Electronic Supplementary Material (ESI) for Organic & Biomolecular Chemistry. This journal is © The Royal Society of Chemistry 2023

Supporting Information

Rh(III)-catalyzed [3+3] spirocyclization of 3-aryl-3-

hydroxyisoindolinones with vinylene carbonate as a three-atom unit

Hai-Shan Jin* and Cai-Cai Liang

School of Chemistry and Materials Science, Jiangsu Normal University, Xuzhou 221116, Jiangsu,

China

*E-mail: hsjin@jsnu.edu.cn

Table of Contents

General MethodsS3
General Procedure for the Synthesis of Compound 3 and Characterization DataS3-S10
1.0 mmol Scale Synthesis of 3a S10
Procedure for the Synthesis of Compound 5 and Characterization DataS10
Mechanistic Studies
ReferencesS14
Copies of ¹ H and ¹³ C NMR Spectra for Compound 3 S15-S34
Copies of ¹ H and ¹³ C NMR Spectra for Compound 5S35
Copies of ¹⁹ F NMR Spectra for Compounds 3e and 3k

General Methods. Solvents and reagents were used as purchased without further purification. The reaction progress was monitored by thin-layer chromatography (TLC) on silica gel GF₂₅₄ precoated plates. Visualization of the developed plates was performed under a UV lamp. Chromatographic purification was performed with silica gel (100-200 mesh size). Melting points were uncorrected. Nuclear magnetic resonance spectra (¹H and ¹³C NMR) were recorded on Bruker DPX 400 MHz and 100 MHz spectrometers in CDCl₃ or DMSO-*d*₆ with the chemical shift (δ) given in parts per million (ppm). Multiplicities were indicated as follows: s (singlet), d (doublet), t (triplet), m (multiplet), dd (doublet of doublets), and so forth; the coupling constant (*J*) was given in hertz (Hz). High-resolution mass spectra (HRMS) were recorded on an Agilent Q-TOF mass spectrometer. 3-Aryl-3-hydroxyisoindolinones **1** were prepared according to literature procedure.¹

General Procedure for the Synthesis of Compound 3. To a solution of 3-aryl-3hydroxyisoindolinones 1 (0.1 mmol) in dichloroethane (1.5 mL) was added $[Cp*RhCl_2]_2$ (0.0025 mmol), AgSbF₆ (0.01 mmol), AgOAc (0.025 mmol), and vinylene carbonate 2 (0.2 mmol). The reaction mixture was stirred at 60 °C on a heating block for 2 h. After completion of the reaction, the solvent was removed in vacuo and the residue was purified by silica gel column chromatography to afford the compound 3.

Spiro[isochromene-1,1'-isoindolin]-3'-one (**3***a*). White solid (21.2 mg, 85%), petroleum ether/ethyl acetate = 5:1, mp 199-200 °C. ¹H NMR (400 MHz, DMSO-*d*₆) δ 9.90 (s, 1H), 7.74 (d, *J* = 6.8 Hz, 1H), 7.67-7.60 (m, 2H), 7.51 (d, *J* = 6.8 Hz, 1H), 7.34 (t, *J* = 7.6 Hz, 1H), 7.24 (d, *J* = 7.6 Hz, 1H), 7.14 (t, *J* = 7.6 Hz, 1H), 6.87 (d, *J* = 5.6 Hz, 1H), 6.71 (d, *J* = 7.6 Hz, 1H), 6.14 (d, *J* = 5.6 Hz, 1H). ¹³C NMR (100 MHz, DMSO-*d*₆) δ 168.5, 147.9, 144.5, 133.7, 131.0,

130.8, 130.4, 129.8, 128.6, 127.9, 124.6, 124.5, 123.9, 123.5, 104.9, 90.5. HRMS (ESI) m/z: $[M + Na]^+$ calcd for C₁₆H₁₁NO₂Na 272.0682; found 272.0680.

