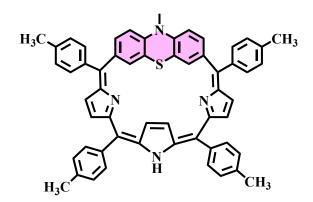
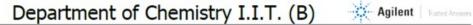
Synthesis of Stable Nonaromatic Phenothiazinophyrins

Neha Tripathi, Avisikta Sinha and Mangalampalli Ravikanth*

Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai 400076,


Sr. no	Details	Page no.	
1	General Experimental Section		
2	Figures S1-S20. Characterization (HRMS and NMR) data for compounds 2-4.	S3-S22	
3	Figure S21-S23. The absorption spectra and redox data of Compounds 2-4.	S23-S25	
4	Table S1. Selected TD-DFT calculated oscillator strengths andcompositions of the major electronic transitions of 2	S26	
5	Table S2. Cartesian coordinate of the optimized (S ₀) geometries of the compound 2	S27-S28	
6	References	S29	


India, E-mail: ravikanth@chem.iitb.ac.in

Experimental Section

General Information: All chemicals including Boron trifluoride etherate (BF₃·OEt₂), 2, 3dichloro-5, 6-dicyano-1, 4- benzoquinone (DDQ) were procured from Aldrich and used as received. Basic alumina and silica gel (60-120 mesh) column chromatographic methods were used for purification purposes. Reported methods were used for the synthesis of compounds, 5, 6, and 7.¹⁻⁵ The ¹H & ¹³C NMR spectra were recorded in CDCl₃ on Bruker 400 and 500 MHz instruments. The ¹³C NMR frequencies are 125.77 and 100.06 MHz for 500 MHz and 400 MHz instruments respectively. Shimadzu UV-Visible-NIR Spectrophotometer was used for carrying out absorption spectral studies. Cyclic voltammetry (CV) studies were performed with BAS electrochemical system with the three-electrode configuration comprising of a saturated calomel electrode (reference electrode), glassy carbon (working electrode), (auxiliary electrode) and 10⁻³ M of the analyte. Bruker maXis Impact and Q-TOF micro mass spectrometer instrument was used for recording HR mass spectra.

Computational information: For all the calculations Gaussian 09 program package was used. The density functional theory (DFT)⁷ method, hybrid functional B3LYP in conjunction with basis set $6-31G(d,p)^8$ helped to optimize the structure of compound 2 (S₀) states. To obtain the oscillator strengths, identical basis and functional hybrid set were used whereas the vertical excitation energies were obtained by the help of TD-DFT techniques for S₀ \rightarrow S_n transitions.⁹ Under the Polarisable Continuum Model (PCM)¹⁰ in the toluene media all the computations were done using the Self-Consistent Reaction Field (SCRF). The electronic absorption spectra as well as the oscillator strengths were thoroughly examined using TD-DFT with PCM model based on the optimized structures in the S₀ state.

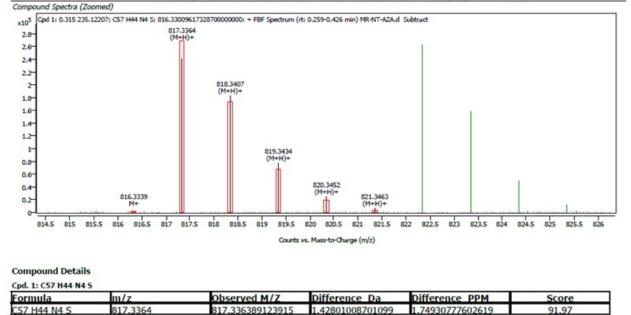
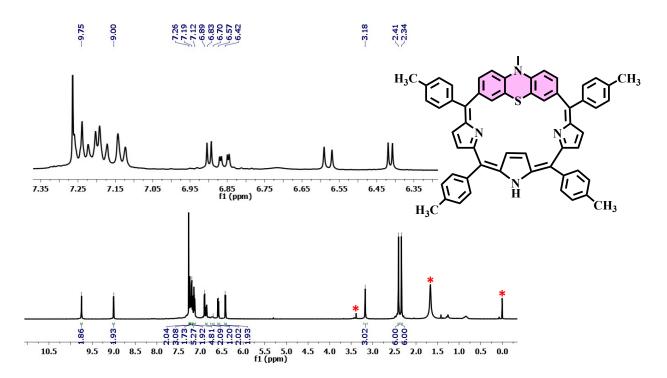



Figure S1. HR mass spectrum of compound 2.

Figure S2. ¹H NMR spectrum of the compound **2** recorded in CDCl₃ on 400 MHz NMR instrument. Expansion of aromatic region is given as an inset. Note: Peaks marked with asterisk (*) are due to residual solvents.

