Electronic Supplementary Material (ESI) for Organic & Biomolecular Chemistry. This journal is © The Royal Society of Chemistry 2023

Pd-catalyzed oxidative amination of 2-alkenylquinazolin-4(3*H*)-ones. Synthesis of methylene and vinyl derivatives of pyrrolo(pyrido)[2,1-*b*]quinazolinones

Alla I. Vaskevych^{a*}, Nataliia O. Savinchuk^a, Ruslan I. Vaskevych^{a,b}, Svetlana V. Shishkina^c and Mykhailo V. Vovk^a

Address: ^aInstitute of Organic Chemistry, National Academy of Sciences of Ukraine, Academician Kukhar str., 5, Kyiv 02660, Ukraine ^bEnamine Ltd, Chervonotkatska str. 78, Kyiv 02094, Ukraine ^cState Scientific Institution "Institute for Single Crystals", National Academy of Sciences of Ukraine, 61072, Kharkiv, prosp. Nauky, 60 *E-mail: a.yu.vaskevich@gmail.com

Supporting Information

Detailed experimental procedures for all compounds and precursors, X-ray structure determination, ¹H/¹³C NMR spectra for all compounds

Contents

X-ray crystallographic structure of 12f	S2
General Information	S4
Optimization of the reaction conditions for the oxidative amination	
of 2-alkenylquinazolin-4(3 <i>H</i>)-ones 1a, 2a, 3a	S5
General procedure for the synthesis of 6-8	S6
General procedure for the synthesis of 2-alkenylquinazolin-4(3H)-ones 1-3	S14
General procedure for Pd-catalyzed oxidative amination of	
2-alkenylquinazolin-4(3 <i>H</i>)-ones 1-3	S24
References	S36
¹ H NMR and ¹³ C NMR spectra data	S37
2D NMR spectra data of compound 13g	S118

Figure S1. Molecular structure of compound 12f according to X-ray diffraction data. Thermal ellipsoids are shown with 50 % probability level.

The colourless crystals of **12f** ($C_{14}H_{13}CIN_2O$) are orthorhombic. At 293 K a = 6.7519(6), b = 15.0413(13), c = 24.732(2) Å, V = 2511.8(4) Å³, M_r = 260.71, Z = 8, space group *P*bca, d_{calc}= 1.379 g/cm³, mµ(MoK_a α) = 0.293 mm⁻¹, F(000) = 1088. Intensities of 29777 reflections (2194 independent, R_{int}=0.039) were measured on the Bruker APEX II diffractometer (graphite monochromated MoK_a radiation, CCD detector, φ - and ω -scaning, $2\Theta_{max} = 50^{\circ}$). The structure was solved by direct method using SHELXTL package.³ Positions of the hydrogen atoms were located from electron density difference maps and refined by "riding" model with $U_{iso} = 1.2U_{eq}$ of the carrier atom. Full-matrix least-squares refinement against F² in anisotropic approximation for non-hydrogen atoms using 2194 reflections was converged to wR₂ = 0.117 (R₁ = 0.047 for 1741 reflections with F>4\sigma(F), S = 1.087) (Figure S1).

The partially saturated heterocycle of compound **12f** adopts a half-chair conformation (the puckering parameters¹ are: Q = 0.487(3), $\Theta = 43.6(4)^0$, $\Psi = 141.7(4)^0$ (Figure S1). The C9 and C10 atoms deviate from the mean square plane of the remaining atoms of this cycle on 0.45 Å and -0.29 Å, respectively. The vinyl substituent is located in axial position (the C12–N2–C8–C13 torsion angle is 98.4(2)⁰) and is turned in such a way that the C13=C14 double bond is almost *syn*-periplanar to the N2–C8 endocyclic bond (the N2–C8–C13–C14 torsion angle is -11.1(4)⁰). It can be assumed that the orientation of the vinyl substituent is stabilized by the H14a...N2 attractive interaction (the H...N distance is 2.55 Å as compared with the van der Waals radii sum² of 2.67 Å), which cannot be considered as an intramolecular hydrogen bond, because the C14–H14...N angle is too sharp (100.2⁰).

The final atomic coordinates, and crystallographic data for molecule **12f** have been deposited to with the Cambridge Crystallographic Data Centre, 12 Union Road, CB2 1EZ, UK (fax: +44-1223-336033; e-mail: deposit@ccdc.cam.ac.uk) and are available on request quoting the deposition numbers CCDC 2220181).

General Information

Commercially available reagents and solvents were used without further purification. The IR spectra of the compounds obtained were recorded on a Bruker Vertex 70 spectrometer in KBr pellets. The NMR spectra were recorded with Varian VXR-300 (400, 500, 600) instruments (300, 400, 500, 600 MHz for ¹H, 75, 101, 126, 151 MHz for ¹³C) in CDCl₃ and DMSO- d_6 solutions, with TMS as an internal standard. Multiplets were assigned as s (singlet), d (doublet), t (triplet), dd (doublet of doublet), q (quartet), p (pentet), m (multiplet) and br.s (broad singlet). LC-MS spectra were recorded on an Agilent 1100 Series high performance liquid chromatograph equipped with a diode matrix with an Agilent LC\MSD SL mass selective detector. Mass spectrometric detection of samples were performed with an Infinity 1260 UHPLC system (Agilent Technologies, Waldbronn, Germany) coupled to an 6224 Accurate Mass TOF LC/MS system (Agilent Technologies, Singapore).

Table S1 Optimization of the reaction conditions for the oxidative amination of 2-alkenylquinazolin-4(3H)-ones 1a, 2a, 3a

1a, 9a: n=0; 2a, 10a,11a: n=1; 3a,12a: n=2

Experi- ment	Subs- trate	Catalyst (mol%)	Ligand (mol%)	Base (eq)	BQ (eq.)	Solvent	Substrate conversion, (%) ^{a,b}	Product
1	1a	$Pd(OAc)_2(5)$	_	_	3	dioxane	5	9a
2	1a	$Pd(OAc)_2(5)$	_	$Cs_2CO_3(2)$	3	dioxane	5	9a
3	1a	$Pd(OAc)_2(5)$	PPh ₃ (11)	$Cs_2CO_3(2)$	1	dioxane	45	9a
4	1a	$Pd(OAc)_2(5)$	PPh ₃ (11)	$Cs_2CO_3(2)$	1,3	dioxane	54	9a
5	1a	$Pd(OAc)_2(5)$	PPh ₃ (11)	$Cs_2CO_3(2)$	1,5	dioxane	60	9a
6	1a	$Pd(OAc)_2(5)$	PPh ₃ (11)	$Cs_2CO_3(2)$	2	dioxane	92	9a
7	1a	$Pd(OAc)_2(10)$	PPh ₃ (21)	$Cs_2CO_3(2)$	2	dioxane	100	9a
8	1a	$Pd(OAc)_2(5)$	PPh ₃ (11)	DIPEA(2)	2	dioxane	25	9a
9	1a	$Pd(dppf)_2Cl_2(10)$	_	$Cs_2CO_3(2)$	4	dioxane	100	9a
10	1a	$Pd_2(dba)_3 (10)$	_	$Cs_2CO_3(2)$	4	dioxane	100	9a
11	2a	$Pd(OAc)_2(10)$	PPh ₃ (21)	$Cs_2CO_3(2)$	2	dioxane	0	_
12	2a	$Pd(OAc)_2(10)$	PPh ₃ (21)	KOH (2)	2	DMF	0	_
13	2a	Pd(dppf) ₂ Cl ₂ (10)	_	$Cs_2CO_3(2)$	2	dioxane	0	_
14	2a	Pd(PPh ₃) ₂ Cl ₂ (10)	_	t-BuONa (2)	2	toluene	90	10a,
								11a
15	2a	Pd(PPh ₃) ₂ Cl ₂ (10)	—	t-BuONa (2)	3	toluene	100	10a,
								11a
16	3 a	$Pd(OAc)_2(10)$	PPh ₃ (21)	$Cs_2CO_3(2)$	2	dioxane	0	_
17	3 a	$Pd(PPh_3)_2Cl_2(10)$	_	t-BuONa (2)	3	toluene	100	12a

^a Reaction conditions: **1a-3a** (0.25 mmol), solvent (10.0 mL), 110 °C.

^b Substrate conversion was determined by¹H NMR spectroscopy.

2-Pent-4-enamidobenzamides (6a-i), 2-hex-5-enamidobenzamides (7a-i) and 2-hept-6enamidobenzamides (8a-i) were synthesized by the previously reported procedure.⁴

To a solution of amine 4 (1.5 mmol) and triethylamine (0.15 g, 1.5 mmol) in DMF (10 mL), acyl chloride 5 (1.5 mmol) was added dropwise at 0 °C. The resulting mixture was stirred at rt for 3–4 h and then left overnight. The solvent was removed *in vacuo*, and the residue was triturated with H₂O (20 mL). The crystalline product 6(7,8) formed was filtered, dried, and used in the next without additional purification. An analytical sample of 6(7,8) was obtained by *i*-PrOH or *t*-BuOMe (exception of 2-(hex-5-enoylamino)-4-nitrobenzamide (7g), which could not be isolated in the individual state).

2-(Pent-4-enoylamino)benzamide (6a)⁴
2-Fluoro-6-(pent-4-enoylamino)benzamide (6b)⁴
5-Methyl-2-(pent-4-enoylamino)benzamide (6c)⁴
5-Chloro-2-(pent-4-enoylamino)benzamide (6d)⁴
5-Nitro-2-(pent-4-enoylamino)benzamide (6e)⁴
4-Chloro-2-(pent-4-enoylamino)benzamide (6f)⁴

4-Nitro-2-(pent-4-enoylamino)benzamide (6g)

Followed the general procedure 1, using **4g** (272 mg), **5a** (178 mg). Light yellow solid (308 mg, 78% yield). Mp: 172–174 °C; ¹H NMR (500 MHz, DMSO-*d*₆) δ 11.56 (s, 1H, NH), 9.26 (s, 1H, ArH), 8.47 (br.s, 1H, NH), 8.00–7.98 (m, 2H, ArH + NH), 7.91 (dd, *J* = 8.5, 1.5 Hz, 1H, ArH), 5.89–5.81 (m, 1H, =CH), 5.08 (dd, *J* = 17.0, 1.5 Hz, 1H, =CH₂), 4.98 (dd, *J* = 10.0, 1.5 Hz, 1H, =CH₂), 2.51-2.48 (m, 2H,

CH₂), 2.39–2.35 (m, 2H, CH₂); ¹³C **NMR** (150.8 MHz, DMSO-*d*₆) δ 171.5, 169.5, 149.5, 140.5, 137.5, 130.4, 125.7, 117.2, 116.0, 115.0, 36.9, 29.1; MS: m/z 264 (M+H); Anal. Calcd for C₁₂H₁₃N₃O₄: C, 54.75; H, 4.98; N, 15.96; found: C, 54.68; H, 4.95; N, 15.89.

3-Methyl-2-(pent-4-enoylamino)benzamide (6h)⁴ 3-Fluoro-2-(pent-4-enoylamino)benzamide (6i)⁴

2-(Hex-5-enoylamino)benzamide (7a)

Followed the general procedure 1, using **4a** (204 mg), **5b** (199 mg). White solid (299 mg, 86% yield). Mp: 125–127 °C; ¹H NMR (400 MHz, DMSO- d_6) δ 11.68 (br.s, 1H, NH), 8.47 (d, J = 8.0 Hz, 1H, ArH), 8.25 (br.s, 1H, NH), 7.78 (d, J = 8.0 Hz, 1H, ArH), 7.71 (br.s, 1H, NH), 7.47 (t, J = 8.0 Hz, 1H, ArH), 7.10 (t, J = 8.0 Hz, 1H, ArH), 5.86–5.76 (m, 1H, =CH), 5.06–4.97 (m, 2H, =CH₂), 2.34 (t, J = 7.6 Hz, 2H,CH₂); 2.07 (q, J = 7.6 Hz, 2H, CH₂); 1.70 (p, J = 7.6 Hz, 2H, CH₂); ¹³C NMR (150.8 MHz, DMSO- d_6) δ 171.3, 171.2, 140.1, 138.5, 132.6, 129.0, 122.7, 120.6, 120.0, 115.8, 37.3, 33.0, 24.5; MS: m/z 233 (M+H); Anal. Calcd for C₁₃H₁₆N₂O₂: C, 67.22; H, 6.94; N, 12.06; found: C, 67.17; H, 6.91; N, 12.05.

2-Fluoro-6-(hex-5-enoylamino)benzamide (7b)

Followed the general procedure 1, using **4b** (231 mg), **5b** (199 mg). White solid (311 mg, 83% yield). Mp: 80–83 °C; ¹H NMR (400 MHz, DMSO-*d*₆) δ 10.09 (br.s, 1H, NH), 8.00 (br.s, 1H, NH), 7.97 (br.s, 1H, NH), 7.91 (d, *J* = 8.4 Hz, 1H, ArH), 7.42 (dd, *J* = 8.4, 15.2 Hz, 1H, ArH), 7.01 (t, *J* = 8.4 Hz, 1H, ArH), 5.86–5.76 (m, 1H, =CH), 5.06-4.97 (m, 2H, =CH₂), 2.33 (t, *J* = 7.2 Hz, 2H, CH₂), 2.06 (q, *J* = 7.2 Hz, 2H, CH₂), 1.67 (p, *J* = 7.2 Hz, 2H, CH₂); ¹³C NMR (125.7 MHz, DMSO-*d*₆) δ 171.1, 165.4, 159.2 (d, *J*_{C-F} = 246.3 Hz), 138.5 (d, *J*_{C-F} = 7.5 Hz), 138.0, 131.4 (d, *J*_{C-F} = 10.1 Hz), 117.9, 115.3, 114.5 (d, *J*_{C-F} = 17.6 Hz), 110.7 (d, *J*_{C-F} = 22.6 Hz), 36.1, 32.6, 24.1; MS: m/z 251 (M+H); Anal. Calcd for C₁₃H₁₅FN₂O₂: C, 62.39; H, 6.04; N, 11.19; found: C, 62.26; H, 6.00; N, 11.14.

2-(Hex-5-enoylamino)- 5-methylbenzamide (7c)

Followed the general procedure 1, using **4c** (225 mg), **5b** (199 mg). White solid (340 mg, 92% yield). Mp: 137–140 °C; ¹H NMR (400 MHz, DMSO- d_6) δ 11.53 (br.s, 1H, NH), 8.35 (d, J = 8.4 Hz, 1H, ArH), 8.20 (br.s, 1H, NH), 7.67 (br.s, 1H, NH), 7.62 (s, 1H, CH), 7.28 (d, J = 8.4 Hz, 1H, ArH), 5.86– 5.76 (m, 1H, =CH), 5.05-4.96 (m, 2H, =CH₂), 2.33-2.28 (m, 5H, CH₂+CH₃), 2.06 (q, J = 7.0 Hz, 2H, CH₂), 1.69 (p, J = 7.0 Hz, 2H, CH₂); ¹³C NMR (125.7 MHz, DMSO- d_6) δ 170.8, 170.5, 138.0, 137.2, 132.5, 131.2, 128.8, 120.1, 119.5, 115.2, 36.8, 32.4, 24.1, 20.3; MS: m/z 247 (M+H); Anal. Calcd for C₁₄H₁₈N₂O₂: C, 68.27; H, 7.37; N, 11.37; found: C, 68.22; H, 7.29; N, 11.32.

