Found 216.0696.

2-(Chloromethyl)-4'-fluoro-5-methyl-1,1'-biphenyl (1b)

Colorless oil (0.62 g, 53% yield), ¹H NMR (400 MHz, CDCl₃) δ 7.56–7.39 (m, 3H), 7.28–7.22 (m, 1H), 7.22–7.09 (m, 3H), 4.53 (s, 2H), 2.43 (s, 3H); ¹³C{¹H} NMR (100 MHz, CDCl₃) δ 162.3 (d, J = 246.6 Hz), 141.0, 138.7, 136.3 (d, J = 3.4 Hz), 132.2, 131.1, 130.8, 130.7 (d, J = 5.9 Hz), 128.9, 115.2 (d, J = 21.2 Hz), 44.5, 21.2; IR (neat): v_{max} 2925, 1611, 1513, 1495, 1445, 1224, 1158, 1093, 1015, 879, 839, 752, 670 cm⁻¹; HRMS (EI) m/z: [M]⁺ Calcd for C₁₄H₁₂ClF 234.0612; Found 234.0604.

4'-Chloro-2-(chloromethyl)-5-methyl-1,1'-biphenyl (1c)

White solid (0.76 g, 61% yield), M. p. = 60-61 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.49–7.43 (m, 3H), 7.42–7.34 (m, 2H), 7.26–7.22 (m, 1H), 7.10 (d, J = 1.9 Hz, 1H), 4.51 (s, 2H), 2.42 (s, 3H); ¹³C{¹H} NMR (100 MHz, CDCl₃) δ 140.8, 138.8, 138.7, 133.6, 132.0, 131.0, 130.7, 130.4, 129.0, 128.5, 44.4, 21.2; IR (KBr): v_{max} 2924, 1646, 1488, 1263, 1091, 1014, 833, 754, 715, 674 cm⁻¹; HRMS (EI) m/z: [M]⁺ Calcd for C₁₄H₁₂Cl₂ 250.0316; Found 250.0309.

4'-Bromo-2-(chloromethyl)-5-methyl-1,1'-biphenyl (1d)

Br

White solid (0.94 g, 64% yield), M. p. = 70-71 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.53–7.43 (m, 2H), 7.36–7.31 (m, 1H), 7.25–7.18 (m, 2H), 7.15–7.10 (m, 1H), 6.98 (d, J = 1.9 Hz, 1H), 4.38 (s, 2H), 2.30 (s, 3H); ¹³C{¹H} NMR (100 MHz, CDCl₃) δ 140.8, 139.2, 138.7, 132.0, 131.4, 130.84, 130.82, 130.7, 129.1, 121.7, 44.3, 21.2; IR (KBr): v_{max} 2923, 2852, 1642, 1488, 1378, 1262, 1183, 1073, 1010, 828, 741, 712, 669 cm⁻¹; HRMS (EI) m/z: [M]⁺ Calcd for C₁₄H₁₂BrCl 293.9811; Found 293.9804.

2-(Chloromethyl)-4',5-dimethyl-1,1'-biphenyl (1e)

Colorless oil (0.62 g, 54% yield), ¹H NMR (400 MHz, CDCl₃) δ 7.43–7.39 (m, 1H), 7.33–7.27 (m, 2H), 7.26–7.21 (m, 2H), 7.19–7.15 (m, 1H), 7.08 (s, 1H), 4.51 (s, 2H), 2.41 (s, 3H), 2.37 (s, 3H); ¹³C{¹H} NMR (100 MHz, CDCl₃) δ 142.0, 138.4, 137.4, 137.1, 132.1, 131.1, 130.5, 129.0, 129.0, 128.5, 44.6, 21.2; IR (neat): v_{max} 2922, 1610, 1496, 1445, 1378, 1263, 1184, 1110, 1020, 821, 750, 718, 669 cm⁻¹; HRMS (EI) m/z: [M]⁺ Calcd for C₁₅H₁₅Cl 230.0862; Found 230.0854.

2-(Chloromethyl)-4'-methoxy-5-methyl-1,1'-biphenyl (1f)

White solid (0.76 g, 62% yield), M. p. = 69-70 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.46–7.39 (m, 1H), 7.39–7.32 (m, 2H),7.22–7.15 (m, 1H), 7.12 (s, 1H), 7.03–6.94 (m, 2H), 4.53 (s, 2H), 3.87 (s, 3H), 2.39 (s, 3H); ¹³C{¹H} NMR (100 MHz, CDCl₃) δ 159.0, 141.7, 138.5, 132.7, 132.2, 131.2, 130.6, 130.2, 128.4, 113.7, 55.3, 44.7, 21.2; IR (KBr): v_{max} 2925, 1609, 1516, 1496, 1462, 1377, 1245, 1178, 1031, 834, 755, 669 cm⁻¹; HRMS (EI) m/z: [M]⁺ Calcd for C₁₅H₁₅ClO 246.0811; Found 246.0805.

2-(Chloromethyl)-5-methyl-4'-(trifluoromethoxy)-1,1'-biphenyl (1g)

1g

Colorless oil (0.89 g, 59% yield), ¹H NMR (400 MHz, CDCl₃) δ 7.57–7.44 (m, 3H), 7.39–7.31 (m, 2H), 7.30–7.23 (m, 1H), 7.14 (s, 1H), 4.53 (s, 2H), 2.44 (s, 3H); ¹³C{¹H} NMR (100 MHz, CDCl₃) δ 148.7, 140.6, 139.0, 138.8, 132.1, 131.0, 130.8, 130.6, 129.2, 120.7, 120.6 (q, *J* = 257.7 Hz) 44.3, 21.2; IR (neat): *v*_{max} 2925, 1611, 1513, 1494, 1258, 1104, 1018, 853, 825, 757, 674 cm⁻¹; HRMS (EI) m/z: [M]⁺ Calcd for C₁₅H₁₂ClF₃O 300.0529; Found 300.0520.