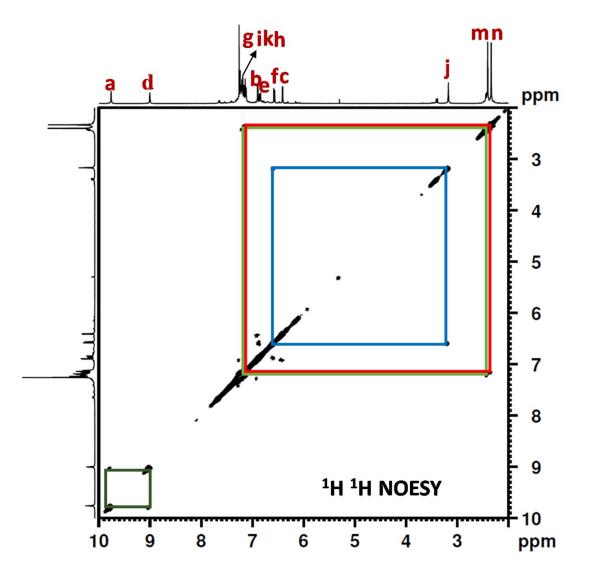
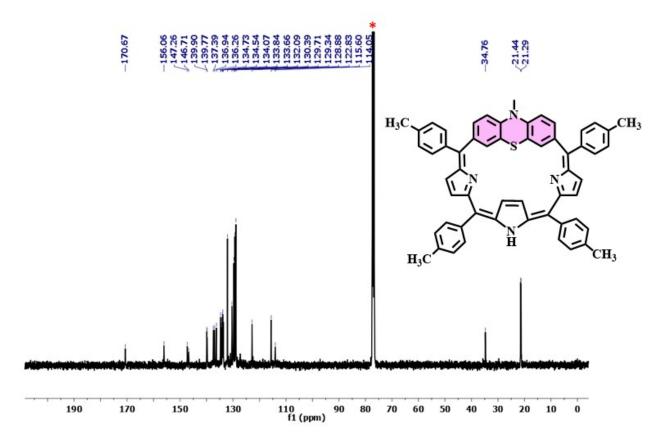
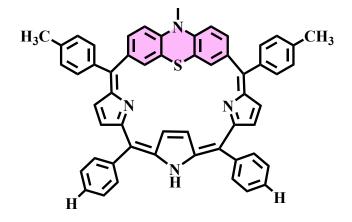
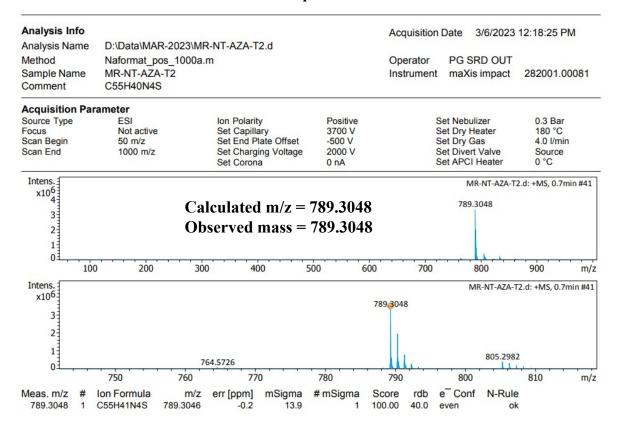
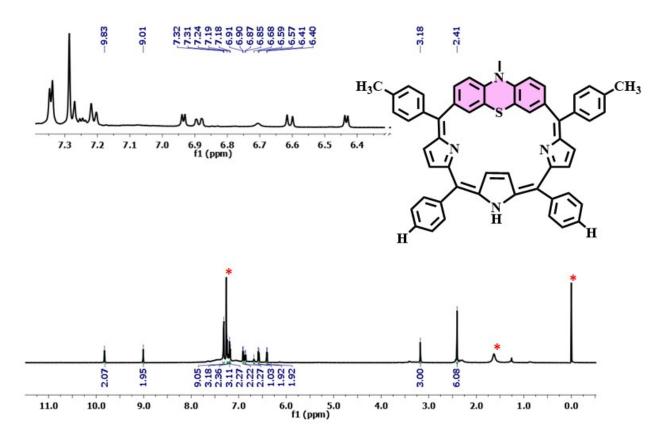
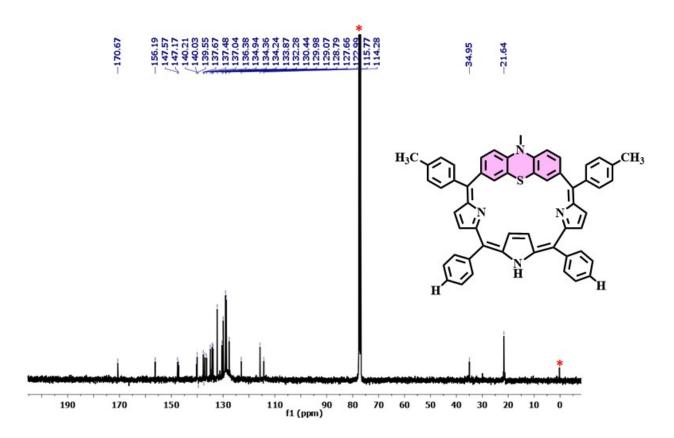




Figure S3. ¹H-¹H NOESY of compound 2 recorded in CDCl₃ at 25 °C.