5-Chloro-2-(hex-5-enoylamino)benzamide (7d)

Followed the general procedure 1, using **4d** (256 mg), **5b** (199 mg). White solid (348 mg, 87% yield). Mp: 124–126 °C; ¹H NMR (400 MHz, DMSO- d_6) δ 11.58 (br.s, 1H, NH), 8.47 (d, J = 9.2 Hz, 1H, ArH), 8.36 (br.s, 1H, NH), 7.86–7.85 (m, 2H, ArH + NH), 7.54 (dd, J = 9.2, 6.8 Hz, 1H, ArH), 5.85–5.75 (m, 1H, =CH), 5.05-4.96 (m, 2H, =CH₂), 2.34 (t, J = 7.2 Hz, 2H, CH₂), 2.06 (q, J = 7.2 Hz, 2H, CH₂), 1.67 (p, J = 7.2 Hz, 2H, CH₂); ¹³C NMR (125.7 MHz, DMSO- d_6) δ 170.9, 169.4, 138.4, 137.9, 131.7, 128.1, 126.0, 121.8, 121.2, 115.2, 36.7, 32.5, 23.9; MS: m/z 267 (M+H); Anal. Calcd for C₁₃H₁₅ClN₂O₂: C, 58.54; H, 5.67; N, 10.50; found: C, 58.51; H, 5.63; N, 10.46.

2-(Hex-5-enoylamino)-5-nitrobenzamide (7e)

Followed the general procedure 1, using **4e** (272 mg), **5b** (199 mg). Light yellow solid (332 mg, 80% yield). Mp: 126–129 °C; ¹H NMR (400 MHz, DMSO-*d*₆) δ 12.07 (s, 1H, NH), 8.73–8.70 (m, 3H, 2ArH + NH), 8.38 (dd, *J* = 2.2, 9.4 Hz, 1H, ArH), 8.05 (br s, 1H, NH),), 5.86–5.76 (m, 1H, =CH), 5.06-4.97 (m, 2H, =CH₂), 2.43 (t, *J* = 7.2 Hz, 2H, CH₂), 2.08 (q, *J* = 7.2 Hz, 2H, CH₂), 1.71 (p, *J* = 7.2 Hz, 2H, CH₂); ¹³C NMR (125.7 MHz, DMSO-*d*₆) δ 171.7, 169.1, 145.3, 141.0, 137.9, 127.4, 124.4,

119.9, 119.0, 115.3, 36.9, 32.4, 23.7; MS: m/z 278 (M+H); Anal. Calcd for C₁₃H₁₅N₃O₄: C, 56.31; H, 5.45; N, 15.15; found: C, 56.25; H, 5.37; N, 15.11.

4-Chloro-2-(hex-5-enoylamino)benzamide (7f)

Followed the general procedure 1, using **4f** (256 mg), **5b** (199 mg). White solid (356 mg, 89% yield). Mp: 81–84 °C; ¹**H NMR** (400 MHz, DMSO- d_6) δ 11.52 (s, 1H, NH), 8.46 (d, J = 8.8 Hz, 1H, ArH), 8.32 (br.s, 1H, NH), 7.85–7.79 (m, 2H, ArH + NH), 7.53 (d, J = 8.8 Hz, 1H, ArH), 5.85–5.75 (m, 1H, =CH), 5.05-4.96 (m, 2H, =CH₂), 2.34 (t, J = 7.2 Hz, 2H, CH₂), 2.07 (q, J = 7.2 Hz, 2H, CH₂), 1.69 (p, J = 7.2 Hz, 2H, CH₂); ¹³C **NMR** (150.8 MHz, DMSO- d_6) δ 171.7, 170.4, 141.5, 138.4, 137.1, 130.7, 122.4, 119.8, 118.2, 115.8, 37.3, 32.9, 24.4; MS: m/z 267 (M+H); Anal. Calcd for C₁₃H₁₅ClN₂O₂: C, 58.54; H, 5.67; N, 10.50; found: C, 58.52; H, 5.65; N, 10.42.

2-(Hex-5-enoylamino)-3-methylbenzamide (7h)

Followed the general procedure 1, using **4h** (225 mg), **5b** (199 mg). White solid (314 mg, 85% yield). Mp: 177–179 °C; ¹**H NMR** (400 MHz, DMSO- d_6) δ 9.43 (s, 1H, NH), 7.54 (br.s, 1H, NH), 7.36–7.31 (m, 3H, ArH + NH), 7.18 (t, J = 8.8 Hz, 1H, ArH), 5.87–5.77 (m, 1H, =CH), 5.07-4.97 (m, 2H, =CH₂), 2.28 (t, J = 7.2 Hz, 2H, CH₂), 2.15 (s, 3H, CH₃), 2.07 (q, J = 7.2 Hz, 2H, CH₂), 1.67 (p, J = 7.2 Hz, 2H, CH₂); ¹³C NMR (150.8 MHz, DMSO- d_6) δ 171.6, 170.1, 138.7, 136.2, 134.4, 134.2, 132.2, 126.3, 126.1, 115.7, 35.5, 33.2, 24.9, 18.7; MS: m/z 247 (M+H); Anal. Calcd for C₁₄H₁₈N₂O₂: C, 68.27; H, 7.37; N, 11.37; found: C, 68.21; H, 7.35; N, 11.34.

3-Fluoro-2-(hex-5-enoylamino)benzamide (7i)

Followed the general procedure 1, using **4i** (231 mg), **5b** (199 mg). White solid (270 mg, 72% yield). Mp: 176–178 °C; ¹H NMR (300 MHz, DMSO- d_6) δ 9.51 (br.s, 1H, NH), 7.72 (br.s, 1H, NH), 7.48 (br.s, 1H, NH), 7.33–7.31 (m, 3H, ArH), 5.88–5.74 (m, 1H, CH), 5.06-4.95 (m, 2H, =CH₂), 2.29 (t, J =

7.2 Hz, 2H, CH₂), 2.05 (q, J = 7.2 Hz, 2H, CH₂), 1.64 (p, J = 7.2 Hz, 2H, CH₂); ¹³C NMR (125.7 MHz, DMSO- d_6) δ 171.1, 168.0 (d, $J_{C-F} = 3.8$ Hz), 157.0 (d, $^1J_{C-F} = 247.6$ Hz), 138.2, 134.8, 126.9 (d, $J_{C-F} = 8.8$ Hz), 123.6 (d, $J_{C-F} = 3.8$ Hz), 123.6 (d, $J_{C-F} = 3.8$ Hz), 123.6 (d, $J_{C-F} = 21.3$ Hz), 115.2, 34.7, 32.5, 24.3; MS: m/z 251 (M+H); Anal. Calcd for C₁₃H₁₅FN₂O₂: C, 62.39; H, 6.04; N, 11.19; found: C, 62.34; H, 6.03; N, 11.12.

2-(Hept-6-enoylamino)benzamide (8a)

Followed the general procedure 1, using **4a** (204 mg), **5c** (220 mg). White solid (295 mg, 80% yield). Mp: 85-87 °C; ¹H NMR (300 MHz, DMSO-*d*₆) δ 11.69 (br.s, 1H, NH), 8.47 (d, *J* = 7.6 Hz, 1H, ArH), 8.29 (br.s, 1H, NH), 7.79 (d, *J* = 7.6 Hz, 1H, ArH), 7.73 (br.s, 1H, NH), 7.47 (t, *J* = 7.6 Hz, 1H, ArH), 7.09 (t, *J* = 7.6 Hz, 1H, ArH), 5.86–5.72 (m, 1H, =CH), 4.99-4.93 (m, 2H, =CH₂), 2.33 (t, *J* = 7.5 Hz, 2H, CH₂), 2.04 (q, *J* = 7.5 Hz, 2H, CH₂), 1.61 (p, *J* = 7.5 Hz, 2H, CH₂), 1.39 (p, *J* = 7.5 Hz, 2H, CH₂); ¹³C NMR (150.8 MHz, DMSO-*d*₆) δ 171.4, 171.2, 140.2, 138.9, 132.6, 129.0, 122.6, 120.5, 119.9, 115.3, 37.8, 33.3, 28.2, 24.9; MS: m/z 247 (M+H); Anal. Calcd for C₁₄H₁₈N₂O₂: C, 68.27; H, 7.37; N, 11.37; found: C, 68.23; H, 7.29; N, 11.28.

2-Fluoro-6-(hept-6-enoylamino)benzamide (8b)

Followed the general procedure 1, using **4b** (231 mg), **5c** (220 mg). White solid (289 mg, 73% yield). Mp: 83–85 °C; ¹H NMR (400 MHz, DMSO- d_6) δ 10.09 (s, 1H, NH), 8.00-7.91 (m, 3H, 2NH+ArH), 7.42 (dd, J = 8.6, 15.0 Hz, 1H, ArH), 7.00 (t, J = 8.6 Hz, 1H, ArH), 5.85–5.75 (m, 1H, =CH), 5.04-4.94 (m, 2H, =CH₂), 2.34 (t, J = 7.4 Hz, 2H, CH₂), 2.04 (q, J = 7.4 Hz, 2H, CH₂), 1.56 (p, J = 7.4 Hz, 2H, CH₂), 1.39 (p, J = 7.4 Hz, 2H, CH₂);¹³C NMR (125.7 MHz, DMSO- d_6) δ 171.1, 165.3, 159.1 (d, $J_{C-F} = 246.2$ Hz), 138.5, 138.4 (d, $J_{C-F} = 5.0$ Hz), 131.4, 131.3, 117.8, 114.8, 110.6 (d, ² $J_{C-F} = 23.9$ Hz), 36.5, 32.8, 27.7, 24.4; MS: m/z 265 (M+H); Anal. Calcd for C₁₄H₁₇FN₂O₂: C, 63.62; H, 6.48; N, 10.60; found: C, 63.55; H, 6.41; N, 10.57.

Followed the general procedure 1, using **4c** (225 mg), **5c** (220 mg). White solid (343 mg, 88% yield). Mp: 118–120 °C; ¹H NMR (300 MHz, DMSO- d_6) δ 11.53 (br.s, 1H, NH), 8.34 (d, J = 8.7 Hz, 1H, ArH), 8.19 (br.s, 1H, NH), 7.66–7.61 (m, 2H, NH + ArH), 7.27 (d, J = 8.7 Hz, 1H, ArH), 5.85–5.71 (m, 1H, =CH), 5.03-4.92 (m, 2H, =CH₂), 2.32-2.27 (m, 5H, CH₂ + CH₃), 2.03 (q, J = 7.2 Hz, 2H, CH₂), 1.59 (p, J = 7.2 Hz, 2H, CH₂), 1.38 (p, J = 7.2 Hz, 2H, CH₂); ¹³C NMR (125.7 MHz, DMSO- d_6) δ 171.3, 171.1, 138.9, 137.7, 133.0, 131.6, 129.2, 120.5, 119.9, 115.3, 37.8, 33.3, 28.2, 24.9, 20.8; MS: m/z 261 (M+H); Anal. Calcd for C₁₅H₂₀N₂O₂: C, 69.20; H, 7.74; N, 10.76; found: C, 69.16; H, 7.70; N, 10.72.

5-Chloro-2-(hept-6-enoylamino)benzamide (8d)

Followed the general procedure 1, using **4d** (256 mg), **5c** (220 mg). White solid (320 mg, 76% yield). Mp: 152–154 °C; ¹H NMR (400 MHz, DMSO- d_6) δ 11.51 (br.s, 1H, NH), 8.46 (d, J = 8.8 Hz, 1H, ArH), 8.31 (br.s, 1H, NH), 7.85 (d, J = 2.4 Hz, 1H, ArH), 7.77 (br.s, 1H, NH), 7.53 (dd, J = 2.4, 8.8 Hz, 1H, ArH), 5.84–5.74 (m, 1H, =CH), 5.03-4.93 (m, 2H, =CH₂), 2.34 (t, J = 7.6 Hz, 2H, CH₂), 2.04 (q, J = 7.6 Hz, 2H, CH₂), 1.61 (p, J = 7.6 Hz, 2H, CH₂), 1.40 (p, J = 7.6 Hz, 2H, CH₂); ¹³C NMR (76 MHz, DMSO- d_6) δ 171.1, 169.6, 138.7, 138.4, 131.8, 128.2, 126.1, 121.8, 121.0, 114.8, 37.4, 33.0, 27.8, 24.4; MS: m/z 281 (M+H); Anal. Calcd for C₁₄H₁₇ClN₂O₂: C, 59.89; H, 6.10; N, 9.98; found: C, 59.83; H, 6.05; N, 9.97.

2-(Hept-6-enoylamino)-5-nitrobenzamide (8e)

Followed the general procedure 1, using **4e** (272 mg), **5c** (220 mg). Light yellow solid (323 mg, 74% yield). Mp: 135–137 °C; ¹H NMR (300 MHz, DMSO-*d*₆) δ 12.07 (br.s, 1H, NH), 8.73-8.70 (m, 3H, 2ArH + NH), 8.36 (d, *J* = 9.3 Hz, 1H, ArH), 8.04 (br.s, 1H, NH), 5.86–5.72 (m, 1H, =CH), 5.04-4.93 (m, 2H, =CH₂), 2.43 (t, *J* = 7.2 Hz, 2H, CH₂), 2.04 (q, *J* = 7.2 Hz, 2H, CH₂), 1.62 (p, *J* = 7.2 Hz, 2H,

CH₂), 1.40 (p, J = 7.2 Hz, 2H, CH₂); ¹³C NMR (150.8 MHz, DMSO- d_6) δ 172.3, 169.6, 145.8, 141.5, 138.9, 128.0, 124.9, 120.4, 119.6, 115.4, 37.9, 33.3, 28.1, 24.6; MS: m/z 292 (M+H); Anal. Calcd for C₁₄H₁₇N₃O₄: C, 57.72; H, 5.88; N, 14.42; found: C, 57.69; H, 5.84; N, 14.39.

4-Chloro-2-(hept-6-enoylamino)benzamide (8f)

Followed the general procedure 1, using **4f** (256 mg), **5c** (220 mg). White solid (345 mg, 79% yield). Mp: 133–135 °C; ¹**H** NMR (400 MHz, DMSO- d_6) δ 11.86 (br.s, 1H, NH), 8.60 (d, J = 1.6 Hz, 1H, ArH), 8.32 (br.s, 1H, NH), 7.84-7.80 (m, 2H, ArH + NH), 7.18 (dd, J = 1.6, 8.6 Hz, 1H, ArH), 5.84– 5.74 (m, 1H, =CH), 5.03-4.93 (m, 2H, =CH₂), 2.36 (t, J = 7.2 Hz, 2H, CH₂), 2.05 (q, J = 7.2 Hz, 2H, CH₂), 1.61 (p, J = 7.2 Hz, 2H, CH₂), 1.40 (p, J = 7.2 Hz, 2H, CH₂); ¹³C NMR (125.7 MHz, DMSO- d_6) δ 171.9, 170.4, 141.5, 138.9, 137.1, 130.7, 122.4, 119.7, 118.1, 115.3, 37.8, 33.3, 28.1, 24.7; MS: m/z 281 (M+H); Anal. Calcd for C₁₄H₁₇ClN₂O₂: C, 59.89; H, 6.10; N, 9.98; found: C, 59.81; H, 6.07; N, 9.94.

