Electronic Supplementary Material (ESI) for Organic & Biomolecular Chemistry. This journal is © The Royal Society of Chemistry 2023

SUPPORTING INFORMATION

Metal-free and Atom-efficient Protocol for Diarylation of Selenocyanate by

Diaryliodonium Salts

Amirbek D. Radzhabov,¹ Natalia S. Soldatova,^{1*} Daniil M. Ivanov,^{1,2} Mekhman S. Yusubov,¹

Vadim Yu. Kukushkin,² Pavel S. Postnikov^{1,3}*

- Research School of Chemistry and Applied Biomedical Sciences, Tomsk Polytechnic University, Tomsk 634050, Russian Federation
- Institute of Chemistry, Saint Petersburg State University, Saint Petersburg 199034, Russian Federation
- Department of Solid State Engineering, Institute of Chemical Technology, Prague 16628, Czech Republic
 - * Correspondence: <u>postnikov@tpu.ru</u>, <u>soldatovans@tpu.ru</u>

Table of contents:

Figure S1. NMR spectra of reaction mass after arylation of KSeCN by IS 1a.	S2
Table S1. Arylation of PhSeCN: control experiments. ^a	S3
Figure S2. Control experiment of diselenide formation. ^a	S3
General information and synthetic procedures	S4
NMR spectra of 1h , m – q	S17
NMR spectra of 2a–k	S35
NMR spectra of 3a,b	S71
Table S2. Crystal data and structure refinement for 2g, 2i, and 3b.	S77
References	S78

Figure S1. NMR spectra of reaction mass after arylation of KSeCN by IS 1a.

	[SeCN + Or TMP-I	onditions	OMe	
			2a		
Entry	Arene	Solvent, (solvent ratio)	Temperature, °C	Time, h	Yield, % ^b
1	TMP-H	$HFIP/CH_2Cl_2(1/1)$	r.t	10	trace
2	TMP–H	HFIP	r.t	10	trace
3	TMP-H	HFIP	60	1.5	~5
4	TMP-H	HFIP	60	24	15
5	TMP–I	HFIP	r.t	24	trace
6	TMP–I	HFIP	60	1.5	<5
7	TMP–I	HFIP	60	24	15

Table S1. Arylation of PhSeCN: control experiments.^a

^aReaction conditions: phenylselenocyanate (0.25 mmol), TMP-H or TMP-I (0.3 mmol), solvent (1.5 mL);

^bIsolated yield.

Reaction conditions: (A) 4-nitrophenylselenocyanate (1 equiv., 0.25 mmol), pyridine (3 equiv.), 24 h, 80 °C.

Figure S2. Control experiment of diselenide formation.^a

General information and synthetic procedures

General information. Reagents and solvents were obtained from commercial sources and used without further purification. HFIP was distilled and stored over the molecular sieves (4 Å). Iodonium salts were obtained by the previously reported procedures.¹ Thin layer chromatography (TLC) was performed using precoated plates purchased from Macherey–Nagel (silica gel 60, 0.20 mm). Column chromatography was performed on 63–200 µm silica gel purchased from Macherey–Nagel. Melting points were measured on a BUCHI M-560 apparatus in capillaries and are not corrected. NMR spectra were recorded on Bruker Avance III HD (400 MHz). ¹H NMR spectra were recorded at 400 MHz, ¹³C NMR spectra were recorded at 100 MHz, ⁷⁷Se NMR spectra were recorded at 76 MHz and ¹⁹F NMR spectra were recorded at 376 MHz. Chemical shifts are reported in parts per million (ppm). ¹H and ¹³C chemical shifts are referenced relative to the residual solvent signal. High-resolution mass spectra (HRMS) were recorded using atmospheric pressure chemical ionization (APCI) and electrospray ionization (ESI) methods for **2a–k**, **3a,b** on a Shimadzu LCMS-9030 Q-TOF mass spectrometer coupled with LC-30 UHPLC system.

X-ray structure determinations. X-ray diffraction data were collected at 100 K on a XtaLAB Synergy, Single source at home/near, HyPix diffractometer using Cu K α (λ = 1.54184 Å; 2g,i and 3b). The structures were solved with the ShelXT² structure solution program using Intrinsic Phasing and refined with the ShelXL³ refinement package incorporated in the OLEX2 program package⁴ using Least Squares minimization. XRD data and structural refinement parameters are summarized in Table S2. Hydrogen atoms in all structures are placed in ideal calculated positions accordingly to neutron diffraction statistical data⁵ and refined as colliding atoms with parameters of relative isotropic displacement. Supplementary crystallographic data have been deposited at Cambridge Crystallographic Data Centre (CCDC structures 2250168, 2250169, 2250170) and can be obtained free of charge via www.ccdc.cam.ac.uk/data request/cif.

General procedure for synthesis of diarylselenides 2a–k, 3a,b (GP1). Screw cap tube was charged with a mixture of iodonium salt 1 (0.25 mmol, 1 equiv.) and KSeCN (40 mg, 0.275 mmol, 1.1 equiv.), whereupon EtOAc (2 mL) was added and the resulting mixture was heated to 80 °C and stirred for 24 h. The mixture was concentrated under a reduced pressure at 45 °C and pyridine (60 μ L, 3 equiv.) in previously distilled and dried over molecular sieves (4 Å) HFIP (1.5 mL) was added to the formed residue. The resulting mixture was heated at 80 °C for 24 h until the full conversion of arylselenocyanate (monitored by TLC with 8:2, v/v, hexane: EtOAc was used as eluent). The reaction mixture was then diluted with water (10 mL) and the product was extracted by dichloromethane (3×10 mL). Organic layers were combined, dried over Na₂SO₄, and concentrated under a reduced pressure at 45 °C. Selanes **2** were isolated by flash column chromatography (hexane:EtOAc 9:1, v/v).