Figure S4. ¹³C{1H} NMR spectrum of the compound **2** recorded in CDCl₃ on 100.06 MHz NMR instrument; Note: Peaks marked with asterisk (*) are due to residual solvents.

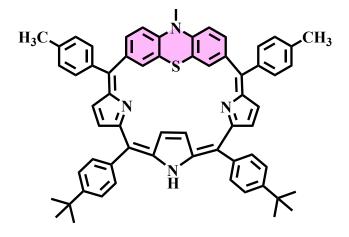

Figure S5. HR mass spectrum of compound 3.

Figure S6. ¹H NMR spectrum of the compound **3** recorded in CDCl₃ on 500 MHz NMR instrument. Expansion of aromatic region is given as an inset. Note: Peaks marked with asterisk (*) are due to residual solvents.

Figure S7. ¹³C{1H} NMR spectrum of the compound **3** recorded in CDCl₃ on 100.06 MHz NMR instrument; Note: Peaks marked with asterisk (*) are due to residual solvents.

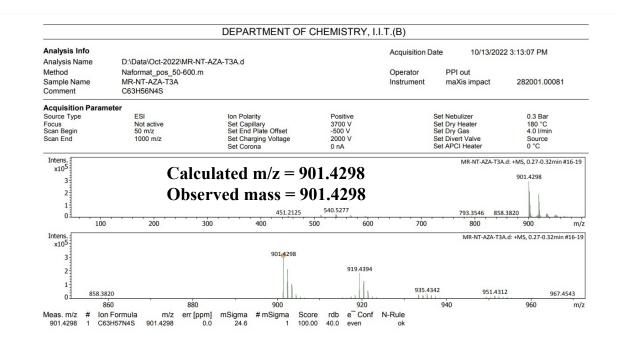
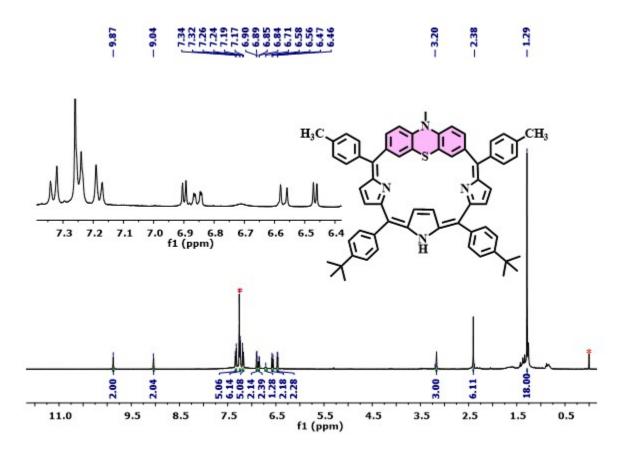
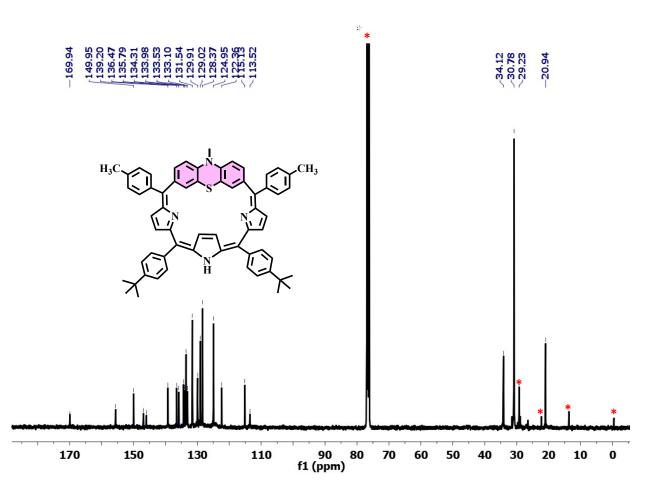




Figure S8. HR mass spectrum of compound 4.

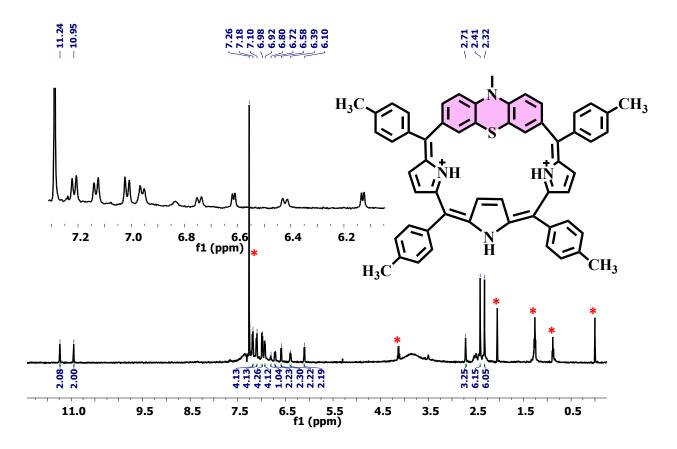


Figure S9. ¹H NMR spectrum of the compound **4** recorded in CDCl₃ on 500 MHz NMR instrument. Expansion of aromatic region is given as an inset. Note: Peaks marked with asterisk (*) are due to residual solvents.

