Supplementary Information

Reusable Polymer Anchored Pyridine Mediated Formal [4+1] Annulation Reaction for the Diastereoselective Synthesis of 2,3-Dihydrobenzofurans

Akanksha Kumari, ${ }^{a}$ Anshul Jain, ${ }^{a}$ Khyati Shukla, ${ }^{b}$ Ranjan Patra ${ }^{c}$ and Nirmal K. Rana*a

${ }^{a}$ Department of Chemistry, Indian Institute of Technology Jodhpur, Rajashtan 342030, India
${ }^{b}$ Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur 208016 UP, India.
'Amity Institute of Click Chemistry Research \& Studies, Amity University, Uttar Pradesh 201303, India.

Sr No.	Table of Contents	Page No.
1.	General information	S2
2.	Optimization of cascade reaction with MR-Py mediator	S3
3.	General procedure for the synthesis of 2,3-dihydrobenzofuran derivatives 4	S4-S5
4.	Procedures for synthetic transformations	S6-S7
5.	Characterization data of compounds 4, 5aaa, 6aaa, 7aaa and 8aaa	S7-S21
6.	${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra	S22-S66
7.	Analysis of secondary pyridinium salt (2k-2m) and their crude reaction mixture	S67-S70
8.	X-ray crystal structure of 4aka	S71-S72
9.	References	S72

1. General Information

Unless otherwise noted, all reactions were carried out in a closed vial. ${ }^{1} \mathrm{H}$ NMR spectra were recorded on a 500 MHz spectrometer (125 MHz for ${ }^{13} \mathrm{C} \mathrm{NMR}$). The following abbreviations were used to designate chemical shift multiplicities: $\mathrm{s}=$ singlet, $\mathrm{d}=$ doublet, $\mathrm{t}=$ triplet, $\mathrm{q}=$ quartet, $\mathrm{m}=$ multiplet. TLC was performed with silica gel GF_{254} precoated on aluminium plates and spots were visualized with UV. Flash column chromatography was performed on silica gel (100-200 mesh). IR spectra were recorded on an FT-IR spectrometer and only major peaks were reported in cm^{-1}. High-resolution mass spectra (HRMS) were obtained by the ESI-TOF method. ortho-hydroxychalcones $\mathbf{3}$ derivatives were prepared according to the reported methods. ${ }^{1}$ All the Merrifield resin anchored pyridines were synthesized according to the reported method. ${ }^{2}$ All the other reagents were purchased from commercial sources and used as received unless specified. 4-(Dimethylamino) pyridine, polymerbound extent of labelling: $\sim 3.0 \mathrm{mmol} / \mathrm{g}$ DMAP loading, matrix crosslinked with 2% DVB purchased from Sigma Aldrich. Chloromethyl polystyrene resin cross-linked with 1\% DVB (100-200 mesh, 2.0-3.0 $\mathrm{mmol} / \mathrm{g}$) purchased from TCl chemicals.

2. Optimization of cascade reaction with MR-Py mediator

Table S1. Solvent optimization ${ }^{a}$

${ }^{a}$ Reaction conditions: 1a ($59.7 \mathrm{mg}, 0.3 \mathrm{mmol}$), 3aa ($44.8 \mathrm{mg}, 0.2 \mathrm{mmol}$), $\mathrm{NEt}_{3}(0.3 \mathrm{mmol})$, solvent (2 ml), MR-Py I-VII ($368 \mathrm{mg}, 0.5 \mathrm{mmol}$) unless specified. The dr for all entries ($>20: 1$) was determined by ${ }^{1} \mathrm{H}$ NMR analysis of the crude reaction mixture. ${ }^{b}$ Isolated yield. ${ }^{c}$ reaction was carried out at $65{ }^{\circ} \mathrm{C}$.

Table S2. Amount of MR-Py I-VI used in optimization (manuscript Table 1).

I: $m-M R-P y$

II: o-MR-Py

III: $p-M R-P y$

IV: m-MR-Py

V: o-MR-Py

VI: $p-M R-P y$

VII

entry	MR-Py	Pyridine content (f)	mmol	weight (g)
1	I	$1.63 \mathrm{mmol} / \mathrm{g}$	0.5	0.3067
2	II	$1.80 \mathrm{mmol} / \mathrm{g}$	0.5	0.2778
3	III	$1.36 \mathrm{mmol} / \mathrm{g}$	0.5	0.3676
4	IV	$1.57 \mathrm{mmol} / \mathrm{g}$	0.5	0.3184
5	V	$1.71 \mathrm{mmol} / \mathrm{g}$	0.5	0.2924
6	VI	$1.67 \mathrm{mmol} / \mathrm{g}$	0.5	0.2994

3. General procedure for the synthesis of 2,3-dihydrobenzofuran derivatives 4

α-Bromo ketones 1 (0.3 mmol) and Merrifield resin supported pyridine II ($278 \mathrm{mg}, 0.5 \mathrm{mmol}$, pyridine extent $=1.80 \mathrm{mmol} / \mathrm{g}$) were added in acetonitrile (2 mL) and the mixture was stirred at $80^{\circ} \mathrm{C}$ for 4 h (monitored by thin layer chromatography). After complete consumption of 1, o-hydroxychalcones 3 $(0.2 \mathrm{mmol})$ and $\mathrm{NEt}_{3}(41.8 \mu \mathrm{l}, 0.3 \mathrm{mmol})$ were added to the reaction mixture and the stirring was continued at $80^{\circ} \mathrm{C}$. The progress of the reaction was monitored by TLC. The mixture was cooled to room temperature. The solid residue was filtered and washed with EtOAc and $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The filtrate was concentrated under vacuum to get the crude product. As a colourless solid, product 4 was purified by flash column chromatography on silica support (hexane/ethyl acetate $=10: 1$).

Synthesis of pyridinium salt $\mathbf{2}^{\prime} k-2^{\prime} m$

α-Bromo ketones $1(2.5 \mathrm{mmol})$ and pyridine (4.5 mmol) were added in toluene (10 mL) and the mixture was stirred at reflux temperature for 24 h . Solid precipitate was formed. The precipitate was filtered out and washed with toluene. The solid residue was recrystalized in ethanol to get pure pyridinium salt in moderate yield.

Scale up a condition for the synthesis of 2-(2-benzoyl-2,3-dihydrobenzofuran-3-yl)-1phenylethanone 4aaa:

α-Bromo ketones 1a (1.3, 6.69 mmol) and Merrifield resin-supported pyridine II ($6.2 \mathrm{~g}, 11.15 \mathrm{mmol}$, pyridine extent $=1.80 \mathrm{mmol} / \mathrm{g})$ were added in acetonitrile $(40 \mathrm{~mL})$ and the mixture was stirred at 80 ${ }^{\circ} \mathrm{C}$ for 1 h (monitored by thin layer chromatography). After complete consumption of 1a, o-hydroxy chalcones 3aa ($1 \mathrm{~g}, 4.46 \mathrm{mmol}$) and $\mathrm{NEt}_{3}(6.69 \mathrm{mmol})$ were added to the reaction mixture and the stirring was continued at $80^{\circ} \mathrm{C}$. The progress of the reaction was monitored by TLC. The mixture was cooled to room temperature. The solid residue was filtered and washed with EtOAc and $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The filtrate was concentrated under a vacuum to get the crude product. Product 4aaa (2.04 g) was purified by flash column chromatography on silica support (hexane/ethyl acetate $=10: 1$) to afford 4aaa (1.36 g, 89\% yield) as a colourless solid.

The immobilized pyridine was washed with water $(3 \times 10 \mathrm{ml}), 1 \mathrm{~N} \mathrm{HCl}(3 \times 10 \mathrm{ml}), 2 \mathrm{~N} \mathrm{NaOH}(3 \times 10 \mathrm{ml})$, water ($3 \times 10 \mathrm{ml}$), acetone ($3 \times 10 \mathrm{ml}$), hexane $(3 \times 10 \mathrm{ml}), \mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 10 \mathrm{ml})$, acetone $(3 \times 10 \mathrm{ml})$ respectively and dried under vacuum to give radish brown beads and reused for the next cycle.

Table S3: Recycling of supported pyridine (MR-Py II) at gram scale:

cycle	weight of 4aaa (g)	mmol (4aaa)	yield $\mathbf{(\%)}$	polymer used $\mathbf{(g)}$	recovered polymer (g)	recovered polymer (\%) ${ }^{a}$
1	1.359	3.97	89	6.20	6.18	99.7
2	1.298	3.79	85	6.18	6.15	99.5
3	1.222	3.57	80	6.15	6.12	99.5
4	1.084	3.17	71	6.12	6.09	99.5
5	1.054	3.08	69	6.09	6.05	99.3
6	0.977	2.85	64	6.05	6.03	99.7
7	0.947	2.77	62	6.03	6.01	99.7
8	0.901	2.63	59	6.01	5.98	99.5
9	0.870	2.54	57	5.98	5.93	99.7
10	0.855	2.50	56	5.93	5.90	99.5

${ }^{a}$ Recovered polymer (\%) = Recovered polymer (g)/Polymer used in each cycle(g)*100

4. Procedures for synthetic transformations

Synthesis of 2-(2-benzoylbenzofuran-3-yl)-1-phenylethan-1-one (5aaa)

To a solution of 2-(2-benzoylbenzofuran-3-yl)-1-phenylethan-1-one 4aaa ($68.5 \mathrm{mg}, 0.2 \mathrm{mmol}$) in dry dioxane (4 mL), DDQ ($90.1 \mathrm{mg}, 0.4 \mathrm{mmol}$) was added. The reaction mixture was refluxed for 72 h . After completion of the reaction (confirmed by TLC), The reaction mixture was concentrated under reduced pressure, which was then purified by flash column chromatography on silica gel using hexane/ethyl acetate $=10: 1$ to give the aromatized 2,3-disubstituted benzofuran $\mathbf{5 a a a}$ ($40.9 \mathrm{mg}, 60 \%$ yield).

Synthesis of 1,3-diphenylbenzofuro[2,3-c]pyridine (6aaa)

A mixture of 2-(2-benzoyl-2,3-dihydrobenzofuran-3-yl)-1-phenylethanone 4aaa (102.7 mg, 0.3 mmol), $\mathrm{NH}_{4} \mathrm{OAc}(185.0 \mathrm{mg}, 2.4 \mathrm{mmol})$ and $\mathrm{AcOH}(0.3 \mathrm{~mL})$ in anhydrous ethanol $(4.5 \mathrm{~mL})$ were heated at reflux for 8 h . After the reaction was completed, the mixture was slowly cooled to room temperature overnight then yellow crystals of 5aaa precipitated, which were filtrated and washed with a small amount of anhydrous ethanol to give the pure product $\mathbf{6 a a a}(84.85 \mathrm{mg}, 88 \%$ yield) as a yellowish solid.

Baeyer-Villager oxidation of 2-(2-benzoyl-2,3-dihydrobenzofuran-3-yl)-1-phenylethan-1-one (7aaa)

In a 25 mL oven-dried round bottom flask were combined 2-(2-benzoyl-2,3-dihydrobenzofuran-3-yl)-1-phenylethan-1-one 4aaa ($102.7 \mathrm{mg}, 0.3 \mathrm{mmol}$), mCPBA (65% purity, $79.6 \mathrm{mg}, 0.46 \mathrm{mmol}$), and sodium bicarbonate ($16.8 \mathrm{mg}, 0.2 \mathrm{mmol}$) in chloroform (5 mL) at room temperature. The resulting
suspension was then stirred under a static N_{2} environment with the exclusion of light at room temperature and monitored periodically via TLC. The mixture was washed with saturated $\mathrm{NaHCO}_{3}(30$ $\mathrm{ml})$ solution and the aqueous phase was extracted with $\mathrm{CHCl}_{3}(3 \times 10 \mathrm{~mL})$. The combined organic layer was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated under reduced pressure. The crude product was purified by flash column chromatography on silica gel (hexane/ethyl acetate $=10: 1$) to afford 7aaa ($91.5 \mathrm{mg}, 85 \%$ yield) as a colourless solid.

Synthesis of 2-(benzofuran-3-yl)-1-phenylethan-1-one (8aaa)

To a solution of 7aaa ($38 \mathrm{mg}, 0.15 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(4 \mathrm{~mL})$ at $-78^{\circ} \mathrm{C}$ was added titanium tetrachloride $(0.070 \mathrm{~mL}, 0.60 \mathrm{mmol})$. The dark red-brown solution was stirred at $-78^{\circ} \mathrm{C}$ for 2 h ; water (2 mL) was added and the mixture was allowed to warm to room temperature. The mixture was poured into ether $(40 \mathrm{~mL})$ and 1 N hydrochloric acid (15 mL). The ether phase was washed with saturated sodium bicarbonate (15 mL) and brine (15 mL), dried over anhydrous magnesium sulphate, and concentrated under reduced pressure. The crude product was purified by flash column chromatography on silica gel (hexane/ethyl acetate $=10: 1$) to afford 8aaa ($23.8 \mathrm{mg}, 67 \%$ yield) as a yellowish oil.