General procedure for the preparation of diaryliodonium trifluoroacetates 1a–n. (GP2). Diaryliodonium trifluoroacetates 1a–q was obtained using previously reported procedure.¹ In a round-bottom flask equipped with a magnetic stirring bar and condenser, aryl iodide (2.0 mmol, 1 equiv.) was dissolved in acetonitrile (2 mL). *m*CPBA (2.4 mmol, 0.538 g, 1.2 equiv.) was added in one portion, followed by the dropwise addition of trifluoroacetic acid (2 mmol, 154 μ L, 1 equiv.). The reaction was placed in an oil bath set to 55 °C and stirred 50 minutes (the reaction was monitored by TLC using hexane/EtOAc 3:1 as eluent by disappearance of the iodoarene). 1,3,5-trimethoxybenzene (2 mmol, 0.336 g, 1 equiv.) or 1,3-dimethoxybenzene (2 mmol, 0.336 g, 1 equiv.) was added and reaction mixture was stirred at 55 °C for another 15 minutes. The reaction mixture was concentrated under the reduced pressure. To the residue diethyl ether was added (15 mL) and stirred for 15 min. The precipitated trifluoroacetate salt was collected by vacuum filtration and washed with diethyl ether (3 × 10 mL). The product was dried under reduced pressure.

phenyl(2,4,6-trimethoxyphenyl)iodonium trifluoroacetate (1a).¹ The reaction of iodobenzene (2 mmol, 223 μ L), *m*CPBA (77%,

2.4 mmol, 538 mg), 1,3,5-trimethoxybenzene (2 mmol, 336 mg) and trifluoroacetic acid (154 μ L) according to procedure **GP2** afforded 881 mg (91%) as a slightly pink solid; mp 155–157 °C (mp lit. 153–155 °C).¹ ¹H NMR (400 MHz, DMSO-*d*₆) δ 7.91 (d, *J* = 7.6 Hz, 2H), 7.61 (t, *J* = 7.4 Hz, 1H), 7.47 (t, *J* = 7.6 Hz, 2H), 6.46 (s, 2H), 3.94 (s, 6H), 3.87 (s, 3H). ¹³C{¹H} NMR (100 MHz, DMSO-*d*₆) δ 166.2, 159.4, 157.7 (d, *J*_{C-F} = 30 Hz), 134.3, 131.6, 117.4 (q, *J*_{C-F} = 300 Hz), 116.2, 92.1, 87.1, 57.3, 56.2. ¹⁹F{¹H} NMR (376 MHz, DMSO-*d*₆) δ –73.4.

336 mg) and trifluoroacetic acid (154 μL) according to procedure **GP2** afforded 935 mg (93%) as a colorless solid; mp 161–163 °C (mp lit. 161–163 °C).¹ ¹H NMR (400 MHz, DMSO-*d*₆) δ 7.79 (d, *J* = 8.4 Hz, 2H), 7.27 (d, *J* = 8.0 Hz, 2H), 6.45 (s, 2H), 3.94 (s, 6H), 3.86 (s, 3H), 2.32 (s, 3H). ¹³C{¹H} NMR (100 MHz, DMSO-*d*₆) δ 166.1, 159.3, 157.7 (q, *J*_{C-F} = 30 Hz), 141.9, 134.4, 132.1, 117.4 (q, *J*_{C-F} = 300 Hz), 112.6, 92.0, 87.3, 57.3, 56.1, 20.8. ¹⁹F{¹H} NMR (376 MHz, DMSO-*d*₆) δ –73.4.

trimethoxbenzene (2 mmol, 336 mg) and trifluoroacetic acid (154 µL) according to procedure **GP2** afforded 953 mg (89%) as a colorless solid; mp 186–187 °C (mp lit. 187–189 °C).⁶ ¹H NMR (400 MHz, DMSO-*d*₆) δ 7.55 (s, 2H), 7.24 (s, 1H), 6.46 (s, 2H), 3.95 (s, 6H), 3.86 (s, 3H), 2.28 (s, 6H). ¹³C{¹H} NMR (100 MHz, DMSO-*d*₆) δ 166.1, 159.4, 157.6 (q, *J*_{C-F} = 30 Hz), 141.1, 133.1, 131.8, 117.4 (q, *J*_{C-F} = 300 Hz), 115.7, 92.1, 86.8, 57.3, 56.2, 20.7. ¹⁹F{¹H} NMR (376 MHz, DMSO-*d*₆) δ –73.4.