•

Figure S10. ¹³C{1H} NMR spectrum of the compound **4** recorded in CDCl₃ on 125.77 MHz NMR instrument; Note: Peaks marked with asterisk (*) are due to residual solvents.

Figure S11. ¹H NMR spectrum of the compound **2.2H**⁺ recorded in CDCl₃ on 400 MHz NMR instrument. Expansion of aromatic region is given as an inset. Note: Peaks marked with asterisk (*) are due to residual solvents

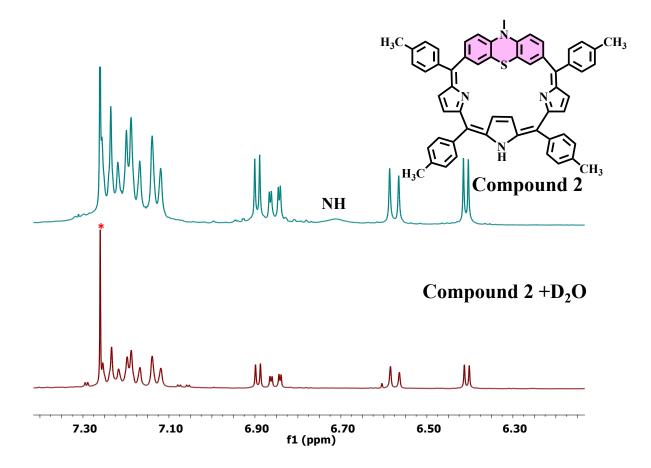
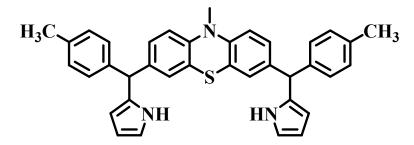
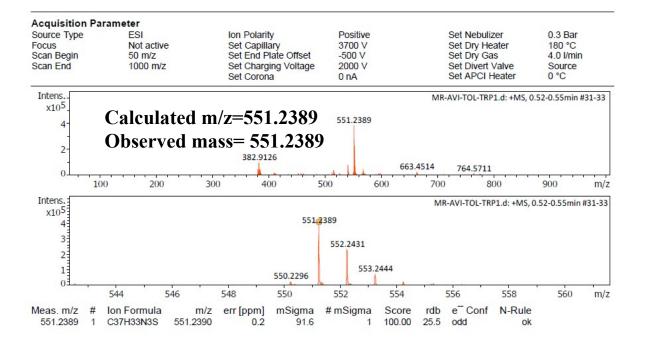
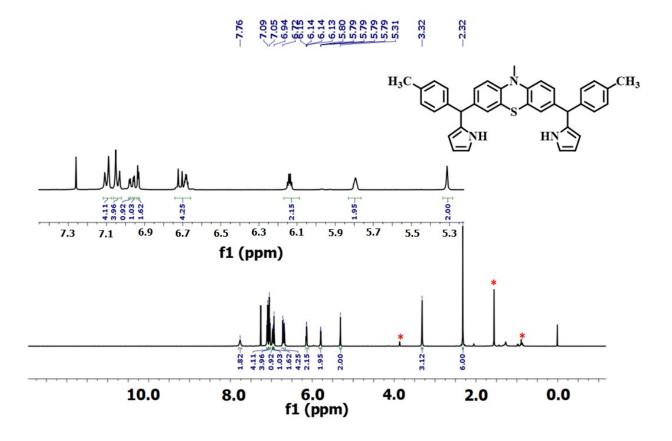
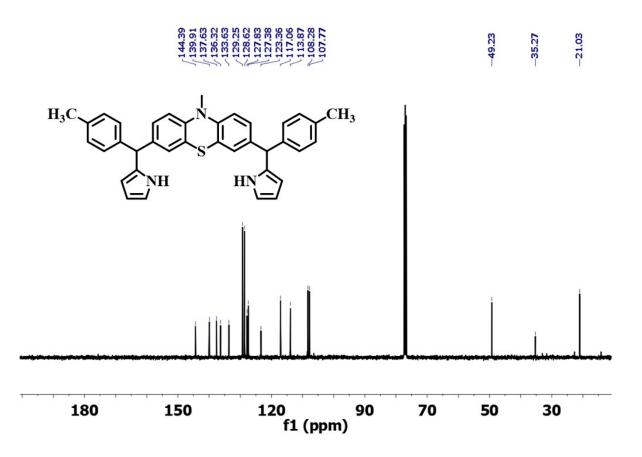



Figure S12. Comparison of partial ¹H NMR spectrum of the compound 2 recorded in CDCl₃ and D_2O exchange experiment of compound 2 on 400 MHz NMR instrument. Note: Peaks marked with asterisk (*) are due to residual solvents

Compound 5

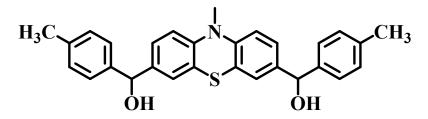

Figure S13. HR mass spectrum of compound 5.