2-(Hept-6-enoylamino)-4-nitrobenzamide (8g)

Followed the general procedure 1, using **4g** (272 mg), **5c** (220 mg). White solid (345 mg, 79% yield). Mp: 143–145 °C; ¹H NMR (400 MHz, DMSO- d_6) 11.53 (br.s, 1H, NH), 9.28 (s, 1H, ArH), 8.48 (br.s, 1H, NH), 8.00-7.91 (m, 3H, 2ArH + NH), 5.85–5.75 (m, 1H, =CH), 5.04-4.94 (m, 2H, =CH₂), 2.40 (t, J = 6.8 Hz, 2H, CH₂), 2.05 (q, J = 6.8 Hz, 2H, CH₂), 1.63 (p, J = 6.8 Hz, 2H, CH₂), 1.41 (p, J = 6.8 Hz, 2H, CH₂); ¹³C NMR (125.7 MHz, DMSO- d_6) δ 171.72, 169.04, 148.97, 140.02, 138.39, 129.90, 125.07, 116.63, 114.85, 114.40, 37.10, 32.79, 27.60, 24.14; MS: m/z 292 (M+H); Anal. Calcd for C₁₄H₁₇N₃O₄: C, 57.72; H, 5.88; N, 14.42; found: C, 57.66; H, 5.84; N, 14.40.

2-(Hept-6-enoylamino)-3-methylbenzamide (8h)

Followed the general procedure 1, using **4h** (225 mg), **5c** (220 mg). White solid (281 mg, 72% yield). Mp: 176–178 °C; ¹**H** NMR (400 MHz, DMSO- d_6) δ 9.43 (br.s, 1H, NH), 7.55 (br.s, 1H, NH), 7.35– 7.31 (m, 3H, 2ArH + NH), 7.19 (t, J = 7.2 Hz, 1H, ArH), 5.86–5.75 (m, 1H, =CH), 5.05-4.94 (m, 2H, =CH₂), 2.28 (t, J = 7.0 Hz, 2H, CH₂), 2.14 (s, 3H, CH₃), 2.05 (q, J = 7.0 Hz, 2H, CH₂), 1.59 (p, J = 7.0Hz, 2H, CH₂), 1.40 (p, J = 7.2 Hz, 2H, CH₂); ¹³C NMR (100.6 MHz, DMSO- d_6) δ 171.7, 170.1, 139.1, 136.2, 134.5, 134.2, 132.2, 126.3, 126.1, 115.3, 35.9, 33.4, 28.3, 25.1, 18.7; MS: m/z 261 (M+H); Anal. Calcd for C₁₅H₂₀N₂O₂: C, 69.20; H, 7.74; N, 10.76; found: C, 69.17; H, 7.72; N, 10.71.

3-Fluoro-2-(hept-6-enoylamino)benzamide (8i)

Followed the general procedure 1, using **4i** (231 mg), **5c** (220 mg). White solid (321 mg, 81% yield). Mp: 150–152 °C; ¹H NMR (400 MHz, DMSO- d_6) δ 9.53 (br.s, 1H, NH), 7.75 (br.s, 1H, NH), 7.50 (br.s, 1H, NH), 7.36–7.30 (m, 3H, ArH), 5.85–5.75 (m, 1H, =CH), 5.05-4.94 (m, 2H, =CH₂), 2.30 (t, *J* = 7.2 Hz, 2H, CH₂), 2.04 (q, *J* = 7.2 Hz, 2H, CH₂), 1.58 (p, *J* = 7.2 Hz, 2H, CH₂), 1.40 (p, *J* = 7.2 Hz, 2H, CH₂); ¹³C NMR (150.8 MHz, DMSO- d_6) δ 171.7, 168.6 (d, *J*_{C-F} = 3.0 Hz), 157.5 (d, *J*_{C-F} = 247.3 Hz), 139.1, 135.2, 127.4 (d, *J*_{C-F} = 9.0 Hz), 124.2 (d, *J*_{C-F} = 4.5 Hz), 124.1 (d, *J*_{C-F} = 6.0 Hz), 117.8 (d, *J*_{C-F} = 21.1 Hz), 115.2, 35.7, 33.4, 28.2, 25.0; MS: m/z 265 (M+H); Anal. Calcd for C₁₄H₁₇FN₂O₂: C, 63.62; H, 6.48; N, 10.60; found: C, 63.59; H, 6.44; N, 10.53. General procedure 2 for the synthesis of 2-(but-3-en-1-yl)quinazolin-4(3*H*)-ones (1a-i), 2-(pent-4-en-1-yl)quinazolin-4(3*H*)-ones (2a-i) and 2-(hex-5-en-1-yl)quinazolin-4(3*H*)-ones (3a-i).

S14

To a solution of corresponding benzamide **6-8** (1.5 mmol) in DMF (10 ml), DBU was added (0.35 g, 2.25 mmol), followed by stirring the reaction mixture at 65-70 °C for 6 h. After evaporation of the solvent in vacuo, water (10 ml) was added and the solution was then acidified with 2N hydrochloric acid until pH=6. The resulting precipitate was filtered off, washed with water, and dried in air.

2-(But-3-en-1-yl)quinazolin-4(3H)-one (1a)⁴

Followed the general procedure 2, using **6a** (327 mg). White solid (258 mg, 86% yield). Mp: 177–178 °C; ¹H NMR (400 MHz, DMSO- d_6) δ 12.18 (s, 1H, NH), 8.08 (d, J = 8.0 Hz, 1H, ArH), 7.77 (t, J = 8.0 Hz, 1H, ArH), 7.60 (d, J = 8.0 Hz, 1H, ArH), 7.46 (t, J = 7.6 Hz, 1H, ArH), 5.92-5.82 (m, 1H, CH), 5.09 (d, J = 17.2 Hz, 1H, =CH₂), 4.98 (d, J = 10.4 Hz, 1H, =CH₂), 2.70 (t, J = 7.2 Hz, 2H, CH₂), 2.47–2.49 (m, 2H, CH₂); ¹³C NMR (125.7 MHz, DMSO- d_6) δ 161.8, 156.7, 148.9, 137.1, 134.2, 126.8, 125.9, 125.7, 120.9, 115.5, 33.7, 30.6; HRMS (ESI, m/z): Calcd. for C₁₂H₁₃N₂O⁺ [M+H]⁺, 201.1023; found: 201.1024.

2-(But-3-en-1-yl)-5-fluoroquinazolin-4(3H)-one (1b)⁴

Followed the general procedure 2, using **6b** (354 mg). White solid (271 mg, 83% yield). Mp: 190–192 °C; ¹H NMR (400 MHz, DMSO- d_6) δ 12.23 (br.s, 1H, NH), 7.73 (dd, J = 8.0, 14.0 Hz, 1H, ArH), 7.40 (d, J = 8.0 Hz, 1H, ArH), 7.17 (dd, J = 8.0, 10.8 Hz, 1H, ArH), 5.91-5.81 (m, 1H, CH), 5.06 (d, J = 17.6 Hz, 1H, =CH₂), 4.98 (d, J = 10.0 Hz, 1H, =CH₂), 2.67 (t, J = 7.6 Hz, 2H, CH₂), 2.48–2.46 (m, 2H, CH₂); ¹³C NMR (125.7 MHz, DMSO- d_6) δ 160.9 (d, $J_{C-F} = 261.3$ Hz), 159.5, 158.3, 151.5 137.5,

135.2 (d, J_{C-F} = 10.0 Hz), 123.3, 116.0, 112.7 (d, J_{C-F} = 20.0 Hz), 110.7 (d, J_{C-F} = 6.3 Hz), 33.9, 30.9; **IR/cm⁻¹**: 2916, 1681, 1621, 1474, 1040, 891, 821; **HRMS** (ESI, m/z): Calcd. for C₁₂H₁₂FN₂O⁺ [M+H]⁺, 219.0928; found: 219.0925.

2-(But-3-en-1-yl)-6-methylquinazolin-4(3H)-one (1c)⁴

Followed the general procedure 2, using **6c** (348 mg). White solid (302 mg, 94% yield). Mp: 213–215 °C; ¹H NMR (400 MHz, DMSO- d_6) δ 12.09 (br.s, 1H, NH), 7.86 (s, 1H, ArH), 7.59 (d, J = 8.4 Hz, 1H, ArH), 7.49 (d, J = 8.4 Hz, 1H, ArH), 5.92–5.82 (m, 1H, CH), 5.06 (d, J = 17.2 Hz, 1H, =CH₂), 4.97 (d, J = 10.4 Hz, 1H, =CH₂), 2.68 (t, J = 7.6 Hz, 2H, CH₂), 2.49–2.45 (m, 2H, CH₂), 2.42 (s, 3H, CH₃); ¹³C NMR (125.7 MHz, DMSO- d_6) δ 161.7, 155.8, 146.9, 137.2, 135.5, 135.5, 126.7, 125.0, 120.6, 115.6, 33.7, 30.6, 20.7; **IR/cm⁻¹**: 2895, 1674, 1617, 1488, 912,840; **HRMS** (ESI, m/z): Calcd. for C₁₃H₁₅N₂O⁺ [M+H]⁺, 215.1179; found: 215.1177.

2-(But-3-en-1-yl)-6-chloroquinazolin-4(3H)-one (1d)⁴

Followed the general procedure 2, using **6d** (379 mg). White solid (327 mg, 87% yield). Mp: 206–207 °C; ¹H NMR (400 MHz, DMSO- d_6) δ 12.39 (s, 1H, NH), 7.99 (d, J = 2.2 Hz, 1H, ArH), 7.78 (dd, J = 8.8, 2.2 Hz, 1H, ArH), 7.61 (d, J = 8.8 Hz, 1H, ArH), 5.81–5.91 (m, 1H, =CH), 5.06 (d, J = 17.2 Hz, 1H, =CH₂), 4.97 (d, J = 10.0 Hz, 1H, =CH₂), 2.70 (t, J = 7.6 Hz, 2H, CH₂), 2.45–2.49 (m, 2H, CH₂); ¹³C NMR (125.7 MHz, DMSO- d_6) δ 160.7, 157.3, 147.5, 137.1, 134.2, 130.2, 129.0, 124.7, 122.1, 115.6, 33.7, 30.5; HRMS (ESI, m/z): Calcd. for C₁₂H₁₂ClN₂O⁺ [M+H]⁺, 235.0633; found: 235.0631.

2-(But-3-en-1-yl)-6-nitroquinazolin-4(3H)-one (1e)⁴

Followed the general procedure 2, using **6e** (395 mg). Light yellow solid (316 mg, 86% yield). Mp: 220–222 °C; ¹H NMR (400 MHz, DMSO-*d*₆) δ 12.67(s, 1H, NH), 8.72 (d, *J* = 2.6 Hz, 1H, ArH), 8.47 (dd, *J* = 8.8, 2.6 Hz, 1H, ArH), 7.74 (d, *J* = 8.8 Hz, 1H, ArH), 5.82–5.92 (m, 1H, =CH), 5.07 (dd, *J* = 1.6, 17.2 Hz, 1H, =CH₂), 4.99 (d, *J* = 1.6, 10.4 Hz, 1H, =CH₂), 2.74 (t, *J* = 7.6 Hz, 2H, CH₂), 2.47–2.53 (m, 2H, CH₂); ¹³C NMR (125.7 MHz, DMSO-*d*₆) δ 160.8, 160.7, 152.9, 144.2, 136.9, 128.4,

128.0, 121.7, 120.6, 115.7, 33.9, 30.3; **HRMS** (ESI, m/z): Calcd. for C₁₂H₁₂N₃O₃⁺ [M+H]⁺, 246.0873; found: 246.0870.

2-(But-3-en-1-yl)-7-chloroquinazolin-4(3H)-one (1f)⁴

Followed the general procedure 2, using **6f** (379 mg). White solid (331 mg, 94% yield). Mp: 184–185 °C; ¹H NMR (400 MHz, DMSO- d_6) δ 12.25 (s, 1H, NH), 8.06 (d, J = 8.8 Hz, 1H, ArH), 7.61 (s, H, ArH), 7.46 (d, J = 8.4 Hz, 1H, ArH), 5.82–5.92 (m, 1H, CH), 5.06 (d, J = 17.2 Hz, 1H, =CH₂), 4.98 (d, J = 10.4 Hz, 1H, =CH₂), 2.70 (t, J = 7.6 Hz, 2H, CH₂), 2.46–2.49 (m, 2H, CH₂); ¹³C NMR (150,8 MHz, DMSO- d_6) δ 161.5, 158.8, 150.3, 139.2, 137.4, 128.1, 126.5, 126.3, 120.0, 116.0, 34.1, 30.9; IR/cm⁻¹: 2910, 1682, 1620, 1603, 1428, 1072, 1001, 922, 878; HRMS (ESI, m/z): Calcd. for C₁₂H₁₂ClN₂O⁺ [M+H]⁺, 235.0633; found: 235.0635.

2-(But-3-en-1-yl)-7-nitroquinazolin-4(3H)-one (1g)

Followed the general procedure 2, using **6g** (395 mg). White solid (298 mg, 81% yield). Mp: 179–182 °C; ¹H NMR (400 MHz, DMSO- d_6) δ 12.59 (s, 1H, NH), 8.27-8.25 (m, 2H, 2ArH), 8.14 (dd, J = 2.4, 8.8 Hz, 1H, ArH), 5.92–5.82 (m, 1H, CH), 5.07 (dd, J = 1.6, 17.2 Hz, 1H, =CH₂), 4.98 (d, J = 1.6, 10.0 Hz, 1H, =CH₂), 2.73 (t, J = 7.6 Hz, 2H, CH₂), 2.52–2.47 (m, 2H, CH₂); ¹³C NMR (150.8 MHz, DMSO- d_6) δ 161.1, 159.8, 151.4, 149.6, 137.4, 128.4, 125.6, 122.1, 119.9, 116.1, 34.1, 30.8; HRMS (ESI, m/z): Calcd. for C₁₂H₁₂N₃O₃⁺ [M+H]⁺, 246.0873; found: 246.0882.

2-(But-3-en-1-yl)-8-methylquinazolin-4(3H)-one (1h)⁴

Followed the general procedure 2, using **6h** (348 mg). White solid (266 mg, 83% yield). Mp: 169–171 °C; **¹H NMR** (400 MHz, CDCl₃) δ 11.21–11.31 (br.s, 1H, NH), 8.14 (d, *J* = 7.6 Hz, 1H, ArH), 7.64 (d, *J* = 7.2 Hz, H, ArH), 7.38 (t, *J* = 7.6 Hz, 1H, ArH), 5.93–6.03 (m, 1H, CH), 5.18 (d, *J* = 16.8 Hz, 1H, =CH₂), 5.08 (d, *J* = 10.4 Hz, 1H, =CH₂), 2.96 (t, *J* = 7.6 Hz, 2H, CH₂), 2.69–2.72 (m, 5H, CH₃ + CH₂); **¹³C NMR** (125.7 MHz, DMSO-*d*₆) δ 164.2, 154.4, 147.2, 136.3, 135.3, 134.9, 125.5, 123.4, 119.9, 115.5, 34.3, 30.5, 17.2; **HRMS** (ESI, m/z): Calcd. for $C_{13}H_{15}N_2O^+$ [M+H]⁺, 215.1179; found: 215.1181.

2-(But-3-en-1-yl)-8-fluoroquinazolin-4(3H)-one (1i)⁴

Followed the general procedure 2, using **6i** (354 mg). White solid (258 mg, 79% yield). Mp: 175–177 °C; ¹H NMR (400 MHz, DMSO- d_6) δ 12.35 (br.s, 1H, NH), 7.88 (d, J = 8.0 Hz, 1H, ArH), 7.64 (dd, J = 8.0, 11.2 Hz, 1H, ArH), 7.44 (dt, J = 4.8, 8.0 Hz, 1H, ArH), 5.93–5.83 (m, 1H, CH), 5.08 (dd, J = 1.6, 17.2 Hz, 1H, =CH₂), 4.99 (d, J = 1.6, 10.0 Hz, 1H, =CH₂), 2.72 (t, J = 7.6 Hz, 2H, CH₂), 2.46–2.50 (m, 2H, CH₂); ¹³C NMR (150.8 MHz, DMSO- d_6) δ 161.5 (d, $J_{C-F} = 3.0$ Hz), 158.2, 156.6 (d, $J_{C-F} = 252.0$ Hz), 138.5 (d, $J_{C-F} = 10.5$ Hz), 137.5, 126.4 (d, $J_{C-F} = 7.5$ Hz), 123.4, 121.8 (d, $J_{C-F} = 3.0$ Hz), 120.0 (d, $J_{C-F} = 19.5$ Hz), 116.0, 34.4, 31.1; HRMS (ESI, m/z): Calcd. for C₁₂H₁₂FN₂O⁺ [M+H]⁺, 219.0928; found: 219.0925.