(4-fluor ophenyl) (2, 4, 6-trime tho xyphenyl) iodonium

trifluoroacetate (1d).¹ The reaction of 1-fluoro-4-iodobenzene $(2 \text{ mmol}, 231 \,\mu\text{L}), m$ CPBA (77%, 2.4 mmol, 538 mg), 1,3,5-

trimethoxbenzene (2 mmol, 336 mg) and trifluoroacetic acid (154 µL) according to procedure **GP2** afforded 892 mg (88%) as a colorless solid; mp 167–169 °C (mp lit. 165–169 °C).¹ ¹H NMR (400 MHz, DMSO-*d*₆) δ 7.99–7.96 (m, 2H), 7.35–7.31 (m, 2H), 6.46 (s, 2H), 3.94 (s, 6H), 3.87 (s, 3H). ¹³C{¹H} NMR (100 MHz, DMSO-*d*₆) δ 166.2, 163.6 (d, *J*_{C-F} = 249 Hz), 159.3, 157.7 (q, *J*_{C-F} = 30 Hz), 137.2 (d, *J*_{C-F} = 9 Hz), 119.0 (d, *J*_{C-F} = 23 Hz), 117.0 (q, *J*_{C-F} = 266 Hz), 110.4 (d, *J*_{C-F} = 3 Hz), 92.1, 87.5, 57.4, 56.2. ¹⁹F{¹H} NMR (376 MHz, DMSO-*d*₆) δ –73.4, –107.5 (m).

(4-chlorophenyl)(2,4,6-trimethoxyphenyl)iodonium trifluoroacetate (1e).¹ The reaction of 1-chloro-4-iodobenzene (2 mmol, 476 mg), *m*CPBA (77%, 2.4 mmol, 538 mg), 1,3,5-

trimethoxbenzene (2 mmol, 336 mg) and trifluoroacetic acid (154 µL) according to procedure **GP2** afforded 812 mg (79%) as a colorless solid; mp 168–171 °C (mp lit. 168–172 °C).¹ ¹H NMR (400 MHz, DMSO-*d*₆) δ 7.91 (d, *J* = 8.8 Hz, 2H), 7.54 (d, *J* = 8.8 Hz, 2H), 6.47 (s, 2H), 3.94 (s, 6H), 3.87 (s, 3H). ¹³C{¹H} NMR (100 MHz, DMSO-*d*₆) δ 166.3, 159.4, 157.7 (q, *J*_{C-F} `= 29 Hz), 136.7, 136.1, 131.5, 117.4 (q, *J*_{C-F} = 300 Hz), 114.0, 92.1, 87.3, 57.4, 56.2. ¹⁹F{¹H} NMR (376 MHz, DMSO-*d*₆) δ –73.4.

 $\begin{array}{c} (4-bromophenyl)(2,4,6-trimethoxyphenyl)iodonium \\ fifluoroacetate (1f).^1 The reaction of 1-bromo-4-iodobenzene \\ (2 mmol, 566 mg), mCPBA (77%, 2.4 mmol, 538 mg), 1,3,5- \\ trimethoxbenzene (2 mmol, 336 mg) and trifluoroacetic acid (154 µL) according to procedure \\ GP2 afforded 910 mg (81%) as a colorless solid; mp 171–174 °C (mp lit. 171–173 °C).^{1 1}H NMR \\ (400 MHz, DMSO-d_6) \delta 7.83 (d, J = 8.4 Hz, 2H), 7.67 (d, J = 8.8 Hz, 2H), 6.47 (s, 2H), 3.94 (s, 6H), 3.87 (s, 3H). ^{13}C{^1H} NMR (100 MHz, DMSO-d_6) \delta 166.3, 159.4, 157.7 (d, J_{C-F} = 31 Hz), \\ \end{array}$

136.2, 134.4, 125.5, 117.4 (d, $J_{C-F} = 299$ Hz), 114.7, 92.1, 87.2, 57.4, 56.2. ¹⁹F{¹H} NMR (376 MHz, DMSO- d_6) δ –73.4.

trimethoxbenzene (2 mmol, 336 mg) and trifluoroacetic acid (154 µL) according to procedure **GP2** afforded 783 mg (72%) as a colorless solid; mp 166–167 °C (mp lit. 166–167 °C).^{1 1}H NMR (400 MHz, DMSO-*d*₆) δ 8.06 (d, *J* = 8.4 Hz, 2H), 7.92 (d, *J* = 8.4 Hz, 2H), 6.49 (s, 2H), 3.93 (s, 6H), 3.88 (s, 3H). ¹³C{¹H} NMR (100 MHz, DMSO-*d*₆) δ 166.5, 159.5, 157.9 (q, *J*_{C-F} = 31 Hz), 134.9, 134.8, 121.2, 117.6, 117.3 (q, *J*_{C-F} = 300 Hz), 114.1, 107.1, 92.2, 87.2, 57.4, 56.2. ¹⁹F{¹H} NMR (376 MHz, DMSO-*d*₆) δ –73.4.

*m*CPBA (77%, 2.4 mmol, 538 mg), 1,3,5-trimethoxbenzene (2 mmol, 336 mg) and trifluoroacetic acid (154 µL) according to procedure **GP2** afforded 835 mg (77%) as a colorless solid; mp 150–153 °C (mp lit. 152–155 °C).⁷ ¹H NMR (400 MHz, DMSO-*d*₆) δ 8.04 (d, *J* = 8.4 Hz, 2H), 7.97 (d, *J* = 8.4 Hz, 2H), 6.48 (s, 2H), 3.94 (s, 6H), 3.87 (s, 3H), 3.85 (s, 3H). ¹³C{¹H} NMR (100 MHz, DMSO-*d*₆) δ 166.4, 165.2, 159.4, 157.8 (q, *J*_{C-F} = 30 Hz), 134.6, 132.1, 131.8, 121.1, 117.4 (q, *J*_{C-F} = 300 Hz), 92.2, 87.1, 57.4, 56.2, 52.7. ¹⁹F{¹H} NMR (376 MHz, DMSO-*d*₆) δ –73.4.