5. Characterization data of compounds 4, 5aaa, 6aaa, 7aaa and 8aaa

2-(2-benzoyl-2,3-dihydrobenzofuran-3-yl)-1-phenylethan-1-one (4aaa): White solid, Yield = 89\%

(60.9 mg); ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.10(\mathrm{~d}, \mathrm{~J}=7.9 \mathrm{~Hz}, 2 \mathrm{H}), 7.98-7.93(\mathrm{~m}$, $2 \mathrm{H}), 7.62-7.56(\mathrm{~m}, 2 \mathrm{H}), 7.51-7.45(\mathrm{~m}, 4 \mathrm{H}), 7.24(\mathrm{~d}, \mathrm{~J}=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.18(\mathrm{t}, \mathrm{J}$ $=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.93-6.86(\mathrm{~m}, 2 \mathrm{H}), 5.66(\mathrm{~d}, \mathrm{~J}=5.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.58-4.54(\mathrm{~m}, 1 \mathrm{H})$, 3.65 (dd, $J=17.8,6.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.44(\mathrm{dd}, J=17.8,8.1 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (125 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ ($197.87,194.84,158.69,136.48,135.06,133.69,133.63,129.48$, $128.95,128.87,128.83,128.76,128.21,124.91,121.51,110.06,87.69,44.19,39.67$; IR (ATR): v 3062, $3006,2990,1734,1684,1653,1597,1579,1559,1541,1507,1479,1449,1276,1261,1216 \mathrm{~cm}^{-1}$; HRMS (ES+) calc. for $\mathrm{C}_{23} \mathrm{H}_{19} \mathrm{O}_{3}{ }^{+}[\mathrm{M}+\mathrm{H}]^{+}: 343.1329$, found : 343.1316.

2-(2-(4-fluorobenzoyl)-2,3-dihydrobenzofuran-3-yl)-1-phenylethan-1-one (4baa): White solid, Yield
 $=83 \%(59.8 \mathrm{mg}) ;{ }^{1} \mathrm{H}$ NMR (500 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 8.18-8.10(\mathrm{~m}, 2 \mathrm{H}), 7.99-7.91$ $(\mathrm{m}, 2 \mathrm{H}), 7.59(\mathrm{t}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.47(\mathrm{t}, J=7.7 \mathrm{~Hz}, 2 \mathrm{H}), 7.23(\mathrm{t}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H})$, $7.20-7.11(\mathrm{~m}, 3 \mathrm{H}), 6.92(\mathrm{t}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.86(\mathrm{~d}, \mathrm{~J}=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.61(\mathrm{~d}, J=$ $5.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.58-4.55(\mathrm{~m}, 1 \mathrm{H}), 3.65(\mathrm{dd}, \mathrm{J}=17.9,5.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.43(\mathrm{dd}, \mathrm{J}=$ 17.9, $8.5 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 197.95,193.32,166.12\left(\mathrm{~d}, \mathrm{~J}_{(C-F)}\right.$ $=253.7 \mathrm{~Hz}), 158.54,136.44,133.69,132.32,\left(\mathrm{~d}, J_{(C-F)}=8.7 \mathrm{~Hz}\right), 131.52,\left(\mathrm{~d}, J_{(C-F)}=2.5 \mathrm{~Hz}\right) 128.99,128.89$, 128.86, 128.21, 124.86, 121.62, 115.92, (d, $\left.J_{(C-F)}=22.5 \mathrm{~Hz}\right) 110.07,87.72,44.12,39.55 ;$ IR (ATR): v $3005,2992,1868,1828,1790,1770,1749,1717,1699,1654,1618,1598,1576,1559,1498,1457$, 1437, 1397, 1276, $1261 \mathrm{~cm}^{-1}$; HRMS (ES+) calc. for $\mathrm{C}_{23} \mathrm{H}_{18} \mathrm{FO}_{3}{ }^{+}[\mathrm{M}+\mathrm{H}]^{+}$: 361.1234, found : 361.1233.

2-(2-(4-chlorobenzoyl)-2,3-dihydrobenzofuran-3-yl)-1-phenylethan-1-one (4caa): White solid, Yield $=81 \%(61.1 \mathrm{mg}) ;{ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.08-8.02(\mathrm{~m}, 2 \mathrm{H}), 7.99-7.92$ (m, 2H), $7.63-7.55(\mathrm{~m}, 1 \mathrm{H}), 7.51-7.43(\mathrm{~m}, 4 \mathrm{H}), 7.25-7.12(\mathrm{~m}, 2 \mathrm{H}), 6.92$ (td, $J=7.5,0.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.86(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.60(\mathrm{~d}, J=5.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.57-4.54$ $(\mathrm{m}, 1 \mathrm{H}), 3.65(\mathrm{dd}, J=17.9,5.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.43(\mathrm{dd}, J=17.9,8.6 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (125 MHz, CDCl_{3}) $\delta 197.96,193.83,158.53,140.20,136.44,133.74,133.48$, $131.02,129.12,129.04,128.90,128.84,128.24,124.86,121.68,110.13,87.75,44.14,39.57$; IR (ATR): v 3067, 3006, 2990, 2925, 2853, 1772, 1734, 1717, 1684, 1647, 1591, 1570, 1541, 1507, 1497, 1475, 1458, $1276 \mathrm{~cm}^{-1}$; HRMS (ES+) calc. for $\mathrm{C}_{23} \mathrm{H}_{18} \mathrm{ClO}_{3}{ }^{+}[\mathrm{M}+\mathrm{H}]^{+}: 377.0939$, found : 377.0941.

2-(2-(4-bromobenzoyl)-2,3-dihydrobenzofuran-3-yl)-1-phenylethan-1-one (4daa): White solid, Yield
 $=80 \%(67.4 \mathrm{mg}) ;{ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.08-8.02(\mathrm{~m}, 2 \mathrm{H}), 7.99-7.93$ (m, 2H), $7.63-7.55(\mathrm{~m}, 1 \mathrm{H}), 7.50-7.43(\mathrm{~m}, 4 \mathrm{H}), 7.24(\mathrm{~d}, \mathrm{~J}=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.20$ $-7.16(\mathrm{~m}, 1 \mathrm{H}), 6.94-6.91(\mathrm{~m}, 1 \mathrm{H}), 6.89-6.82(\mathrm{~m}, 1 \mathrm{H}), 5.60(\mathrm{~d}, \mathrm{~J}=5.5 \mathrm{~Hz}$, 1 H), $4.58-4.54(\mathrm{~m}, 1 \mathrm{H}), 3.65$ (dd, $J=17.9,5.5 \mathrm{~Hz}, 1 \mathrm{H}$), 3.43 (dd, $J=17.9,8.6$ $\mathrm{Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 197.94, 193.78, 158.51, 140.16, 136.40, $133.71,133.45,130.99,129.09,129.01,128.87,128.82,128.21,124.84,121.65,110.09,87.68,44.11$, 39.52; IR (ATR): v 3006, 2989, 2900, 1734, 1684, 1653, 1590, 1541, 1507, 1479, 1460, 1449, 1402, 1276. 1260, $1217 \mathrm{~cm}^{-1}$; HRMS (ES +) calc. for $\mathrm{C}_{23} \mathrm{H}_{17} \mathrm{BrO}_{3}{ }^{+}[\mathrm{M}]^{+}: 420.0361$ \& 422.0336 , found : 420.0359 \& 422.0337 .

2-(2-(4-methoxybenzoyl)-2,3-dihydrobenzofuran-3-yl)-1-phenylethan-1-one (4eaa): White solid,

Yield $=78 \%(58.1 \mathrm{mg}) ;{ }^{1} \mathrm{H}$ NMR (500 MHz, CDCl_{3}) $\delta 8.13-8.05(\mathrm{~m}, 2 \mathrm{H}), 7.96$ (dd, $J=8.3,1.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.61-7.54(\mathrm{~m}, 1 \mathrm{H}), 7.46(\mathrm{dd}, J=10.7,4.8 \mathrm{~Hz}, 2 \mathrm{H})$, $7.22(\mathrm{~d}, \mathrm{~J}=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.17(\mathrm{t}, \mathrm{J}=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.99-6.94(\mathrm{~m}, 2 \mathrm{H}), 6.91-6.86$ $(\mathrm{m}, 2 \mathrm{H}), 5.61(\mathrm{~d}, J=5.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.55(\mathrm{dd}, J=13.4,6.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.88(\mathrm{~s}, 3 \mathrm{H})$, 3.62 (dd, $J=17.7,6.1 \mathrm{~Hz}, 1 \mathrm{H}$), 3.44 (dd, $J=17.7,7.9 \mathrm{~Hz}, 1 \mathrm{H}$); ${ }^{13} \mathrm{C}$ NMR (125 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ (197.94, 193.40, 164.05, 158.81, 136.60, 133.63, 131.93, 129.14, 128.93, 128.87, 128.26, $128.03,124.94,121.48,114.04,110.05,87.83,55.66,44.25,39.87$; IR (ATR): v 3006, 2989, 1869, 1844 , 1792, 1772, 1749, 1734, 1717, 1699, 1684, 1636, 1599, 1498, 1474, 1458, 1261, $1219 \mathrm{~cm}^{-1} ;$ HRMS (ES+) calc. for $\mathrm{C}_{24} \mathrm{H}_{21} \mathrm{O}_{4}{ }^{+}[\mathrm{M}+\mathrm{H}]^{+}$: 373.1434, found : 373.1422.

2-(2-(3-nitrobenzoyl)-2,3-dihydrobenzofuran-3-yl)-1-phenylethan-1-one (4faa): White solid, Yield =
 $82 \%(63.5 \mathrm{mg}) ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.96(\mathrm{t}, \mathrm{J}=1.9 \mathrm{~Hz}, 1 \mathrm{H}), 8.50-8.42$ $(\mathrm{m}, 2 \mathrm{H}), 7.95(\mathrm{dd}, \mathrm{J}=8.3,1.1 \mathrm{~Hz}, 2 \mathrm{H}), 7.71(\mathrm{t}, \mathrm{J}=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.61-7.55(\mathrm{~m}$, $1 \mathrm{H}), 7.47(\mathrm{t}, \mathrm{J}=7.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.27(\mathrm{~s}, 1 \mathrm{H}), 7.19(\mathrm{t}, \mathrm{J}=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.9-6.94(\mathrm{~m}$, $1 \mathrm{H}), 6.86(\mathrm{~d}, \mathrm{~J}=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.66(\mathrm{~d}, \mathrm{~J}=5.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.63-4.56(\mathrm{~m}, 1 \mathrm{H}), 3.71$ (dd, $J=18.1,5.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.45(\mathrm{dd}, J=18.1,9.4 \mathrm{~Hz}, 1 \mathrm{H}) ; 13 \mathrm{C}$ NMR (125 MHz , CDCl3) $\delta 198.08,192.95,158.27,148.54,136.60,136.32,135.18,133.84,129.99,129.16,128.92$, $128.56,128.23,127.84,124.80,124.62,121.90,110.23,87.61,76.91,44.06,39.31$; IR (ATR): v 3056, $3006,2988,2880,1792,1761,1734,1717,1698,1685,1671,1653,1636,1616,1539,1352,1264 \mathrm{~cm}^{-}$ ${ }^{1}$; HRMS (ES+) calc. for $\mathrm{C}_{23} \mathrm{H}_{18} \mathrm{NO}_{5}{ }^{+}[\mathrm{M}+\mathrm{H}]^{+}: 388.1179$, found : 388.1239.

2-(2-(4-nitrobenzoyl)-2,3-dihydrobenzofuran-3-yl)-1-phenylethan-1-one (4gaa): White solid, Yield =
 $89 \%(69.0 \mathrm{mg}) ;{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.41$ - $8.31(\mathrm{~m}, 2 \mathrm{H}), 8.29-8.23$ (m, 2H), 7.95 (dd, $J=8.3,1.2 \mathrm{~Hz}, 2 \mathrm{H}$), $7.65-7.55(\mathrm{~m}, 1 \mathrm{H}), 7.47(\mathrm{dd}, J=10.7$, $4.9 \mathrm{~Hz}, 2 \mathrm{H}), 7.25(\mathrm{~d}, \mathrm{~J}=5.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.20(\mathrm{t}, \mathrm{J}=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.97-6.94(\mathrm{~m}, 1 \mathrm{H})$, $6.86(\mathrm{~d}, \mathrm{~J}=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.62(\mathrm{~d}, \mathrm{~J}=5.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.59-4.51(\mathrm{~m}, 1 \mathrm{H}), 3.70(\mathrm{dd}, J$ $=18.1,5.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.44$ (dd, J = 18.1, $9.3 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 198.03,193.80,158.29,150.59,139.99,136.30,133.89,130.65,129.21,128.95,128.53,128.24$, 124.81, 123.91, 121.94, 110.24, 87.87, 44.04, 39.49; IR (ATR): v 3006, 2988, 2863, 2842, 1770, 1761, $1735,1718,1698,1687,1633,1557,1542,1505,1474,1456,1263 \mathrm{~cm}^{-1}$; HRMS (ES+) calc. for $\mathrm{C}_{23} \mathrm{H}_{18} \mathrm{NO}_{5}{ }^{+}[\mathrm{M}+\mathrm{H}]^{+}: 388.1179$, found $: 388.1162$.

1-phenyl-2-(2-(thiophene-2-carbonyl)-2,3-dihydrobenzofuran-3-yl)ethan-1-one (4haa): White solid,
 Yield $=70 \%(48.8 \mathrm{mg}) ;{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.04(\mathrm{dd}, \mathrm{J}=3.9,1.0 \mathrm{~Hz}$, 1 H), 7.98 (dd, $J=8.3,1.2 \mathrm{~Hz}, 2 \mathrm{H}$), $7.71(\mathrm{dd}, J=4.9,1.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.61-7.56(\mathrm{~m}$, $1 \mathrm{H}), 7.47(\mathrm{t}, \mathrm{J}=7.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.23-7.16(\mathrm{~m}, 3 \mathrm{H}), 6.93-6.90(\mathrm{~m}, 2 \mathrm{H}), 5.40(\mathrm{~d}, \mathrm{~J}$ $=6.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.51(\mathrm{q}, J=6.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.61(\mathrm{dd}, J=17.8,6.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.49$ (dd, $J=17.8,7.1 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 197.74,189.31,158.75$, $140.92,136.55,135.20,134.46,133.64,129.02,128.86,128.41,128.25,125.07,121.75,110.08,89.22$, 44.21, 41.07; IR (ATR): v 3087, 3061, 3006, 2989, 1683, 1596, 1559, 1518, 1478, 1460, 1449, 1412, 1357, 1276, $1219 \mathrm{~cm}^{-1}$; HRMS (ES+) calc. for $\mathrm{C}_{21} \mathrm{H}_{17} \mathrm{O}_{3} \mathrm{~S}^{+}[\mathrm{M}+\mathrm{H}]^{+}$: 349.0893, found : 349.0903.