2-(Pent-4-en-1-yl)quinazolin-4(3H)-one (2a)

Followed the general procedure 2, using **7a** (348 mg). White solid (270 mg, 84%). Mp: 129–131 °C; ¹H NMR (400 MHz, DMSO- d_6) δ 12.14 (br.s, 1H, NH), 8.07 (d, J = 8.0 Hz, 1H, ArH), 7.76 (t, J = 8.0Hz, 1H, ArH), 7.59 (d, J = 8.0 Hz, 1H, ArH), 7.45 (t, J = 8.0 Hz, 1H, ArH), 5.88–5.78 (m, 1H, =CH), 5.06-4.97 (m, 2H, =CH₂), 2.60 (t, J = 7.6 Hz, 2H, CH₂), 2.09 (q, J = 7.6 Hz, 2H, CH₂), 1.82 (p, J = 7.6Hz, 2H, CH₂); ¹³C NMR (125.7 MHz, DMSO- d_6) δ 162.2, 157.7, 149.4, 138.5, 134.7, 127.2, 126.4, 126.1, 121.3, 115.7, 34.4, 33.0, 26.3; **IR/cm⁻¹**: 2919, 1681, 1613, 1468, 1340, 1253, 916, 893; **HRMS** (ESI, m/z): Calcd. for C₁₃H₁₅N₂O⁺ [M+H]⁺, 215.1179; found: 215.1181.

5-Fluoro-2-(pent-4-en-1-yl)quinazolin-4(3H)-one (2b)

Followed the general procedure 2, using **7b** (375 mg). White solid (296 mg, 85%). Mp: 138–141 °C; ¹H NMR (400 MHz, DMSO- d_6) δ 12.18 (br.s, 1H, NH), 7.72 (dd, J = 8.0, 18.0 Hz, 1H, ArH), 7.39 (d, J = 8.0 Hz, 1H, ArH), 7.17 (dd, J = 8.0, 10.8 Hz, 1H, ArH), 5.86–5.76 (m, 1H, =CH), 5.05-4.95 (m, 2H, =CH₂), 2.57 (t, J = 7.2 Hz, 2H, CH₂), 2.08 (q, J = 7.2 Hz, 2H, CH₂), 1.79 (p, J = 7.2 Hz, 2H, CH₂); ¹³C NMR (150.8 MHz, DMSO- d_6) δ 161.0 (d, $J_{C-F} = 262.4$ Hz), 159.5 (d, $J_{C-F} = 3.0$ Hz), 158.9, 151.6 138.5, 135.3 (d, $J_{C-F} = 10.6$ Hz), 123.3 (d, $J_{C-F} = 10.6$ Hz), 115.7, 112.7 (d, $J_{C-F} = 20.5$ Hz), 110.8 (d, $J_{C-F} = 6.0$ Hz), 34.1, 33.0, 26.2; **HRMS** (ESI, m/z): Calcd. for C₁₃H₁₄FN₂O⁺ [M+H]⁺, 233.1085; found: 233.1082.

6-Methyl-2-(pent-4-en-1-yl)quinazolin-4(3H)-one (2c)

Followed the general procedure 2, using 7c (369 mg). White solid (325 mg, 95%). Mp: 179–181 °C; ¹H NMR (300 MHz, DMSO-*d*₆) δ 12.06 (br.s, 1H, NH), 7.84 (s, 1H, ArH), 7.57 (d, *J* = 8.1 Hz, 1H, ArH), 7.46 (d, *J* = 8.1 Hz, 1H, ArH), 5.87–5.74 (m, 1H, =CH), 5.04-4.94 (m, 2H, =CH₂), 2.56 (t, *J* = 7.4 Hz, 2H, CH₂), 2.40 (s, 3H, CH₃), 2.07 (q, *J* = 7.4 Hz, 2H, CH₂), 1.78 (p, *J* = 7.4 Hz, 2H, CH₂); ¹³C NMR (150.8 MHz, DMSO-*d*₆) δ 162.2, 156.7, 147.4, 138.5, 135.9, 135.9, 127.1, 125.5, 121.0, 115.7, 34.3, 33.1, 26.3, 21.2; **IR/cm⁻¹**: 2928, 1675, 1617, 1489, 1314, 1254, 1207, 992, 909; **HRMS** (ESI, m/z): Calcd. for C₁₄H₁₇N₂O⁺ [M+H]⁺, 229.1336; found: 229.1335.

6-Chloro-2-(pent-4-en-1-yl)quinazolin-4(3H)-one (2d)

Followed the general procedure 2, using **7d** (400 mg). White solid (343 mg, 92%). Mp: 184–186 °C; ¹H NMR (400 MHz, DMSO- d_6) δ 12.27 (br.s, 1H, NH), 8.00 (s, 1H, ArH), 7.77 (d, J = 8.0 Hz, 1H, ArH), 7.61 (d, J = 8.0 Hz, 1H, ArH), 5.88–5.78 (m, 1H, =CH), 5.06-4.96 (m, 2H, =CH₂), 2.61 (t, J =7.2 Hz, 2H, CH₂), 2.10 (q, J = 7.2 Hz, 2H, CH₂), 1.82 (p, J = 7.2 Hz, 2H, CH₂); ¹³C NMR (150.8 MHz, DMSO- d_6) δ 161.3, 158.4, 148.0, 138.5, .134.8, 130.6, 129.5, 125.1, 122.5, 115.8, 34.4, 33.0, 26.2; **IR/cm⁻¹**: 2892, 1674, 1615, 1469, 1312, 1252, 1151, 1207, 992, 924; **HRMS** (ESI, m/z): Calcd. for C₁₃H₁₄ClN₂O⁺ [M+H]⁺, 249.0789; found: 249.0788.

6-Nitro-2-(pent-4-en-1-yl)quinazolin-4(3H)-one (2e)

Followed the general procedure 2, using 7e (416 mg). Light yellow solid (330 mg, 85%). Mp: 167–169 °C; ¹H NMR (300 MHz, DMSO- d_6) δ 12.66 (br.s, 1H, NH), 8.73 (s, 1H, ArH), 8.48 (d, J = 9.0 Hz,

1H, ArH), 7.75 (d, J = 9.0 Hz, 1H, ArH), 5.87–5.74 (m, 1H, =CH), 5.06-4.95 (m, 2H, =CH₂), 2.64 (t, J = 7.2 Hz, 2H, CH₂), 2.09 (q, J = 7.2 Hz, 2H, CH₂), 1.82 (p, J = 7.2 Hz, 2H, CH₂); ¹³C NMR (150.8 MHz, DMSO- d_6) δ 161.8, 161.4, 153.6, 144.8, 138.4, 129.0, 128.7, 122.3, 121.3, 115.8, 34.6, 33.0, 26.1; **HRMS** (ESI, m/z): Calcd. for C₁₃H₁₄N₃O₃⁺ [M+H]⁺, 260.103; found: 260.1027.

7-Chloro-2-(pent-4-en-1-yl)quinazolin-4(3H)-one (2f)

Followed the general procedure 2, using **7f** (400 mg). White solid (347 mg, 93%). Mp: 155–157 °C; **¹H NMR** (400 MHz, DMSO-*d*₆) δ 12.33 (br.s, 1H, NH), 8.06 (d, *J* = 8.4 Hz, 1H, ArH), 7.65 (d, *J* = 2.0 Hz, H, ArH), 7.49 (dd, *J* = 2.0, 8.4 Hz, 1H, ArH), 5.87–5.77 (m, 1H, CH), 5.06-4.96 (m, 2H, =CH₂), 2.60 (t, *J* = 7.2 Hz, 2H, CH₂), 2.09 (q, *J* = 7.2 Hz, 2H, CH₂), 1.81 (p, *J* = 7.2 Hz, 2H, CH₂); ¹³C NMR (150.8 MHz, DMSO-*d*₆) δ 161.8, 159.6, 150.5, 139.3, 138.5, 128.2, 126.6, 126.3, 120.1, 115.8, 34.44, 33.01 26.3; **HRMS** (ESI, m/z): Calcd. for C₁₃H₁₄ClN₂O⁺ [M+H]⁺, 249.0789; found: 249.0788.

7- Nitro-2-(pent-4-en-1-yl)quinazolin-4(3H)-one (2g)

Followed the general procedure 2, using crude **7g** (85% purity) (490 mg). White solid (311 mg, 80 %). Mp: 143–145 °C; ¹H NMR (400 MHz, DMSO- d_6) δ 12.54 (br.s, 1H, NH), 8.30-8.28 (m, 2H, ArH), 8.17 (dd, J = 2.0, 8.4 Hz, H, ArH), 5.89–5.78 (m, 1H, CH), 5.07-4.97 (m, 2H, =CH₂), 2.65 (t, J = 7.2 Hz, 2H, CH₂), 2.12 (q, J = 7.2 Hz, 2H, CH₂), 1.84 (p, J = 7.2 Hz, 2H, CH₂); ¹³C NMR (150.8 MHz, DMSO- d_6) δ 161.2, 160.3, 151.5, 149.7, 138.4, 128.4, 125.6, 122.2, 120.0, 115.8, 34.4, 33.0, 26.1; HRMS (ESI, m/z): Calcd. for C₁₃H₁₄N₃O₃⁺ [M+H]⁺, 260.103; found: 260.1032.

8-Methyl-2-(pent-4-en-1-yl)quinazolin-4(3H)-one (2h)

Followed the general procedure 2, using **7h** (369 mg). White solid (304mg, 89%). Mp: 135–138 °C; ¹H NMR (400 MHz, DMSO-*d*₆) δ 12.15 (br.s, 1H, NH), 7.91 (d, *J* = 7.6 Hz, 1H, ArH), 7.62 (d, *J* = 7.6 Hz, H, ArH), 7.32 (t, *J* = 7.6 Hz, 1H, ArH), 5.89–5.79 (m, 1H, =CH), 5.07-4.97 (m, 2H, =CH₂), 2.62 (t, *J* = 7.4 Hz, 2H, CH₂), 2.50 (s, 3H, CH₃), 2.12 (q, *J* = 7.4 Hz, 2H, CH₂), 1.83 (p, *J* = 7.4 Hz, 2H, CH₂);¹³C NMR (150.8 MHz, DMSO-*d*₆) δ 162.5, 155.4, 147.7, 138.6, 135.2, 135.0, 125.8, 123.8, 121.1, 115.7, 34.4, 33.0, 26.2, 17.6; **IR/cm⁻¹**: 2911, 1685, 1620, 1472, 1340, 1310, 1191, 996, 917; **HRMS** (ESI, m/z): Calcd. for C₁₄H₁₇N₂O⁺ [M+H]⁺, 229.1336; found: 229.1334.

8-Fluoro-2-(pent-4-en-1-yl)quinazolin-4(3H)-one (2i)

Followed the general procedure 2, using 7i (375 mg). White solid (265 mg, 76%). Mp: 133–135 °C; ¹H NMR (400 MHz, DMSO- d_6) δ 12.33 (br.s, 1H, NH), 7.87 (d, J = 7.8 Hz, 1H, ArH), 7.62 (dd, J = 7.8, 10.4 Hz, 1H, ArH), 7.42 (dt, J = 7.8, 4.8 Hz, 1H, ArH), 5.87–5.77 (m, 1H, =CH), 5.05-4.95 (m, 2H, =CH₂), 2.62 (t, J = 7.5 Hz, 2H, CH₂), 2.11 (q, J = 7.5 Hz, 2H, CH₂), 1.81 (p, J = 7.5 Hz, 2H, CH₂); ¹³C NMR (101 MHz, DMSO- d_6) δ 161.4, 158.6, 156.7 (d, $J_{C-F} = 251.0$ Hz), 138.6 (d, $J_{C-F} = 12.1$ Hz), 138.5, 126.5 (d, $J_{C-F} = 7.5$ Hz), 123.0, 121.9 (d, $J_{C-F} = 5.0$ Hz), 120.1 (d, $J_{C-F} = 18.1$ Hz), 115.8, 34.6, 33.1, 26.4; HRMS (ESI, m/z): Calcd. for C₁₃H₁₄FN₂O⁺ [M+H]⁺, 233.1085; found: 233.1083.

2-(Hex-5-en-1-yl)quinazolin-4(3H)-one (3a)

Followed the general procedure 2, using **8a** (369 mg). White solid (291 mg, 85%). Mp: 138-142 °C; ¹H NMR (400 MHz, DMSO- d_6) δ 12.16 (br.s, 1H, NH), 8.06 (d, J = 7.6 Hz, 1H, ArH), 7.74 (t, J = 7.6Hz, 1H, ArH), 7.57 (d, J = 7.6 Hz, 1H, ArH), 7.43 (t, J = 7.6 Hz, 1H, ArH), 5.83–5.73 (m, 1H, =CH), 5.01-4.91 (m, 2H, =CH₂), 2.59 (t, J = 7.2 Hz, 2H, CH₂), 2.03 (q, J = 7.2 Hz, 2H, CH₂), 1.71 (p, J = 7.2Hz, 2H, CH₂), 1.39 (p, J = 7.2 Hz, 2H, CH₂); ¹³C NMR (100.6 MHz, DMSO- d_6) δ 162.4, 157.9, 149.4, 139.0, 134.7, 127.2, 126.3, 126.2, 121.3, 115.3, 34.8, 33.3, 28.2, 26.8; **IR/cm⁻¹**: 2915, 1680, 1615, 1466, 1340, 1250, 1197, 1139, 995, 898; **HRMS** (ESI, m/z): Calcd. for C₁₄H₁₇N₂O⁺ [M+H]⁺, 229.1336; found: 229.1333.

5-Fluoro-2-(hex-5-en-1-yl)quinazolin-4(3H)-one (3b)

Followed the general procedure 2, using **8b** (396 mg). White solid (303 mg, 82%). Mp: 146–148 °C; ¹H NMR (400 MHz, DMSO-*d*₆) δ 12.18 (s, 1H, NH), 7.73 (dt, *J* = 7.8, 5.6 Hz, 1H, ArH), 7.39 (d, *J* = 7.8 Hz, 1H, ArH), 7.17 (dd, *J* = 7.8, 10.4 Hz, 1H, ArH), 5.85–5.74 (m, 1H, =CH), 5.03-4.93 (m, 2H, =CH₂), 2.57 (t, *J* = 7.2 Hz, 2H, CH₂), 2.05 (q, *J* = 7.2 Hz, 2H, CH₂), 1.71 (p, *J* = 7.2 Hz, 2H, CH₂), 1.41 (p, J = 7.2 Hz, 2H, CH₂); ¹³C NMR (125.7 MHz, DMSO- d_6) δ 161.0 (d, $J_{C-F} = 262.7$ Hz), 159.5 (d, $J_{C-F} = 5.0$ Hz), 159.0, 151.6 138.9, 135.2 (d, $J_{C-F} = 10.1$ Hz), 123.3, 115.3, 112.7 (d, $J_{C-F} = 20.2$ Hz), 110.7 (d, ${}^{4}J_{C-F} = 6.3$ Hz), 34.5, 33.37, 28.2, 26.6; **HRMS** (ESI, m/z): Calcd. for C₁₄H₁₆FN₂O⁺ [M+H]⁺, 247.1241; found: 247.1239.