Figure S14. ¹H NMR spectrum of the compound **5** recorded in CDCl₃ on 400 MHz NMR instrument. Expansion of aromatic region is given as an inset. Note: Peaks marked with asterisk (*) are due to residual solvents.¹

Figure S15. ¹³C{1H} NMR spectrum of the compound **5** recorded in CDCl₃ on 100.06 MHz NMR instrument.¹

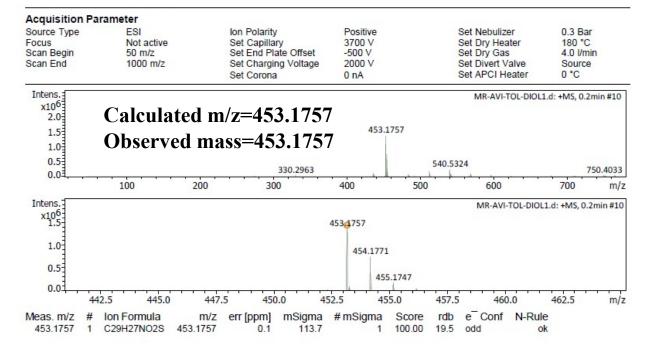
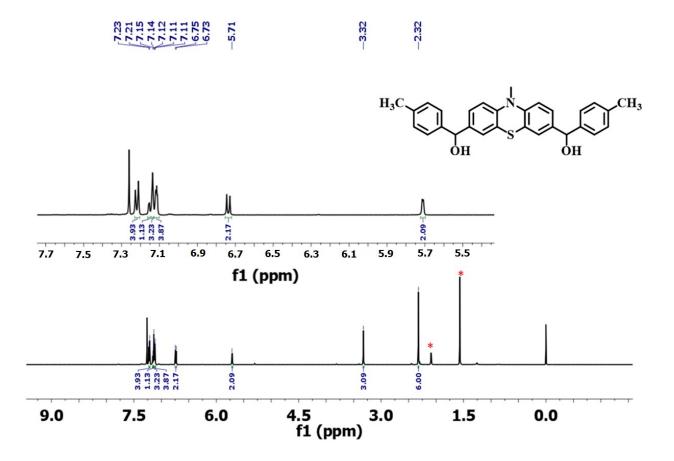



Figure S16. HR mass spectrum of compound 6.

Figure S17. ¹H NMR spectrum of the compound **6** recorded in CDCl₃ on 500 MHz NMR instrument. Expansion of aromatic region is given as an inset. Note: Peaks marked with asterisk (*) are due to residual solvents. ¹

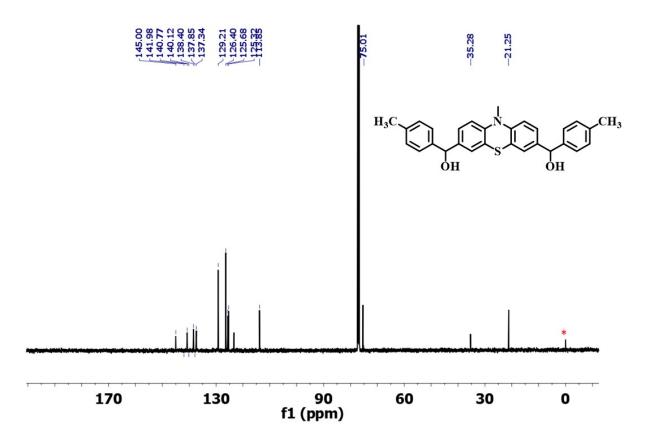


Figure S18. ¹³C{1H} NMR spectrum of the compound 6 recorded in CDCl₃ on 125.77 MHz NMR instrument; Note: Peaks marked with asterisk (*) are due to residual solvents. ¹