2,2-dimethyl-1-(3-(2-oxo-2-phenylethyl)-2,3-dihydrobenzofuran-2-yl)propan-1-one (4iaa): White
 solid, Yield $=73 \%(47.1 \mathrm{mg}) ;{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.00-7.93(\mathrm{~m}, 2 \mathrm{H})$, $7.63-7.54(\mathrm{~m}, 1 \mathrm{H}), 7.47(\mathrm{t}, \mathrm{J}=7.7 \mathrm{~Hz}, 2 \mathrm{H}), 7.21-7.11(\mathrm{~m}, 2 \mathrm{H}), 6.92-6.85$ $(\mathrm{m}, 1 \mathrm{H}), 6.83(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.16(\mathrm{~d}, J=5.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.33(\mathrm{dd}, J=13.4,6.2$ $\mathrm{Hz}, 1 \mathrm{H}), 3.56(\mathrm{dd}, J=17.8,6.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.38(\mathrm{dd}, J=17.8,7.8 \mathrm{~Hz}, 1 \mathrm{H}), 1.29(\mathrm{~s}$, $9 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 210.81,197.92,158.65,136.61,133.59$, $129.25,128.86,128.81,128.21,124.81,121.33,109.79,87.14,44.48,44.17,40.21,26.46 ;$ IR (ATR): v 3006, 2989, 2863, 2845, 1792, 1781, 1761, 1734, 1717, 1700, 1685, 1653, 1636, 1559, 1521, 1508, 1458, $1276 \mathrm{~cm}^{-1}$; HRMS (ES+) calc. for $\mathrm{C}_{21} \mathrm{H}_{23} \mathrm{O}_{3}{ }^{+}[\mathrm{M}+\mathrm{H}]^{+}$: 323.1642, found : 323.1615.

2-(2-((3R,5R,7R)-adamantane-1-carbonyl)-2,3-dihydrobenzofuran-3-yl)-1-phenylethan-1-one

(4jaa): White solid, Yield $=72 \%(57.7 \mathrm{mg}) ;{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.96$ (dd, $J=5.2,3.3 \mathrm{~Hz}, 2 \mathrm{H}$), $7.63-7.54(\mathrm{~m}, 1 \mathrm{H}), 7.47(\mathrm{dd}, J=10.6,4.8 \mathrm{~Hz}, 2 \mathrm{H}$), $7.20-7.09(\mathrm{~m}, 2 \mathrm{H}), 6.88-6.81(\mathrm{~m}, 2 \mathrm{H}), 5.18(\mathrm{~d}, J=5.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.31(\mathrm{dd}, J=$ $13.7,5.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.57(\mathrm{dd}, J=17.8,5.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.35(\mathrm{dd}, J=17.8,8.2 \mathrm{~Hz}, 1 \mathrm{H})$, $2.07(\mathrm{~s}, 3 \mathrm{H}), 1.99(\mathrm{~d}, \mathrm{~J}=2.8 \mathrm{~Hz}, 6 \mathrm{H}), 1.79-1.70(\mathrm{~m}, 6 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (125 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 209.34,197.95,158.71,136.62,133.60,129.27,128.86,128.80,128.22,124.77,121.24$, 109.77, 86.09, 46.43, 44.43, 39.67, 37.91, 36.66, 28.01; IR (ATR): v 3006, 2990, 2908, 1772, 1734, 1717, 1700, 1684, 1653, 1559, 1541, 1521, 1507, 1474, 1276, $1263 \mathrm{~cm}^{-1}$; HRMS (ES+) calc. for $\mathrm{C}_{27} \mathrm{H}_{29} \mathrm{O}_{3}{ }^{+}$ $[\mathrm{M}+\mathrm{H}]^{+}: 401.2111$, found : 401.2091.

2-(2-benzoyl-5-chloro-2,3-dihydrobenzofuran-3-yl)-1-phenylethan-1-one (4aba): White solid, Yield=
 $80 \%(60.3 \mathrm{mg}) ;{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.15-8.06(\mathrm{~m}, 2 \mathrm{H}), 7.98-7.90$ $(\mathrm{m}, 2 \mathrm{H}), 7.64(\mathrm{~m}-7.58,2 \mathrm{H}), 7.52-7.45(\mathrm{~m}, 4 \mathrm{H}), 7.17(\mathrm{~d}, \mathrm{~J}=2.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.12$ $(\mathrm{s}, 1 \mathrm{H}), 5.78(\mathrm{~d}, \mathrm{~J}=5.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.61-4.57(\mathrm{~m}, 1 \mathrm{H}), 3.62(\mathrm{dd}, \mathrm{J}=18.0,6.1 \mathrm{~Hz}$, 1 H), 3.47 (dd, $J=18.0,7.9 \mathrm{~Hz}, 1 \mathrm{H}$); ${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 197.49, 194.34, 157.43, 136.33, 134.90, 133.89, 133.82, 131.02, 129.52, 128.92, $128.90,128.86,128.25,126.27,125.17,111.04,88.08,43.94,39.59$; IR (ATR): v 3065, 3006, 2990, 2919, 2900, 2850, 1792, 1772, 1734, 1716, 1683, 1596, 1579, 1541, 1472, 1448, 1355, 1276, 1259, 1218, $1168 \mathrm{~cm}^{-1}$; HRMS (ES+) calc. for $\mathrm{C}_{23} \mathrm{H}_{18} \mathrm{ClO}_{3}{ }^{+}[\mathrm{M}+\mathrm{H}]^{+}: 377.0939$, found : 377.0937.

2-(2-benzoyl-5-bromo-2,3-dihydrobenzofuran-3-yl)-1-phenylethan-1-one (4aca): White solid, Yield =
 $77 \%(64.9 \mathrm{mg}) ;{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.13-8.04(\mathrm{~m}, 2 \mathrm{H}), 7.99-7.91$ (m, 2H), $7.66-7.56(\mathrm{~m}, 2 \mathrm{H}), 7.54-7.43(\mathrm{~m}, 4 \mathrm{H}), 7.37-7.31(\mathrm{~m}, 1 \mathrm{H}), 7.28-$ $7.26(\mathrm{~m}, 1 \mathrm{H}), 6.74(\mathrm{~d}, \mathrm{~J}=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.69(\mathrm{~d}, \mathrm{~J}=5.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.57-4.53(\mathrm{~m}$, $1 \mathrm{H}), 3.62(\mathrm{dd}, J=17.9,6.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.45(\mathrm{dd}, J=17.9,8.1 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 197.48,194.27,157.95,136.32,134.89,133.90,133.82$, $131.80,131.57,129.51,128.92,128.86,128.25,128.02,113.38,111.66,88.00,43.96,39.52 ;$ IR (ATR): v 3064, 2998, 2988, 2858, 1804, 1792, 1781, 1772, 1761, 1749, 1735, 1717, 1699, 1684, 1653, 1637, 1560, 1508, 1473, $1260 \mathrm{~cm}^{-1}$; HRMS (ES +) calc. for $\mathrm{C}_{23} \mathrm{H}_{18} \mathrm{BrO}_{3}{ }^{+}[\mathrm{M}+\mathrm{H}]^{+}: 421.0434$ \& 423.0414, found : 421.0429 \& 423.0410.

2-(2-benzoyl-5-nitro-2,3-dihydrobenzofuran-3-yl)-1-phenylethan-1-one (4ada): White solid, Yield =
 78% (60.5 mg); ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl} 3$) $\delta 8.16-8.14(\mathrm{~m}, 2 \mathrm{H}), 8.12-8.06(\mathrm{~m}$, 2H), $7.99-7.91(\mathrm{~m}, 2 \mathrm{H}), 7.66-7.64(\mathrm{~m}, 1 \mathrm{H}), 7.62-7.59(\mathrm{~m}, 1 \mathrm{H}), 7.55-7.52$ (m, 2H), $7.49-7.46(\mathrm{~m}, 2 \mathrm{H}), 6.96-6.86(\mathrm{~m}, 1 \mathrm{H}), 5.92(\mathrm{~d}, \mathrm{~J}=5.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.62-$ $4.59(\mathrm{~m}, 1 \mathrm{H}), 3.72(\mathrm{dd}, \mathrm{J}=18.1,5.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.51(\mathrm{dd}, \mathrm{J}=18.1,8.4 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (125 MHz, CDCl_{3}) δ 197.17, 193.25, 163.99, 142.78, 136.08, 134.65, 134.23, 134.03, 130.82, 129.53, 129.00, 128.99, 128.26, 126.45, 121.39, 110.01, 88.75, 43.49, 38.81; IR (ATR): v 3006, 2989, 2920, 1734, 1717, 1698, 1684, 1652, 1597, 1559, 1521, 1474, 1339, 1276, 1261, $1221 \mathrm{~cm}^{-1}$; HRMS (ES+) calc. for $\mathrm{C}_{23} \mathrm{H}_{18} \mathrm{NO}_{5}{ }^{+}[\mathrm{M}+\mathrm{H}]^{+}$: 388.1179, found : 388.1176.

2-(2-benzoyl-7-methoxy-2,3-dihydrobenzofuran-3-yl)-1-phenylethan-1-one (4aea): White solid,
 Yield $=78 \%(58.1 \mathrm{mg}) ;{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.13-8.06(\mathrm{~m}, 2 \mathrm{H}), 7.98-$ $7.91(\mathrm{~m}, 2 \mathrm{H}), 7.61-7.56(\mathrm{~m}, 2 \mathrm{H}), 7.50-7.44(\mathrm{~m}, 4 \mathrm{H}), 6.90-6.83(\mathrm{~m}, 2 \mathrm{H})$, $6.80-6.79(\mathrm{~m}, 1 \mathrm{H}), 5.70(\mathrm{~d}, \mathrm{~J}=5.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.57-4.53(\mathrm{~m}, 1 \mathrm{H}), 3.86(\mathrm{~s}, 3 \mathrm{H})$, 3.65 (dd, $J=17.8,5.8 \mathrm{~Hz}, 1 \mathrm{H}$), 3.43 (dd, $J=17.8,8.3 \mathrm{~Hz}, 1 \mathrm{H}$); ${ }^{13} \mathrm{C}$ NMR (125 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 197.84,194.69,147.14,144.80,136.51,135.06,133.69$, $133.67,130.25,129.54,128.87,128.80,128.26,122.30,116.92,112.31,88.20,56.25,44.23,40.56$; IR (ATR): v 3006, 2990, 1869, 1844, 1829, 1792, 1772, 1749, 1734, 1717, 1699, 1684,1653, 1636, 1576, 1559, 1541, 1507, 1473, 1419, 1339, $1261 \mathrm{~cm}^{-1}$; HRMS (ES+) calc. for $\mathrm{C}_{24} \mathrm{H}_{21} \mathrm{O}_{4}{ }^{+}[\mathrm{M}+\mathrm{H}]^{+}: 373.1434$, found: 373.1423.

2-(2-benzoyl-7-ethoxy-2,3-dihydrobenzofuran-3-yl)-1-phenylethan-1-one (4afa): White solid, Yield =
 79% (61.1 mg); ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.10(\mathrm{~d}, \mathrm{~J}=7.4 \mathrm{~Hz}, 2 \mathrm{H}$), $7.96-7.92$ (m, 2H), $7.61-7.55(\mathrm{~m}, 2 \mathrm{H}), 7.48-7.44(\mathrm{~m}, 4 \mathrm{H}), 6.87-6.82(\mathrm{~m}, 2 \mathrm{H}), 6.79$ (dd, $J=6.2,3.1 \mathrm{~Hz}, 1 \mathrm{H}$), $5.69(\mathrm{~d}, J=5.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.54-4.50(\mathrm{~m}, 1 \mathrm{H}), 4.13-$ $4.07(\mathrm{~m}, 2 \mathrm{H}), 3.63(\mathrm{dd}, J=17.8,5.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.43(\mathrm{dd}, \mathrm{J}=17.8,8.2 \mathrm{~Hz}, 1 \mathrm{H}), 1.39$ ($\mathrm{t}, \mathrm{J}=7.0 \mathrm{~Hz}, 3 \mathrm{H}$); ${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 197.49, 194.86, 158.69, 144.50, $135.06,134.06,133.66,129.50,129.48,129.03,128.90,128.75,128.34,124.92,121.48,110.04,87.70$, 44.07, 39.75, 21.79; IR (ATR): v 3005, 2989, 1845, 1794, 1749, 1734, 1699, 1653, 1617, 1576, 1541, 1490, 1473, 1437, 1397, 1339, $1276 \mathrm{~cm}^{-1}$; HRMS (ES+) calc. for $\mathrm{C}_{25} \mathrm{H}_{23} \mathrm{O}_{4}{ }^{+}[\mathrm{M}+\mathrm{H}]^{+}$: 387.1591, found : 387.1598.