2-(Hex-5-en-1-yl)-6-methylquinazolin-4(3H)-one (3c)

Followed the general procedure 2, using **8c** (390 mg). White solid (327 mg, 90%). Mp: 169-171 °C; **¹H NMR** (400 MHz, DMSO-*d*₆) δ 12.02 (s, 1H, NH), 7.86 (s, 1H, ArH), 7.58 (d, *J* = 8.4 Hz, 1H, ArH), 7.49 (d, *J* = 8.4 Hz, 1H, ArH), 5.85–5.75 (m, 1H, CH), 5.03-4.93 (m, 2H, =CH₂), 2.58 (t, *J* = 7.6 Hz, 2H, CH₂), 2.42 (s, 3H, CH₃), 2.06 (q, *J* = 7.2 Hz, 2H, CH₂), 1.72 (p, *J* = 7.2 Hz, 2H, CH₂), 1.42 (p, *J* = 7.2 Hz, 2H, CH₂); ¹³C NMR (125.7 MHz, DMSO-*d*₆) δ 162.8, 157.5, 148.0, 139.6, 136.6, 136.5, 127.7, 126.1, 121.6, 115.9, 35.3, 33.9, 28.8, 27.3, 21.8; **IR/cm⁻¹**: 2927, 1673, 1616, 1488, 1435, 1303, 1255, 1208, 991, 905; **HRMS** (ESI, m/z): Calcd. for C₁₅H₁₉N₂O⁺ [M+H]⁺, 243.1492; found: 243.149.

6-Chloro-2-(hex-5-en-1-yl)quinazolin-4(3H)-one (3d)

Followed the general procedure 2, using **8d** (420 mg). White solid (358 mg, 91%). Mp: 174-176 °C; ¹H NMR (400 MHz, DMSO-*d*₆) δ 12.24 (br.s, 1H, NH), 7.98 (d, *J* = 2.4 Hz, 1H, ArH), 7.74 (dd, *J* = 8.8, 2.4 Hz, 1H, ArH), 7.58 (d, *J* = 8.4 Hz, 1H, ArH), 5.83–5.73 (m, 1H, =CH), 5.01-4.91 (m, 2H, =CH₂), 2.58 (t, *J* = 7.4 Hz, 2H, CH₂), 2.03 (q, *J* = 7.4 Hz, 2H, CH₂), 1.70 (p, *J* = 7.4 Hz, 2H, CH₂), 1.39 (p, *J* = 7.4 Hz, 2H, CH₂); ¹³C NMR (101 MHz, DMSO-*d*₆) δ 161.8, 159.0, 148.2, 139.0, 134.6, 130.4, 129.4, 125.2, 122.5, 115.3, 35.0, 33.3, 28.2, 26.7; **IR/cm⁻¹**: 2940, 1673, 1613, 1468, 1434, 1301, 1248, 1151, 992, 842; **HRMS** (ESI, m/z): Calcd. for C₁₄H₁₆ClN₂O⁺ [M+H]⁺, 263.0946; found: 263.0944.

2-(Hex-5-en-1-yl)-6-nitroquinazolin-4(3H)-one (3e)

Followed the general procedure 2, using **8e** (437 mg). Light yellow solid (356 mg, 87%). Mp: 147-149 °C; ¹H NMR (500 MHz, DMSO-*d*₆) δ 12.61 (s, 1H, NH), 8.71 (s, 1H, ArH), 8.45 (d, *J* = 9.0 Hz, 1H, ArH), 7.72 (d, *J* = 9.0 Hz, 1H, ArH), 5.83–5.74 (m, 1H, =CH), 5.01-4.92 (m, 2H, =CH₂), 2.63 (t, *J* =

7.5 Hz, 2H, CH₂), 2.05 (q, J = 7.5 Hz, 2H, CH₂), 1.73 (p, J = 7.5 Hz, 2H, CH₂), 1.41 (p, J = 7.5 Hz, 2H, CH₂); ¹³C **NMR** (125.7 MHz, DMSO- d_6) δ 161.6, 161.0, 153.2, 144.4, 138.5, 128.6, 128.3, 121.9, 120.8, 114.9, 34.5, 32.8, 27.7, 26.1; **IR/cm⁻¹**: 2937, 1677, 1611, 1527, 1491,1341, 1237, 1069, 999, 924; **HRMS** (ESI, m/z): Calcd. for C₁₄H₁₆N₃O³⁺ [M+H]⁺, 274.1186; found: 274.1183.

7-Chloro-2-(hex-5-en-1-yl)quinazolin-4(3H)-one (3f)

Followed the general procedure 2, using **8f** (420 mg). White solid (362 mg, 92%). Mp: 150–152 °C; ¹H NMR (300 MHz, DMSO- d_6) δ 12.30 (br.s, 1H, NH), 8.06 (d, J = 8.4 Hz, 1H, ArH), 7.64 (d, J = 2.1Hz, 1H, ArH), 7.48 (dd, J = 8.4, 2.1 Hz, 1H, ArH), 5.86–5.73 (m, 1H, =CH), 5.03-4.92 (m, 2H, =CH₂), 2.60 (t, J = 7.5 Hz, 2H, CH₂), 2.05 (q, J = 7.5 Hz, 2H, CH₂), 1.71 (p, J = 7.5 Hz, 2H, CH₂), 1.40 (p, J = 7.5 Hz, 2H, CH₂); 1³C NMR (125.7 MHz, DMSO- d_6) δ 161.2, 159.2, 150.0, 138.9, 138.5, 127.8, 126.2, 125.9, 119.6, 114.9, 34.4, 32.8, 27.7, 26.2; **IR/cm⁻¹**: 2916, 1676, 1620, 1604, 1449, 1426, 1312, 1073, 991, 894; **HRMS** (ESI, m/z): Calcd. for C₁₄H₁₆ClN₂O⁺ [M+H]⁺, 263.0946; found: 263.0945.

2-(Hex-5-en-1-yl)-7-nitroquinazolin-4(3H)-one (3g)

Followed the general procedure 2, using **8g** (437 mg). White solid (348 mg, 85%). Mp: 139-141 °C; ¹H NMR (400 MHz, DMSO-*d*₆) δ 12.56 (br.s, 1H, NH), 8.17 (d, *J* = 8.4 Hz, 1H, ArH), 5.86–5.75 (m, 1H, =CH), 5.04-4.94 (m, 2H, =CH₂), 2.65 (t, *J* = 7.4 Hz, 2H, CH₂), 2.05 (q, *J* = 7.4 Hz, 2H, CH₂), 1.75 (p, *J* = 7.4 Hz, 2H, CH₂), 1.43 (p, *J* = 7.4 Hz, 2H, CH₂); ¹³C NMR (125.7 MHz, DMSO-*d*₆) δ 161.3, 160.5, 151.5, 149.7, 138.9, 128.4, 125.6, 122.1, 119.9, 115.3, 34.8, 33.3, 28.1, 26.5; HRMS (ESI, m/z): Calcd. for C₁₄H₁₆N₃O³⁺ [M+H]⁺, 274.1186; found: 274.1183.

2-(Hex-5-en-1-yl)-8-methylquinazolin-4(3H)-one (3h)

Followed the general procedure 2, using **8h** (390 mg). White solid (287 mg, 79%). Mp: 119-121 °C; ¹H NMR (600 MHz, DMSO-*d*₆) δ 12.10 (br.s, 1H, NH), 7.89 (dd, *J* = 7.8, 1.5 Hz, 1H, ArH), 7.57 (d, *J* = 7.8 Hz, H, ArH), 7.28 (t, *J* = 7.8 Hz, 1H, ArH), 5.80–5.73 (m, 1H, =CH), 4.99-4.90 (m, 2H, =CH₂), 2.59 (t, *J* = 7.5 Hz, 2H, CH₂), 2.03 (q, *J* = 7.5 Hz, 2H, CH₂), 1.73 (p, *J* = 7.5 Hz, 2H, CH₂), 1.40 (p, *J* = 7.5 Hz, 2H, CH₂); ¹³C NMR (150.8 MHz, DMSO-*d*₆) δ 162.6, 156.6, 147.8, 139.0, 135.2, 135.0, 125.7, 123.8, 121.1, 115.2, 34.8, 33.3, 28.2, 26.6, 17.6; HRMS (ESI, m/z): Calcd. for C₁₅H₁₉N₂O⁺ [M+H]⁺, 243.1492; found: 243.1492.

8-Fluoro-2-(hex-5-en-1-yl)quinazolin-4(3H)-one (3i)

Followed the general procedure 2, using **8i** (396 mg). White solid (321 mg, 87%). Mp: 107-110 °C; ¹H **NMR** (300 MHz, DMSO- d_6) δ 12.31 (br.s, 1H, NH), 7.87 (d, J = 8.1 Hz, 1H, ArH), 7.62 (dd, J = 8.1, 10.8 Hz, 1H, ArH), 7.42 (td, J = 8.1, 4.8 Hz, 1H, ArH),), 5.86–5.72 (m, 1H, =CH), 5.03-4.92 (m, 2H, =CH₂), 2.62 (t, J = 7.5 Hz, 2H, CH₂), 2.05 (q, J = 7.5 Hz, 2H, CH₂), 1.72 (p, J = 7.5 Hz, 2H, CH₂), 1.41 (p, J = 7.5 Hz, 2H, CH₂); ¹³C **NMR** (150.8 MHz, DMSO- d_6) δ 161.4 (d, $J_{C-F} = 4.5$ Hz), 158.3, 156.6 (d, $J_{C-F} = 253.3$ Hz), 138.9, 138.6 (d, $J_{C-F} = 12.0$ Hz), 126.4 (d, $J_{C-F} = 7.5$ Hz), 123.3, 121.9 (d, $J^{C-F} = 4.5$ Hz), 120.1 (d, $J_{C-F} = 19.6$ Hz), 115.3, 34.9, 33.3, 28.2, 26.7; **IR/cm⁻¹**: 2910, 1678, 1617, 1570, 1480, 1437, 1258, 1195, 1046, 999, 920, 893; **HRMS** (ESI, m/z): Calcd. for C₁₄H₁₆FN₂O⁺ [M+H]⁺, 247.1241; found: 247.1239.

Synthesis of 1-methylene-2,3-dihydropyrrolo[2,1-*b*]quinazolin-9(1*H*)-ones (9a-i), 9-methylene-8,9-dihydro-6*H*-pyrido[2,1-*b*]quinazolin-11(7*H*)-ones (10a-i), 1-vinyl-2,3-dihydropyrrolo[2,1*b*]quinazolin-9(1*H*)-one (11a-c,e,h), 9-vinyl-8,9-dihydro-6*H*-pyrido[2,1-*b*]quinazolin-11(7*H*)-one (12a-i) and 8-nitro-1-vinyl-2,3-dihydropyrrolo[1,2-*a*]quinazolin-5(1*H*)-one (13g)

6, 9: n=0; 7, 10,11: n=1; 8,12: n=2

method **A:** Pd(OAc)₂ ,(10 mol %), PPh₃ ,(21 mol %), Cs₂CO₃ (2 eq), BQ, (2 eq), dioxane, 16h, 110 °C; method **B:** Pd(PPh₃)₂Cl₂ (10 mol %), t-BuONa (2 eq), BQ (3 eq), toluene, 24-48h, 110 °C

Method A. To $Pd(OAc)_2$ (22 mg, 0.1 mmol) and PPh_3 (55 mg, 0.21 mmol) in dioxane (20 ml), corresponding 2-butenylquinazolinone **1a,c,d,f,h** (1.0 mmol), Cs_2CO_3 (652 mg, 2.0 mmol), and benzoquinone (652 mg, 2.0 mmol) were added. The stirred mixture was boiled for 16 h and then cooled, followed by evaporation of the solvent *in vacuo*, dilution of the residue with water (5 ml), and extraction with chloroform (3 x 20 ml). The organic layer was dried with Na₂SO₄ and the solvent was evaporated *in vacuo*. Pure product **9a-h** was chromatographed from the residue on silica gel eluting with CHCl₃ : MeOH (100:1, v/v).

Method B. To $Pd(PPh_3)_2Cl_2$ (22 mg, 0.1 mmol) in toluene (20 ml), corresponding 2butenyl(pentenyl)quinazolinone **1b,e,g,i** (2a-i, 3a-i) (1.0 mmol), *t*-BuONa (192 mg, 2.0 mmol), and benzoquinone (270 mg, 3.0 mmol) were added. The stirred mixture was boiled for 24-48 h and then cooled, followed by evaporation of the solvent *in vacuo*, dilution of the residue with water (5 ml), and extraction with chloroform (3 x 20 ml). The organic layer was dried with Na₂SO₄ and the solvent was evaporated *in vacuo*. Pure product was chromatographed from the residue on silica gel eluting with CHCl₃ : MeOH (from 100:1, v/v).

1-Methylene-2,3-dihydropyrrolo[2,1-b]quinazolin-9(1H)-one (9a)

Following the method A, using **1a** (200 mg). Light brown solid (127 mg, 64%). Mp 101-103 °C; ¹H **NMR** (400 MHz, CDCl₃) δ 8.32 (d, J = 7.6 Hz, 1H, 1ArH), 7.73 (t, J = 7.6 Hz, 1H, ArH), 7.62 (d, J = 7.6 Hz, 1H, 1ArH), 7.47 (t, J = 7.6 Hz, 1H, ArH), 6.45 (s, 1H, =CH₂), 5.03 (s, 1H, =CH₂), 3.14–3.10

(m, 2H, CH₂), 2.92–2.86 (m, 2H, CH₂); ¹³C **NMR** (125.7 MHz, CDCl₃) δ 160.8, 158.9, 147.4, 143.3, 134.4, 126.9, 126.7, 126.6, 121.2, 100.5, 28.9, 25.9; **HRMS** (ESI, m/z): Calcd. for C₁₂H₁₁N₂O⁺ [M+H]⁺, 199.0866; found: 199.0865.

8-Fluoro-1-methylene-2,3-dihydropyrrolo[2,1-*b*]quinazolin-9(1*H*)-one (9b)

Following the method B, using 1b (218 mg). Light brown solid (117 mg, 54%). Mp: 150–152 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.69-7.63 (m, 1H, 1ArH), 7.43 (d, *J* = 8.0 Hz, 1H, 1ArH), 7.12 (dd, *J* = 8.0 Hz, 10.4 Hz, 1H, ArH), 6.46 (s, 1H, =CH₂), 5.03 (s, 1H, =CH₂), 3.14–3.10 (m, 2H, CH₂), 2.93–2.89 (m, 2H, CH₂); ¹³C NMR (125.7 MHz, CDCl₃) δ 162.0 (d, *J*_{*C*-*F*} = 266.9 Hz), 159.9, 158.0, 149.6, 142.9, 134.8 (d, *J*_{*C*-*F*} = 12.1 Hz), 122.6 (d, *J*_{*C*-*F*} = 4.5 Hz), 113.5 (d, *J*_{*C*-*F*} = 21.1 Hz), 110.8, 101.0, 28.9, 25.8; HRMS (ESI, m/z): Calcd. for C₁₂H₁₀FN₂O⁺ [M+H]⁺, 217.0772; found: 217.0726.