(4-nitrophenyl)(2,4,6-trimethoxyphenyl)iodonium

trifluoroacetate (1k).¹ The reaction of 1-iodo-4-nitrobenzene (2 mmol, 498 mg), mCPBA (77%, 2.4 mmol, 538 mg), 1,3,5-

trimethoxbenzene (2 mmol, 336 mg) and trifluoroacetic acid (154 µL) according to procedure **GP2** afforded 518 mg (45%) as a colorless solid; mp 143–144 °C (mp lit. 144–147 °C).^{7 1}H NMR (400 MHz, DMSO-*d*₆) δ 8.23 (d, *J* = 9.2 Hz, 2H), 8.14 (d, *J* = 9.2 Hz, 2H), 6.49 (s, 2H), 3.94 (s, 6H), 3.88 (s, 3H). ¹³C{¹H} NMR (100 MHz, DMSO-*d*₆) δ 166.5, 159.5, 157.7 (q, *J*_{C-F} = 30 Hz), 149.1, 135.4, 126.1, 122.5, 117.4 (q, *J*_{C-F} = 299 Hz), 92.2, 87.2, 57.5, 56.3. ¹⁹F{¹H} NMR (376 MHz, DMSO-*d*₆) δ –73.4.

*m*CPBA (77%, 2.4 mmol, 538 mg), 1,3,5-trimethoxbenzene (2 mmol, 336 mg) and trifluoroacetic acid (154 µL) according to procedure **GP2** afforded 518 mg (45%) as a colorless solid; mp 142–144 °C (mp lit. 144–147 °C).⁶ ¹H NMR (400 MHz, DMSO-*d*₆) δ 8.04 (d, *J* = 8.8 Hz, 2H), 7.48 (d, *J* = 8.4 Hz, 2H), 6.48 (s, 2H), 3.95 (s, 6H), 3.87 (s, 3H). ¹³C{¹H} NMR (100 MHz, DMSO-*d*₆) δ 166.3, 159.4, 157.7 (q, *J*_{C-F} = 30 Hz), 150.2 (d, *J*_{C-F} = 2 Hz), 136.7, 123.9, 119.9 (q, *J*_{C-F} = 256 Hz), 117.4 (q, *J*_{C-F} = 300 Hz), 113.8, 92.1, 87.3, 57.4, 56.2. ¹⁹F{¹H} NMR (376 MHz, DMSO-*d*₆) δ –56.9, –73.4.

(4-cyanophenyl)(2,4-dimethoxyphenyl)iodonium

trifluoroacetate (1m).¹ The reaction of 4-iodobenzonitrile (2 mmol, 458 mg), *m*CPBA (77%, 2.4 mmol, 538 mg), 1,3-dimethoxbenzene

(2 mmol, 262 µL) and trifluoroacetic acid (154 µL) according to procedure **GP2** afforded 713 mg (70%) as a colorless solid; mp 128–130 °C. ¹H NMR (400 MHz, Acetone- d_6) δ 8.29 (d, J = 8.4 Hz, 2H), 8.18 (d, J = 8.8 Hz, 1H), 7.85 (d, J = 8.4 Hz, 2H), 6.79 (d, J = 2.4 Hz, 1H), 6.69 (dd, $J_1 = 8.8$ Hz, $J_2 = 2.4$ Hz 1H), 3.96 (s, 3H), 3.89 (s, 3H). ¹³C{¹H} NMR (100 MHz, Acetone- d_6) δ 166.3, 161.0 (q, $J_{C-F} = 33$ Hz), 160.0, 139.7, 136.2, 135.2, 123.2, 118.2, 117.8 (q, $J_{C-F} = 295$ Hz), 115.7, 109.7, 100.5, 98.2, 57.5, 56.4. ¹⁹F{¹H} NMR (376 MHz, Acetone- d_6) δ –73.4.

(4–nitrophenyl)(2,4–dimethoxyphenyl)iodonium trifluoroacetate (1n).¹ The reaction of 1-iodo-4-nitrobenzene (2 mmol, 498 mg), *m*CPBA (77%, 2.4 mmol, 538 mg), 1,3-

dimethoxbenzene (2 mmol, 262 µL) and trifluoroacetic acid (154 µL) according to procedure **GP2** afforded 494 mg (64%) as a colorless solid; mp 141–143 °C. ¹H NMR (400 MHz, DMSO- d_6) δ 8.30–8.20 (m, 5H), 6.82 (d, J = 2.4 Hz, 1H), 6.72 (dd, $J_1 = 8.8$, $J_2 = 2.4$ Hz, 1H), 3.92 (s, 3H), 3.84 (s, 3H). ¹³C{¹H} NMR (100 MHz, DMSO- d_6) δ 165.0, 158.3, 157.8 (q, $J_{C-F} = 30$ Hz), 149.2, 138.6,

135.8, 126.0, 122.7, 117.3 (q, $J_{C-F} = 299 \text{ Hz}$), 109.1, 99.8, 96.2, 57.2, 56.1. ¹⁹F{¹H} NMR (376 MHz, DMSO- d_6) δ –73.4. HRMS (ESI) m/z calcd. for [M – CF₃COO⁻]⁺ C₁₄H₁₃INO₄⁺: 385.9884, found 385.9886.