2-(7-allyl-2-benzoyl-2,3-dihydrobenzofuran-3-yl)-1-phenylethan-1-one (4aga): Yellowish liquid, Yield
 $=73 \%(55.9 \mathrm{mg}) ;{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.14-8.04(\mathrm{~m}, 2 \mathrm{H}), 8.00-7.92$ (m, 2H), $7.62-7.57(\mathrm{~m}, 2 \mathrm{H}), 7.51-7.45(\mathrm{~m}, 4 \mathrm{H}), 7.10(\mathrm{~d}, \mathrm{~J}=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.01$ (d, J=7.5 Hz, 1H), $6.86(\mathrm{t}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.98-5.90(\mathrm{~m}, 1 \mathrm{H}), 5.64(\mathrm{~d}, J=5.5$ $\mathrm{Hz}, 1 \mathrm{H}), 5.07-4.96(\mathrm{~m}, 2 \mathrm{H}), 4.56$ (dd, $J=13.6,5.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.63$ (dd, J = 17.7, $6.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.45(\mathrm{dd}, J=17.7,8.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.35(\mathrm{~d}, J=6.6 \mathrm{~Hz}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 197.92,195.32,156.72,136.56,136.17,135.13,133.60,133.58,129.53,129.18$, $128.84,128.67,128.60,128.23,122.77,122.51,121.65,115.92,87.92,44.25,40.13,34.07 ;$ IR (ATR): v 3006, 2990, 2360, 2341, 1792, 1761, 1734, 1717, 1698, 1684, 1653, 1541, 1521, 1474, 1456, 1276, $1265 \mathrm{~cm}^{-1} ;$ HRMS (ES+) calc. for $\mathrm{C}_{26} \mathrm{H}_{23} \mathrm{O}_{3}{ }^{+}[\mathrm{M}+\mathrm{H}]^{+}$: 383.1642, found : 383.1648.

2-(2-benzoyl-5,7-dichloro-2,3-dihydrobenzofuran-3-yl)-1-phenylethan-1-one (4aha): White solid,
 Yield $=92 \%(75.7 \mathrm{mg}) ;{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.15-8.06(\mathrm{~m}, 2 \mathrm{H}), 7.98$ $-7.91(\mathrm{~m}, 2 \mathrm{H}), 7.67-7.56(\mathrm{~m}, 2 \mathrm{H}), 7.53-7.46(\mathrm{~m}, 4 \mathrm{H}), 7.18(\mathrm{dd}, \mathrm{J}=2.0,0.5$ $\mathrm{Hz}, 1 \mathrm{H}), 7.12(\mathrm{dd}, J=2.0,1.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.78(\mathrm{~d}, J=5.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.59(\mathrm{dd}, J=13.3$, $6.1 \mathrm{~Hz}, 1 \mathrm{H}$), 3.62 (dd, $J=18.1,6.1 \mathrm{~Hz}, 1 \mathrm{H}$), $3.47(\mathrm{dd}, J=18.1,8.0 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 197.18, 193.76, 153.71, 136.14, 134.68, 134.05, $133.92,132.19,129.55,128.94,128.90,128.22,126.58,123.67,116.01,88.22,76.91,43.74,40.45$; IR (ATR): v 3005, 2960, 2927, 2855, 1772, 1749, 1734, 1717, 1699, 1685, 1647, 1617, 1577, 1559, 1541, 1521, 1458, 1375, 1275, $1263 \mathrm{~cm}^{-1}$; HRMS (ES+) calc. for $\mathrm{C}_{23} \mathrm{H}_{17} \mathrm{Cl}_{2} \mathrm{O}_{3}{ }^{+}[\mathrm{M}+\mathrm{H}]^{+}$: 411.0549, found : 411.0571.

2-(2-benzoyl-5,7-dibromo-2,3-dihydrobenzofuran-3-yl)-1-phenylethan-1-one (4aia):

White solid, Yield $=88 \%(88.1 \mathrm{mg}) ;{ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.12-8.07$ (m, 2H), $7.95-7.90(\mathrm{~m}, 2 \mathrm{H}), 7.64-7.56(\mathrm{~m}, 2 \mathrm{H}), 7.53-7.43(\mathrm{~m}, 5 \mathrm{H}), 7.29(\mathrm{~s}$, $1 \mathrm{H}), 5.77$ (d, $J=5.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.61$ (dd, $J=13.3,6.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.61$ (dd, $J=18.1$, $6.1 \mathrm{~Hz}, 1 \mathrm{H}$), 3.46 (dd, $J=18.1,8.0 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 197.13$, 193.72, 155.56, 136.04, 134.60, 134.03, 133.98, 133.84, 132.31, 129.48, $128.86,128.83,128.15,127.06,113.50,103.61,87.83,43.73,40.58$; IR (ATR): v 3136, 3109, 3005, 2990, 2964, 1792, 1772, 1749, 1735, 1716, 1696, 1684, 1636, 1597, 1559, 1507, 1396, 1276, $1258 \mathrm{~cm}^{-}$ ${ }^{1}$; $\mathrm{HRMS}(\mathrm{ES}+)$ calc. for $\mathrm{C}_{23} \mathrm{H}_{17} \mathrm{Br}_{2} \mathrm{O}_{3}{ }^{+}[\mathrm{M}+\mathrm{H}]^{+}: 500.9519$ \& 498.9539 found : 500.9526 \& 498.9545 .

2-(2-benzoyl-5,7-di-tert-butyl-2,3-dihydrobenzofuran-3-yl)-1-phenylethan-1-one(4aja): White solid,

Yield $=92 \%(83.6 \mathrm{mg}) ;{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.11$ (dd, $J=5.2,3.3 \mathrm{~Hz}$, $2 H$), $7.99-7.93(\mathrm{~m}, 2 \mathrm{H}), 7.61-7.55(\mathrm{~m}, 2 \mathrm{H}), 7.51-7.44(\mathrm{~m}, 4 \mathrm{H}), 7.16(\mathrm{~d}, \mathrm{~J}=$ $1.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.10(\mathrm{dd}, J=1.9,0.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.63(\mathrm{~d}, \mathrm{~J}=5.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.55-4.52$ $(\mathrm{m}, 1 \mathrm{H}), 3.64(\mathrm{dd}, J=17.5,5.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.46(\mathrm{dd}, J=17.5,8.6 \mathrm{~Hz}, 1 \mathrm{H}), 1.30(\mathrm{~d}$, $J=6.3 \mathrm{~Hz}, 18 \mathrm{H}$); ${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 198.34,195.39,154.16,144.18$, $136.77,135.23,133.52,133.47,132.55,129.56,128.83,128.70,128.63,128.29,122.85,119.19,87.95$, $44.44,39.55,34.71,34.37,31.92,29.49 ;$ IR (ATR): v 3006, 2989, 2964, 2904, 1772, 1734, 1684, 1653, 1636, 1597, 1559, 1541, 1507, 1448, $1276 \mathrm{~cm}^{-1}$; $\mathrm{HRMS}\left(E S+\right.$) calc. for $\mathrm{C}_{31} \mathrm{H}_{35} \mathrm{O}_{3}{ }^{+}[\mathrm{M}+\mathrm{H}]^{+}$: 455.2581, found : 455.2577.

2-(2-benzoyl-5,7-diiodo-2,3-dihydrobenzofuran-3-yl)-1-phenylethan-1-one (4aka): White solid, Yield
 $=90 \%(107.0 \mathrm{mg}){ }^{1} \mathrm{H} \mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.14-8.05(\mathrm{~m}, 2 \mathrm{H}), 7.99-7.88$ $(\mathrm{m}, 2 \mathrm{H}), 7.86-7.75(\mathrm{~m}, 1 \mathrm{H}), 7.67-7.56(\mathrm{~m}, 2 \mathrm{H}), 7.55-7.42(\mathrm{~m}, 5 \mathrm{H}), 5.72(\mathrm{~d}$, $J=5.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.65-4.61(\mathrm{~m}, 1 \mathrm{H}), 3.59(\mathrm{dd}, J=18.0,6.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.46(\mathrm{dd}, J$ $=18.0,7.9 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (125 MHz, CDCl_{3}) $\delta 197.16,193.93,159.51$, 144.90, 136.15, 134.67, 133.99, 133.88, 133.69, 131.56, 129.59, 128.92, 128.84, 128.22, 87.39, 83.60, 75.42, 43.90, 40.89; IR (ATR): v 3006, 2990, 1734, 1717, 1699, 1684, 1653, 1636, 1559, 1541, 1521, 1507, 1473, 1457, 1276, $1262 \mathrm{~cm}^{-1}$; HRMS (ES+) calc. for $\mathrm{C}_{23} \mathrm{H}_{17} \mathrm{I}_{2} \mathrm{O}_{3}{ }^{+}$ $[\mathrm{M}+\mathrm{H}]^{+}: 594.9262$, found : 594.9230.

2-(2-benzoyl-5-methoxy-7-nitro-2,3-dihydrobenzofuran-3-yl)-1-phenylethan-1-one (4ala): White
 solid, Yield $=71 \%(59.3 \mathrm{mg}) ;{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.11(\mathrm{~d}, \mathrm{~J}=7.4 \mathrm{~Hz}$, $2 \mathrm{H}), 7.95(\mathrm{~d}, J=7.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.85(\mathrm{~d}, J=1.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.74(\mathrm{~d}, J=1.9 \mathrm{~Hz}, 1 \mathrm{H})$, $7.66-7.59(\mathrm{~m}, 2 \mathrm{H}), 7.54-7.46(\mathrm{~m}, 4 \mathrm{H}), 5.95(\mathrm{~d}, \mathrm{~J}=5.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.63-4.54$ (m, 1H), 3.94 (s, 3H), 3.72 (dd, J = 18.1, 5.3 Hz, 1H), 3.48 (dd, J = 18.1, 8.7 Hz , 1 H); ${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 197.15, 193.13, 152.88, 144.28, 143.17, 136.08, 134.66, 134.19, 134.02, 130.69, 129.53, 129.02, 128.98, 128.27, $113.88,108.59,88.86,56.61,43.56,39.69 ;$ IR (ATR): v 3066, 3006, 2960, 2923, 2852, 1772, 1734, 1684, 1653, 1595, 1559, 1520, 1489, 1448, 1333, 1276, 1257, $1209 \mathrm{~cm}^{-1}$; HRMS (ES+) calc. for $\mathrm{C}_{24} \mathrm{H}_{20} \mathrm{NO}_{6}{ }^{+}$ $[\mathrm{M}+\mathrm{H}]^{+}: 418.1285$, found : 418.1280.

2-(2-benzoyl-2,3-dihydrobenzofuran-3-yl)-1-(4-fluorophenyl)ethan-1-one (4aab): White solid, Yield
 $=74 \%(53.4 \mathrm{mg}) ;{ }^{1} \mathrm{H}$ NMR (500 MHz, CDCl_{3}) $\delta 8.10-8.09(\mathrm{~m}, 2 \mathrm{H}), 8.01-7.96$ (m, 2H), $7.62-7.59(\mathrm{~m}, 1 \mathrm{H}), 7.51-7.48(\mathrm{~m}, 2 \mathrm{H}), 7.23-7.10(\mathrm{~m}, 4 \mathrm{H}), 6.92-$ $6.86(\mathrm{~m}, 2 \mathrm{H}), 5.64(\mathrm{~d}, \mathrm{~J}=5.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.5-4.54(\mathrm{~m}, 1 \mathrm{H}), 3.61(\mathrm{dd}, \mathrm{J}=17.7,6.0$ $\mathrm{Hz}, 1 \mathrm{H}$), 3.41 (dd, J = 17.7, 8.1 Hz, 1H); ${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl} 3$) $\delta 196.31$, 194.84, $166.07\left(\mathrm{~d}, J_{(C-F)}=253.7 \mathrm{~Hz}\right), 158.68,135.08,133.72,132.99\left(\mathrm{~d}, J_{(C-F)}=\right.$ $2.5 \mathrm{~Hz}), 130.91\left(\mathrm{~d}, J_{(C-F)}=10 \mathrm{~Hz}\right), 129.50,129.01,128.83,128.78,124.87,121.55,115.97\left(\mathrm{~d}, \mathrm{~J}_{(C-F)}=22.5\right.$ $\mathrm{Hz}), 110.11,87.73,44.07,39.68$; IR (ATR): v 3005, 2992, 1868, 1828, 1790, 1770, 1749, 1717, 1699, 1654, 1618, 1598, 1576, 1559, 1498, 1457, 1437, 1397, 1276, $1261 \mathrm{~cm}^{-1}$; HRMS (ES+) calc. for $\mathrm{C}_{23} \mathrm{H}_{18} \mathrm{FO}_{3}{ }^{+}[\mathrm{M}+\mathrm{H}]^{+}$: 361.1234, found : 361.1239.

2-(2-benzoyl-2,3-dihydrobenzofuran-3-yl)-1-(4-chlorophenyl)ethan-1-one (4aac): White solid, Yield
 $=71 \%(53.5 \mathrm{mg}) ;{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.10-8.08(\mathrm{~m}, 2 \mathrm{H}), 7.91-7.88$ $(\mathrm{m}, 2 \mathrm{H}), 7.62-7.59(\mathrm{~m}, 1 \mathrm{H}), 7.52-7.48(\mathrm{~m}, 2 \mathrm{H}), 7.45-7.42(\mathrm{~m}, 2 \mathrm{H}), 7.22-$ $7.16(\mathrm{~m}, 2 \mathrm{H}), 6.92-6.86(\mathrm{~m}, 2 \mathrm{H}), 5.64(\mathrm{~d}, \mathrm{~J}=5.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.57-4.53(\mathrm{~m}, 1 \mathrm{H})$, 3.61 (dd, $J=17.8,6.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.40(\mathrm{dd}, J=17.8,8.1 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (125 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 196.72,194.82,158.67,140.16,135.05,134.82,133.77$, $129.66,129.53,129.20,129.06,128.81,128.76,124.87,121.58,110.16,87.72,44.14,39.61$; IR (ATR): v 3006, 2989, 1772, 1749, 1734, 1717, 1699, 1684, 1653, 1636, 1559, 1541, 1521, 1507, 1474, 1457, $1276,1261 \mathrm{~cm}^{-1}$; HRMS (ES+) calc. for $\mathrm{C}_{23} \mathrm{H}_{18} \mathrm{ClO}_{3}{ }^{+}[\mathrm{M}+\mathrm{H}]^{+}$: 377.0939, found : 377.0941.