7-Methyl-1-methylene-2,3-dihydropyrrolo[2,1-b]quinazolin-9(1H)-one (9c)

Following the method A, using **1c** (214 mg). Light brown solid (125 mg, 59%). Mp: 125-127 °C; ¹H **NMR** (400 MHz, CDCl₃) δ 8.03 (s, 1H, 1ArH), 7.48-7.42 (m, 2H, 2ArH), 6.35 (s, 1H, =CH₂), 4.95 (s, 1H, =CH₂), 3.05–3.01 (m, 2H, CH₂), 2.85–2.80 (m, 2H, CH₂); ¹³C **NMR** (125.7 MHz, CDCl₃) δ 160.7, 158.0, 145.3, 143.3, 136.6, 135.6, 126.4, 126.2, 120.8, 100.2, 28.7, 25.8, 21.2; **HRMS** (ESI, m/z): Calcd. for C₁₃H₁₃N₂O⁺ [M+H]⁺, 213.1023; found: 213.1014.

7-Chloro-1-methylene-2,3-dihydropyrrolo[2,1-b]quinazolin-9(1H)-one (9d)

Following the method A, using **1d** (234.5 mg). White solid (135 mg, 58%). Mp: 141-143 °C; ¹H NMR (400 MHz, CDCl₃) δ 8.26 (d, J = 2.4 Hz, 1H, 1ArH), 7.65 (dd, J = 8.8, 2.4 Hz, 1H, ArH), 7.55 (d, J = 8.8 Hz, 1H, 1ArH), 6.42 (s, 1H, =CH₂), 5.04 (s, 1H, =CH₂), 3.13–3.09 (m, 2H, CH₂), 2.92–2.88 (m, 2H, CH₂); ¹³C NMR (125.7 MHz, DMSO- d_6) δ 160.9, 159.5, 146.5, 144.8, 135.0, 131.1, 129.2, 125.6, 122.5, 99.9, 28.7, 25.7; HRMS (ESI, m/z): Calcd. for C₁₂H₁₀ClN₂O⁺ [M+H]⁺, 233.0476; found: 233.0474.

1-Methylene-7-nitro-2,3-dihydropyrrolo[2,1-b]quinazolin-9(1H)-one (9e)

Following the method B, using **1e** (245 mg). Light yellow solid (100 mg, 41%). Mp: 194-196 °C; ¹H **NMR** (300 MHz, CDCl₃) δ 9.21 (d, J = 2.1 Hz, 1H, 1ArH), 8.54 (dd, J = 9.0, 2.1 Hz, 1H, ArH), 7.76 (d, J = 9.0 Hz, 1H, 1ArH), 6.49 (s, 1H, =CH₂), 5.13 (s, 1H, =CH₂), 3.23–3.18 (m, 2H, CH₂), 2.99–2.94 (m, 2H, CH₂); ¹³C **NMR** (125.7 MHz, CDCl₃) δ 162.6, 159.4, 151.5, 145.7, 142.8, 128.5, 128.3, 123.5, 121.5, 101.9, 29.3, 25.6; **IR/cm⁻¹**: 2925, 1691, 1611, 1518, 1464, 1342, 1261, 1097, 1021; **HRMS** (ESI, m/z): Calcd. for C₁₂H₁₀N₃O₃⁺ [M+H]⁺, 244.0717; found: 244.0713.

6-Chloro-1-methylene-2,3-dihydropyrrolo[2,1-b]quinazolin-9(1H)-one (9f)

Following the method A, using **1f** (234.5 mg). White solid (130 mg,56 %). Mp: 129-131 °C; **¹H NMR** (400 MHz, CDCl₃) δ 8.25 (d, *J* = 8.4 Hz, 1H, ArH), 7.62 (d, *J* = 1.6 Hz, 1H, ArH), 7.42 (dd, *J* = 1.6, 8.4 Hz, 1H, ArH), 6.43 (s, 1H, =CH₂), 5.05 (s, 1H, =CH₂), 3.15–3.11 (m, 2H, CH₂), 2.93–2.89 (m, 2H, CH₂);¹³C **NMR** (150.8 MHz, CDCl₃) δ 160.3, 160.2, 148.4, 143.1, 140.6, 128.3, 127.2, 126.3, 119.7, 100.9, 29.0, 25.8; **IR/cm⁻¹**: 2924, 1680, 1601, 1462, 1261, 1096, 1020; **HRMS** (ESI, m/z): Calcd. for C₁₂H₁₀ClN₂O⁺ [M+H]⁺, 233.0476; found: 233.0475.

1-Methylene-6-nitro-2,3-dihydropyrrolo[2,1-b]quinazolin-9(1*H*)-one (9g)

Following the method B, using **1g** (245 mg). Light yellow solid (109 mg, 45%). Mp: 207-209 °C; ¹H **NMR** (300 MHz, CDCl₃) δ 8.51-8.48 (m, 2H, 2ArH), 8.25 (d, J = 8.4 Hz, 1H, 1ArH), 6.48 (s, 1H, =CH₂), 5.13 (s, 1H, =CH₂), 3.22–3.17 (m, 2H, CH₂), 2.99–2.93 (m, 2H, CH₂);¹³C **NMR** (125.7 MHz, CDCl₃) δ 161.3, 159.4, 151.5, 148.0, 142.9, 128.7, 125.4, 122.4, 120.3, 101.8, 29.1, 25.7; **IR/cm⁻¹**: 2926, 1686, 1608,1525, 1340, 1306, 907; **HRMS** (ESI, m/z): Calcd. for C₁₂H₁₀N₃O₃⁺ [M+H]⁺, 244.0717; found: 244.0713.

5-Methyl-1-methylene-2,3-dihydropyrrolo[2,1-*b*]quinazolin-9(1*H*)-one (9h)

Me

Following the method A, using **1h** (214 mg). Light brown solid (125 mg, 59%). Mp: 120-121 °C; **¹H NMR** (400 MHz, CDCl₃) δ 8.20 (d, J = 7.6 Hz, 1H, 1ArH), 7.58 (d, J = 7.6 Hz, 1H, ArH), 7.36 (t, J = 7.6 Hz, 1H, 1ArH), 6.46–6.44 (m, 1H, =CH₂), 5.04–5.03 (m, 1H, =CH₂), 3.17–3.13 (m, 2H, CH₂), 2.93–2.88 (m, 2H, CH₂); ¹³C **NMR** (150.8 MHz, CDCl₃) δ 161.3, 157.6, 146.1, 143.4, 135.1, 135.0, 126.0, 124.5, 121.1, 100.4, 29.1, 25.9, 17.5; **IR/cm⁻¹**: 2963, 1684, 1614, 1454, 1335, 1277, 1148, 1073, 875; **HRMS** (ESI, m/z): Calcd. for C₁₃H₁₃N₂O⁺ [M+H]⁺, 213.1023; found: 213.1023.

5-Fluoro-1-methylene-2,3-dihydropyrrolo[2,1-*b*]quinazolin-9(1*H*)-one (9i)

Following the method B, using **1i** (218 mg). White solid (124 mg, 57%). Mp: 142-144 °C; **¹H NMR** (400 MHz, CDCl₃) δ 8.12 (d, J = 8.0 Hz, 1H, 1ArH), 7.50-7.39 (m, 2H, 2ArH), 6.45 (s, 1H, =CH₂), 5.07 (s, 1H, =CH₂), 3.21–3.17 (m, 2H, CH₂), 2.95–2.91 (m, 2H, CH₂); ¹³C NMR (125.7 MHz, CDCl₃) δ 159.4 (d, $J_{C-F} = 2.5$ Hz), 159.2, 156.1 (d, $J_{C-F} = 255.2$ Hz), 142.7, 136.3 (d, $J_{C-F} = 11.3$ Hz), 126.1 (d, $J_{C-F} = 7.5$ Hz), 122.7, 121.9 (d, $J_{C-F} = 5.0$ Hz), 119.4 (d, $J_{C-F} = 18.9$ Hz), 110.6, 28.7, 25.3; **IR/cm⁻¹**: 2963, 1690, 1614, 1448, 1339, 1260, 1096, 1020, 864; **HRMS** (ESI, m/z): Calcd. for C₁₂H₁₀FN₂O⁺ [M+H]⁺, 217.0772; found: 217.0722.

9-Methylene-6,7,8,9-tetrahydropyrido[2,1-*b*]quinazolin-11-one (10a)

Following the method B, using **2a** (214 mg). White solid (114 mg, 54%). Mp 76–78 °C; ¹H NMR (500 MHz, CDCl₃) δ 8.31 (d, J = 8.0 Hz, 1H, ArH), 7.73 (t, J = 8.0 Hz, 1H, ArH), 7.61 (d, J = 8.0 Hz, 1H, ArH), 7.46 (t, J = 8.0 Hz, 1H, ArH), 5.59 (s, 1H, =CH₂), 5.45 (s, 1H, =CH₂), 2.85-2.83 (m, 2H, CH₂), 2.67-2.64 (m, 2H, CH₂), 2.03–1.98 (m, 2H, CH₂); ¹³C NMR (150.8 MHz, DMSO- d_6) δ 160.3, 155.8, 146.8, 136.9, 134.4, 127.4, 126.6, 126.5, 121.3, 112.5, 31.7, 29.6, 18.3; **IR/cm⁻¹**: 2950, 1677, 1586, 1566, 1474, 1394, 1335, 1246, 1172, 921; **HRMS** (ESI, m/z): Calcd. for C₁₃H₁₃N₂O⁺ [M+H]⁺, 213.1023; found: 213.1022.

1-Fluoro-9-methylene-6,7,8,9-tetrahydropyrido[2,1-b]quinazolin-11-one (10b)

Following the method B, using **2b** (232 mg). White solid (117 mg, 56%). Mp: 85–86°C (decom.); ¹H **NMR** (500 MHz, CDCl₃) δ 7.63 (dt, J = 5.0, 8.3 Hz, 1H, ArH), 7.38 (d, J = 8.3 Hz, 1H, ArH), 7.07 (dd, J = 8.3, 10.5 Hz, 1H, ArH), 5.57 (s, 1H, =CH₂), 5.43 (s, 1H, =CH₂), 2.81-2.78 (m, 2H, CH₂), 2.64-2.61 (m, 2H, CH₂), 2.01–1.95 (m, 2H, CH₂); ¹³C **NMR** (150.8 MHz, CDCl₃) δ 161.7 (d, $J_{C-F} = 265.4$ Hz), 157.3 (d, $J_{C-F} = 4.5$ Hz), 156.8, 149.0, 136.3, 134.7 (d, $J_{C-F} = 10.6$ Hz), 122.6 (d, $J_{C-F} = 3.0$ Hz), 113.1 (d, $J_{C-F} = 21.1$ Hz), 112.8, 111.0 (d, $J_{C-F} = 6.0$ Hz), 31.7, 29.7, 18.2; **HRMS** (ESI, m/z): Calcd. for C₁₃H₁₂FN₂O⁺ [M+H]⁺, 231.0928; found: 231.0926.

2-Methyl-9-methylene-6,7,8,9-tetrahydropyrido[2,1-b]quinazolin-11-one (10c)

Following the method B, using **2c** (228 mg). Light yellow oil (86 mg, 38%). ¹H NMR (400 MHz, CDCl₃) δ 8.07 (s, 1H, 1ArH), 7.53-7.48 (m, 2H, 2ArH), 5.55 (s, 1H, =CH₂), 5.42 (s, 1H, =CH₂), 2.82-2.78 (m, 2H, CH₂), 2.64-2.61 (m, 2H, CH₂), 2.46 (s, 3H, CH₃), 2.01–1.94 (m, 2H, CH₂); ¹³C NMR (150.8 MHz, CDCl₃) δ 160.3, 154.8, 144.8, 137.0, 136.5, 135.8, 126.8, 126.5, 121.0, 112.4, 31.7, 29.7, 21.3, 18.3; **IR/cm⁻¹**: 2922, 1689, 1604, 1490, 1348, 1314, 1274, 1170, 1078, 896; **HRMS** (ESI, m/z): Calcd. for C₁₄H₁₅N₂O⁺ [M+H]⁺, 227.1179; found: 227.1178.

7-Chloro-9-methylene-6,7,8,9-tetrahydropyrido[2,1-b]quinazolin-11-one (10d)

Following the method B, using **2d** (248.5 mg). White solid (141 mg, 57%). Mp: 109-111 °C; ¹H NMR (400 MHz, CDCl₃) δ 8.25 (d, J = 2.2 Hz, 1H, 1ArH), 7.65 (dd, J = 2.2, 8.4 Hz, 1H, ArH), 7.54 (d, J = 8.4 Hz, 1H, 1ArH), 5.58 (s, 1H, =CH₂), 5.46 (s, 1H, =CH₂), 2.84-2.81 (m, 2H, CH₂), 2.67-2.63 (m, 2H, CH₂), 2.04–1.97 (m, 2H, CH₂); ¹³C NMR (150.8 MHz, CDCl₃) δ 159.2, 156.0, 145.3, 136.7, 134.7, 132.1, 128.3, 126.6, 122.3, 112.7, 31.7, 29.5, 18.2; HRMS (ESI, m/z): Calcd. for C₁₃H₁₂ClN₂O⁺ [M+H]⁺, 247.0633; found: 247.0632.

9-Methylene-2-nitro-6,7,8,9-tetrahydropyrido[2,1-b]quinazolin-11-one (10e)

Following the method B, using **2e** (259 mg). Light yellow solid (100 mg, 39%). Mp: 169–171 °C; ¹H **NMR** (400 MHz, CDCl₃) δ 9.17 (d, J = 2.4 Hz, 1H, 1ArH), 8.51 (dd, J = 8.8, 2.4 Hz, 1H, 1ArH), 7.73 (d, J = 8.8 Hz, 1H, 1ArH), 5.64 (s, 1H, =CH₂), 5.52 (s, 1H, =CH₂), 2.91-2.88 (m, 2H, CH₂), 2.72-2.68 (m, 2H, CH₂), 2.09–2.02 (m, 2H, CH₂); ¹³C **NMR** (125.7 MHz, CDCl₃) δ 158.9, 158.6, 150.5, 144.9, 135.8, 127.9, 127.8, 123.6, 120.9, 112.7, 31.5, 28.9, 17.7; **IR/cm⁻¹**: 2958, 1690, 1598, 1573, 1520, 1344, 1262, 1166, 1125, 920, 855; **HRMS** (ESI, m/z): Calcd. for C₁₃H₁₂N₃O₃⁺ [M+H]⁺, 258.0873; found: 258.0873.

Chloro-9-methylene-6,7,8,9-tetrahydropyrido[2,1-b]quinazolin-11-one (10f)

Following the method B, using **2f** (248.5 mg). White solid (138 mg, 56%). Mp: 127-129 °C; ¹H NMR (400 MHz, CDCl₃) δ 8.24 (d, J = 8.4 Hz, 1H, 1ArH), 7.62 (d, J = 1.6 Hz, 1H, ArH), 7.41 (dd, J = 1.6, 8.4 Hz, 1H, 1ArH), 5.59 (s, 1H, =CH₂), 5.47 (s, 1H, =CH₂), 2.86-2.82 (m, 2H, CH₂), 2.69-2.65 (m, 2H, CH₂), 2.06–1.98 (m, 2H, CH₂); ¹³C NMR (125.7 MHz, CDCl₃) δ 159.2, 156.6, 147.4, 140.0, 136.2, 128.4, 126.5, 125.8, 119.3, 112.1, 31.3, 29.0, 17.7; HRMS (ESI, m/z): Calcd. for C₁₃H₁₂ClN₂O⁺ [M+H]⁺, 247.0633; found: 247.0632.