6-*Methylspiro[isochromene-1,1'-isoindolin]-3'-one* (**3b**). White solid (22.9 mg, 87%), petroleum ether/ethyl acetate = 5:1, mp 174-175 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.86 (d, *J* = 7.2 Hz, 1H), 7.64-7.57 (m, 2H), 7.53 (d, *J* = 7.2 Hz, 1H), 6.98 (s, 1H), 6.94-6.91 (m, 2H), 6.72 (d, *J* = 5.6 Hz, 1H), 6.66 (d, *J* = 8.0 Hz, 1H), 6.01 (d, *J* = 5.6 Hz, 1H), 2.33 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 168.6, 147.1, 144.0, 139.7, 133.3, 130.6, 130.4, 129.6, 128.5, 125.2, 124.9, 124.4, 123.9, 123.8, 105.0, 90.1, 21.3. HRMS (ESI) m/z: [M + H]⁺ calcd for C₁₇H₁₄NO₂ 264.1019; found 264.1022.

6-*Methoxyspiro[isochromene-1,1'-isoindolin]-3'-one* (**3***c*). White solid (23.2 mg, 83%), petroleum ether/ethyl acetate = 5:1, mp 142-143 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.86 (d, *J* = 7.2 Hz, 1H), 7.64-7.55 (m, 2H), 7.52 (d, *J* = 7.2 Hz, 1H), 6.91 (s, 1H), 6.74 (d, *J* = 5.6 Hz, 1H), 6.71-6.64 (m, 3H), 6.00 (d, *J* = 6.0 Hz, 1H), 3.80 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 168.5, 160.6, 147.1, 144.4, 133.3, 131.2, 130.6, 130.4, 126.0, 123.9, 123.8, 120.3, 113.4, 109.1, 104.9, 90.2, 55.5. HRMS (ESI) m/z: [M + H]⁺ calcd for C₁₇H₁₄NO₃ 280.0968; found 280.0969.

6-*Chlorospiro[isochromene-1,1'-isoindolin]-3'-one* (**3***d*). White solid (21.3 mg, 75%), petroleum ether/ethyl acetate = 5:1, mp 201-202 °C. ¹H NMR (400 MHz, DMSO-*d*₆) δ 9.96 (s, 1H), 7.75 (d, *J* = 6.8 Hz, 1H), 7.68-7.61 (m, 2H), 7.52 (d, *J* = 6.8 Hz, 1H), 7.38 (s, 1H), 7.19 (d, *J* = 8.4 Hz, 1H), 6.95 (d, *J* = 5.6 Hz, 1H), 6.72 (d, *J* = 8.0 Hz, 1H), 6.16 (d, *J* = 5.6 Hz, 1H). ¹³C NMR (100 MHz, DMSO-*d*₆) δ 168.5, 147.5, 145.9, 134.4, 133.8, 132.6, 131.2, 130.8, 127.6, 127.2, 126.7, 124.0, 123.9, 123.6, 103.9, 90.2. HRMS (ESI) m/z: [M + H]⁺ calcd for C₁₆H₁₁CINO₂ 284.0473; found 284.0472. 6-*Fluorospiro[isochromene-1,1'-isoindolin]-3'-one* (*3e*). White solid (20.3 mg, 76%), petroleum ether/ethyl acetate = 5:1, mp 186-187 °C. ¹H NMR (400 MHz, CDCl₃) 7.87 (d, *J* = 7.2 Hz, 1H), 7.66-7.58 (m, 2H), 7.53 (d, *J* = 6.8 Hz, 1H), 6.97 (s, 1H), 6.86 (d, *J* = 9.2 Hz, 1H), 6.83-6.74 (m, 3H), 6.02 (d, *J* = 5.6 Hz, 1H). ¹³C NMR (100 MHz, CDCl₃) δ 168.4, 163.5 (*J* = 247 Hz), 146.7, 145.1, 133.5, 132.0 (*J* = 9.1 Hz), 130.7, 130.5, 126.6 (*J* = 8.9 Hz), 124.0, 123.8, 114.5 (*J* = 22.2 Hz), 110.8 (*J* = 22.6 Hz), 104.3, 89.9. ¹⁹F NMR (376 MHz, CDCl₃) δ -111.8. HRMS (ESI) m/z: [M + H]⁺ calcd for C₁₆H₁₁FNO₂ 268.0768; found 268.0770.