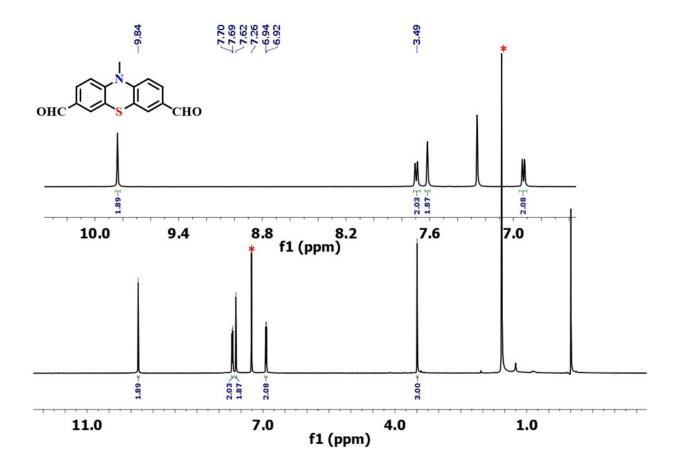


Figure S19. ¹H NMR spectrum of the compound 7 recorded in $CDCl_3$ on 500 MHz NMR instrument. Note: Peaks marked with asterisk (*) are due to residual solvents.²

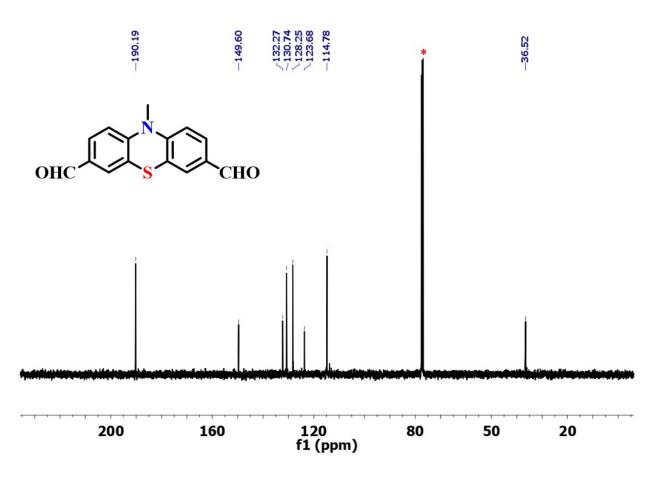


Figure S20. ¹³C{¹H} NMR spectrum of the compound 7 recorded in CDCl₃ on 125.77 MHz NMR instrument. Note: Peaks marked with asterisk (*) are due to residual solvents.²

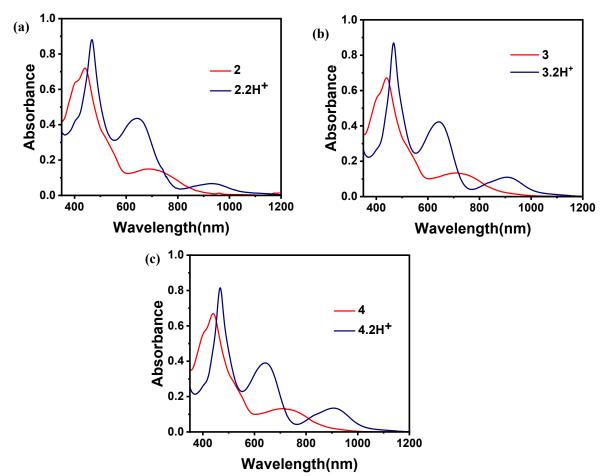
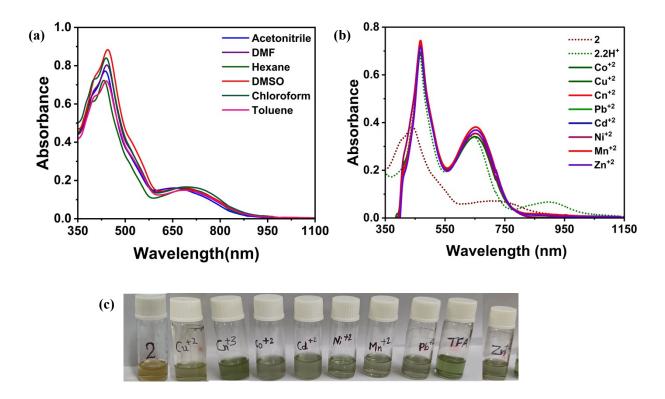
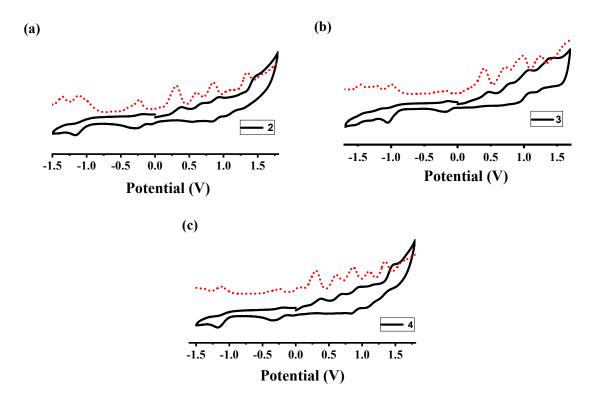




Figure S21. Comparison of absorption spectra of the compounds 2-4 (10-5 M) free base and in

presence of TFA (excess) recorded in toluene at room temperature.