9-Methylene-3-nitro-6,7,8,9-tetrahydropyrido[2,1-b]quinazolin-11-one (10g)

Following the method B, using **2g** (259 mg). Light yellow solid (97 mg, 37%). Mp: 133-135 °C; ¹H **NMR** (400 MHz, CDCl₃) δ 8.47-8.45 (m, 2H, 2ArH), 8.21 (dd, J = 1.6, 8.8 Hz, 1H, 1ArH), 5.63 (s, 1H, =CH₂), 5.52 (s, 1H, =CH₂), 2.91-2.87 (m, 2H, CH₂), 2.71-2.67 (m, 2H, CH₂), 2.09–2.02 (m, 2H, CH₂); ¹³C **NMR** (100.6 MHz, CDCl₃) δ 159.1, 158.1, 151.5, 147.5, 136.5, 129.3, 125.5, 122.4, 120.0, 113.1, 31.8, 29.4, 18.2; **HRMS** (ESI, m/z): Calcd. for C₁₃H₁₂N₃O₃⁺ [M+H]⁺, 258.0873; found: 258.0872.

4-Methyl-9-methylene-6,7,8,9-tetrahydropyrido[2,1-b]quinazolin-11-one (10h)

Following the method B, using **2h** (228 mg). Light yellow solid (79 mg, 35%). Mp: 79-81 °C; **¹H NMR** (400 MHz, CDCl₃) δ 8.15 (d, J = 8.0 Hz, 1H, ArH), 7.56 (d, J = 8.0 Hz, 1H, ArH), 7.32 (t, J = 8.0 Hz, 1H, ArH), 5.58 (s, 1H, =CH₂), 5.43 (s, 1H, =CH₂), 2.87-2.83 (m, 2H, CH₂), 2.70-2.60 (m, 5H, CH₃ + CH₂), 2.03-1.96 (m, 2H, CH₂); ¹³C **NMR** (100.6 MHz, CDCl₃) δ 160.7, 154.3, 145.5, 137.1, 135.2, 134.9, 125.9, 125.0, 121.3, 112.3, 31.9, 29.7, 18.4, 17.3; **IR/cm⁻¹**: 2949, 1691, 1602, 1525, 1456, 1348, 1276; **HRMS** (ESI, m/z): Calcd. for C₁₄H₁₅N₂O⁺ [M+H]⁺, 227.1179; found: 227.1178.

4-Fluoro-9-methylene-6,7,8,9-tetrahydropyrido[2,1-b]quinazolin-11-one (10i)

Following the method B, using **2i** (232 mg). White solid (127 mg, 55%). Mp: 111-113 °C; ¹H NMR (400 MHz, CDCl₃) δ 8.10 (d, J = 8.0 Hz, 1H, 1ArH), 7.48 (t, J = 8.0 Hz, 1H, ArH), 7.40 (dt, J = 4.8, 8.0 Hz, 1H, 1ArH), 5.60 (s, 1H, =CH₂), 5.49 (s, 1H, =CH₂), 2.93-2.90 (m, 2H, CH₂), 2.70-2.66 (m, 2H, CH₂), 2.07-1.99 (m, 2H, CH₂); ¹³C NMR (150.8 MHz, CDCl₃) δ 159.4 (d, J_{C-F} = 3.0 Hz), 156.6, 156.6 (d, J_{C-F} = 254.9 Hz), 136.8, 136.4 (d, J_{C-F} = 12.1 Hz), 126.4 (d, J_{C-F} = 7.5 Hz), 123.3, 122.9 (d, J_{C-F} = 4.5 Hz), 119.7 (d, ² J_{C-F} = 19.6 Hz), 112.8, 31.9, 29.5, 18.2; **IR/cm⁻¹**: 2956, 1691, 1605, 1571, 1521, 1482, 1351, 1252; **HRMS** (ESI, m/z): Calcd. for C₁₃H₁₂FN₂O⁺ [M+H]⁺, 231.0928; found: 231.093.

1-Vinyl-2,3-dihydropyrrolo[2,1-b]quinazolin-9(1H)-one (11a)

Following the method B, using **2a** (214 mg). Colourless oil (21 mg, 10%). ¹**H** NMR (500 MHz, CDCl₃) δ 8.28 (d, J = 7.8 Hz, 1H, 1ArH), 7.73 (t, J = 7.8 Hz, 1H, 1ArH), 7.65 (d, J = 7.8 Hz, 1H, 1ArH), 7.44 (t, J = 7.8 Hz, 1H, 1ArH), 6.00-5.93 (m, 1H, =CH₂), 5.29-5.24 (m, 2H, CH + =CH₂), 5.17 (d, J = 17.0 Hz, 1H, =CH₂), 3.27–3.20 (m, 1H, CH₂), 3.07-3.02 (m, 1H, CH₂), 2.49-2.41 (m, 1H, CH₂), 2.16-2.11 (m, 1H, CH₂); ¹³C NMR (150.8 MHz, CDCl₃) δ 160.5, 159.2, 149.0, 134.2, 134.1, 126.8, 126.6, 126.3, 120.9, 116.4, 60.1, 30.7, 26.4; **HRMS** (ESI, m/z): Calcd. for C₁₃H₁₃N₂O⁺ [M+H]⁺, 213.1023; found: 213.1022.

8-Fluoro-1-vinyl-2,3-dihydropyrrolo[2,1-b]quinazolin-9(1H)-one (11b)

Following the method B, using **2b** (232 mg). White solid (39 mg, 15%). Mp 107-109 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.63 (dt, J = 5.6, 8.0 Hz, 1H, 1ArH), 7.42 (dd, J = 0.8, 8.0 Hz, 1H, 1ArH), 7.06 (ddd, J = 0.8, 8.0, 10.8 Hz, 1H, 1ArH), 5.97-5.89 (m, 1H, =CH₂), 5.27-5.18 (m, 3H, CH + =CH₂), 3.26–3.17 (m, 1H, CH₂), 3.05-2.98 (m, 1H, CH₂), 2.47-2.37 (m, 1H, CH₂), 2.15-2.09 (m, 1H, CH₂);¹³C NMR (125.7 MHz, CDCl₃) δ 161.2 (d, $J_{C-F} = 265.2$ Hz), 159.6, 157.1 (d, $J_{C-F} = 2.5$ Hz), 150.8, 134.0 (d, $J_{C-F} = 10.1$ Hz), 133.2, 122.2 (d, $J_{C-F} = 3.8$ Hz), 116.4, 112.4 (d, $J_{C-F} = 21.4$ Hz), 110.2 (d, $J_{C-F} = 6.3$ Hz), 59.7, 30.3, 25.6; HRMS (ESI, m/z): Calcd. for C₁₃H₁₂FN₂O⁺ [M+H]⁺, 231.0928; found: 231.0935.

7-Methyl-1-vinyl-2,3-dihydropyrrolo[2,1-*b*]quinazolin-9(1*H*)-one (11c)

Following the method B, using **2c** (228 mg). Light yellow solid (72 mg, 32%). Mp: 60-62 °C; ¹H **NMR** (400 MHz, CDCl₃) δ 8.05 (s, 1H, ArH), 7.53-7.52 (m, 2H, 2ArH), 5.98-5.90 (m, 1H, =CH₂), 5.28-5.20 (m, 2H, CH + =CH₂), 5.13 (d, *J* = 17.6 Hz, 1H, =CH₂), 3.25–3.15 (m, 1H, CH₂), 3.04-2.98 (m, 1H, CH₂), 2.48-2.37 (m, 1H, CH₂), 2.14-2.08 (m, 1H, CH₂); ¹³C **NMR** (101.6 MHz, CDCl₃) δ 160.5, 158.4, 147.9, 136.5, 135.7, 134.1, 126.5, 126.1, 120.5, 116.3, 60.1, 30.6, 26.5, 21.2; **HRMS** (ESI, m/z): Calcd. for C₁₄H₁₅N₂O⁺ [M+H]⁺, 227.1179; found: 227.1176.

7-Nitro-1-vinyl-2,3-dihydropyrrolo[2,1-b]quinazolin-9(1H)-one (11e)

Following the method B, using **2e** (259 mg). Light yellow solid (80 mg, 31%). Mp: 123-125 °C; ¹H **NMR** (400 MHz, CDCl₃) δ 9.16 (s, 1H, 1ArH); 8.54 (d, *J* = 10.0 Hz, 1H, 1ArH); 7.78 (d, *J* = 10.0 Hz, 1H, 1ArH); 6.03-5.94 (m, 1H, =CH₂), 5.35-5.31 (m, 2H, CH + =CH₂), 5.23 (d, *J* = 17.2 Hz, 1H, =CH₂), 3.36–3.26 (m, 1H, CH₂), 3.17-3.10 (m, 1H, CH₂), 2.58-2.48 (m, 1H, CH₂), 2.25-2.19 (m, 1H, CH₂); ¹³C NMR (125.7 MHz, CDCl₃) δ 162.4, 158.7, 152.7, 144.9, 132.9, 127.9, 127.8, 122.8, 120.6, 116.7, 60.2, 30.6, 25.7; **HRMS** (ESI, m/z): Calcd. for C₁₃H₁₂N₃O₃⁺ [M+H]⁺, 258.0873; found: 258.0870.

5-Methyl-1-vinyl-2,3-dihydropyrrolo[2,1-b]quinazolin-9(1H)-one (11h)

Following the method B, using **2h** (228 mg). Light brown solid (75 mg, 33%). Mp: 60-62 °C; **¹H NMR** (400 MHz, CDCl₃) δ 8.16 (d, J = 8 Hz, 1H, 1ArH), 7.59 (d, J = 8 Hz, 1H, 1ArH), 7.34 (t, J = 8 Hz, 1H, 1ArH), 6.02-5.94 (m, 1H, =CH₂), 5.31-5.15 (m, 3H, CH + =CH₂), 3.31–3.21 (m, 1H, CH₂), 3.12-3.05 (m, 1H, CH₂), 2.62 (s, 3H, CH₃), 2.50-2.40 (m, 1H, CH₂), 2.18-2.12 (m, 1H, CH₂); ¹³C **NMR** (125.7 MHz, CDCl₃) δ 160.3, 157.4, 147.2, 134.7, 134.3, 133.7, 125.2, 123.8, 120.3, 115.8, 59.5, 30.3, 26.0, 17.2; **HRMS** (ESI, m/z): Calcd. for C₁₄H₁₅N₂O⁺ [M+H]⁺, 227.1179; found: 227.1178.

9-Vinyl-6,7,8,9-tetrahydropyrido[2,1-*b*]quinazolin-11-one (12a)

Following the method B, using **3a** (228 mg). Colourless oil (151 mg, 67%). ¹**H** NMR (400 MHz, CDCl₃) δ 8.27 (d, J = 8.0 Hz, 1H, 1ArH), 7.75 (t, J = 8.0 Hz, 1H, ArH), 7.66 (d, J = 8.0 Hz, 1H, 1ArH), 7.45 (t, J = 8.0 Hz, 1H, ArH), 5.95–5.87 (m, 1H, =CH), 5.67–5.61 (m, 1H, CH), 5.22 (d, J = 10.4 Hz, 1H, =CH₂), 4.87 (d, J = 17.2 Hz, 1H, =CH₂), 3.17–2.94 (m, 2H, CH₂), 2.21-1.88 (m, 4H, 2CH₂); ¹³C NMR (150.8 MHz, CDCl₃) δ 161.6, 154.7, 147.4, 136.2, 134.3, 126.9, 126.4, 126.1, 120.5, 115.9, 52.7, 31.1, 26.6, 15.7; **HRMS** (ESI, m/z): Calcd. for C₁₄H₁₅N₂O⁺ [M+H]⁺, 227.1179; found: 227.118.

1-Fluoro-9- vinyl-6,7,8,9-tetrahydropyrido[2,1-b]quinazolin-11-one (12b).

Following the method B, using **3b** (246 mg). White solid (183 mg, 75%). Mp: 92-94 °C; ¹H NMR (500 MHz, CDCl₃) δ 7.62 (dt, J = 8.3, 5.5 Hz, 1H, 1ArH), 7.38 (d, J = 8.3 Hz, 1H, 1ArH), 7.05 (dd, J = 8.3, 10.0 Hz, 1H, ArH), 5.91–5.84 (m, 1H, =CH), 5.61–5.57 (m, 1H, CH), 5.22-5.20 (m, 1H, =CH₂), 4.92-4.89 (m, 1H, =CH₂), 3.06–3.01 (m, 1H, CH₂), 2.94-2.87 (m, 1H, CH₂), 2.17-2.12 (m, 1H, CH₂), 2.05-1.85 (m, 3H, 1CH₂+2CH₂); ¹³C NMR (150.8 MHz, CDCl₃) δ 161.3 (d, ¹ J_{C-F} = 266.9 Hz), 158.5 (d, J_{C-F} = 4.5 Hz), 155.9, 149.4, 135.9, 134.5 (d, J_{C-F} = 10.6 Hz), 122.3 (d, J_{C-F} = 4.5 Hz), 116.1, 112.5 (d, J_{C-F} = 21.1 Hz), 110.3 (d, J_{C-F} = 6.0 Hz), 52.4, 31.0, 26.5, 15.5; **IR/cm⁻¹**: 2926, 1689, 1620, 1574, 1514, 1480, 1465, 1449, 1336, 1249, 1207, 1024, 999; **HRMS** (ESI, m/z): Calcd. for C₁₄H₁₄FN₂O⁺ [M+H]⁺, 245.1085; found: 245.1095.

Following the method B, using **3c** (242 mg). Light brown oil (163 mg, 68%). ¹H NMR (500 MHz, CDCl₃) δ 8.04 (s, 1H, ArH), 7.54 (d, J = 8.3 Hz, 1H, ArH), 7.50 (d, J = 8.3 Hz, 1H, ArH), 5.92–5.85 (m, 1H, =CH), 5.63–5.60 (m, 1H, CH), 5.18 (dd, J = 1.5, 10.0 Hz, 1H, =CH₂), 4.83 (dd, J = 1.5, 17.0 Hz, 1H, =CH₂), 3.07–3.02 (m, 1H, CH₂), 2.95-2.88 (m, 1H, CH₂), 2.46 (s, 3H, CH₃), 2.15-2.11 (m, 1H, CH₂), 2.03–1.94 (m, 2H, CH₂), 1.90-1.85 (m, 1H, CH₂); ¹³C NMR (125.7 MHz, CDCl₃) δ 161.1, 153.3, 144.8, 135.8, 135.7, 135.3, 125.8, 125.7, 119.7, 115.2, 52.2, 30.6, 26.1, 20.7, 15.2; **IR/cm⁻¹**: 3433, 2929, 1686, 1645, 1587, 1524, 1490; **HRMS** (ESI, m/z): Calcd. for C₁₅H₁₇N₂O⁺ [M+H]⁺, 241.1336; found: 241.1332.

7-Chloro-9-vinyl-6,7,8,9-tetrahydropyrido[2,1-b]quinazolin-11-one (12d).

Following the method B, using **3d** (262.5 mg). Light yellow oil (167 mg, 64%). ¹H NMR (400 MHz, CDCl₃) δ 8.22 (d, J = 2.5 Hz, 1H, 1ArH), 7.66 (dd, J = 9.0, 2.5 Hz, 1H, ArH), 7.55 (d, J = 9.0 Hz, 1H, 1ArH), 5.93–5.85 (m, 1H, =CH), 5.62–5.58 (m, 1H, CH), 5.22 (d, J = 11.2 Hz, 1H, =CH₂), 4.86 (d, J = 17.2 Hz, 1H, =CH₂), 3.10–3.03 (m, 1H, CH₂), 2.97-2.89 (m, 1H, CH₂), 2.18-2.14 (m, 1H, CH₂), 2.05–1.88 (m, 3H, CH₂); ¹³C NMR (125.7 MHz, CDCl₃) δ 160.7, 155.2, 146.0, 136.1, 134.9, 131.9, 128.3, 126.4, 121.5, 116.2, 53.1, 31.3, 26.6, 15.7; HRMS (ESI, m/z): Calcd. for C₁₄H₁₄ClN₂O⁺ [M+H]⁺, 261.0789; found: 261.0784.