2'-(Chloromethyl)-5'-methyl-[1,1'-biphenyl]-4-carbonitrile (1h)

White solid (0.72 g, 60% yield), M. p. = 84-85 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.87–7.68 (m, 2H), 7.67–7.52 (m, 2H), 7.50–7.39 (m, 1H), 7.35–7.20 (m, 1H), 7.16–6.99 (m, 1H), 4.46 (s, 2H), 2.42 (s, 3H); ¹³C{¹H} NMR (100 MHz, CDCl₃) δ 145.2, 140.1, 139.0, 132.1, 131.9, 131.0, 130.7, 130.0, 129.8, 118.8, 111.4, 44.1, 21.2; IR (KBr): ν_{max} 2924, 2228, 1607, 1493, 1458, 1378, 1266, 1019, 844, 755, 725, 672 cm⁻¹; HRMS (EI) m/z: [M]⁺ Calcd for C₁₅H₁₂ClN 241.0658; Found 241.0649.

Methyl 2'-(chloromethyl)-5'-methyl-[1,1'-biphenyl]-4-carboxylate (1i)

1i White solid (0.78 g, 57% yield), M. p. = 75-76 °C; ¹H NMR (400 MHz, CDCl₃) δ 8.26–8.03 (m, 2H), 7.67–7.37 (m, 2H), 7.33–7.18 (m, 1H), 7.18–7.02 (m, 1H), 7.16– 7.09 (m, 1H), 4.50 (s, 2H), 3.98 (s, 3H), 2.42 (s, 3H); ¹³C{¹H} NMR (100 MHz, CDCl₃) δ 166.9, 145.1, 141.0, 138.7, 132.0, 130.8, 130.7, 129.6, 129.3, 129.2, 52.2, 44.2, 21.2; IR (KBr): ν_{max} 2924, 1724, 1609, 1435, 1279, 1180, 1112, 1018, 860, 824, 782, 744, 707, 670 cm⁻¹; HRMS (EI) m/z: [M]⁺ Calcd for C₁₆H₁₅ClO₂ 274.0761; Found 274.0753.

2-(Chloromethyl)-5-methyl-4'-nitro-1,1'-biphenyl (1j)

White solid (0.72 g, 55% yield), M. p. = 65-66 °C; ¹H NMR (400 MHz, CDCl₃) δ 8.39–8.22 (m, 2H), 7.67–7.61 (m, 2H), 7.50–7.45 (m, 1H), 7.32–7.27 (m, 1H), 7.14–7.10 (m, 1H), 4.48 (s, 2H), 2.44 (s, 3H); ¹³C{¹H} NMR (100 MHz, CDCl₃) δ 147.3, 147.2, 139.8, 139.1, 131.9, 131.0, 130.6, 130.1, 129.9, 123.6, 44.0, 21.2; IR (KBr): v_{max} 2958, 2924, 1639, 1519, 1456, 1348, 1263, 1106, 1014, 849, 699 cm⁻¹; HRMS (EI) m/z: [M]⁺ Calcd for C₁₄H₁₂ClNO₂ 261.0557; Found 261.0549.

2-(Chloromethyl)-5-methyl-4'-(trifluoromethyl)-1,1'-biphenyl (1k)

Colorless oil (0.82 g, 58% yield), ¹H NMR (400 MHz, CDCl₃) δ 7.79–7.74 (m, 2H), 7.64–7.58 (m, 2H), 7.52–7.48 (m, 1H), 7.30 (dd, J = 8.0, 1.9 Hz, 1H), 7.15 (d, J = 1.9

Hz, 1H), 4.52 (s, 2H), 2.46 (s, 3H); ${}^{13}C{}^{1}H$ NMR (100 MHz, CDCl₃) δ 144.1, 140.6, 138.9, 132.0, 130.9, 129.7 (q, J = 32.4 Hz), 129.6, 129.5, 125.3 (q, J = 3.8 Hz), 124.3 (q, J = 272.0 Hz), 44.2, 21.2; IR (neat): v_{max} 2924, 1619, 1450, 1325, 1262, 1167, 1128, 1069, 1017, 847 cm⁻¹; HRMS (EI) m/z: [M]⁺ Calcd for C₁₅H₁₂ClF₃ 284.0580; Found 284.0572.

2-(Chloromethyl)-2',5,6'-trimethyl-1,1'-biphenyl (11)

White solid (0.76 g, 62% yield), M. p. = 58-59 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.47–7.44 (m, 1H), 7.21–7.15 (m, 2H), 7.12–7.09 (m, 2H), 6.88 (s, 1H), 4.24 (s, 2H), 2.36 (s, 3H), 1.97 (s, 6H); ¹³C{¹H} NMR (100 MHz, CDCl₃) δ 140.4, 139.3, 138.8, 136.2, 132.1, 130.1, 130.0, 128.6, 127.5, 127.4, 44.1, 21.2, 20.7; IR (KBr): v_{max} 2955, 2923, 2853, 1638, 1460, 1377, 1263, 1163, 1029, 821, 768, 676 cm⁻¹; HRMS (EI) m/z: [M]⁺ Calcd for C₁₆H₁₇Cl 244.1019; Found 244.1014.

1-(Chloromethyl)-2,4-dimethylbenzene (1m)⁷

Colorless oil (0.63 g, 82% yield), ¹H NMR (400 MHz, CDCl₃) δ 7.25–7.22 (m, 1H), 7.09–7.00 (m, 2H), 4.64 (s, 2H), 2.44 (s, 3H), 2.36 (s, 3H); ¹³C{¹H} NMR (100 MHz, CDCl₃) δ 138.9, 137.1, 132.6, 131.6, 129.8, 127.0, 44.9, 21.1, 18.7;

2-(2-(Chloromethyl)-5-methylphenyl)thiophene (1n)

1n 1-:4-----

White solid (0.72 g, 65% yield), M. p. = 63-64 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.51–7.38 (m, 3H), 7.33–7.26 (m, 1H), 7.26–7.16 (m, 2H), 4.61 (s, 2H), 2.41 (s, 3H); ¹³C{¹H} NMR (100 MHz, CDCl₃) δ 140.5, 138.7, 136.7, 132.2, 130.9, 130.8, 128.9, 128.8, 125.6, 123.2, 44.9, 21.2; IR (KBr): v_{max} 2923, 1611, 1445, 1377, 1263, 847, 824, 790, 744, 668 cm⁻¹; HRMS (EI) m/z: [M]⁺ Calcd for C₁₂H₁₁ClS 222.0270; Found 222.0261.