2-(2-benzoyl-2,3-dihydrobenzofuran-3-yl)-1-(4-bromophenyl)ethan-1-one (4aad): White solid, Yield
 $=78 \%(65.7 \mathrm{mg}) ;{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.10-8.08(\mathrm{~m}, 2 \mathrm{H}), 7.81(\mathrm{~d}, \mathrm{~J}=$ $8.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.62-7.59(\mathrm{~m}, 3 \mathrm{H}), 7.51-7.48(\mathrm{~m}, 2 \mathrm{H}), 7.22-7.16(\mathrm{~m}, 2 \mathrm{H}), 6.92$ $-6.86(\mathrm{~m}, 2 \mathrm{H}), 5.63(\mathrm{~d}, \mathrm{~J}=5.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.57-4.53(\mathrm{~m}, 1 \mathrm{H}), 3.61(\mathrm{dd}, \mathrm{J}=17.7$, $6.0 \mathrm{~Hz}, 1 \mathrm{H}$), 3.39 (dd, J=17.7, 8.1 Hz, 1H); ${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) ס 196.93, 194.84, 158.69, 135.26, 135.09, 133.76, 132.20, 129.75, 129.54, 129.07, $128.92,128.81,128.76,124.86,121.60,110.17,87.76,44.12,39.65$; IR (ATR): v 3004, 2988, 2923, 2859, 1800, 1792, 1772, 1749, 1734, 1717, 1695, 1684, 1653, 1640, 1555, 1457, $1276 \mathrm{~cm}^{-1} ;$ HRMS (ES+) calc. for $\mathrm{C}_{23} \mathrm{H}_{17} \mathrm{BrNaO}_{3}{ }^{+}[\mathrm{M}+\mathrm{Na}]^{+}: 443.0254 \& 445.0233$ found : 443.0249 \& 445.0228 .

2-(2-benzoyl-2,3-dihydrobenzofuran-3-yl)-1-(p-tolyl)ethan-1-one (4aae): White solid, Yield = 70\%
 $(50.0 \mathrm{mg}) ;{ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.11-8.09(\mathrm{~m}, 2 \mathrm{H}), 7.85(\mathrm{~d}, J=8.2 \mathrm{~Hz}$, $2 \mathrm{H}), 7.62-7.59(\mathrm{~m}, 1 \mathrm{H}), 7.51-7.48(\mathrm{~m}, 2 \mathrm{H}), 7.26-7.23(\mathrm{~m}, 3 \mathrm{H}), 7.17(\mathrm{t}, \mathrm{J}=$ $7.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.92-6.87(\mathrm{~m}, 2 \mathrm{H}), 5.66(\mathrm{~d}, \mathrm{~J}=5.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.57-4.53(\mathrm{~m}, 1 \mathrm{H})$, 3.61 (dd, J = 17.7, $5.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.40(\mathrm{dd}, J=17.7,8.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.41(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (125 MHz, CDCl3) $\delta 197.49,194.86,158.69,144.50,135.06,134.06$, 133.66, 129.50, 129.48, 129.03, 128.90, 128.75, 128.34, 124.92, 121.48, 110.04, 87.70, 44.07, 39.75, 21.79; IR (ATR): v 3014, 2990, 2361, 2344, 1870, 1844, 1790, 1770, 1749, 1717, 1698, 1653, 1363, 1616, 1576, 1521, 1489, $1419 \mathrm{~cm}^{-1}$; HRMS (ES+) calc. for $\mathrm{C}_{24} \mathrm{H}_{21} \mathrm{O}_{3}{ }^{+}[\mathrm{M}+\mathrm{H}]+: 357.1485$, found : 357.1489.

2-(2-benzoyl-2,3-dihydrobenzofuran-3-yl)-1-(4-(tert-butyl)phenyl)ethan-1-one (4aaf): Yellow liquid,
 Yield $=74 \%(59.0 \mathrm{mg}) ;{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl} 3$) $\delta 8.10(\mathrm{~d}, \mathrm{~J}=7.6 \mathrm{~Hz}, 2 \mathrm{H})$, $7.91(\mathrm{~d}, \mathrm{~J}=8.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.60(\mathrm{t}, \mathrm{J}=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.51-7.47(\mathrm{~m}, 4 \mathrm{H}), 7.24(\mathrm{~d}, J=$ $7.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.18(\mathrm{t}, \mathrm{J}=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.94-6.83(\mathrm{~m}, 2 \mathrm{H}), 5.67(\mathrm{~d}, \mathrm{~J}=5.5 \mathrm{~Hz}, 1 \mathrm{H})$, $4.58-4.54(\mathrm{~m}, 1 \mathrm{H}), 3.62(\mathrm{dd}, J=17.6,6.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.43(\mathrm{dd}, J=17.6,8.1 \mathrm{~Hz}$, 1H), 1.34 ($\mathrm{s}, 9 \mathrm{H}$); ${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 197.50, 194.89, 158.72, 157.44, $135.08,133.99,133.66,129.49,129.05,128.91,128.76,128.21,125.78,124.93,121.49,110.04,87.73$, $44.12,39.78,35.27,31.17$; IR (ATR): v 3004, 2988, 1811, 1790, 1782, 1772, 1734, 1684, 1654, 1363, 1559, 1507, 1474, 1458, 1276, $1264 \mathrm{~cm}^{-1}$; HRMS (ES+) calc. for $\mathrm{C}_{27} \mathrm{H}_{27} \mathrm{O}_{3}{ }^{+}[\mathrm{M}+\mathrm{H}]^{+}$: 399.1955, found : 399.1932.

2-(2-benzoyl-2,3-dihydrobenzofuran-3-yl)-1-(4-(trifluoromethyl)phenyl)ethan-1-one (4aag):

Yellowish liquid, Yield $=74 \%(60.7 \mathrm{mg}) ;{ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.10(\mathrm{~d}, \mathrm{~J}$ $=7.4 \mathrm{~Hz}, 2 \mathrm{H}), 8.06(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.73(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.62(\mathrm{t}, \mathrm{J}=7.4$ $\mathrm{Hz}, 1 \mathrm{H}), 7.52-7.47(\mathrm{~m}, 2 \mathrm{H}), 7.23(\mathrm{~d}, \mathrm{~J}=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.18(\mathrm{t}, \mathrm{J}=7.7 \mathrm{~Hz}, 1 \mathrm{H})$, $6.92(\mathrm{t}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.87(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.65(\mathrm{~d}, J=5.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.61-$ $4.57(\mathrm{~m}, 1 \mathrm{H}), 3.66(\mathrm{dd}, J=17.9,6.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.46(\mathrm{dd}, J=17.9,8.0 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (125 MHz, CDCl3) $\delta 197.03,194.76,158.65,139.07,135.02,134.88\left(q, J_{(C-F)} \approx 32.5 \mathrm{~Hz}\right), 133.80$, 129.53, 129.12, 128.81, 128.61, 128.59, $125.94\left(q, J_{(C-F)}=3.8 \mathrm{~Hz}\right), 124.84,123.62\left(q, J_{(C-F)}=271.3 \mathrm{~Hz}\right)$, 121.62, 110.18, 87.70, 44.42, 39.48; IR (ATR): v 3137, 3087, 3047, 2982, 2912, 2895, 1816, 1794, 1773, 1734, 1691, 1597, 1512, 1462, 1449, $1276 \mathrm{~cm}^{-1} ; \mathrm{HRMS}\left(E S+\right.$) calc. for $\mathrm{C}_{24} \mathrm{H}_{17} \mathrm{~F}_{3} \mathrm{O}_{3}{ }^{+}[\mathrm{M}]^{+}: 410.1130$, found : 410.1145.

2-(2-benzoyl-2,3-dihydrobenzofuran-3-yl)-1-(4-(methylsulfonyl)phenyl)ethan-1-one (4aah): White
 solid, Yield $=70 \%(58.9 \mathrm{mg}){ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.13-8.09(\mathrm{~m}, 4 \mathrm{H})$, $8.04(\mathrm{~d}, \mathrm{~J}=8.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.62(\mathrm{t}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.51(\mathrm{t}, \mathrm{J}=7.7 \mathrm{~Hz}, 2 \mathrm{H}), 7.23-$ $7.15(\mathrm{~m}, 2 \mathrm{H}), 6.91(\mathrm{t}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.86(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.64(\mathrm{~d}, J=5.6 \mathrm{~Hz}$, 1 H), $4.61-4.57(\mathrm{~m}, 1 \mathrm{H}), 3.66$ (dd, $J=17.9,6.0 \mathrm{~Hz}, 1 \mathrm{H}$), 3.47 (dd, $J=18.0,7.9$ $\mathrm{Hz}, 1 \mathrm{H}$), 3.07 ($\mathrm{s}, 3 \mathrm{H}$); ${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 196.83,194.73,158.61$, 144.61, 140.32, 134.98, 133.86, 129.54, 129.18, 129.12, 128.94, 128.83, 128.45, 128.04, 124.82, 121.66, 110.22, 87.68, 44.56, 44.40, 39.43; IR (ATR): v 3094, 3002, 2984, 2928, 2855, 1829, 1811, 1792, 1772, 1734, 1717, 1694, 1685, 1653, 1636, 1559, 1521, 1507, 1473, 1457, $1260 \mathrm{~cm}^{-1}$; HRMS (ES+) calc. for $\mathrm{C}_{24} \mathrm{H}_{21} \mathrm{O}_{5} \mathrm{~S}^{+}[\mathrm{M}+\mathrm{H}]^{+}: 421.1104$, found : 421.1103.

2-(2-benzoyl-2,3-dihydrobenzofuran-3-yl)-1-(2-nitrophenyl)ethan-1-one (4aai): White solid, Yield =
 $86 \%(66.6 \mathrm{mg}) ;{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.15-8.12(\mathrm{~m}, 3 \mathrm{H}), 7.73-7.70$ (m, 1H), $7.66-7.57(\mathrm{~m}, 2 \mathrm{H}), 7.52(\mathrm{t}, \mathrm{J}=7.7 \mathrm{~Hz}, 2 \mathrm{H}), 7.38-7.36(\mathrm{~m}, 1 \mathrm{H}), 7.22$ $(\mathrm{d}, \mathrm{J}=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.17(\mathrm{t}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.90(\mathrm{t}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.86(\mathrm{~d}, \mathrm{~J}=$ $8.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.86(\mathrm{~d}, J=5.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.60-4.56(\mathrm{~m}, 1 \mathrm{H}), 3.39-3.29(\mathrm{~m}, 2 \mathrm{H})$; ${ }^{13} \mathrm{C}$ NMR (125 MHz, CDCl 3) $\delta 200.46,194.90,158.74,145.56,137.53,135.02$, $134.68,133.82,130.90,129.58,129.11,128.83,128.26,127.52,124.74,124.71,121.58,110.14,86.85$, 48.08, 39.44; IR (ATR): v 3101, 3065, 3005, 2988, 2927, 2856, 1781, 1772, 1749, 1734, 1699, 1653, 1636, 1597, 1559, 1531, 1507, 1476, 1458, 1348, 1276, $1259 \mathrm{~cm}^{-1}$; HRMS (ES+) calc. for $\mathrm{C}_{23} \mathrm{H}_{18} \mathrm{NO}_{5}{ }^{+}$ $[\mathrm{M}+\mathrm{H}]^{+}: 388.1179$, found : 388.1152.

2-(2-benzoyl-2,3-dihydrobenzofuran-3-yl)-1-(3-nitrophenyl)ethan-1-one (4aaj): White solid, Yield =
 $81 \%(62.8 \mathrm{mg}) ;{ }^{1} \mathrm{H}$ NMR (500 MHz, CDCl3) $\delta 8.12$ - 8.04 (m, 2H), $7.63-7.58$ $(\mathrm{m}, 1 \mathrm{H}), 7.56-7.54(\mathrm{~m}, 1 \mathrm{H}), 7.50-7.48(\mathrm{~m}, 2 \mathrm{H}), 7.42(\mathrm{~d}, \mathrm{~J}=1.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.22$ (d, J = 7.5 Hz, 1H), $7.17(\mathrm{t}, \mathrm{J}=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.92-6.89(\mathrm{~m}, 1 \mathrm{H}), 6.87-6.84(\mathrm{~m}$, $2 \mathrm{H}), 6.05(\mathrm{~s}, 2 \mathrm{H}), 5.65(\mathrm{~d}, \mathrm{~J}=5.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.55-4.50(\mathrm{~m}, 1 \mathrm{H}), 3.56(\mathrm{dd}, \mathrm{J}=17.5$, $5.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.35(\mathrm{dd}, \mathrm{J}=17.5,8.2 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 195.89$, 194.92, 158.73, 152.24, 148.45, 135.10, 133.71, 131.48, 129.53, 128.97, 128.79, 124.92, 124.66, 121.53, 110.11, 108.10, 107.99, 102.09, 87.76, 43.96, 39.94; IR (ATR): v 3056, 3006, 2988, 2880, 1792, 1761, 1734, 1717, 1698, 1685, 1671, 1653, 1636, 1616, 1539, 1352, $1264 \mathrm{~cm}^{-1}$; HRMS (ES+) calc. for $\mathrm{C}_{23} \mathrm{H}_{18} \mathrm{NO}_{5}{ }^{+}[\mathrm{M}+\mathrm{H}]^{+}: 388.1179$, found : 388.1239.