7-*Methylspiro[isochromene-1,1'-isoindolin]-3'-one* (**3h**). White solid (20.5 mg, 78%), petroleum ether/ethyl acetate = 5:1, mp 185-186 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.87 (d, *J* = 7.2 Hz, 1H), 7.64-7.57 (m, 2H), 7.54 (d, *J* = 7.2 Hz, 1H), 7.13 (d, *J* = 8.0 Hz, 1H), 7.09 (s, 1H), 7.05 (d, *J* = 7.6 Hz, 1H), 6.69 (d, *J* = 5.6 Hz, 1H), 6.57 (s, 1H), 6.03 (d, *J* = 6.0 Hz, 1H), 2.19 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 168.7, 147.0, 143.2, 137.8, 133.3, 130.6, 130.5, 130.4, 127.9, 127.0, 124.8, 124.3, 123.9, 123.8, 104.9, 90.2, 21.4. HRMS (ESI) m/z: [M + H]⁺ calcd for C₁₇H₁₄NO₂ 264.1019; found 264.1020.

7-*Methoxyspiro[isochromene-1,1'-isoindolin]-3'-one* (*3i*). White solid (20.6 mg, 74%), petroleum ether/ethyl acetate = 5:1, mp 150-151 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.86 (d, *J* = 7.2 Hz, 1H), 7.64-7.56 (m, 2H), 7.55 (d, *J* = 7.2 Hz, 1H), 7.12-7.06 (m, 1H), 6.88 (s, 1H), 6.86 (d, *J* = 8.4 Hz, 1H), 6.74 (d, *J* = 6.0 Hz, 1H), 6.41 (d, *J* = 6.0 Hz, 1H), 6.36 (d, *J* = 8.0 Hz, 1H), 3.89 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 168.5, 153.3, 146.9, 143.2, 133.3, 130.7, 130.5, 128.8, 128.3, 125.7, 123.9, 119.3, 116.4, 111.0, 99.5, 90.0, 56.0. HRMS (ESI) m/z: [M + Na]⁺ calcd for C₁₇H₁₃NO₃Na 302.0788; found 302.0786.

7-Chlorospiro[isochromene-1,1'-isoindolin]-3'-one (3j). White solid (18.7 mg, 66%),

petroleum ether/ethyl acetate = 5:1, mp 203-204 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.88 (d, *J* = 7.2 Hz, 1H), 7.67-7.60 (m, 2H), 7.54 (d, *J* = 7.2 Hz, 1H), 7.30 (d, *J* = 8.0 Hz, 1H), 7.11 (d, *J* = 8.0 Hz, 1H), 7.01 (s, 1H), 6.75 (s, 2H), 6.04 (d, *J* = 5.6 Hz, 1H). ¹³C NMR (100 MHz, CDCl₃) δ 168.4, 146.3, 144.3, 133.6, 132.9, 130.8, 130.5, 129.9, 129.5, 128.3, 125.6, 124.5, 124.1, 123.8, 104.2, 89.6. HRMS (ESI) m/z: [M + H]⁺ calcd for C₁₆H₁₁ClNO₂ 284.0473; found 284.0474.

7-Fluorospiro[isochromene-1,1'-isoindolin]-3'-one (**3***k*). White solid (13.6 mg, 51%), petroleum ether/ethyl acetate = 5:1, mp 177-178 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.88 (d, *J* = 7.2 Hz, 1H), 7.67-7.60 (m, 2H), 7.54 (d, *J* = 7.2 Hz, 1H), 7.17-7.14 (m, 1H), 7.04 (t, *J* = 8.4 Hz, 1H), 6.83 (s, 1H), 6.72 (d, *J* = 5.6 Hz, 1H), 6.49 (d, *J* = 8.8 Hz, 1H), 6.05 (d, *J* = 5.6 Hz, 1H). ¹³C NMR (100 MHz, CDCl₃) δ 168.4, 162.0 (*J* = 246.3 Hz), 146.3, 143.3, 133.5, 130.8, 130.6, 129.9 (*J* = 6.8 Hz), 126.1 (*J* = 8.0 Hz), 124.1, 123.8, 116.8 (*J* = 21.9 Hz), 111.6 (*J* = 23.8 Hz), 104.3, 90.0. ¹⁹F NMR (376 MHz, CDCl₃) δ -112.3. HRMS (ESI) m/z: [M + H]⁺ calcd for C₁₆H₁₁FNO₂ 268.0768; found 268.0769.