2-(2-(Chloromethyl)-5-methylphenyl)naphthalene (10)

10

White solid (0.73 g, 55% yield), M. p. = 66-67 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.90–7.83 (m, 4H), 7.55–7.42 (m, 4H), 7.23–7.16 (m, 2H), 4.52 (s, 2H), 2.38 (s, 3H); ¹³C{¹H} NMR (100 MHz, CDCl₃) δ 142.0, 138.6, 137.9, 133.3, 132.6, 132.4, 131.3, 130.7, 128.9, 128.3, 128.1, 128.0, 127.8, 127.5, 126.5, 126.3, 44.7, 21.3; IR (KBr): v_{max} 3053, 2922, 1609, 1496, 1444, 1378, 1262, 891, 859, 820, 740 cm⁻¹; HRMS (EI) m/z: [M]⁺ Calcd for C₁₈H₁₅Cl 266.0862; Found 266.0857.

(E)-2,5-Dimethyl-4-(prop-1-en-1-yl)-1,1'-biphenyl (2a)

Yellow solid (40.0 mg, 60% yield), M. p. = 59-60 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.48–7.39 (m, 2H), 7.37–7.33 (m, 4H), 7.05 (s, 1H), 6.63 (dd, J = 15.8, 2.0 Hz, 1H), 6.19 (dq, J = 15.4, 6.5 Hz, 1H), 2.36 (s, 3H), 2.28 (s, 3H), 1.96 (dd, J = 6.7, 1.7 Hz, 3H); ¹³C{¹H} NMR (100 MHz, CDCl₃) δ 141.9, 140.4, 136.0, 132.7, 132.2, 131.7, 129.2, 128.6, 128.1, 127.4, 126.9, 126.7, 20.1, 19.3, 18.9; IR (KBr): v_{max} 2925, 1618, 1447, 1325, 1166, 1127, 1068, 963, 847, 696 cm⁻¹; HRMS (EI) m/z: [M]⁺ Calcd for C₁₇H₁₈ 222.1409; Found 222.1402.

(E)-4'-Fluoro-2,5-dimethyl-4-(prop-1-en-1-yl)-1,1'-biphenyl (2b)

2b

Brown oil (43.2 mg, 60% yield); ¹H NMR (400 MHz, CDCl₃) δ 7.39–7.27 (m, 3H), 7.18–7.07 (m, 2H), 7.01 (s, 1H), 6.63 (dd, J = 15.6, 1.8 Hz, 1H), 6.19 (dq, J = 15.6, 6.6 Hz, 1H), 2.36 (s, 3H), 2.25 (s, 3H), 1.96 (dd, J = 6.6, 1.8 Hz, 3H); ¹³C{¹H} NMR (100 MHz, CDCl₃) δ 161.9 (d, J = 245.2 Hz), 139.3, 137.8 (d, J = 3.2 Hz), 136.1, 132.7, 132.3, 131.7, 130.7 (d, J = 7.9 Hz), 128.4, 127.4, 127.0, 114.9 (d, J = 21.2 Hz), 20.0, 19.3, 18.9.; ¹⁹F NMR (376 MHz, CDCl₃) δ -116.34; IR (neat): v_{max} 2925, 1652, 1605, 1509, 1489, 1447, 1222, 1157, 963, 839, 699 cm⁻¹; HRMS (EI) m/z: [M]⁺ Calcd for C₁₇H₁₇F 240.1314; Found 240.1308.

(E)-4'-Chloro-2,5-dimethyl-4-(prop-1-en-1-yl)-1,1'-biphenyl (2c)

White solid (44.6 mg, 58% yield), M. p. = 60-61 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.38–7.33 (m, 2H), 7.29 (s, 1H), 7.26–7.20 (m, 2H), 6.96 (s, 1H), 6.58 (dd, J = 15.7, 1.9 Hz, 1H), 6.15 (dq, J = 15.6, 6.6 Hz, 1H), 2.31 (s, 3H), 2.21 (s, 3H), 1.92 (dd, J = 6.6, 1.8 Hz, 3H); ¹³C{¹H} NMR (100 MHz, CDCl₃) δ 140.3, 139.1, 136.3, 132.7, 132.6, 132.3, 131.5, 130.5, 128.5, 128.2, 127.5, 127.1, 20.0, 19.2, 18.8; IR (KBr): v_{max}

2922, 2069, 1652, 1483, 1445, 1266, 1090, 1013, 962, 834, 747, 692 cm⁻¹; HRMS (EI) m/z: $[M]^+$ Calcd for C₁₇H₁₇Cl 256.1019; Found 256.1012.

(E)-4'-Bromo-2,5-dimethyl-4-(prop-1-en-1-yl)-1,1'-biphenyl (2d)

2d

White solid (51.3 mg, 57% yield); M. p. = 73-74 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.58–7.51 (m, 2H), 7.33 (s, 1H), 7.24–7.18 (m, 2H), 6.99 (s, 1H), 6.61 (dd, J = 15.6, 1.8 Hz, 1H), 6.19 (dq, J = 15.6, 6.6 Hz, 1H), 2.34 (s, 3H), 2.25 (s, 3H), 1.95 (dd, J = 6.6, 1.8 Hz, 3H); ¹³C{¹H} NMR (100 MHz, CDCl₃) δ 140.7, 139.0, 136.3, 132.5, 132.3, 131.4, 131.2, 130.9, 128.4, 127.5, 127.2, 120.8, 20.0, 19.2, 18.9; IR (KBr): v_{max} 2925, 1646, 1480, 1442, 1267, 1070, 1011, 962, 698 cm⁻¹; HRMS (EI) m/z: [M]⁺ Calcd for C₁₇H₁₇Br 300.0514; Found 300.0506.