trimethoxbenzene (2 mmol, 336 mg) and trifluoroacetic acid (154 µL) according to procedure **GP2** afforded 772 mg (73%) as a colorless solid; mp 139–141 °C. ¹H NMR (400 MHz, DMSO- d_6) δ 8.33 (d, J = 8.8 Hz, 2H), 8.28 (d, J = 9.2 Hz, 2H), 8.10 (d, J = 9.2 Hz, 1H), 7.04 (d, J = 8.8 Hz, 1H), 3.90 (s, 3H), 3.87 (s, 3H), 3.76 (s, 3H). ¹³C{¹H} NMR (100 MHz, DMSO- d_6) δ 158.4, 157.9 (q, $J_{C-F} = 30$ Hz), 151.5, 149.3, 141.2, 136.0, 132.1, 126.2, 123.0, 117.3 (q, $J_{C-F} = 299$ Hz), 110.7, 103.0, 62.1, 60.9, 56.6. ¹⁹F{¹H} NMR (376 MHz, DMSO- d_6) δ –73.4.

(4-methoxyphenyl)(4-nitrophenyl)iodonium trifluoroacetate (1p).¹ The reaction of 1-iodo-4-nitrobenzene (2 mmol, 498 mg), mCPBA (77%, 2.4 mmol, 538 mg), anisole (2 mmol, 217 µL) and

trifluoroacetic acid (154 µL) according to procedure **GP2** afforded 486 mg (52%) as a colorless solid; mp 147–148 °C. ¹H NMR (400 MHz, DMSO- d_6) δ 8.42 (d, J = 8.4 Hz, 2H), 8.29 (d, J = 8.4 Hz, 2H), 8.23 (d, J = 8.4 Hz, 2H), 7.09 (d, J = 8.4 Hz, 2H), 3.80 (s, 3H). ¹³C{¹H} NMR (100 MHz, DMSO- d_6) δ 162.2, 157.9 (q, J_{C-F} = 30 Hz), 149.3, 137.6, 136.0, 126.1, 123.4, 117.6, 117.3 (q, J_{C-F} = 299 Hz), 105.9, 55.8. ¹⁹F{¹H} NMR (376 MHz, DMSO- d_6) δ –73.4.

 $CF_3COO^{+}_{-}$ (4-nitrophenyl)(thiophen-2-yl)iodonium trifluoroacetate (1q).¹ The reaction of 1-iodo-4-nitrobenzene (2 mmol, 538 mg), *m*CPBA (77%, 2.4 mmol, 538 mg), thiophene (2 mmol, 162 µL) and trifluoroacetic acid

(154 µL) according to procedure **GP2** afforded 427 mg (48%) as a colorless solid; mp 122–123 °C. ¹H NMR (400 MHz, DMSO- d_6) δ 8.49 (d, J = 8.4 Hz, 2H), 8.30 (d, J = 8.4 Hz, 2H), 8.13 (d, J = 3.2 Hz, 1H), 7.99 (d, J = 5.2 Hz, 1H), 7.20 (t, J = 4.4 Hz, 1H). ¹³C{¹H} NMR (100 MHz, DMSO- *d*₆) δ: 157.9 (q, *J*_{C-F} = 30 Hz), 140.3, 137.2, 134.6, 132.0, 131.7, 129.6, 119.6, 117.3 (q, *J*_{C-F} = 299 Hz), 101.2. ¹⁹F{¹H} NMR (376 MHz, DMSO-*d*₆) δ –73.5.

phenyl(2,4,6-trimethoxyphenyl)selane (2a).⁸ The reaction of phenyl(2,4,6-trimethoxyphenyl)iodonium trifluoroacetate 1a (0.25 mmol, 121 mg) according to general procedure GP1 afforded

58 mg (73%) of **2a** isolated as the colorless crystalline solid; mp 105–107 °C (lit. yellow oil ⁸). ¹H NMR (400 MHz, CDCl₃) δ 7.19–7.08 (m, 5H), 6.21 (s, 2H), 3.87 (s, 3H), 3.79 (s, 6H). ¹³C{¹H} (100 MHz, CDCl₃) δ 163.1, 162.0, 133.7, 128.8, 125.4, 97.1, 91.2, 56.4, 55.6. ⁷⁷Se{¹H} NMR (76 MHz, CDCl₃) δ 224.4. HRMS (ESI) *m/z* calcd. for [M+Na]⁺ C₁₅H₁₆NaO₃Se⁺: 347.0157, found 347.0157.

p-tolyl(2,4,6-trimethoxyphenyl)selane (2b).⁸ The reaction of *p*-tolyl(2,4,6-trimethoxyphenyl)iodonium trifluoroacetate 1b
(0.25 mmol, 125 mg) according to general procedure GP1

afforded 32 mg (37%) of **2b** isolated as colorless oil (lit.⁸ yellow oil). ¹H NMR (400 MHz, CDCl₃) δ 7.10 (d, *J* = 6.8 Hz, 2H), 6.95 (d, *J* = 7.6 Hz, 2H), 6.19 (s, 2H), 3.86 (s, 3H), 3.79 (s, 6H), 2.25 (s, 3H). ¹³C{¹H} (100 MHz, CDCl₃) δ 163.0, 162.0, 135.2, 129.7, 129.7, 129.3, 97.7, 91.2, 56.4, 55.5, 21.1. ⁷⁷Se{¹H} NMR (76 MHz, CDCl₃) δ 157.4. HRMS (ESI) *m/z* calcd. for [M]⁺ C₁₆H₁₈O₃Se⁺: 338.0416, found 338.0416.