2-(2-benzoyl-2,3-dihydrobenzofuran-3-yl)-1-(4-nitrophenyl)ethan-1-one (4aak): White solid, Yield =
 $85 \%(65.9 \mathrm{mg}) ;{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl} 3$) $\delta 8.34-8.26(\mathrm{~m}, 2 \mathrm{H}), 8.15-8.05$ (m, 4H), $7.67-7.57(m, 1 H), 7.55-7.46(m, 2 H), 7.24-7.14(m, 2 H), 6.93-$ $6.90(\mathrm{~m}, 1 \mathrm{H}), 6.87(\mathrm{~d}, \mathrm{~J}=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.63(\mathrm{~d}, \mathrm{~J}=5.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.62-4.58(\mathrm{~m}$, 1 H), 3.67 (dd, $J=17.9,6.0 \mathrm{~Hz}, 1 \mathrm{H}$), 3.48 (dd, $J=17.9,7.9 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (125 MHz, CDCl_{3}) $\delta 196.53,194.76,158.65,150.70,140.83,135.03,133.88$, $129.58,129.32,129.25,128.85,128.42,124.81,124.13,121.71,110.29,87.76,44.65,39.49 ;$ IR (ATR): v 3060, 3002, 2990,1870, 1844, 1772, 1717, 1653, 1636, 1615, 1577, 1507, 1459, 1440, 1420, 1319, $1260,1217 \mathrm{~cm}^{-1}$; HRMS (ES+) calc. for $\mathrm{C}_{23} \mathrm{H}_{18} \mathrm{NO}_{5}{ }^{+}[\mathrm{M}+\mathrm{H}]^{+}$: 388.1179, found : 388.1179.

2-(2-benzoyl-2,3-dihydrobenzofuran-3-yl)-1-(2-methoxyphenyl)ethan-1-one (4aal): White solid, Yield $=90 \%(67.1 \mathrm{mg}) ;{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.11$ - $8.05(\mathrm{~m}, 2 \mathrm{H}), 7.73$ (dd, J = 7.7, 1.8 Hz, 1H), $7.63-7.57(\mathrm{~m}, 1 \mathrm{H}), 7.50-7.46(\mathrm{~m}, 3 \mathrm{H}), 7.21(\mathrm{~d}, J=$ $7.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.16(\mathrm{t}, \mathrm{J}=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.02-6.94(\mathrm{~m}, 2 \mathrm{H}), 6.92-6.85(\mathrm{~m}, 2 \mathrm{H})$, $5.68(\mathrm{~d}, \mathrm{~J}=5.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.52-4.48(\mathrm{~m}, 1 \mathrm{H}), 3.88(\mathrm{~s}, 3 \mathrm{H}), 3.67-3.61(\mathrm{~m}, 1 \mathrm{H})$, 3.47 (dd, $J=17.9,8.2 \mathrm{~Hz}, 1 \mathrm{H}$); ${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 199.78, 195.15, $159.03,158.83,135.19,134.25,133.63,130.77,129.47,129.41,128.77,128.76,127.51,124.96$, $121.41,120.92,111.68,109.97,87.86,55.63,49.45,40.25$; IR (ATR): v 3006, 2990, 2361, 2341, 2254, 1734, 1699, 1684, 1653, 1559, 1541, 1507, 1457, 1275, $1259 \mathrm{~cm}^{-1}$; HRMS (ES+) calc. for C24H21O4+ $[\mathrm{M}+\mathrm{H}]+: 373.1434$, found : 373.1410.

2-(2-benzoyl-2,3-dihydrobenzofuran-3-yl)-1-(3-methoxyphenyl)ethan-1-one (4aam): Off-white
 liquid, Yield $=85 \%(63.4 \mathrm{mg}) ;{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl} 3$) $\delta 8.14-8.06(\mathrm{~m}, 2 \mathrm{H})$, $7.63-7.56(\mathrm{~m}, 1 \mathrm{H}), 7.54-7.46(\mathrm{~m}, 4 \mathrm{H}), 7.36(\mathrm{t}, \mathrm{J}=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.24(\mathrm{~d}, \mathrm{~J}=7.4$ $\mathrm{Hz}, 1 \mathrm{H}), 7.21-7.15(\mathrm{~m}, 1 \mathrm{H}), 7.13-7.11(\mathrm{~m}, 1 \mathrm{H}), 6.93-6.89(\mathrm{~m}, 1 \mathrm{H}), 6.87(\mathrm{~d}, \mathrm{~J}$ $=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 5.66(\mathrm{~d}, J=5.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.59-4.54(\mathrm{~m}, 1 \mathrm{H}), 3.83(\mathrm{~s}, 3 \mathrm{H}), 3.63(\mathrm{dd}$, $J=17.8,5.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.43(\mathrm{dd}, J=17.8,8.2 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C} \mathrm{NMR}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ $\delta 197.73,194.80,160.00,158.68,137.83,135.06,133.69,129.82,129.50,128.95,128.92,128.77$, 124.89, 121.51, 120.87, 120.23, 112.26, 110.06, 87.68, 55.56, 44.28, 39.66; IR (ATR): v 3058, 3006, 2990, 1772, 1761, 1734, 1717, 1684, 1653, 1598, 1560, 1510, 1478, 1431, 1276, $1224 \mathrm{~cm}^{-1}$; HRMS (ES+) calc. for $\mathrm{C}_{24} \mathrm{H}_{21} \mathrm{O}_{4}{ }^{+}[\mathrm{M}+\mathrm{H}]^{+}$: 373.1434, found : 373.1447.

2-(2-benzoyl-2,3-dihydrobenzofuran-3-yl)-1-(4-methoxyphenyl)ethan-1-one (4aan): White solid,

Yield $=87 \%(64.8 \mathrm{mg}) ;{ }^{1} \mathrm{H}$ NMR (500 MHz, CDCl3) $\delta 8.15-8.05(\mathrm{~m}, 2 \mathrm{H}), 7.96$ $-7.89(\mathrm{~m}, 2 \mathrm{H}), 7.60(\mathrm{t}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.49(\mathrm{t}, \mathrm{J}=7.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.23(\mathrm{~d}, \mathrm{~J}=7.4$ $\mathrm{Hz}, 1 \mathrm{H}), 7.17(\mathrm{t}, \mathrm{J}=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.96-6.83(\mathrm{~m}, 4 \mathrm{H}), 5.67(\mathrm{~d}, \mathrm{~J}=5.5 \mathrm{~Hz}, 1 \mathrm{H})$, $4.55-4.51(\mathrm{~m}, 1 \mathrm{H}), 3.86(\mathrm{~s}, 3 \mathrm{H}), 3.59(\mathrm{dd}, J=17.5,5.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.38(\mathrm{dd}, \mathrm{J}=$ 17.5, 8.2 Hz, 1H); ${ }^{13} \mathrm{C}$ NMR (125 MHz, CDCl_{3}) $\delta 196.35,194.92,163.90,158.73$, $135.10,133.67,130.55,129.67,129.51,129.10,128.91,128.77,124.93,121.49,113.98,110.06,87.76$, $55.64,43.85,39.89 ;$ IR (ATR): v 3102, 3080, 3006, 2990, 1829, 1792, 1772, 1749, 1734, 1717, 1699, 1671, 1654, 1617, 1600, 1560, 1520, 1490, 1437, 1374, $1261 \mathrm{~cm}^{-1}$; HRMS (ES+) calc. for $\mathrm{C}_{24} \mathrm{H}_{21} \mathrm{O}_{4}{ }^{+}$ $[\mathrm{M}+\mathrm{H}]^{+}: 373.1434$, found : 373.1420.

2-(2-benzoyl-2,3-dihydrobenzofuran-3-yl)-1-(3,4-dichlorophenyl)ethan-1-one (4aao): White solid,
 Yield $=90 \%(74.1 \mathrm{mg}) ;{ }^{1} \mathrm{H}$ NMR (500 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 8.11-8.08(\mathrm{~m}, 2 \mathrm{H}), 8.03(\mathrm{~d}$, $J=2.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.77(\mathrm{dd}, J=8.4,2.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.64-7.59(\mathrm{~m}, 1 \mathrm{H}), 7.57-7.48(\mathrm{~m}$, $3 H), 7.23-7.15(\mathrm{~m}, 2 \mathrm{H}), 6.93-6.89(\mathrm{~m}, 1 \mathrm{H}), 6.87(\mathrm{~d}, \mathrm{~J}=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.62(\mathrm{~d}, \mathrm{~J}$ $=5.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.58-4.53(\mathrm{~m}, 1 \mathrm{H}), 3.59(\mathrm{dd}, J=17.9,6.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.39(\mathrm{dd}, J=$ 17.9, 8.0 Hz, 1H); ${ }^{13} \mathrm{C}$ NMR (125 MHz, CDCl3) δ 195.77, 194.74, 158.63, 138.27, $135.97,135.00,133.80,133.60,130.99,130.25,129.52,129.13,128.81,128.54,127.23,124.83$, $121.62,110.18,87.64,44.14,39.49 ;$ IR (ATR): v 3115, 3098, 3006, 2990, 1792, 1772, 1734, 1717, 1700, 1684, 1636, 1600, 1560, 1520, 1475, 1419, 1362, $1276 \mathrm{~cm}^{-1}$; HRMS (ES+) calc. for $\mathrm{C}_{23} \mathrm{H}_{17} \mathrm{Cl}_{2} \mathrm{O}_{3}{ }^{+}[\mathrm{M}+\mathrm{H}]^{+}$: 411.0549, found : 411.0553 .

1-(benzo[d][1,3]dioxol-5-yl)-2-(2-benzoyl-2,3-dihydrobenzofuran-3-yl)ethan-1-one (4aap): White

solid, Yield $=87 \%(67.3 \mathrm{mg}) ;{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl} 3$) $\delta 8.09-8.08(\mathrm{~m}, 2 \mathrm{H})$, $7.62-7.58(\mathrm{~m}, 1 \mathrm{H}), 7.55(\mathrm{dd}, \mathrm{J}=8.2,1.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.49-7.47(\mathrm{~m}, 2 \mathrm{H}), 7.42(\mathrm{~d}$, $J=1.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.22(\mathrm{~d}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.17(\mathrm{t}, \mathrm{J}=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.94-6.88(\mathrm{~m}$, $1 \mathrm{H}), 6.87-6.83(\mathrm{~m}, 2 \mathrm{H}), 6.04(\mathrm{~s}, 2 \mathrm{H}), 5.65(\mathrm{~d}, \mathrm{~J}=5.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.54-4.50(\mathrm{~m}$, 1 H), 3.56 (dd, $J=17.5,5.9 \mathrm{~Hz}, 1 \mathrm{H}$), 3.35 (dd, $J=17.5,8.2 \mathrm{~Hz}, 1 \mathrm{H}$); ${ }^{13} \mathrm{C}$ NMR (125 MHz, CDCl_{3}) $\delta 195.89,194.91,158.72,152.23,148.44,135.10,133.70,131.47,129.52,128.99$, $128.96,128.78,124.91,124.66,121.52,110.10,108.09,107.98,102.08,87.75,43.95,39.93 ;$ IR (ATR): v 3115, 3099, 3049, 3006, 2990, 1772, 1734, 1717, 1699, 1684, 1636, 1617, 1559, 1521, 1489, 1457, $1262 \mathrm{~cm}^{-1}$; HRMS (ES+) calc. for $\mathrm{C}_{24} \mathrm{H}_{19} \mathrm{O}_{5}{ }^{+}[\mathrm{M}+\mathrm{H}]^{+}$: 387.1227, found : 387.1225.

2-(2-benzoyl-2,3-dihydrobenzofuran-3-yl)-1-(naphthalen-1-yl)ethan-1-one (4aaq): White solid, Yield
 $=78 \%(61.3 \mathrm{mg}) ;{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.65(\mathrm{~d}, \mathrm{~J}=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 8.17-$ $8.07(\mathrm{~m}, 2 \mathrm{H}), 8.01(\mathrm{~d}, \mathrm{~J}=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.93-7.84(\mathrm{~m}, 2 \mathrm{H}), 7.66-7.45(\mathrm{~m}, 6 \mathrm{H})$, $7.26-7.28(\mathrm{~m}, 1 \mathrm{H}), 7.18(\mathrm{dd}, J=8.0,7.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.96-6.84(\mathrm{~m}, 2 \mathrm{H}), 5.74$ (d, $J=5.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.66-4.62(\mathrm{~m}, 1 \mathrm{H}), 3.71(\mathrm{dd}, J=17.5,6.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.57(\mathrm{dd}, J$ $=17.5,7.9 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 201.66,195.01,158.73$, 135.12, 134.85, 134.08, 133.70, 133.50, 130.22, 129.48, 128.97, 128.90, 128.79, 128.60, 128.44, $128.36,126.70,125.86,124.92,124.41,121.55,110.11,87.70,47.10,40.23$; IR (ATR): v 3101, 3064 , $3005,2990,1829,1792,1772,1734,1717,1671,1636,1617,1576,1540,1500,1489,1474,1420$, 1339, $1225 \mathrm{~cm}^{-1}$; HRMS (ES+) calc. for $\mathrm{C}_{27} \mathrm{H}_{21} \mathrm{O}_{3}{ }^{+}[\mathrm{M}+\mathrm{H}]^{+}$: 393.1485, found : 393.1491.