(E)-2,4',5-Trimethyl-4-(prop-1-en-1-yl)-1,1'-biphenyl (2e)

White solid (43.9 mg, 62% yield); M. p. = 59-60 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.32 (s, 1H), 7.25–7.19 (m, 4H), 7.02 (s, 1H), 6.62 (dd, J = 15.7, 2.0 Hz, 1H), 6.17 (dq, J = 15.6, 6.6 Hz, 1H), 2.41 (s, 3H), 2.34 (s, 3H), 2.26 (s, 3H), 1.94 (dd, J = 6.6, 1.8 Hz, 3H); ¹³C{¹H} NMR (100 MHz, CDCl₃) δ 140.3, 138.9, 136.2, 135.8, 132.7, 132.1, 131.7, 129.1, 128.7, 128.6, 127.4, 126.8, 21.2, 20.1, 19.3, 18.9; IR (KBr): v_{max} 3020, 2922, 2853, 1650, 1489, 1446, 1377, 962, 889, 815 cm⁻¹; HRMS (EI) m/z: [M]⁺ Calcd for C₁₈H₂₀ 236.1565; Found 236.1556.

(E)-4'-Methoxy-2,5-dimethyl-4-(prop-1-en-1-yl)-1,1'-biphenyl (2f)

Brown oil (31.8 mg, 42% yield); ¹H NMR (400 MHz, CDCl₃) δ 7.29 (s, 1H), 7.26– 7.22 (m, 2H), 6.99 (s, 1H), 6.96–6.90 (m, 2H), 6.58 (dd, J = 15.5, 1.8 Hz, 1H), 6.14 (dq, J = 15.6, 6.6 Hz, 1H), 3.84 (s, 3H), 2.31 (s, 3H), 2.24 (s, 3H), 1.91 (dd, J = 6.6, 1.8 Hz, 3H); ¹³C{¹H} NMR (100 MHz, CDCl₃) δ 158.4, 140.0, 135.7, 134.3, 132.8, 132.2, 131.8, 130.2, 128.6, 127.4, 126.7, 113.5, 113.4, 55.3, 20.1, 19.3, 18.9; IR (neat): v_{max} 2954, 1609, 1518, 1489, 1460, 1287, 1247, 1175, 1038, 965, 835 cm⁻¹; HRMS (EI) m/z: [M]⁺ Calcd for C₁₈H₂₀O 252.1514; Found 252.1505.

(E)-2,5-Dimethyl-4-(prop-1-en-1-yl)-4'-(trifluoromethoxy)-1,1'-biphenyl (2g)

Brown oil (50.5 mg, 55% yield); ¹H NMR (400 MHz, CDCl₃) δ 7.37–7.29 (m, 3H), 7.25–7.21 (m, 2H), 6.98 (s, 1H), 6.59 (dd, J = 15.6, 1.9 Hz, 1H), 6.16 (dq, J = 15.6, 6.6 Hz, 1H), 2.32 (s, 3H), 2.22 (s, 3H), 1.92 (dd, J = 6.6, 1.8 Hz, 3H); ¹³C{¹H} NMR (100 MHz, CDCl₃) δ 148.1, 140.6, 138.9, 136.4, 132.6, 132.3, 131.6, 130.5, 128.4, 127.5, 127.2, 120.5, 19.9, 19.2, 18.8.; ¹⁹F NMR (376 MHz, CDCl₃) δ -57.79; IR (neat): v_{max} 2923, 2855, 1636, 1490, 1444, 1258, 1222, 1165, 964, 750, 696 cm⁻¹; HRMS (EI) m/z: [M]⁺ Calcd for C₁₈H₁₇F₃O 306.1231; Found 306.1222.

(E)-2',5'-Dimethyl-4'-(prop-1-en-1-yl)-[1,1'-biphenyl]-4-carbonitrile (2h)

White solid (25.9 mg, 35% yield); M. p. = 82-83 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.78–7.68 (m, 2H), 7.50–7.42 (m, 2H), 7.35 (s, 1H), 7.00 (s, 1H), 6.62 (dd, J = 15.6, 2.2 Hz, 1H), 6.21 (dq, J = 13.1, 6.3 Hz, 1H), 2.36 (s, 3H), 2.25 (s, 3H), 1.96 (dd, J = 6.7, 1.9 Hz, 3H); ¹³C{¹H} NMR (100 MHz, CDCl₃) δ 146.7, 138.3, 137.0, 132.6, 132.4, 131.9, 131.3, 130.0, 128.2, 127.7, 119.1, 110.5, 19.9, 19.3, 18.9; IR (KBr): v_{max} 2226, 1652, 1488, 1446, 1390, 1262, 1035, 964, 688 cm⁻¹; HRMS (EI) m/z: [M]⁺ Calcd for C₁₈H₁₇N 247.1361; Found 247.1354.

Methyl (E)-2',5'-Dimethyl-4'-(prop-1-en-1-yl)-[1,1'-biphenyl]-4-carboxylate (2i)

White solid (49.6 mg, 59% yield); M. p. = 74-75 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.99 (d, J = 8.3 Hz, 2H), 7.34–7.29 (m, 2H), 7.24 (s, 1H), 6.92 (s, 1H), 6.51 (dd, J =15.6, 1.8 Hz, 1H), 6.09 (dq, J = 15.7, 6.6 Hz, 1H), 3.86 (s, 3H), 2.25 (s, 3H), 2.15 (s, 3H), 1.85 (dd, J = 6.6, 1.8 Hz, 3H); ¹³C{¹H} NMR (100 MHz, CDCl₃) δ 167.1, 146.7, 139.2, 136.6, 132.5, 132.4, 131.4, 129.5, 129.4, 129.3, 128.4, 127.6, 127.3, 52.1, 20.0, 19.2, 18.9.; IR (KBr): v_{max} 2950, 1719, 1608, 1435, 1276, 1178, 1102, 963, 860, 777, 712, 701 cm⁻¹; HRMS (EI) m/z: [M]⁺ Calcd for C₁₉H₂₀O₂ 280.1463; Found 280.1455. (**E**)-2,5-Dimethyl-4'-nitro-4-(prop-1-en-1-yl)-1,1'-biphenyl (2j)