Figure S22. (a) Absorption spectra of macrocycle **2** (10⁻⁵) in various solvents. **(b)** Absorption spectra of macrocycle **2** in presence of various metal perchlorate salts (excess of equivalents) recorded in toluene solution. **(c)** Image of change in colour of solutions of macrocycle **2** in toluene after addition of various metal perchlorate salts.

Figure S23. Cyclic voltammogram (black line) and differential pulse voltammogram (red dotted line) of compounds **2-4** (IUPAC convention has been followed for plotting Cyclic Voltammogram), recorded in CH_2Cl_2 containing 0.1 M TBAP as the supporting electrolyte and 10^{-3} M of the analyte at scan rates of 50 mVs⁻¹ at 25 °C. Saturated calomel electrode (SCE) was used as the reference electrode, glassy carbon as the working electrode and platinum wire as the auxiliary electrode.

Wavelength (nm)	Osc. Strength	Major contributions	Minor contributions
997.9341	0.3467	H->L (98%)	H-1->L (2%)
606.8393	0.3391	H->L+1 (93%)	H-2->L (6%)
588.24	0.2465	H-1->L (95%)	H->L+2 (2%)
483.9696	0.1576	H-3->L (16%), H->L+2 (80%)	
			H-8->L (3%), H->L+1
460.8018	0.6619	H-2->L (88%)	(6%)
450.8977	0.3599	H-3->L (77%), H->L+2 (14%)	H-5->L (3%)
429.1714	0.0093	H-1->L+1 (96%)	
404.9097	0.0276	H-8->L (19%), H-7->L (10%), H-4->L (62%)	H-3->L+1 (3%)
398.1098	0.0855	H-9->L (11%), H-6->L (42%), H-5->L (37%)	H-4->L+1 (3%), H-2- >L+1 (3%)
395.7968	0.2499	H-8->L (51%), H-4->L (28%)	H-7->L (2%), H-3->L+1 (3%), H-2->L (5%)
388.6259	0.0004	H-9->L (27%), H-6->L (47%), H-5->L (11%)	H-3->L (3%), H-2->L+1 (5%)

 Table S1. Selected TD-DFT calculated oscillator strengths and compositions of the major

electronic transitions of **2**.

Table S2. S₀ optimized geometry of compound **2** at B3LYP/6-31g (d,p) level of theory # Sum of imaginary frequencies= 0 # Total Energy (Hartree) = -2817.047663.

Atom	X	Y	Z	Atom	X	Y	Z
С	3.485225	-3.72008	-0.70719	С	-3.52998	4.766209	0.933601
С	3.596611	-2.60723	0.150311	С	2.133999	4.690874	-1.02629
С	2.499994	-2.3571	1.005435	С	2.333757	6.058702	-1.2194
С	1.341984	-3.12646	0.958593	С	3.141399	6.800318	-0.34974
С	1.214369	-4.1887	0.040263	С	3.738663	6.128769	0.726643
С	2.323606	-4.48261	-0.77233	С	3.529551	4.766562	0.933158
S	0.00009	-2.81318	2.098707	С	-3.38345	8.273696	-0.5708
С	-1.34176	-3.12656	0.958573	С	3.382784	8.273752	-0.57202
С	-1.21406	-4.18881	0.040251	Н	4.310579	-3.95812	-1.36936
Ν	0.000189	-4.90095	-0.05256	Н	2.568632	-1.55957	1.736268
С	-2.49982	-2.35728	1.005388	Н	2.267871	-5.28992	-1.49304
С	-3.59639	-2.60746	0.150215	Н	-2.56854	-1.55978	1.736237
С	-3.4849	-3.72027	-0.70731	Н	-4.3102	-3.95836	-1.36953
С	-2.32324	-4.48276	-0.77239	Н	-2.26743	-5.29004	-1.49312
С	0.000252	-6.15657	-0.7915	Н	0.887281	-6.7297	-0.51353
С	4.774983	-1.72101	0.086824	Н	-0.88672	-6.72979	-0.51353
С	-4.77482	-1.72132	0.086724	Н	0.000244	-6.01071	-1.88223
С	-6.09291	-2.32177	-0.19348	Н	6.686229	0.551811	0.21564
С	-4.63315	-0.34773	0.187158	Н	5.423088	2.902742	0.245802
С	6.093123	-2.32139	-0.1933	Н	2.541362	-0.14437	0.020896
С	4.633208	-0.34743	0.187186	Н	-2.54133	-0.1445	0.020869
С	5.619067	0.716062	0.206839	Н	-5.42329	2.902371	0.245893
С	4.973098	1.920604	0.224209	Н	-6.68624	0.55133	0.215603
Ν	3.409214	0.305028	0.269922	Н	-6.72499	-0.84825	-1.63304
Ν	-3.40921	0.304813	0.269967	Н	-8.93722	-1.86547	-2.03611
С	-4.97322	1.920267	0.224279	Н	-7.97322	-5.04067	0.68376
С	-5.6191	0.715675	0.206841	Н	-5.77281	-4.00654	1.111641
С	-7.00894	-1.74611	-1.09447	Н	6.725145	-0.84791	-1.63293
С	-8.25336	-2.32926	-1.3291	Н	8.937453	-1.86502	-2.03589
С	-8.63064	-3.51744	-0.69155	Н	7.973563	-5.04012	0.684141
С	-7.70927	-4.11122	0.18446	Н	5.773092	-4.00609	1.111923
С	-6.469	-3.5302	0.428178	Н	-9.92824	-5.23013	-0.93666
С	7.00914	-1.74572	-1.0943	Н	-10.6931	-3.8546	-0.13551
С	8.253606	-2.32881	-1.32886	Н	-10.4124	-3.80475	-1.88124
С	8.630921	-3.51694	-0.69126	Н	9.928534	-5.22959	-0.93663
С	7.709574	-4.11072	0.184769	Н	10.41283	-3.80396	-1.88074
С	6.469266	-3.52976	0.428431	Н	10.69328	-3.8543	-0.13498
С	-9.98662	-4.136	-0.92822	Н	1.319618	0.189452	1.639217
С	9.986933	-4.13546	-0.92788	Н	-1.31959	0.189373	1.639272