1-([1,1'-biphenyl]-4-yl)-2-(2-benzoyl-2,3-dihydrobenzofuran-3-yl)ethan-1-one (4aar): White solid,
 Yield $=81 \%(67.8 \mathrm{mg}) ;{ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.15-8.08(\mathrm{~m}, 2 \mathrm{H}), 8.06-$ $8.01(\mathrm{~m}, 2 \mathrm{H}), 7.72-7.66(\mathrm{~m}, 2 \mathrm{H}), 7.65-7.58(\mathrm{~m}, 3 \mathrm{H}), 7.54-7.44(\mathrm{~m}, 4 \mathrm{H})$, $7.44-7.39(\mathrm{~m}, 1 \mathrm{H}), 7.25(\mathrm{~d}, \mathrm{~J}=6.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.20-7.17(\mathrm{~m}, 1 \mathrm{H}), 6.94-6.86$ $(\mathrm{m}, 2 \mathrm{H}), 5.69(\mathrm{~d}, \mathrm{~J}=5.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.61-4.57(\mathrm{~m}, 1 \mathrm{H}), 3.68(\mathrm{dd}, J=17.7,6.0 \mathrm{~Hz}$, 1 H), 3.47 (dd, $J=17.7,8.1 \mathrm{~Hz}, 1 \mathrm{H}$); ${ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 197.48, 194.90, $158.73,146.30,139.81,135.21,135.10,133.72,129.53,129.12,129.06,128.99,128.86,128.80$, 128.49, 127.47, 127.40, 124.94, 121.55, 110.11, 87.77, 44.25, 39.78; IR (ATR): v 3119, 3001, 3006, 2990, 1829, 1790, 1770, 1749, 1734, 1717, 1700, 1654, 1636, 1576, 1541, 1437, 1374, $1261 \mathrm{~cm}^{-1}$; HRMS (ES+) calc. for $\mathrm{C}_{29} \mathrm{H}_{23} \mathrm{O}_{3}{ }^{+}[\mathrm{M}+\mathrm{H}]^{+}: 419.1642$, found : 419.1626.

2-(2-benzoyl-2,3-dihydrobenzofuran-3-yl)-1-(thiophen-2-yl)ethan-1-one (4aas): White solid, Yield =
 $84 \%(58.5 \mathrm{mg}) ;{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl} 3$) $\delta 8.09-8.06$ (m, 2H), 7.73 (dd, J = $3.8,1.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.66(\mathrm{dd}, \mathrm{J}=4.9,1.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.63-7.57(\mathrm{~m}, 1 \mathrm{H}), 7.51-7.48$ $(\mathrm{m}, 2 \mathrm{H}), 7.23(\mathrm{~d}, \mathrm{~J}=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.17(\mathrm{t}, \mathrm{J}=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.14(\mathrm{dd}, J=4.9,3.8$ $\mathrm{Hz}, 1 \mathrm{H}), 6.92-6.86(\mathrm{~m}, 2 \mathrm{H}), 5.70(\mathrm{~d}, \mathrm{~J}=5.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.55-4.51(\mathrm{~m}, 1 \mathrm{H}), 3.54$ (dd, $J=17.0,6.2 \mathrm{~Hz}, 1 \mathrm{H}$), 3.37 (dd, $J=17.0,8.1 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (125 MHz , $\left.\mathrm{CDCl}_{3}\right)$ (194.81, 190.70, 158.73, 143.84, 134.97, 134.38, 133.76, 132.49, 129.52, 129.07, 128.81, $128.67,128.42,124.93,121.58,110.15,87.59,44.62,40.01$; IR (ATR): v 3117, 3101, 3064, 3006, 2990, 1790, 1772, 1749, 1734, 1717, 1699, 1670, 1617, 1576, 1541, 1497, 1457, 1397, $1260 \mathrm{~cm}^{-1}$; HRMS (ES+) calc. for $\mathrm{C}_{21} \mathrm{H}_{17} \mathrm{O}_{3} \mathrm{~S}^{+}[\mathrm{M}+\mathrm{H}]^{+}$: 349.0893 , found : 349.0874.

1-(2-benzoyl-2,3-dihydrobenzofuran-3-yl)-3,3-dimethylbutan-2-one (4aat): White solid, Yield = 76\%

(49.0 mg); ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.08-8.06(\mathrm{~m}, 2 \mathrm{H}), 7.62$ - 7.57 (m, 1H), $7.51-7.48(\mathrm{~m}, 2 \mathrm{H}), 7.17-7.13(\mathrm{~m}, 2 \mathrm{H}), 6.90-6.88(\mathrm{~m}, 2 \mathrm{H}), 5.52(\mathrm{~d}, \mathrm{~J}=$ $5.7 \mathrm{~Hz}, 1 \mathrm{H}$), $4.38-4.34(\mathrm{~m}, 1 \mathrm{H}), 3.17$ (dd, $J=18.0,6.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.92$ (dd, $J=$ 18.0, $7.9 \mathrm{~Hz}, 1 \mathrm{H}$), 1.15 ($\mathrm{s}, 9 \mathrm{H}$); ${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 213.88, 194.93, 158.64, 135.04, 133.67, 129.47, 129.12, 128.88, 128.76, 124.78, 121.47, 110.03, 87.96, 44.23, 42.33, 39.59, 26.46; IR (ATR): v 3004, 2987, 2868, 2843, 1844, 1829, 1790, 1772, 1749, 1734, 1717, 1699, 1684, 1654, 1640, 1520, 1475, 1460, $1261 \mathrm{~cm}^{-1} ;$ HRMS (ES+) calc. for $\mathrm{C}_{21} \mathrm{H}_{23} \mathrm{O}_{3}{ }^{+}$ $[\mathrm{M}+\mathrm{H}]^{+}: 323.1642$, found : 323.1639.

2-(2-benzoylbenzofuran-3-yl)-1-phenylethan-1-one (5aaa): Yellowish oil, Yield $=60 \%(40.9 \mathrm{mg}) ;{ }^{1} \mathrm{H}$
 NMR (500 MHz, CDCl 3) $\delta 8.19-8.14(\mathrm{~m}, 4 \mathrm{H}), 7.70(\mathrm{~d}, \mathrm{~J}=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.61-$ $7.57(\mathrm{~m}, 3 \mathrm{H}), 7.57-7.49(\mathrm{~m}, 5 \mathrm{H}), 7.38-7.33(\mathrm{~m}, 1 \mathrm{H}), 4.98(\mathrm{~s}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl} 3$) $\delta 195.89,186.08,154.56,149.00,137.55,136.68,133.57$, 133.00, 130.04, 128.87, 128.79, 128.66, 128.49, 124.10, 123.92, 122.12, 112.54, 35.33; IR (ATR): v 3173, 3135, 3068, 3006, 2990, 2957, 1792, 1772, 1749, 1735, 1716, 1686, 1638, 1597, 1559, 1541, 1448, $1276 \mathrm{~cm}^{-1}$; HRMS (ES+) calc. for $\mathrm{C}_{23} \mathrm{H}_{17} \mathrm{O}_{3}{ }^{+}$ $[\mathrm{M}+\mathrm{H}]^{+}: 341.1172$, found : 341.1175.

1,3-diphenylbenzofuro[2,3-c]pyridine (6aaa): yellowish solid, Yield $=88 \%$ (84.85 mg); ${ }^{1} \mathrm{H}$ NMR (500
 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.64(\mathrm{~d}, \mathrm{~J}=7.7 \mathrm{~Hz}, 2 \mathrm{H}), 8.27-8.20(\mathrm{~m}, 3 \mathrm{H}), 8.05(\mathrm{~d}, \mathrm{~J}=7.5 \mathrm{~Hz}$, $1 \mathrm{H}), 7.69$ (d, J = $8.3 \mathrm{~Hz}, 1 \mathrm{H}$), $7.66-7.59$ (m, 3H), $7.58-7.51$ (m, 3H), $7.50-$ 7.41 (m, 2H); ${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 157.09,150.80,149.93,141.39$, 139.82, 136.50, 133.33, 129.90, 129.45, 128.88, 128.83, 128.67, 128.54, 127.17, 123.50, 122.70, 121.98, 112.64, 110.74; IR (ATR): v 3166, 3134, 3101, $3065,1829,1792,1772,1749,1717,1698,1684,1653,1576,1559,1507,1489,1557,1374,1259 \mathrm{~cm}$ ${ }^{1}$; HRMS (ES +) calc. for $\mathrm{C}_{23} \mathrm{H}_{16} \mathrm{NO}^{+}[\mathrm{M}+\mathrm{H}]^{+}: 322.1226$, found : 322.1207.
(2S,3R)-3-(2-oxo-2-phenylethyl)-2,3-dihydrobenzofuran-2-yl benzoate (7aaa): colourless solid, Yield
 $=85 \%(144.2 \mathrm{mg}) ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.07(\mathrm{~d}, J=7.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.95(\mathrm{~d}$, $J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.57(\mathrm{q}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.48-7.41(\mathrm{~m}, 4 \mathrm{H}), 7.35(\mathrm{~d}, J=7.4 \mathrm{~Hz}$, $1 \mathrm{H}), 7.23(\mathrm{t}, \mathrm{J}=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.00-6.95(\mathrm{~m}, 2 \mathrm{H}), 6.80(\mathrm{~s}, 1 \mathrm{H}), 4.22(\mathrm{t}, \mathrm{J}=7.3 \mathrm{~Hz}$, 1H), 3.49-3.34 (m, 2H); ${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 197.18, 165.67, 157.99, $136.44,133.67,133.60,130.15,129.45,129.03,128.85,128.48,128.28$, 128.17, 125.21, 122.20, 110.55, 103.45, 43.68, 42.34; IR (ATR): v 3167, 3111, 3066, 3006, 2990, 1844, 1800, 1772, 1761, 1733, 1718, 1684, 1653, 1541, 1474, 1339, $1259 \mathrm{~cm}^{-1}$; HRMS (ES+) calc. for $\mathrm{C}_{23} \mathrm{H}_{18} \mathrm{NaO}_{4}{ }^{+}[\mathrm{M}+\mathrm{Na}]^{+}: 381.1097$, found : 381.1078.

2-(benzofuran-3-yl)-1-phenylethan-1-one (8aaa): Yellowish oil, Yield $=67 \%$ (23.8 mg mg); ${ }^{1} \mathrm{H}$ NMR
 $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.14-8.03(\mathrm{~m}, 2 \mathrm{H}), 7.66(\mathrm{~s}, 1 \mathrm{H}), 7.62-7.57(\mathrm{~m}, 1 \mathrm{H}), 7.57$ $-7.53(m, 1 H), 7.51-7.48(m, 3 H), 7.34-7.29(m, 1 H), 7.28-7.23(m, 1 H)$, 4.37 ($\mathrm{d}, \mathrm{J}=1.0 \mathrm{~Hz}, 2 \mathrm{H}$); ${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 196.39,155.24,143.14$, 136.40, 133.53, 128.86, 128.54, 127.95, 124.55, 122.74, 119.79, 113.59, 111.65, 33.91; IR (ATR): v 3063, 3039, 3006, 2989, 1828, 1802, 1772, 1734, 1686, 1653, 1598, 1580, 1452, 1338, 1276, $1265 \mathrm{~cm}^{-1}$; HRMS (ES +) calc. for $\mathrm{C}_{16} \mathrm{H}_{13} \mathrm{O}_{2}{ }^{+}[\mathrm{M}+\mathrm{H}]^{+}: 237.0910$ found : 237.0854.

6. ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra

$\mathrm{CDCl}_{3}, 500 \mathrm{MHz}{ }^{1} \mathrm{H}$ NMR and $125 \mathrm{MHz}{ }^{13} \mathrm{C}$ NMR Spectra of 4aaa

$\mathrm{CDCl}_{3}, 500 \mathrm{MHz}{ }^{1} \mathrm{H}-{ }^{1} \mathrm{H}$ COSY Spectra of 4aaa

$\mathrm{CDCl}_{3}, 500 \mathrm{MHz}$ NOESY Spectra of 4aaa

$\mathrm{CDCl}_{3}, 500 \mathrm{MHz}{ }^{1} \mathrm{H}$ NMR and $125 \mathrm{MHz}{ }^{13} \mathrm{C}$ NMR Spectra of 4baa

$\mathrm{CDCl}_{3}, 500 \mathrm{MHz}{ }^{1} \mathrm{H}$ NMR and $125 \mathrm{MHz}{ }^{13} \mathrm{C}$ NMR Spectra of 4caa

$\mathrm{CDCl}_{3}, 500 \mathrm{MHz}{ }^{1} \mathrm{H}$ NMR and $125 \mathrm{MHz}{ }^{13} \mathrm{C}$ NMR Spectra of 4daa

$\mathrm{CDCl}_{3}, 500 \mathrm{MHz}{ }^{1} \mathrm{H}$ NMR and $125 \mathrm{MHz}{ }^{13} \mathrm{C}$ NMR Spectra of 4eaa

$\mathrm{CDCl}_{3}, 500 \mathrm{MHz}{ }^{1} \mathrm{H}$ NMR and $125 \mathrm{MHz}{ }^{13} \mathrm{C}$ NMR Spectra of 4faa

$\mathrm{CDCl}_{3}, 500 \mathrm{MHz}{ }^{1} \mathrm{H}$ NMR and $125 \mathrm{MHz}{ }^{13} \mathrm{C}$ NMR Spectra of 4gaa

$\mathrm{CDCl}_{3}, 500 \mathrm{MHz}{ }^{1} \mathrm{H}$ NMR and $125 \mathrm{MHz}{ }^{13} \mathrm{C}$ NMR Spectra of 4haa

$\mathrm{CDCl}_{3}, 500 \mathrm{MHz}{ }^{1} \mathrm{H}$ NMR and $125 \mathrm{MHz}^{13} \mathrm{C}$ NMR Spectra of 4iaa

$\mathrm{CDCl}_{3}, 500 \mathrm{MHz}{ }^{1} \mathrm{H}$ NMR and $125 \mathrm{MHz}{ }^{13} \mathrm{C}$ NMR Spectra of 4jaa