Yellow solid (38% yield); M. p. = 63-64 °C; ¹H NMR (400 MHz, CDCl₃) δ 8.33–8.24 (m, 2H), 7.54–7.47 (m, 2H), 7.37 (s, 1H), 7.02 (s, 1H), 6.62 (dd, *J* = 15.6, 1.8 Hz, 1H), 6.22 (dq, *J* = 15.6, 6.6 Hz, 1H), 2.36 (s, 3H), 2.27 (s, 3H), 1.96 (dd, *J* = 6.6, 1.8 Hz, 3H); ¹³C{¹H} NMR (100 MHz, CDCl₃) δ 148.8, 146.7, 137.9, 137.2, 132.6, 132.4, 131.3, 130.1, 128.2, 127.8, 127.7, 123.4, 20.0, 19.3, 18.9; IR (KBr): *v*_{max} 2923, 2852, 1646, 1515, 1484, 1447, 1343, 1106, 964, 854, 703 cm⁻¹; HRMS (EI) m/z: [M]⁺ Calcd for C₁₇H₁₇NO₂ 267.1259; Found 267.1253.

(E)-2,5-Dimethyl-4-(prop-1-en-1-yl)-4'-(trifluoromethyl)-1,1'-biphenyl (2k)

Brown oil (37.4 mg, 43% yield); ¹H NMR (400 MHz, CDCl₃) δ 7.68 (d, J = 8.1 Hz, 2H), 7.46 (d, J = 8.0 Hz, 2H), 7.35 (s, 1H), 7.01 (s, 1H), 6.62 (dd, J = 15.6, 1.8 Hz, 1H), 6.20 (dq, J = 15.6, 6.6 Hz, 1H), 2.36 (s, 3H), 2.26 (s, 3H), 1.96 (dd, J = 6.6, 1.8 Hz, 3H); ¹³C{¹H} NMR (100 MHz, CDCl₃) δ 145.6, 138.9, 136.7, 132.6, 132.4, 131.5, 129.5, 128.8 (q, J = 32.4 Hz), 128.4, 127.6, 127.4, 125.0 (q, J = 3.8 Hz), 124.37 (q, J = 272.1 Hz), 77.3, 77.0, 76.7, 19.9, 19.2, 18.9; ¹⁹F NMR (376 MHz, CDCl₃) δ -62.33; IR (neat): v_{max} 2956, 2921, 1635, 1485, 1443, 1377, 1261, 1011, 963, 698 cm⁻¹; HRMS (EI) m/z: [M]⁺ Calcd for C₁₈H₁₇F₃ 290.1282; Found 290.1275.

(E)-2,2',5,6'-Tetramethyl-4-(prop-1-en-1-yl)-1,1'-biphenyl (2l)

Brown oil (45.8 mg, 61% yield); ¹H NMR (400 MHz, CDCl₃) δ 7.36 (s, 1H), 7.28 (s, 1H), 7.21–7.07 (m, 3H), 6.81 (s, 1H), 6.65 (dd, J = 15.6, 2.0 Hz, 1H), 6.21 (dq, J = 15.7, 6.5 Hz, 1H), 2.34 (s, 3H), 1.99 (s, 6H), 1.95 (s, 3H); ¹³C{¹H} NMR (100 MHz, CDCl₃) δ 141.1, 139.1, 136.0, 135.4, 133.0, 132.3, 130.6, 128.7, 127.1, 126.8, 126.2, 77.2, 20.4, 19.4, 19.0, 18.9; IR (neat): v_{max} 3018, 2922, 2854, 1650, 1462, 1377, 1093, 1032, 963, 885, 768 cm⁻¹; HRMS (EI) m/z: [M]⁺ Calcd for C₁₉H₂₂ 250.1722; Found 250.1714.

(E)-1,2,4-Trimethyl-5-(prop-1-en-1-yl)benzene (2m)

Brown oil (26.9 mg, 56% yield). ¹H NMR (400 MHz, CDCl₃) δ 7.17 (s, 1H), 6.89 (s, 1H), 6.53 (dd, J = 15.6, 1.9 Hz, 1H), 6.06 (dq, J = 15.6, 6.6 Hz, 1H), 2.26 (s, 3H), 2.21 (s, 3H), 2.20 (s, 3H), 1.88 (dd, J = 6.6, 1.8 Hz, 3H); ¹³C{¹H} NMR (100 MHz, CDCl₃) δ 135.0, 134.4, 133.9, 132.1, 131.5, 128.7, 126.7, 125.8, 19.31, 19.27, 19.1, 18.8. IR (neat): v_{max} 2919, 2862, 1647, 1502, 1459, 1377, 963, 870, 840, 803 cm⁻¹; HRMS (EI) m/z: [M]⁺ Calcd for C₁₂H₁₆ 160.1252; Found 160.1243.

(E)-2-(2,5-Dimethyl-4-(prop-1-en-1-yl)phenyl)thiophene (2n)

Brown oil (39.0 mg, 57% yield); ¹H NMR (400 MHz, CDCl₃) δ 7.28–7.25 (m, 1H), 7.22 (s, 1H), 7.14–7.10 (m, 1H), 7.09–7.06 (m, 1H), 7.01 (s, 1H), 6.50 (dd, J = 15.6, 1.8 Hz, 1H), 6.07 (dq, J = 15.8, 6.7 Hz, 1H), 2.23 (d, J = 3.2 Hz, 6H), 1.84 (dd, J = 6.6, 1.8 Hz, 3H); ¹³C{¹H} NMR (100 MHz, CDCl₃) δ 142.1, 136.0, 134.9, 133.0, 132.2, 131.5, 129.0, 128.5, 127.5, 126.9, 124.8, 122.3, 20.4, 19.2, 18.9; IR (neat): v_{max} 2923, 1691, 1607, 1448, 1377, 1080, 1035, 964, 889, 857, 789, 723 cm⁻¹; HRMS (EI) m/z: [M]⁺ Calcd for C₁₅H₁₆S 228.0973; Found 228.0966.