8-*Methoxyspiro[isochromene-1,1'-isoindolin]-3'-one* (*3l*). White solid (20.4 mg, 73%), petroleum ether/ethyl acetate = 5:1, mp 203-204 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.84 (d, *J* = 7.2 Hz, 1H), 7.57-7.49 (m, 2H), 7.41 (d, *J* = 7.2 Hz, 1H), 7.29 (t, *J* = 8.0 Hz, 1H), 6.76 (d, *J* = 7.6 Hz, 1H), 6.73 (d, *J* = 6.0 Hz, 1H), 6.66 (d, *J* = 8.4 Hz, 1H), 6.62 (s, 1H), 5.93 (d, *J* = 6.0 Hz, 1H), 3.30 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 169.3, 155.8, 150.0, 143.7, 132.6, 131.7, 130.6, 130.1, 129.3, 123.4, 122.5, 117.3, 114.7, 110.7, 103.4, 88.1, 55.5. HRMS (ESI) m/z: [M + H]⁺ calcd for C₁₇H₁₄NO₃ 280.0968; found 280.0968.

5,7-Dimethylspiro[isochromene-1,1'-isoindolin]-3'-one (3m). White solid (5.8 mg, 21%),

petroleum ether/ethyl acetate = 5:1, mp 142-143 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.87 (d, *J* = 7.2 Hz, 1H), 7.65-7.56 (m, 2H), 7.55 (d, *J* = 5.6 Hz, 1H), 7.00 (s, 1H), 6.74 (s, 1H), 6.73 (d, *J* = 6.0 Hz, 2H), 6.40 (s, 1H), 6.16 (d, *J* = 5.6 Hz, 1H), 2.36 (s, 3H), 2.16 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 168.6, 147.0, 143.0, 137.3, 134.4, 133.3, 131.9, 130.7, 130.4, 128.0, 125.4, 123.9, 123.7, 122.5, 102.2, 90.3, 21.3, 18.7. HRMS (ESI) m/z: [M + H]⁺ calcd for C₁₈H₁₆NO₂ 278.1176; found 278.1175.

5'-*Methoxyspiro[isochromene-1,1'-isoindolin]-3'-one* (**3***n*). White solid (22.3 mg, 80%), petroleum ether/ethyl acetate = 5:1, mp 186-187 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.78 (d, *J* = 8.4 Hz, 1H), 7.33 (t, *J* = 7.6 Hz, 1H), 7.17-7.12 (m, 2H), 7.08 (d, *J* = 8.4 Hz, 1H), 7.01 (s, 1H), 6.83 (s, 1H), 6.79 (d, *J* = 7.6 Hz, 1H), 6.74 (d, *J* = 5.6 Hz, 1H), 6.05 (d, *J* = 5.6 Hz, 1H), 3.84 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 168.4, 164.1, 149.2, 143.9, 129.6, 128.0, 127.7, 125.3, 124.5, 124.2, 123.0, 117.0, 108.5, 104.9, 89.6, 55.9. HRMS (ESI) m/z: [M + Na]⁺ calcd for C₁₇H₁₃NO₃Na 302.0788; found 302.0788.

5'-*Chlorospiro[isochromene-1,1'-isoindolin]-3'-one* (**3***o*). White solid (21.8 mg, 77%), petroleum ether/ethyl acetate = 5:1, mp 205-206 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.83 (s, 1H), 7.58 (d, *J* = 8.0 Hz, 1H), 7.48 (d, *J* = 8.0 Hz, 1H), 7.34 (t, *J* = 7.6 Hz, 1H), 7.18-7.12 (m, 2H), 7.02 (s, 1H), 6.77 (d, *J* = 7.6 Hz, 1H), 6.73 (d, *J* = 5.6 Hz, 1H), 6.06 (d, *J* = 5.6 Hz, 1H). ¹³C NMR (100 MHz, CDCl₃) δ 167.1, 145.0, 143.8, 136.9, 133.4, 132.4, 129.9, 129.6, 127.9, 127.4, 125.2, 124.4, 124.3, 124.2, 105.1, 89.8. HRMS (ESI) m/z: [M + H]⁺ calcd for C₁₆H₁₁ClNO₂ 284.0473; found 284.0479.