(**3,5-dimethylphenyl**)(**2,4,6-trimethoxyphenyl**)selane (**2c**). The reaction of (**3,5-dimethylphenyl**)(**2,4,6-trimethoxyphenyl**)iodonium trifluoroacetate **1c** (0.25 mmol, 128 mg) according to general

Me fundoroaccuate Te (0.25 minol, 120 mg) according to general procedure **GP1** afforded 32 mg (26%) of **2c** isolated as a colorless solid; mp 102–104 °C. ¹H NMR (400 MHz, CDCl₃) δ 6.80 (s, 2H), 6.71 (s, 1H), 6.20 (s, 2H), 3.87 (s, 3H), 3.79 (s, 6H), 2.19 (s, 6H). ¹³C{¹H} (100 MHz, CDCl₃) δ 163.0, 162.1, 138.3, 133.1, 127.4, 126.5, 97.4, 91.3, 56.5, 21.4. ⁷⁷Se{¹H} NMR (76 MHz, CDCl₃) δ 219.7. HRMS (APCI) *m/z* calcd. for [M+H]⁺ C₁₇H₂₁O₃Se⁺: 353.0656, found 353.0651.

procedure **GP1** afforded 34 mg (40%) of **2d** isolated as the colorless solid; mp 80–81 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.22–7.17 (m, 2H), 6.83–6.87 (m, 2H), 6.19 (s, 2H), 3.86 (s, 3H), 3.79 (s, 6H). ¹³C{¹H} (100 MHz, CDCl₃) δ 163.1, 161.8, 161.6 (d, *J*_{C-F} = 242 Hz), 131.2 (d, *J*_{C-F} = 8 Hz), 127.8 (d, *J*_{C-F} = 3 Hz), 115.9 (d, *J*_{C-F} = 21 Hz), 97.7, 91.2, 56.4, 55.5. ¹⁹F{¹H} NMR (376 MHz, CDCl₃) δ –117.7. ⁷⁷Se{¹H} NMR (76 MHz, CDCl₃) δ 223.1. HRMS (APCI) *m/z* calcd. for [M+H]⁺ C₁₅H₁₆FO₃Se⁺: 343.0249, found 343.0245.

(4-chlorophenyl)(2,4,6-trimethoxyphenyl)selane (2e). The reaction of (4-chlorophenyl)(2,4,6-trimethoxyphenyl)iodonium
trifluoroacetate 1e (0.25 mmol, 130 mg) according to general

procedure **GP1** afforded 50 mg (57%) of **2e** isolated as the colorless solid; mp 92–94 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.14 – 7.05 (m, 4H), 6.20 (s, 2H), 3.87 (s, 3H), 3.79 (s, 6H). ¹³C{¹H} NMR (100 MHz, CDCl₃) δ 163.3, 161.9, 132.1, 131.3, 130.3, 128.9, 96.9, 91.3, 56.4, 55.6. ⁷⁷Se{¹H} NMR (76 MHz, CDCl₃) δ 227.2. HRMS (APCI) *m*/*z* calcd. for [M+H]⁺ C₁₅H₁₆ClO₃Se⁺: 358.9953, found 358.9946.

(4-bromophenyl)(2,4,6-trimethoxyphenyl)selane (2f).⁸ The reaction of (4-bromophenyl)(2,4,6-trimethoxyphenyl)iodonium trifluoroacetate 1f (0.25 mmol, 141 mg) according to general

procedure **GP1** afforded 69 mg (68%) of **2f** isolated as a colorless solid; mp 108–109 °C from hexane: EtOAc (mp lit.⁸ 100–102 °C from hexane: EtOAc). HRMS (APCI) m/z calcd. for [M+H]⁺ $C_{15}H_{16}BrO_3Se^+$: 402.9443, found 402.9438. The formation and purity of **2f** was confirm by GCMS (EI) m/z 402 that was process instantly after isolation of **2f**.

Figure S3. Chromatogram and mass spectrum of 2f.

NMR (76 MHz, CDCl₃) δ 839.8. Compound **2f** is unstable on air and during storage undergoes oxidation to corresponding selenoxide. An ⁷⁷Se {¹H} NMR spectra revealed chemical shift of selenoxide on 839.8 ppm.⁹ Additionally, the molecular ion of selenoxide was detected in HRMS (APCI) spectra of **2f**: *m/z* calcd. [M_{selenoxide}+H]⁺ C₁₅H₁₆BrO₄Se⁺: 418.9392, found 418.9386.

(3-trifluoromethyl)phenyl)(2,4,6-trimethoxyphenyl)selane (2g). The reaction of (3-(trifluoromethyl)phenyl)(2,4,6-trimethoxyphenyl)phenyl

-62.7. ⁷⁷Se{¹H} NMR (76 MHz, CDCl₃) δ 239.2. HRMS (APCI) *m/z* calcd. for [M+H]⁺ C₁₆H₁₆F₃O₃Se⁺: 393.0217, found 393.0212.