(E)-2-(2,5-Dimethyl-4-(prop-1-en-1-yl)phenyl)naphthalene (20)

Brown oil (50.6 mg, 62% yield); ¹H NMR (400 MHz, CDCl₃) δ 7.89–7.82 (m, 3H), 7.76 (s, 1H), 7.50–7.44 (m, 3H), 7.34 (s, 1H), 7.10 (s, 1H), 6.62 (dd, J = 15.6, 1.8 Hz, 1H), 6.17 (dq, J = 15.6, 6.6 Hz, 1H), 2.34 (s, 3H), 2.27 (s, 3H), 1.93 (dd, J = 6.6, 1.8 Hz, 3H); ¹³C{¹H} NMR (100 MHz, CDCl₃) δ 140.3, 139.5, 136.1, 133.4, 132.9, 132.3, 131.9, 128.6, 128.0, 127.8, 127.73, 127.69, 127.5, 127.4, 127.0, 126.1, 125.8, 77.3, 20.1, 19.3, 18.9; IR (neat): v_{max} 3053, 3016, 2923, 2852, 1631, 1495, 1445, 1377, 1267, 1131, 963, 857, 820, 749 cm⁻¹; HRMS (EI) m/z: [M]⁺ Calcd for C₂₁H₂₀ 272.1565; Found 272.1558.

2-(2,5-Dimethyl-[1,1'-biphenyl]-4-yl)-3-methyloxirane (2a-1)

White solid (35.0 mg, 49% yield); M. p. = 68-69 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.46–7.40 (m, 2H), 7.38 (d, J = 6.9 Hz, 1H), 7.39–7.36 (m, 2H), 7.09 (s, 1H), 7.02 (s, 1H), 3.78 (s, 1H), 2.98 (qd, J = 5.3, 2.2 Hz, 1H), 2.35 (s, 3H), 2.26 (s, 3H), 1.53 (d, J= 5.1 Hz, 3H); ¹³C{¹H} NMR (150 MHz, CDCl₃) δ 142.2, 141.9, 136.6, 135.2, 130.02, 129.97, 129.4, 128.1, 126.8, 124.1, 58.2, 58.0, 21.0, 18.0, 15.7; IR (neat): v_{max} 2957, 2924, 2854, 1642, 1466, 1377, 1260, 1073, 1033, 860, 774, 702 cm⁻¹; HRMS (EI) m/z: $[M]^+$ Calcd for $C_{17}H_{18}O$ 238.1358; Found 238.1351.

2-Bromo-1-(2,5-dimethyl-[1,1'-biphenyl]-4-yl)propan-1-ol (2a-2)

2a-2

Orange oil (61.1 mg, 64% yield); ¹H NMR (400 MHz, CDCl₃) δ 7.47–7.40 (m, 3H), 7.39–7.35 (m, 1H), 7.35–7.31 (m, 2H), 7.06 (s, 1H), 5.29 (t, J = 3.2 Hz, 1H), 4.46 (qd, J = 6.8, 3.5 Hz, 1H), 2.47 (d, J = 3.0 Hz, 1H), 2.36 (s, 3H), 2.29 (s, 3H), 1.70 (d, J = 6.8 Hz, 3H); ¹³C{¹H} NMR (100 MHz, CDCl₃) δ 141.54, 141.46, 136.7, 133.1, 132.0, 129.1, 128.1, 127.9, 126.8, 74.4, 54.4, 20.2, 18.8, 18.7; IR (neat): v_{max} 2931, 1601, 1487, 1444, 1376, 1191, 1127, 1073, 1020, 886, 770, 704 cm⁻¹; HRMS (EI) m/z: [M]⁺ Calcd for C₁₇H₁₉BrO 318.0619; Found 318.0615.

1-(2,5-Dimethyl-[1,1'-biphenyl]-4-yl)propane-1,2-dione (2a-3)

2a-3

Orange oil (28.7 mg, 38% yield); ¹H NMR (400 MHz, CDCl₃) δ 7.43 (s, 1H), 7.38–7.34 (m, 2H), 7.33–7.30 (m, 1H), 7.25–7.23 (m, 1H), 7.23–7.21 (m, 1H), 7.10 (s, 1H), 2.48 (s, 3H), 2.47 (s, 3H), 2.19 (s, 3H); ¹³C{¹H} NMR (100 MHz, CDCl₃) δ 201.3, 194.6, 147.1, 140.6, 138.2, 134.0, 133.8, 133.0, 129.8, 128.8, 128.3, 127.6, 26.2, 21.0, 19.9; IR (neat): v_{max} 2927, 2854, 1708, 1669, 1610, 1542, 1486, 1443, 1187, 1129, 956, 863, 760, 702 cm⁻¹; HRMS (EI) m/z: [M]⁺ Calcd for C₁₇H₁₆O₂ 252.1150; Found 252.1145.

(E)-3-(2,5-Dimethyl-[1,1'-biphenyl]-4-yl)acrylonitrile (2a-4)

2a-4

Orange oil (37.7 mg, 54% yield); ¹H NMR (400 MHz, CDCl₃) δ 7.69 (d, J = 16.6 Hz, 1H), 7.46–7.39 (m, 2H), 7.38–7.34 (m, 2H), 7.32–7.26 (m, 2H), 7.09 (s, 1H), 5.83 (d, J = 16.5 Hz, 1H), 2.39 (s, 3H), 2.25 (s, 3H); ¹³C{¹H} NMR (100 MHz, CDCl₃) δ 148.2, 144.8, 140.8, 134.6, 133.7, 132.5, 131.4, 128.9, 128.2, 127.5, 127.3, 118.6, 96.7, 20.0, 19.0; IR (neat): v_{max} 3058, 3023, 2954, 2924, 2215, 1602, 1484, 1443, 963, 769, 703 cm⁻¹; HRMS (EI) m/z: [M]⁺ Calcd for C₁₇H₁₅N 233.1204; Found 233.1198. (E)-3-(2,5-Dimethyl-[1,1'-biphenyl]-4-yl)acrylaldehyde (2a-5)