5'-Bromospiro[isochromene-1,1'-isoindolin]-3'-one (**3**p). White solid (24.9 mg, 76%), petroleum ether/ethyl acetate = 5:1, mp 200-201 °C. ¹H NMR (400 MHz, CDCl₃) δ 8.00 (s, 1H),

7.74 (d, J = 8.0 Hz, 1H), 7.42 (d, J = 8.0 Hz, 1H), 7.34 (t, J = 7.6 Hz, 1H), 7.18-7.12 (m, 2H), 6.88 (s, 1H), 6.77 (d, J = 8.0 Hz, 1H), 6.73 (d, J = 5.6 Hz, 1H), 6.06 (d, J = 5.6 Hz, 1H). ¹³C NMR (100 MHz, CDCl₃) δ 166.9, 145.5, 143.8, 136.3, 132.6, 129.9, 129.6, 127.9, 127.3, 127.2, 125.5, 124.8, 124.5, 124.3, 105.1, 89.9. HRMS (ESI) m/z: [M + H]⁺ calcd for C₁₆H₁₁BrNO₂ 327.9968; found 327.9970.

5',6'-Dichlorospiro[isochromene-1,1'-isoindolin]-3'-one (**3***q*). White solid (20.9 mg, 66%), petroleum ether/ethyl acetate = 5:1, mp 210-211 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.92 (s, 1H), 7.64 (s, 1H), 7.36 (t, J = 7.6 Hz, 1H), 7.19-7.12 (m, 2H), 7.08 (s, 1H), 6.81 (d, J = 8.0 Hz, 1H), 6.71 (d, J = 5.6 Hz, 1H), 6.07 (d, J = 5.6 Hz, 1H). ¹³C NMR (100 MHz, CDCl₃) δ 166.4, 146.1, 143.6, 137.8, 135.5, 130.2, 130.1, 129.6, 128.1, 126.9, 126.1, 125.9, 124.6, 124.2, 105.2, 89.6. HRMS (ESI) m/z: [M + H]⁺ calcd for C₁₆H₁₁Cl₂NO₂ 318.0083; found 318.0091.

4',5',6',7'-*Tetrahydrospiro[isochromene-1*,1'-*isoindol]-3*'(2'H)-*one* (**3***r*). White solid (15.7 mg, 62%), petroleum ether/ethyl acetate = 5:1, mp 127-128 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.30 (t, J = 7.6 Hz, 1H), 7.20 (t, J = 7.6 Hz, 1H), 7.09 (d, J = 7.6 Hz, 1H), 6.94 (d, J = 7.6 Hz, 1H), 6.69 (d, J = 5.6 Hz, 1H), 6.46 (s, 1H), 5.90 (d, J = 6.0 Hz, 1H), 2.36-2.26 (m, 3H), 2.11-2.06 (m, 1H), 1.81-1.70 (m, 4H). ¹³C NMR (100 MHz, CDCl₃) δ 172.1, 156.0, 144.1, 132.9, 129.9, 129.5, 127.8, 126.7, 124.3, 123.8, 104.1, 90.6, 21.9, 21.8, 21.7, 19.9. HRMS (ESI) m/z: [M + Na]⁺ calcd for C₁₆H₁₅NO₂Na 276.0995; found 276.0994.

5'-*Chloro-6-methylspiro[isochromene-1,1'-isoindolin]-3'-one* (**3***t*). White solid (20.2 mg, 68%), petroleum ether/ethyl acetate = 5:1, mp 189-190 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.81 (s, 1H), 7.57 (d, *J* = 8.0 Hz, 1H), 7.46 (d, *J* = 8.0 Hz, 1H), 7.05 (s, 1H), 6.98 (s, 1H), 6.95 (d, *J* = 8.0 Hz, 1H), 6.71 (d, *J* = 6.0 Hz, 1H), 6.65 (d, *J* = 7.6 Hz, 1H), 6.01 (d, *J* = 6.0 Hz, 1H), 2.33

(s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 167.1, 145.2, 143.8, 139.9, 136.8, 133.4, 132.4, 129.5, 128.6, 125.1, 125.0, 124.6, 124.2, 124.1, 105.1, 89.9, 21.3. HRMS (ESI) m/z: [M + H]⁺ calcd for C₁₇H₁₃ClNO₂ 298.0629; found 298.0632.