257.3. HRMS (APCI) *m/z* calcd. for [M+H]⁺ C₁₅H₁₆NO₅Se⁺: 461.0091, found 461.0088.

procedure **GP1** afforded 73 mg (83%) of **2i** isolated as a pale yellow solid; mp 128–130 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.37 (d, *J* = 8.4 Hz, 2H), 7.18 (d, *J* = 8.8 Hz, 2H), 6.23 (s, 2H), 3.89 (s, 3H), 3.79 (s, 6H). ¹³C{¹H} NMR (100 MHz, CDCl₃) δ 163.8, 162.0, 142.4, 132.1, 128.3, 119.5, 108.2, 95.0, 91.3, 56.4, 55.6. ⁷⁷Se{¹H} NMR (76 MHz, CDCl₃) δ 253.7. HRMS (APCI) *m/z* calcd. for [M+H]⁺ C₁₆H₁₆NO₃Se⁺: 350.0295, found 350.0291.

δ 167.3, 163.5, 162.0, 141.6, 129.8, 127.7, 126.9, 95.7, 91.3, 56.4, 55.6, 52.1. ⁷⁷Se{¹H} NMR (76

Hz, 2H), 6.23 (s, 2H), 3.89 (s, 3H), 3.86 (s, 3H), 3.79 (s, 6H). ¹³C{¹H} NMR (100 MHz, CDCl₃)

MHz, CDCl₃) δ 242.5. HRMS (ESI) *m*/*z* calcd. for [M+H]⁺ C₁₆H₁₆NO₃Se⁺: 383.0398, found 383.0392.

(4-nitrophenyl)(2,4,6-trimethoxyphenyl)selane (2k). The reaction of (4-nitrophenyl)(2,4,6-trimethoxyphenyl)iodonium
trifluoroacetate 1k (0.25 mmol, 132 mg) according to general

procedure **GP1** afforded 85 mg (92%) of **2k** isolated as a bright yellow solid; mp 134–135 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.97 (d, *J* = 9.2 Hz, 2H), 7.21 (d, *J* = 9.2 Hz, 2H), 6.24 (s, 2H), 3.90 (s, 3H), 3.80 (s, 6H). ¹³C{¹H} NMR (100 MHz, CDCl₃) δ 163.9, 162.0, 145.6, 145.5, 127.9, 123.7, 94.9, 91.3, 56.5, 55.7. ⁷⁷Se{¹H} NMR (76 MHz, CDCl₃) δ 260.0. HRMS (APCI) *m/z* calcd. for [M+H]⁺ C₁₅H₁₆NO₅Se⁺: 370.0194, found 370.0189.

4,4'-diselanediyldibenzonitrile (**3a**).¹⁰ The reaction of (4-cyanophenyl)(2,4-dimethoxyphenyl)iodonium trifluoroacetate **1m** (0.25 mmol, 120 mg) according to general procedure **GP1** afforded

34 mg (76%) of **3a** isolated as a brown solid; mp 152–154 °C (mp lit.¹⁰ 156–158 °C). ¹H NMR (400 MHz, CDCl₃) δ 7.68 (d, *J* = 8.0 Hz, 4H), 7.54 (d, *J* = 8.0 Hz, 4H). ¹³C{¹H} NMR (100MHz, CDCl₃) δ 136.5, 132.8, 130.7, 118.3, 111.5. ⁷⁷Se{¹H} NMR (76 MHz, CDCl₃) δ 456.0. HRMS (ESI) *m*/*z* calcd. for [M]⁺ C₁₄H₈N₂NaSe₂⁺: 386.8910, found 386.8913.

1,2-bis(4-nitrophenyl)diselane (3b).¹¹ The reaction of (4-nitrophenyl)(2,4-dimethoxyphenyl)iodonium trifluoroacetate 1n
(0.25 mmol, 125 mg) according to general procedure GP1 afforded

45 mg (89%) of **3b** isolated as a brown solid; mp 179–181 °C (mp lit.¹¹ 179–180 °C). ¹H NMR (400 MHz, CDCl₃) δ 8.13 (d, *J* = 8.8 Hz, 4H), 7.75 (d, *J* = 8.8 Hz, 4H). ¹³C{¹H} NMR (100 MHz, CDCl₃) δ 147.5, 138.7, 130.5, 124.4. ⁷⁷Se{¹H} NMR (76 MHz, CDCl₃) δ 456.2. HRMS (ESI) *m/z* calcd. for [M]⁺ C₁₂H₈N₂O₄Se₂⁺: 403.8815, found 403.8812.

NMR spectra of 1h, m-q

10	0	-10	-20	-30	-40	-50	-60	-70	-80	-90	-100	-110	-120	-130	-140	-150	-160	-170	-180	-190	-200	-210
											ppm											

...