2a-5

Orange oil (46.7 mg, 66% yield); ¹H NMR (400 MHz, CDCl₃) δ 9.66 (d, J = 7.7 Hz, 1H), 7.70 (d, J = 15.8 Hz, 1H), 7.43 (s, 1H), 7.38–7.32 (m, 2H), 7.31–7.27 (m, 1H), 7.26–7.21 (m, 2H), 7.05 (s, 1H), 6.64 (dd, J = 15.8, 7.7 Hz, 1H), 2.40 (s, 3H), 2.20 (s, 3H); ¹³C{¹H} NMR (100 MHz, CDCl₃) δ 193.8, 150.1, 144.9, 141.0, 135.4, 133.7, 132.6, 131.7, 129.3, 128.9, 128.8, 128.2, 127.3, 20.0, 19.2; IR (neat): v_{max} 2924, 1681, 1606, 1485, 1442, 1394, 1283, 1127, 970, 892, 769, 703, 692 cm⁻¹; HRMS (EI) m/z: [M]⁺ Calcd for C₁₇H₁₆O 236.1201; Found 236.1196.

5-Methyl-2-methylene-5-(prop-1-en-1-yl)-2,5-dihydro-1,1'-biphenyl (C)

С

Colorless oil (0.62 g, 93% yield); ¹H NMR (400 MHz, CDCl₃) δ 7.42–7.29 (m, 5H), 6.36 (d, J = 9.8 Hz, 1H), 5.86–5.74 (m, 1H), 5.72 (d, J = 9.8 Hz, 1H), 5.67–5.62 (m, 1H), 5.09 (s, 1H), 5.06 (dq, J = 9.2, 1.5 Hz, 1H), 4.98 (s, 1H), 4.87 (s, 1H), 2.26 (s, 2H), 1.23 (s, 3H); ¹³C{¹H} NMR (100 MHz, CDCl₃) δ 140.7, 138.6, 137.33, 137.29, 136.2, 134.8, 129.1, 128.0, 127.4, 127.0, 117.2, 112.7, 77.4, 77.1, 76.7, 47.2, 40.2, 28.1; IR (neat): v_{max} 2926, 1689, 1604, 1488, 1259, 1073, 991, 921, 822, 770, 701; HRMS (EI) m/z: [M]⁺ Calcd for C₁₇H₁₈ 222.1409; Found 222.1402.

4-Allyl-2,5-dimethyl-1,1'-biphenyl (2a')

Colorless oil (60 mg, 90% yield); ¹H NMR (400 MHz, CDCl₃) δ 7.38 (t, J = 7.4 Hz, 2H), 7.31 (d, J = 7.2 Hz, 3H), 7.04 (d, J = 4.3 Hz, 2H), 6.04–5.92 (m, 1H), 5.19–4.98 (m, 2H), 3.38 (d, J = 6.4 Hz, 2H), 2.28 (s, 3H), 2.22 (s, 3H); ¹³C{¹H} NMR (100 MHz, CDCl₃) δ 142.0, 139.9, 137.1, 136.7, 133.6, 132.8, 131.7, 131.2, 129.3, 128.0, 126.6, 115.8, 77.4, 77.1, 76.8, 37.5, 19.9, 18.8; IR (neat): v_{max} 2921, 1637, 1601, 1487, 1442, 1072, 1031, 993, 912, 884, 765, 702; HRMS (EI) m/z: [M]⁺ Calcd for C₁₇H₁₈ 222.1409; Found 222.1402.

4'-(chloromethyl)-1,1':3',1''-terphenyl (3a)

White solid (0.89 g, 64% yield); M. p. = 91-92 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.68–7.62 (m, 4H), 7.56 (s, 1H), 7.53–7.48 (m, 4H), 7.48–7.42 (m, 3H), 7.42–7.35 (m, 1H), 4.61 (s, 2H); ¹³C{1H} NMR (100 MHz, CDCl₃) δ 142.5, 141.5, 140.3, 140.2, 133.9, 131.1, 129.2, 129.1, 128.9, 128.4, 127.7, 127.6, 127.2, 126.6, 44.3; IR (neat): v_{max} 3058, 3028, 1600, 1442, 1263, 1027, 896, 853, 776, 753, 698, 672 cm⁻¹; HRMS (EI) m/z: [M]⁺ Calcd for C₁₉H₁₅Cl 278.0862; Found 278.0857.

7. Copies of ¹H and ¹³C NMR Spectra

1-(Chloromethyl)-4-ethylbenzene (1aa)

2-(Chloromethyl)-5-methyl-1,1'-biphenyl (1a)

2-(Chloromethyl)-4'-fluoro-5-methyl-1,1'-biphenyl (1b)

2-(Chloromethyl)-4',5-dimethyl-1,1'-biphenyl (1e)

2-(Chloromethyl)-4'-methoxy-5-methyl-1,1'-biphenyl (1f)

2-(Chloromethyl)-5-methyl-4'-(trifluoromethoxy)-1,1'-biphenyl (1g)

Methyl 2'-(chloromethyl)-5'-methyl-[1,1'-biphenyl]-4-carboxylate (1i)

2-(Chloromethyl)-5-methyl-4'-nitro-1,1'-biphenyl (1j)

1-(Chloromethyl)-2,4-dimethylbenzene (1m)

2-(2-(Chloromethyl)-5-methylphenyl)thiophene (1n)

2-(2-(Chloromethyl)-5-methylphenyl)naphthalene (10)

(E)-1-Ethyl-4-methyl-2-(prop-1-en-1-yl)benzene (2aa) and (E)-4-ethyl-1-methyl-2-(prop-1-en-1-yl)benzene (2aa')

¹H NMR, 400 MHz, CDCl₃

(E)-2,5-Dimethyl-4-(prop-1-en-1-yl)-1,1'-biphenyl (2a) ¹H NMR, 400 MHz, CDCl₃

¹³C{¹H} NMR, 100 MHz, CDCl₃

HRMS (EI) m/z: $[M]^+$ Calcd for $C_{17}H_{17}D$ 223.1471; Found 223.1466.