С	1.142554	2.096039	0.518633	Н	-0.00013	3.721275	-0.22635
С	0.697999	0.919758	1.14901	Н	-1.53533	4.129892	-1.73836
С	-0.69804	0.919723	1.149044	Н	-1.86506	6.556383	-2.06387
С	-1.14268	2.095985	0.518702	Н	-4.36364	6.685695	1.421641
Ν	-9.2E-05	2.795684	0.173362	Н	-3.97868	4.269008	1.788066
С	-2.48361	2.570137	0.28503	Н	1.534997	4.129619	-1.73871
С	-2.72199	4.019664	0.059435	Н	1.864451	6.556072	-2.06461
С	-3.54883	1.685053	0.262837	Н	4.362928	6.686257	1.42094
С	2.483436	2.570274	0.284887	Н	3.978265	4.269561	1.787732
С	2.721684	4.019795	0.059102	Н	-3.36279	8.825061	0.375897
С	3.54873	1.685276	0.262744	Н	-2.62805	8.702837	-1.23691
С	-2.13438	4.69097	-1.02583	Н	-4.36693	8.447951	-1.02695
С	-2.33431	6.05882	-1.21874	Н	3.366938	8.824706	0.374983
С	-3.14204	6.800194	-0.34899	Н	4.364216	8.447504	-1.03278
С	-3.73926	6.1284	0.727288	Н	2.624613	8.703704	-1.23446

References

- 1. Sinha, A.; Ravikanth, M. Phenothiazine-Embedded Hexaphyrins. Org. Lett. 2022, 24, 1335–1340.
- 2. Marin, L; Bejan, A.; Ailincai, D.; Belei, D. Poly (Azomethine-Phenothiazines) with Efficient Emission in Solid State. *Eur. Polym. J.* **2017**, *95*, 127–137.
- Yang, C.-J.; Chang, Y.J.; Watanabe, M.; Hon, Y.-S.; Chow, T.J. Phenothiazine derivatives as Organic Sensitizers for Highly Efficient Dye-Sensitized Solar Cells. J. Mater. Chem. 2012, 22, 4040-4049.
- Srinivasan, A.; Reddy, V. R. M.; Jeyaprakash Narayanan, S.; Sridevi, B.; Pushpan, S. K.; Ravikumar, M.; Chandrashekar, T. K. Tetrathia- and Tetraoxarubyrins: Aromatic, Core-Modified, Expanded Porphyrins. *Angew. Chem. Int. Ed.* **1997**, *36*, 2598–2601.
- Ghosh, A.; Maity, D. K.; Ravikanth, M. Aluminium(III) Porphyrin Based Axial-Bonding Type Dyads Containing Thiaporphyrins and Expanded Thiaporphyrins as Axial Ligands. *New J. Chem.* 2012, *36*, 2630–2641.

- Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Scalmani, G.; Barone, V.; Mennucci, B.; Petersson, G. A.; et al. Gaussian 09 C.01; Gaussian Inc.: Wallingford CT, 2009.
- Treutler, O.; Ahlrichs, R. Efficient Molecular Numerical Integration Schemes. J. Chem. Phys. 1995, 102, 346–354.
- Becke, A. D. A New Mixing of Hartree–Fock and Local Density-Functional Theories. J. Chem. Phys. 1993, 98, 1372–1377.
- 9. Hehre, W. J. Ab Initio Molecular Orbital Theory. Acc. Chem. Res. 1976, 9, 399-406.
- Tomasi, J.; Mennucci, B.; Cammi, R. Quantum Mechanical Continuum Solvation Models. *Chem. Rev.* 2005, 105, 2999–3093.