10	0	-10	-20	-30	-40	-50	-60	-70	-80	-90	-100	-110	-120	-130	-140	-150	-160	-170	-180	-190	-200	-210
											ppm											

																						· · · ·
10	0	-10	-20	-30	-40	-50	-60	-70	-80	-90	-100 ppm	-110	-120	-130	-140	-150	-160	-170	-180	-190	-200	-210

10	0	-10	-20	-30	-40	-50	-60	-70	-80	-90	-100	-110	-120	-130	-140	-150	-160	-170	-180	-190	-200	-210
											ppin											

NMR spectra of 2a-k

n	n	m	
μ	υ		

-

2.0 11.5 11.0 10.5 10.0 9.5 9.0 8.5 8.0 7.5 7.0 6.5 6.0 5.5 5.0 4.5 4.0 3.5 3.0 2.5 2.0 1.5 1.0 0.5 0.0 -0.5 -1.0 -1.5 -2 ppm

		,																				
210	200	190	180	170	160	150	140	130	120	110	100	90	80	70	60	50	40	30	20	10	0	-10
											ppm											

•						
Identification code	2g	2i	3b			
CCDC number	2250168	2250169	2250170			
Empirical formula	$C_{16}H_{15}F_3O_3Se$	C ₁₆ H ₁₅ NO ₃ Se	$C_{12}H_8N_2O_4Se_2$			
Formula weight	391.24	348.25	402.12			
Temperature, K	100(2)	100(2)	100(2)			
Crystal system	monoclinic	monoclinic	monoclinic			
Space group	P21/c	P2 ₁ /c	C2/c			
a, Å	8.4142(2)	14.6406(9)	7.19910(10)			
b, Å	25.3815(4)	4.3593(3)	14.1649(2)			
c, Å	8.4387(2)	23.6861(19)	12.8571(2)			
α , °	90	90	90			
β, °	119.088(3)	104.016(8)	90.3270(10)			
γ, °	90	90	90			
Volume, Å ³	1574.90(7)	1466.71(19)	1311.08(3)			
Z	4	4	4			
$\rho_{calc}, g/cm^3$	1.650	1.577	2.037			
μ , mm ⁻¹	3.646	3.554	7.214			
F(000)	784.0	704.0	776.0			
Crystal size, mm ³	0.2 imes 0.18 imes 0.15	0.21 imes 0.18 imes 0.15	0.2 imes 0.18 imes 0.17			
Radiation	Cu Ka (λ = 1.54184)	Cu Ka ($\lambda = 1.54184$)	Cu Ka (λ = 1.54184)			
2Θ range for data collection, °	6.966 to 134.99	6.222 to 134.98	12.498 to 159.478			
	$-10 \le h \le 10,$	$-17 \le h \le 17,$	$-9 \le h \le 6,$			
Index ranges	$-29 \le k \le 30,$	$-5 \le k \le 4,$	$-17 \le k \le 17,$			
	$-8 \le 1 \le 10$	$-28 \le l \le 28$	$-16 \le l \le 16$			
Reflections collected	18825	25265	3717			
Independent reflections	$2812 [R_{int} = 0.0495, R_{sigma} = 0.0299]$	$2641 [R_{int} = 0.1605, R_{sigma} = 0.0788]$	1350 [$R_{int} = 0.0178$, $R_{sigma} = 0.0148$]			
Data/restraints/parameters	2812/0/211	2641/0/193	1350/0/91			
Goodness-of-fit on F ²	1.257	1.076	1.040			
$\mathbf{E}_{i}^{i} = 1 \mathbf{D}_{i}^{i} = 1 \mathbf{D}$	$R_1 = 0.0767,$	$R_1 = 0.0709,$	$R_1 = 0.0293,$			
Final R indexes $[1 \ge 2\sigma(1)]$	$wR_2 = 0.1803$	$wR_2 = 0.1714$	$wR_2 = 0.0817$			
Final P indexes [all data]	$R_1 = 0.0778,$	$R_1 = 0.0925,$	$R_1 = \overline{0.0300},$			
	$wR_2 = 0.1807$	$wR_2 = 0.1883$	$wR_2 = 0.0824$			
Largest diff. peak/hole, e·Å ⁻³	1.42/-0.85	2.12/-0.92	0.91/-0.79			

Table S2. Crystal data and structure refinement for 2g, 2i, and 3b.

References

- 1 V. Carreras, A. H. Sandtorv and D. R. Stuart, J. Org. Chem., 2017, 82, 1279–1284.
- 2 G. M. Sheldrick, Acta Crystallogr. Sect. A Found. Adv., 2015, 71, 3–8.
- G. M. Sheldrick, Acta Crystallogr. Sect. C Struct. Chem., 2015, 71, 3–8.
- 4 O. V. Dolomanov, L. J. Bourhis, R. J. Gildea, J. A. K. Howard and H. Puschmann, *J. Appl. Crystallogr.*, 2009, **42**, 339–341.
- 5 F. H. Allen and I. J. Bruno, *Acta Crystallogr. Sect. B Struct. Sci.*, 2010, **66**, 380–386.
- 6 N. S. Soldatova, P. S. Postnikov, M. S. Yusubov and T. Wirth, *European J. Org. Chem.*, 2019, **2019**, 2081–2088.
- 7 A. H. Sandtorv and D. R. Stuart, *Angew. Chemie Int. Ed.*, 2016, **55**, 15812–15815.
- 8 P. Kalaramna and A. Goswami, J. Org. Chem., 2021, 86, 9317–9327.
- 9 M. S. Silva, D. Alves, D. Hartwig, R. G. Jacob, G. Perin and E. J. Lenardão, *Asian J. Org. Chem.*, 2021, **10**, 91–128.
- 10 D. Kommula, Q. Li, S. Ning, W. Liu, Q. Wang and Z. K. Zhao, *Synth. Commun.*, 2020, **50**, 1026–1034.
- 11 L. Syper and J. Mlochowski, *Tetrahedron*, 1988, **44**, 6119–6130.