(E)-4'-Fluoro-2,5-dimethyl-4-(prop-1-en-1-yl)-1,1'-biphenyl (2b)

(E)-4'-Chloro-2,5-dimethyl-4-(prop-1-en-1-yl)-1,1'-biphenyl (2c)

(E)-4'-Bromo-2,5-dimethyl-4-(prop-1-en-1-yl)-1,1'-biphenyl (2d)

(E)-2,4',5-Trimethyl-4-(prop-1-en-1-yl)-1,1'-biphenyl (2e)

(E)-4'-Methoxy-2,5-dimethyl-4-(prop-1-en-1-yl)-1,1'-biphenyl (2f)

S43

(E)-2,5-Dimethyl-4-(prop-1-en-1-yl)-4'-(trifluoromethoxy)-1,1'-biphenyl (2g)

S44

(E)-2',5'-Dimethyl-4'-(prop-1-en-1-yl)-[1,1'-biphenyl]-4-carbonitrile (2h)

Methyl (E)-2',5'-dimethyl-4'-(prop-1-en-1-yl)-[1,1'-biphenyl]-4-carboxylate (2i)

(E)-2,5-Dimethyl-4'-nitro-4-(prop-1-en-1-yl)-1,1'-biphenyl (2j)

(E)-2,5-Dimethyl-4-(prop-1-en-1-yl)-4'-(trifluoromethyl)-1,1'-biphenyl (2k)

(E)-2,2',5,6'-Tetramethyl-4-(prop-1-en-1-yl)-1,1'-biphenyl (2l)

(E)-2-(2,5-Dimethyl-4-(prop-1-en-1-yl)phenyl)thiophene (2n)

(E)-2-(2,5-Dimethyl-4-(prop-1-en-1-yl)phenyl)naphthalene (20)

2-(2,5-Dimethyl-[1,1'-biphenyl]-4-yl)-3-methyloxirane (2a-1)

2-Bromo-1-(2,5-dimethyl-[1,1'-biphenyl]-4-yl)propan-1-ol (2a-2)

1-(2,5-Dimethyl-[1,1'-biphenyl]-4-yl)propane-1,2-dione (2a-3)

(E)-3-(2,5-Dimethyl-[1,1'-biphenyl]-4-yl)acrylonitrile (2a-4)

¹³C{¹H} NMR, 100 MHz, CDCl₃

(E)-3-(2,5-Dimethyl-[1,1'-biphenyl]-4-yl)acrylaldehyde (2a-5)

5-Methyl-2-methylene-5-(prop-1-en-1-yl)-2,5-dihydro-1,1'-biphenyl (C)

4-Allyl-2,5-dimethyl-1,1'-biphenyl (2a')

¹H NMR, 400 MHz, CDCl₃

4'-(chloromethyl)-1,1':3',1''-terphenyl (3a)

¹H NMR, 400 MHz, CDCl₃

(E)-4'-methyl-6'-(prop-1-en-1-yl)-1,1':3',1''-terphenyl (3aa) and (E)-3-(6'-methyl-[1,1':3',1''-terphenyl]-4'-yl)allylium (3aa')

¹³C{¹H} NMR, 100 MHz, CDCl₃

3aa 3aa'

20.27 18.85 18.68 16.84

200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 f1 (ppm)

8. References

- Ji, K.; Yang, F.; Gao, S.; Tang, J.; Gao, J. Gold-Catalyzed Oxidation/C–H Functionalization of Ynones: Efficient and Rapid Access to Functionalized Polycyclic Salicyl Ketones. *Chem. Eur. J.* **2016**, *22*, 10225;
- Granchi, G.; Caligiuri, I.; Bertelli, I; Poli, G.; Rizzolio, F.; Macchia, M.; Martinelli, A.; Minutolo, F.; Tuccinardi, T. Development of terphenyl-2-methyloxazol-5(4H)-one derivatives as selective reversible MAGL inhibitors, Journal of Enzyme Inhibition and Medicinal Chemistry, J. Enzym. Inhib. Med. Ch. 2017, 32, 1240-1252
- (3) Cabré, A.; Cabezas-Giménez, J.; Sciortino, G.; Ujaque, G.; Verdaguer, X.; Lledós, A.; Riera, A. Mild Iridium-Catalysed Isomerization of Epoxides. Computational Insights and Application to the Synthesis of β-Alkyl Amines. *Adv. Synh. Catal.* 2019, *361*, 3624-3631.
- (4) Dalton, D. R.; Davis, R. M. Bromohydrin formation in dimethyl sulfoxide the reaction of conjugated dienes. *Tetrahedron Lett.* **1972**, *13*, 1057-1060.
- (5) Donohoe, T. J.; Kabeshov, M. A.; Rathi, A. H.; Smith, I. E. D. Direct preparation of thiazoles, imidazoles, imidazopyridines and thiazolidines from alkenes. *Org. Biomo. Chem.* **2012**, *10*, 1093-1101.
- (6) Qin, C.; Jiao, N. Iron-Facilitated Direct Oxidative C–H Transformation of Allylarenes or Alkenes to Alkenyl Nitriles. *J. Am. Chem. Soc.* **2010**, *132*, 15893-15895.
- (7) Chen, H.; Jiang, H.; Cai, C.; Dong, J.; Fu, W. Facile Synthesis of (E)-Alkenyl Aldehydes from Allyl Arenes or Alkenes via Pd(II)-Catalyzed Direct Oxygenation of Allylic C–H Bond. Org. Lett. 2011, 13, 992-994.
- (8) Rabten, W.; Margarita, C.; Eriksson, L.; Andersson, P. G. Ir-Catalyzed Asymmetric and Regioselective Hydrogenation of Cyclic Allylsilanes and Generation of Quaternary Stereocenters via the Hosomi-Sakurai Allylation. *Chem. Eur. J.* **2018**, *24*, 1681.