5'-Bromo-6-methoxyspiro[isochromene-1,1'-isoindolin]-3'-one (**3u**). White solid (24 mg, 67%), petroleum ether/ethyl acetate = 5:1, mp 188-189 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.96 (s, 1H), 7.70 (d, J = 8.8 Hz, 1H), 7.39 (d, J = 8.0 Hz, 1H), 7.25 (s, 1H), 6.72-6.63 (m, 4H), 5.99 (d, J = 5.6 Hz, 1H), 3.80 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 167.1, 160.7, 145.8, 144.3, 136.2, 132.6, 131.1, 127.1, 125.8, 125.4, 124.6, 119.6, 113.5, 109.2, 105.0, 90.1, 55.5. HRMS (ESI) m/z: [M + H]⁺ calcd for C₁₇H₁₃BrNO₃ 358.0073; found 358.0073.

5'-Bromo-7-methylspiro[isochromene-1,1'-isoindolin]-3'-one (**3**ν). White solid (20.8 mg, 61%), petroleum ether/ethyl acetate = 5:1, mp 152-153 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.98 (s, 1H), 7.73 (d, J = 8.0 Hz, 1H), 7.41 (d, J = 8.0 Hz, 1H), 7.14 (d, J = 7.6 Hz, 1H), 7.10 (s, 1H), 7.06 (d, J = 8.0 Hz, 1H), 6.67 (d, J = 5.6 Hz, 1H), 6.56 (s, 1H), 6.03 (d, J = 5.6 Hz, 1H), 2.21 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 167.1, 145.7, 143.0, 138.0, 136.3, 132.6, 130.6, 127.3, 127.1, 126.9, 125.5, 124.7, 124.6, 124.4, 105.0, 90.0, 21.4. HRMS (ESI) m/z: [M + H]⁺ calcd for C₁₇H₁₃BrNO₂ 342.0124; found 342.0122.

5',6'-Dichloro-6-methylspiro[isochromene-1,1'-isoindolin]-3'-one (**3***w*). White solid (13.2 mg, 40%), petroleum ether/ethyl acetate = 5:1, mp 203-204 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.90 (s, 1H), 7.62 (s, 1H), 7.21 (s, 1H), 6.98 (s, 1H), 6.97 (d, J = 9.2 Hz, 1H), 6.70 (d, J = 8.4 Hz, 1H), 6.69 (d, J = 6.0 Hz, 1H), 6.01 (d, J = 6.0 Hz, 1H), 2.34 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 166.5, 146.3, 143.6, 140.2, 137.8, 135.3, 130.2, 129.5, 128.8, 126.0, 125.8, 125.2, 124.2, 124.1, 105.1, 89.7, 21.3. HRMS (ESI) m/z: [M + H]⁺ calcd for C₁₇H₁₂Cl₂NO₂ 332.0240;

found 332.0239.

1.0 mmol Scale Synthesis of 3a. To a solution of 3-hydroxy-3-phenylisoindolinone **1a** (225 mg, 1.0 mmol) in dichloroethane (10 mL) was added [Cp*RhCl₂]₂ (15.5 mg, 0.025 mmol), AgSbF₆ (34 mg, 0.1 mmol), AgOAc (42 mg, 0.25 mmol), and vinylene carbonate **2** (130 μ L, 2.0 mmol). The reaction mixture was stirred at 60 °C on a heating block for 2 h. After completion of the reaction, the solvent was removed in vacuo and the residue was purified by silica gel column chromatography to afford the compound **3a** as a white solid (213 mg, 86%).

Procedure for the Synthesis of Compound 5. To a solution of compound **3a** (25 mg, 0.1 mmol) in THF (2 mL) was added NaH (60% oil dispersion) (6 mg, 0.15 mmol). After stirring at 0 °C for 40 min, prenyl bromide (20 μ L, 0.15 mmol) was added at 0 °C and the reaction mixture was warmed slowly to room temperature and stirred for additional 1 h. Then, the resulting mixture was quenched by water and extracted with DCM. The combined organic layers were dried and concentrated under reduced pressure followed by silica gel column chromatography to afford the compound **5**.