$\mathrm{CDCl}_{3}, 500 \mathrm{MHz}{ }^{1} \mathrm{H}$ NMR and $125 \mathrm{MHz}{ }^{13} \mathrm{C}$ NMR Spectra of 4aba

$\mathrm{CDCl}_{3}, 500 \mathrm{MHz}{ }^{1} \mathrm{H}$ NMR and $125 \mathrm{MHz}{ }^{13} \mathrm{C}$ NMR Spectra of 4aca

$\mathrm{CDCl}_{3}, 500 \mathrm{MHz}{ }^{1} \mathrm{H}$ NMR and $125 \mathrm{MHz}{ }^{13} \mathrm{C}$ NMR Spectra of 4ada

$\mathrm{CDCl}_{3}, 500 \mathrm{MHz}^{1} \mathrm{H}$ NMR and $125 \mathrm{MHz}{ }^{13} \mathrm{C}$ NMR Spectra of 4aea

$\mathrm{CDCl}_{3}, 500 \mathrm{MHz}{ }^{1} \mathrm{H}$ NMR and $125 \mathrm{MHz}{ }^{13} \mathrm{C}$ NMR Spectra of 4afa

$\mathrm{CDCl}_{3}, 500 \mathrm{MHz}{ }^{1} \mathrm{H}$ NMR and $125 \mathrm{MHz}{ }^{13} \mathrm{C}$ NMR Spectra of 4aga

$\mathrm{CDCl}_{3}, 500 \mathrm{MHz}{ }^{1} \mathrm{H}$ NMR and $125 \mathrm{MHz}{ }^{13} \mathrm{C}$ NMR Spectra of 4aha

$\mathrm{CDCl}_{3}, 500 \mathrm{MHz}{ }^{1} \mathrm{H}$ NMR and $125 \mathrm{MHz}{ }^{13} \mathrm{C}$ NMR Spectra of 4aia

$\mathrm{CDCl}_{3}, 500 \mathrm{MHz}{ }^{1} \mathrm{H}$ NMR and $125 \mathrm{MHz}{ }^{13} \mathrm{C}$ NMR Spectra of 4aja

$\mathrm{CDCl}_{3}, 500 \mathrm{MHz}{ }^{1} \mathrm{H}$ NMR and $125 \mathrm{MHz}{ }^{13} \mathrm{C}$ NMR Spectra of 4aka

$\mathrm{CDCl}_{3}, 500 \mathrm{MHz}{ }^{1} \mathrm{H}$ NMR and $125 \mathrm{MHz}{ }^{13} \mathrm{C}$ NMR Spectra of 4ala

$\mathrm{CDCl}_{3}, 500 \mathrm{MHz}{ }^{1} \mathrm{H}$ NMR and $125 \mathrm{MHz}{ }^{13} \mathrm{C}$ NMR Spectra of 4aab

$\mathrm{CDCl}_{3}, 500 \mathrm{MHz}{ }^{1} \mathrm{H}$ NMR and $125 \mathrm{MHz}{ }^{13} \mathrm{C}$ NMR Spectra of 4aac

$\mathrm{CDCl}_{3}, 500 \mathrm{MHz}{ }^{1} \mathrm{H}$ NMR and $125 \mathrm{MHz}{ }^{13} \mathrm{C}$ NMR Spectra of 4aad

$\mathrm{CDCl}_{3}, 500 \mathrm{MHz}{ }^{1} \mathrm{H}$ NMR and $125 \mathrm{MHz}{ }^{13} \mathrm{C}$ NMR Spectra of 4aae

$\mathrm{CDCl}_{3}, 500 \mathrm{MHz}{ }^{1} \mathrm{H}$ NMR and $125 \mathrm{MHz}{ }^{13} \mathrm{C}$ NMR Spectra of 4aaf

$\mathrm{CDCl}_{3}, 500 \mathrm{MHz}{ }^{1} \mathrm{H}$ NMR and $125 \mathrm{MHz}{ }^{13} \mathrm{C}$ NMR Spectra of 4aag

$\mathrm{CDCl}_{3}, 500 \mathrm{MHz}{ }^{1} \mathrm{H}$ NMR and $125 \mathrm{MHz}{ }^{13} \mathrm{C}$ NMR Spectra of 4aah

$\mathrm{CDCl}_{3}, 500 \mathrm{MHz}{ }^{1} \mathrm{H}$ NMR and $125 \mathrm{MHz}{ }^{13} \mathrm{C}$ NMR Spectra of 4aai

$\mathrm{CDCl}_{3}, 500 \mathrm{MHz}{ }^{1} \mathrm{H}$ NMR and $125 \mathrm{MHz}{ }^{13} \mathrm{C}$ NMR Spectra of 4aaj

$\mathrm{CDCl}_{3}, 500 \mathrm{MHz}{ }^{1} \mathrm{H}$ NMR and $125 \mathrm{MHz}{ }^{13} \mathrm{C}$ NMR Spectra of 4aak

$\mathrm{CDCl}_{3}, 500 \mathrm{MHz}{ }^{1} \mathrm{H}$ NMR and $125 \mathrm{MHz}{ }^{13} \mathrm{C}$ NMR Spectra of 4aal

$\mathrm{CDCl}_{3}, 500 \mathrm{MHz}{ }^{1} \mathrm{H}$ NMR and $125 \mathrm{MHz}{ }^{13} \mathrm{C}$ NMR Spectra of 4aam

$\mathrm{CDCl}_{3}, 500 \mathrm{MHz}{ }^{1} \mathrm{H}$ NMR and $125 \mathrm{MHz}{ }^{13} \mathrm{C}$ NMR Spectra of 4aan

$\mathrm{CDCl}_{3}, 500 \mathrm{MHz}{ }^{1} \mathrm{H}$ NMR and $125 \mathrm{MHz}{ }^{13} \mathrm{C}$ NMR Spectra of 4aao

$\mathrm{CDCl}_{3}, 500 \mathrm{MHz}{ }^{1} \mathrm{H}$ NMR and $125 \mathrm{MHz}{ }^{13} \mathrm{C}$ NMR Spectra of 4aap

$\mathrm{CDCl}_{3}, 500 \mathrm{MHz}{ }^{1} \mathrm{H}$ NMR and $125 \mathrm{MHz}{ }^{13} \mathrm{C}$ NMR Spectra of 4aaq

$\mathrm{CDCl}_{3}, 500 \mathrm{MHz}{ }^{1} \mathrm{H}$ NMR and $125 \mathrm{MHz}{ }^{13} \mathrm{C}$ NMR Spectra of 4aar

$\mathrm{CDCl}_{3}, 500 \mathrm{MHz}{ }^{1} \mathrm{H}$ NMR and $125 \mathrm{MHz}{ }^{13} \mathrm{C}$ NMR Spectra of 4aas

$\mathrm{CDCl}_{3}, 500 \mathrm{MHz}{ }^{1} \mathrm{H}$ NMR and $125 \mathrm{MHz}{ }^{13} \mathrm{C}$ NMR Spectra of 4aat

$\mathrm{CDCl}_{3}, 500 \mathrm{MHz}{ }^{1} \mathrm{H}$ NMR and $125 \mathrm{MHz}{ }^{13} \mathrm{C}$ NMR Spectra of 5aaa

$\mathrm{CDCl}_{3}, 500 \mathrm{MHz}{ }^{1} \mathrm{H}$ NMR and $125 \mathrm{MHz}{ }^{13} \mathrm{C}$ NMR Spectra of 6aaa

$\mathrm{CDCl}_{3}, 500 \mathrm{MHz}{ }^{1} \mathrm{H}$ NMR and $125 \mathrm{MHz}{ }^{13} \mathrm{C}$ NMR Spectra of 7aaa

$\mathrm{CDCl}_{3}, 500 \mathrm{MHz}{ }^{1} \mathrm{H}$ NMR and $125 \mathrm{MHz}{ }^{13} \mathrm{C}$ NMR Spectra of 8aaa

7. Analysis of secondary pyridinium salt ($2^{\prime} k-2^{\prime} m$) and their crude reaction mixture

 1-(1-oxo-1,2,3,4-tetrahydronaphthalen-2-yl)pyridin-1-ium bromide (2'k): Off-white solid, Yield =67\% (509.5 mg); ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 9.37(\mathrm{~d}, J=5.8 \mathrm{~Hz}, 2 \mathrm{H}), 8.54(\mathrm{t}, J=7.8 \mathrm{~Hz}$, $1 \mathrm{H}), 8.12-8.09(\mathrm{~m}, 2 \mathrm{H}), 7.99(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.60(\mathrm{td}, J=7.6,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.48$ (dd, J = 13.8, 4.5 Hz, 1H), 7.36 (dd, J = 18.4, 7.7 Hz, 2H), 3.98-3.91 (m, 1H), 3.20 (d, $J=16.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.10-3.04(\mathrm{~m}, 1 \mathrm{H}), 2.77-2.71(\mathrm{~m}, 1 \mathrm{H})$; HRMS (ES+) calc. for $\mathrm{C}_{15} \mathrm{H}_{14} \mathrm{NO}^{+}[\mathrm{M}]^{+}$: 224.1070, found: 224.1065.

1-(2-oxocyclohexyl)pyridin-1-ium bromide (2'l): Off-white solid, Yield =52\% (333.0 mg); ${ }^{1} \mathrm{H}$ NMR (500

2'I $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 9.35(\mathrm{~d}, \mathrm{~J}=5.6 \mathrm{~Hz}, 2 \mathrm{H}), 8.56(\mathrm{dd}, \mathrm{J}=15.3,7.6 \mathrm{~Hz}, 1 \mathrm{H}), 8.13-8.07(\mathrm{~m}$, $2 \mathrm{H}), 7.11-7.07(\mathrm{~m}, 1 \mathrm{H}), 2.88-2.81(\mathrm{~m}, 1 \mathrm{H}), 2.71-2.61(\mathrm{~m}, 1 \mathrm{H}), 2.59-2.41(\mathrm{~m}$, 2H), $2.26-2.10(\mathrm{~m}, 2 \mathrm{H}), 2.11$ - $2.01(\mathrm{~m}, 1 \mathrm{H}), 1.94-1.86(\mathrm{~m}, 1 \mathrm{H})$; HRMS (ES+) calc. for $\mathrm{C}_{11} \mathrm{H}_{14} \mathrm{NO}^{+}[\mathrm{M}]^{+}$: 176.1070, found: 176.1076.

1-(1-oxo-1-phenylpropan-2-yl)pyridin-1-ium bromide (2'm): White solid, Yield = 70\% (511.3 mg); ${ }^{1} \mathrm{H}$
 NMR (500 MHz, CDCl 3) $\delta 9.62(d, J=5.7 \mathrm{~Hz}, 2 \mathrm{H}), 8.61(\mathrm{t}, \mathrm{J}=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 8.37-8.05$ $(\mathrm{m}, 5 \mathrm{H}), 7.64(\mathrm{t}, \mathrm{J}=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.54-7.49(\mathrm{~m}, 2 \mathrm{H}), 2.02(\mathrm{~d}, \mathrm{~J}=7.3 \mathrm{~Hz}, 3 \mathrm{H})$; HRMS (ES +) calc. for $\mathrm{C}_{14} \mathrm{H}_{14} \mathrm{NO}^{+}[\mathrm{M}]^{+}$: 212.1070, found: 212.1078.
${ }^{1} \mathrm{H}$ NMR spectra of $\mathbf{2 '}^{\prime} \mathrm{k}-\mathbf{2}^{\prime} \mathrm{m}$:

HRMS data of crude reaction mixture with $\mathbf{2}^{\prime} k-2^{\prime} m:$

8. X-ray crystal structure of 4aka and 6aaa

ORTEP Digram of 4aka (CCDC 2194662)

Table S4: Crystal data and structure refinement for 4aka and 6aaa.

Compound	4aka	6aaa
CCDC No	2194662	2263835
Empirical formula	$\mathrm{C}_{23} \mathrm{H}_{16} \mathrm{O}_{3} \mathrm{l}_{2}$	$\mathrm{C}_{23} \mathrm{H}_{15} \mathrm{NO}$
Formula weight	594.16	321.36
Temperature/K	273(2)	296(2)
Crystal system	Orthorhombic	Orthorhombic
Space group	P212121	Pca21
a/Å	8.1476(5)	22.3743(7)
b/Å	9.0775(6)	5.3342(2)
c/Ả	27.2326(17)	13.0665(4)
$\alpha /{ }^{\circ}$	90	90
$\beta /{ }^{\circ}$	90	90
$\mathrm{V} /{ }^{\circ}$	90	90
Volume/ ${ }^{3}$	2014.1(2)	1559.47(9)
Z	4	4
$\rho_{\text {calc }} \mathrm{g} / \mathrm{cm}^{3}$	1.959	1.369
μ / mm^{-1}	3.144	0.084
F(000)	1136	672
Radiation	MoKa	MoKa
Reflections collected	9488	8056
No of Relection	5026	3891
No of Parameter	254	226
Goodness-of-fit on F^{2}	1.056	1.048
Final R indexes [all data]	$\mathrm{R}_{1}=0.0190, \mathrm{wR}_{2}=0.403$	$\mathrm{R}_{1}=0.0433, \mathrm{wR}_{2}=0.1050$

9. References:

1. D.-J. Barrios Antúnez, M. D. Greenhalgh, C. Fallan, A. M. Z. Slawin and A. D. Smith, Org. Biomol. Chem., 2016, 14, 7268-7274.
2. A. Jain, A. Regina, A. Kumari, R. Patra, M. Paranjothy and N. K. Rana, Org. Lett. 2023, DOI: 10.1021/acs.orglett.3c01295