2'-(3-*Methylbut-2-en-1-yl*) *spiro[isochromene-1,1'-isoindolin]-3'-one* (**5**). White solid (15.9 mg, 50%), petroleum ether/ethyl acetate = 5:1, mp 83-84 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.85-7.83 (m, 1H), 7.54-7.49 (m, 2H), 7.42-7.38 (m, 1H), 7.29-7.26 (m, 1H), 7.11-7.04 (m, 2H), 6.72 (d, *J* = 5.6 Hz, 1H), 6.59 (d, *J* = 7.6 Hz, 1H), 5.87 (d, *J* = 6.0 Hz, 1H), 5.04 (t, *J* = 6.4 Hz, 1H), 4.15 (dd, *J* = 15.6, 7.2 Hz, 1H), 3.82 (dd, *J* = 15.6, 6.4 Hz, 1H), 1.55 (s, 3H), 1.52 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 167.0, 148.2, 144.1, 134.8, 132.8, 130.7, 130.3, 130.1, 129.5, 127.4, 126.6, 126.0, 124.2, 123.3, 123.3, 120.1, 102.4, 93.7, 38.2, 25.7, 17.7. HRMS (ESI) m/z: [M + Na]⁺ calcd for C₂₁H₁₉NO₂Na 340.1308; found 340.1308.

Mechanistic Studies.

(a) H/D exchange experiment. To a solution of $1a-d_5$ (23 mg, 0.1 mmol) in DCE (1.5 mL) was added [Cp*RhCl₂]₂ (1.6 mg, 0.0025 mmol), AgSbF₆ (3.4 mg, 0.01 mmol), AgOAc (4.2 mg, 0.025 mmol), and H₂O (9 µL, 0.5 mmol). The reaction mixture was stirred at 60 °C on a heating block for 10 min. Then, the solvent was removed and the residue was purified to recover the compound 1a in 85% yield (19.6 mg). And H/D exchanges at the ortho-position (50% H) of the phenyl ring were observed by ¹H NMR analysis.

(b) KIE study (competition experiment). To a mixture of **1a** (22.5 mg, 0.1 mmol) and **1a**- d_5 (23 mg, 0.1 mmol) in DCE (1.5 mL) was added [Cp*RhCl₂]₂ (1.6 mg, 0.0025 mmol), AgSbF₆ (3.4 mg, 0.01 mmol), AgOAc (4.2 mg, 0.025 mmol), and vinylene carbonate **2** (13 µL, 0.2 mmol). The reaction mixture was stirred at 60 °C on a heating block for 20 min. Then, the solvent was removed and the residue was purified to afford a mixture of **3a** and **3a**- d_4 . ¹H NMR analysis of the product mixture gave a **3a**:**3a**- d_4 ratio of 2.33.

KIE study (parallel experiment). To a mixture of **1a** (22.5 mg, 0.1 mmol) or **1a**- d_5 (23 mg, 0.1 mmol) in DCE (1.5 mL) was added [Cp*RhCl₂]₂ (1.6 mg, 0.0025 mmol), AgSbF₆ (3.4 mg, 0.01 mmol), AgOAc (4.2 mg, 0.025 mmol), and vinylene carbonate **2** (13 µL, 0.2 mmol). The resulting mixtures were stirred separately at 60 °C on a heating block for 20 min. Then,

these two reaction mixtures were combined, and the solvent was removed and the residue was purified to afford a mixture of **3a** and **3a**- d_4 . ¹H NMR analysis of the product mixture gave a **3a**:**3a**- d_4 ratio of 1.94.

(c) Intermolecular Competition Experiment between 1c and 1e. To a solution of 1c (25.5 mg, 0.1 mmol) and compound 1e (24.3 mg, 0.1 mmol) in dichloroethane (1.5 mL) was added [Cp*RhCl₂]₂ (1.6 mg, 0.0025 mmol), AgSbF₆ (3.4 mg, 0.01 mmol), AgOAc (4.2 mg, 0.025 mmol), and vinylene carbonate 2 (13 μ L, 0.2 mmol). The reaction mixture was stirred at 60 °C on a heating block for 2 h. After completion of the reaction, the solvent was removed and the residue was purified to afford 3c (12.7 mg, 0.046 mmol) and 3e (8.1 mg, 0.03 mmol). The molar ratio of 3c and 3e was thus calculated as 1.5:1.

References

(1) (a) Nishimura, T.; Noishiki, A.; Ebe, Y.; Hayashi, T. Hydroxorhodium/Chiral Diene Complexes as Effective Catalysts for the Asymmetric Arylation of 3-Aryl-3hydroxyisoindolin-1-ones. *Angew. Chem., Int. Ed.* **2013**, *52*, 1777-1780. (b) Sharma, S.; Oh, Y.; Mishra, N. K.; De, U.; Jo, H.; Sachan, R.; Kim, H. S.; Jung, Y. H.; Kim, I. S. Rhodium-Catalyzed [3 + 2] Annulation of Cyclic N-Acyl Ketimines with Activated Olefins: Anticancer Activity of Spiroisoindolinones. *J. Org. Chem.* **2017**, *82*, 3359-3367. (c) Hu, H.; Li, B.-S.; Xu, J.-L.; Sun, W.; Wang, Y.; Sun, M. Rh-Catalyzed spiroannulation of ketimines with cyclopropenones via sequential C-H/C-C bond activation. *Chem. Commun.* **2022**, *58*, 4743-4746.

¹³C NMR Spectrum (100 MHz, DMSO-*d*₆) of Compound **3a**

¹³C NMR Spectrum (100 MHz, CDCl₃) of Compound **3b**

¹³C NMR Spectrum (100 MHz, CDCl₃) of Compound **3c**

¹³C NMR Spectrum (100 MHz, DMSO-*d*₆) of Compound **3d**

 $\begin{pmatrix} 1.622 \\ 1.331 \\ 1.281 \\ 1.253 \end{pmatrix}$

¹³C NMR Spectrum (100 MHz, CDCl₃) of Compound **3e**

¹³C NMR Spectrum (100 MHz, CDCl₃) of Compound **3h**

¹³C NMR Spectrum (100 MHz, CDCl₃) of Compound **3i**

7.887 7.671 7.671 7.653 7.653 7.653 7.653 7.616 7.538 7.538 7.538 7.538 7.538 7.538 7.285 7.285 7.285 7.285 7.285 7.2010 7.007 6.050 6.050 6.036 6.036

NH O CI

 ^{13}C NMR Spectrum (100 MHz, CDCl_3) of Compound 3j

 $-\frac{1.656}{1.230}$

¹³C NMR Spectrum (100 MHz, CDCl₃) of Compound 3k

¹³C NMR Spectrum (100 MHz, CDCl₃) of Compound **3**l

¹³C NMR Spectrum (100 MHz, CDCl₃) of Compound **3m**

¹³C NMR Spectrum (100 MHz, CDCl₃) of Compound **3n**

Cl

 $\begin{pmatrix} 1.619 \\ 1.329 \\ 1.280 \\ 1.249 \end{pmatrix}$

¹³C NMR Spectrum (100 MHz, CDCl₃) of Compound **30**

¹³C NMR Spectrum (100 MHz, CDCl₃) of Compound **3p**

 ^{13}C NMR Spectrum (100 MHz, CDCl_3) of Compound 3q

2.364 2.351 2.351 2.316 2.316 2.316 2.316 2.316 2.316 2.013 2.062 2.013 2.062 2.013 2.062 2.013 2.0178 2.00

¹³C NMR Spectrum (100 MHz, CDCl₃) of Compound **3r**

¹³C NMR Spectrum (100 MHz, CDCl₃) of Compound **3t**

¹³C NMR Spectrum (100 MHz, CDCl₃) of Compound **3u**

¹³C NMR Spectrum (100 MHz, CDCl₃) of Compound **3v**

¹³C NMR Spectrum (100 MHz, CDCl₃) of Compound **3w**

¹³C NMR Spectrum (100 MHz, CDCl₃) of Compound 5

¹⁹F NMR Spectrum (376 MHz, CDCl₃) of Compound 3k