2-Nitro-9-vinyl-6,7,8,9-tetrahydropyrido[2,1-b]quinazolin-11-one (12e).

Following the method B, using **3e** (273 mg). Yellow solid (136 mg, 50%). Mp: 124-127 °C; ¹H NMR (400 MHz, CDCl₃) δ 9.13 (d, J = 2.4 Hz, 1H, 1ArH), 8.51 (dd, J = 2.4, 9.0 Hz, 1H, ArH), 7.70 (d, J = 9.0 Hz, 1H, 1ArH), 5.95–5.87 (m, 1H, =CH), 5.63–5.59 (m, 1H, CH), 5.26 (d, J = 10.4 Hz, 1H, =CH₂), 4.89 (d, J = 17.2 Hz, 1H, =CH₂), 3.15-2.95 (m, 2H, CH₂), 2.21-1.90 (m, 4H, 2CH₂); ¹³C NMR (150.8 MHz, CDCl₃) δ 160.5, 158.7, 151.4, 145.1, 135.5, 128.4, 128.0, 123.8, 120.3, 116.4, 53.3, 31.4, 26.4, 15.4; HRMS (ESI, m/z): Calcd. for C₁₄H₁₄N₃O₃⁺ [M+H]⁺, 272.103; found: 272.1026.

Following the method B, using **3f** (262.5 mg). White solid (180 mg, 69%). Mp: 105-107 °C; ¹H NMR (300 MHz, CDCl₃) δ 8.18 (d, J = 8.4 Hz, 1H, 1ArH), 7.60 (d, J = 1.8 Hz, 1H, ArH), 7.37 (dd, J^{l} = 8.4, 1.8 Hz, 1H, 1ArH), 5.95–5.84 (m, 1H, =CH), 5.62–5.56 (m, 1H, CH), 5.22 (dd, J = 1.4, 10.5 Hz, 1H, =CH₂), 4.86 (dd, J = 1.4, 14.1 Hz, 1H, =CH₂), 3.10–2.87 (m, 2H, CH₂), 2.18–1.86 (m, 4H, 2CH₂); ¹³C NMR (100.6 MHz, CDCl₃) δ 161.0, 156.1, 148.3, 140.4, 136.0, 128.4, 126.7, 126.0, 118.9, 116.0, 52.9, 31.2, 26.5, 15.5; **IR/cm⁻¹**: 3333, 2953, 1676, 1600, 1576, 1556, 1466, 1392, 1319, 1150, 1073, 1001, 944, 917; **HRMS** (ESI, m/z): Calcd. for C₁₄H₁₄ClN₂O⁺ [M+H]⁺, 261.0789; found: 261.0785.

3-Nitro-9-vinyl-6,7,8,9-tetrahydropyrido[2,1-b]quinazolin-11-one (12g).

Following the method B, using **3g** (273 mg). Yellow solid (171 mg, 63%). Mp: 104-105 °C; ¹H NMR (400 MHz, CDCl₃) δ 8.44 (d, J = 2.0 Hz, 1H, ArH), 7.40 (d, J = 8.6 Hz, 1H, ArH), 8.16 (dd, J = 2.0, 8.6 Hz, 1H, ArH), 5.94–5.86 (m, 1H, =CH), 5.61–5.57 (m, 1H, CH), 5.24 (dd, J = 1.6, 10.6 Hz, 1H, =CH₂), 4.87 (dd, J = 1.6, 17.2 Hz, 1H, =CH₂), 3.14–3.07 (m, 1H, CH₂), 3.02-2.93 (m, 1H, CH₂), 2.19-2.15 (m, 1H, CH₂), 2.07-1.89 (m, 3H, CH₂); ¹³C NMR (150.8 MHz, CDCl₃) δ 160.4, 157.2, 151.6, 147.8, 135.6, 128.8, 124.4, 122.2, 119.6, 116.3, 53.3, 31.2, 26.4, 15.4; HRMS (ESI, m/z): Calcd. for C₁₄H₁₄N₃O₃⁺ [M+H]⁺, 272.103; found: 272.1028.

4-Methyl-9-vinyl-6,7,8,9-tetrahydropyrido[2,1-b]quinazolin-11-one (12h).

Following the method B, using **3h** (242 mg). White solid (173 mg, 72%). Mp: 68-69 °C; ¹H NMR (400 MHz, CDCl₃) δ 8.13 (d, J = 7.6 Hz, 1H, ArH), 7.57 (d, J = 7.6 Hz, 1H, ArH), 7.31 (t, J = 7.6 Hz, 1H, ArH), 5.95–5.87 (m, 1H, =CH), 5.64–5.61 (m, 1H, CH), 5.20 (dd, J = 10.4, 1.6 Hz, 1H, =CH₂), 4.87 (dd, J = 17.4, 1.6 Hz, 1H, =CH₂), 3.13–3.06 (m, 1H, CH₂), 3.00-2.91 (m, 1H, CH₂), 2.60 (s, 3H, CH₃), 2.17-2.12 (m, 1H, CH₂), 2.06-1.86 (m, 3H, CH₂); ¹³C NMR (125.7 MHz, CDCl₃) δ 162.2, 153.5, 146.2, 136.5, 135.1, 134.9, 125.7, 124.7, 120.6, 115.9, 52.8, 31.5, 26.8, 17.4, 16.0; **IR/cm⁻¹**:

2951, 1676, 1595, 1572, 1461, 1393, 1337, 1205, 1075, 1017, 918; **HRMS** (ESI, m/z): Calcd. for C₁₅H₁₇N₂O⁺ [M+H]⁺, 241.1336; found: 241.1333.

4-Fluoro-9-vinyl-6,7,8,9-tetrahydropyrido[2,1-b]quinazolin-11-one (12i).

Following the method B, using **3i** (246 mg). White solid (168 mg, 69%). Mp: 96-98 °C; ¹H NMR (400 MHz, CDCl₃) δ 8.02 (d, J = 8.0 Hz, 1H, 1ArH), 7.43 (ddd, J = 10.4, 8.0, 1.2 Hz, 1H, ArH), 7.33 (dt, J = 8.0, 4.8 Hz, 1H, 1ArH), 5.92–5.84 (m, 1H, =CH), 5.63–5.56 (m, 1H, CH), 5.20 (dd, J = 10.4, 1.2 Hz, 1H, =CH₂), 4.85 (dd, J = 17.6, 1.2 Hz, 1H, =CH₂), 3.15-3.08 (m, 1H, CH₂), 3.02-2.94 (m, 1H, CH₂), 2.19-2.11 (m, 1H, CH₂), 2.06–1.84 (m, 2H, 1CH₂ + 2CH₂); ¹³C NMR (100.6 MHz, CDCl₃) δ 160.7, (d, J_{C-F} = 3.0 Hz), 156.4 (d, J_{C-F} = 254.5 Hz), 155.6, 137.0 (d, J_{C-F} = 11.1 Hz), 135.93, 126.0 (d, J_{C-F} = 8.0 Hz), 122.4 (d, J_{C-F} = 5.0 Hz), 119.5 (d, J_{C-F} = 19.1 Hz), 117.2, 116.0, 53.0, 31.3, 26.5, 15.5; HRMS (ESI, m/z): Calcd. for C₁₄H₁₄FN₂O⁺ [M+H]⁺, 245.1085; found: 245.1083.

8-Nitro-1-vinyl-2,3-dihydropyrrolo[1,2-*a*]quinazolin-5(1*H*)-one (13g)

Following the method B, using **2g** (259 mg). Yellow oil (75 mg, 29%). ¹**H** NMR (400 MHz, CDCl₃) δ 8.23 -8.18 (m, 2H, 2ArH); 7.91 (d, J = 8.4 Hz, 1H, 1ArH); 5.73-5.64 (m, 1H, =CH₂), 5.33 (d, J = 17.2 Hz, 1H, =CH₂), 5.22 (d, J = 10.0 Hz, 1H, =CH₂), 4.87 (q, J = 7.2 Hz, 1H, CH), 2.79-2.63 (m, 2H, CH₂), 2.61-2.53 (m, 1H, CH₂), 2.13-2.03 (m, 1H, CH₂); ¹³C NMR (150.8 MHz, CDCl₃) δ 174.4, 150.3, 142.0, 135.9, 134.6, 122.9, 121.7, 120.6, 117.3, 115.3, 63.8, 30.4, 26.7; HRMS (ESI, m/z): Calcd. for C₁₃H₁₂N₃O₃⁺ [M+H]⁺, 258.0873; found: 258.0869.

References

- 1 D. Cremer and J.A. Pople, General definition of ring puckering coordinates. J. Amer. Chem. Soc., 1975, 97 (6), 1354-1358.
- 2 Y.V. Zefirov, Reduced intermolecular contacts and specific interactions in molecular crystals, *Crystallogr. Rep.* 1997, **42**, 865–886.
- 3 Sheldrick G. M., *Acta Crystallogr., Sect. A*, 2008, **64**, 112. http://dx.doi.org/10.1107/S0108767307043930.
- 4 A.I. Vaskevich, N.O. Savinchuk, R.I. Vaskevich, E.B. Rusanov, O.O. Grygorenko and M.V. Vovk, The PIFA-Initiated Oxidative Cyclization of 2-(3-Butenyl)quinazolin-4(3*H*)-ones an Efficient Approach to 1-(Hydroxymethyl)-2,3-dihydropyrrolo[1,2-*a*]quinazolin-5(1*H*)-ones, *Beilstein J. Org. Chem.* 2021, 17, 2787-2794.
¹H NMR spectrum (500 MHz, DMSO-d6) of compound 6g

¹³C NMR spectrum (151 MHz, DMSO-d6) of compound 6g

¹H NMR spectrum (400 MHz, DMSO-d6) of compound 7a

¹³C NMR spectrum (151 MHz, DMSO-d6) of compound 7a

¹³C NMR spectrum (126 MHz, DMSO-d6) of compound 7b

¹³C NMR spectrum (126 MHz, DMSO-d6) of compound 7c

¹³C NMR spectrum (126 MHz, DMSO-d6) of compound 7d

¹³C NMR spectrum (126 MHz, DMSO-d6) of compound 7e

¹³C NMR spectrum (151 MHz, DMSO-d6) of compound 7f

¹³C NMR spectrum (151 MHz, DMSO-d6) of compound 7h

¹H NMR spectrum (300 MHz, DMSO-d6) of compound 8a

¹³C NMR spectrum (151 MHz, DMSO-d6) of compound 8a

¹H NMR spectrum (400 MHz, DMSO-d6) of compound 8b

¹³C NMR spectrum (126 MHz, DMSO-d6) of compound 8b

¹³C NMR spectrum (126 MHz, DMSO-d6) of compound 8c

¹³C NMR spectrum (76 MHz, DMSO-d6) of compound 8d

¹³C NMR spectrum (151 MHz, DMSO-d6) of compound 8e

¹H NMR spectrum (400 MHz, DMSO-d6) of compound 8f

¹³C NMR spectrum (126 MHz, DMSO-d6) of compound 8f

¹³C NMR spectrum (126 MHz, DMSO-d6) of compound 8g

¹³C NMR spectrum (101 MHz, DMSO-d6) of compound 8h

¹³C NMR spectrum (151 MHz, DMSO-d6) of compound 8i

¹³C NMR spectrum (126 MHz, DMSO-d6) of compound 1a

¹³C NMR spectrum (126 MHz, DMSO-d6) of compound 1b

¹³C NMR spectrum (126 MHz, DMSO-d6) of compound 1c

¹³C NMR spectrum (126 MHz, DMSO-d6) of compound 1d

¹³C NMR spectrum (126 MHz, DMSO-d6) of compound 1e

¹H NMR spectrum (400 MHz, DMSO-d6) of compound 1f

¹³C NMR spectrum (151 MHz, DMSO-d6) of compound 1f.

¹³C NMR spectrum (151 MHz, DMSO-d6) of compound 1g

¹³C NMR spectrum (126 MHz, CDCl₃) of compound 1h

¹³C NMR spectrum (151 MHz, DMSO-d6) of compound 1i

¹H NMR spectrum (400 MHz, DMSO-d6) of compound 2a

¹³C NMR spectrum (126 MHz, DMSO-d6) of compound 2a

¹H NMR spectrum (400 MHz, DMSO-d6) of compound 2b

¹³C NMR spectrum (151 MHz, DMSO-d6) of compound 2b

¹³C NMR spectrum (151 MHz, DMSO-d6) of compound 2c

6.5

5.5

12.5

11.5

10.5

9.5

8.5

7.5

¹H NMR spectrum (400 MHz, DMSO-d6) of compound 2d

2.5

0.5

1.5

3.5

4.5

¹³C NMR spectrum (151 MHz, DMSO-d6) of compound 2d

¹³C NMR spectrum (151 MHz, DMSO-d6) of compound 2e

¹H NMR spectrum (400 MHz, DMSO-d6) of compound 2f

¹³C NMR spectrum (151 MHz, DMSO-d6) of compound 2f

¹H NMR spectrum (400 MHz, DMSO-d6) of compound 2g

¹³C NMR spectrum (151 MHz, DMSO-d6) of compound 2g

¹H NMR spectrum (400 MHz, DMSO-d6) of compound 2h

¹³C NMR spectrum (151 MHz, DMSO-d6) of compound 2h

¹H NMR spectrum (400 MHz, DMSO-d6) of compound 2i

¹³C NMR spectrum (101 MHz, DMSO-d6) of compound 2i
¹H NMR spectrum (400 MHz, DMSO-d6) of compound 3a

¹³C NMR spectrum (101 MHz, DMSO-d6) of compound 3a

¹H NMR spectrum (400 MHz, DMSO-d6) of compound 3b

¹³C NMR spectrum (126 MHz, DMSO-d6) of compound 3b

¹H NMR spectrum (400 MHz, DMSO-d6) of compound 3c

¹³C NMR spectrum (126 MHz, DMSO-d6) of compound 3c

385

¹³C NMR spectrum (126 MHz, DMSO-d6) of compound 3e

¹H NMR spectrum (300 MHz, DMSO-d6) of compound 3f

¹³C NMR spectrum (126 MHz, DMSO-d6) of compound 3f

¹³C NMR spectrum (126 MHz, DMSO-d6) of compound 3g

¹H NMR spectrum (600 MHz, DMSO-d6) of compound 3h

~125.68 ~123.75 ~121.11 ~115.21 -162.55-156.56-147.78138.99 (135.22 (134.96 ~34.76 ~33.34 ~28.15 ~26.57 -17.580 NΗ Me

80

70

60

50

40

30

20

10

0

200 190 180 170 160 150 140 130 120 110 100 90

¹³C NMR spectrum (151 MHz, DMSO-d6) of compound 3h

¹H NMR spectrum (300 MHz, DMSO-d6) of compound 3i

¹³C NMR spectrum (151 MHz, DMSO-d6) of compound 3i

¹H NMR spectrum (400 MHz, CDCl₃) of compound 9a

¹³C NMR spectrum (126 MHz, CDCl₃) of compound 9a

¹H NMR spectrum (400 MHz, CDCl₃) of compound 9b

¹³C NMR spectrum (126 MHz, CDCl₃) of compound 9b

¹H NMR spectrum (400 MHz, CDCl₃) of compound 9c

¹³C NMR spectrum (126 MHz, CDCl₃) of compound 9c

¹H NMR spectrum (400 MHz, CDCl₃) of compound 9d

¹³C NMR spectrum (126 MHz, DMSO-d6) of compound 9d

¹³C NMR spectrum (126 MHz, CDCl₃) of compound 9e

¹³C NMR spectrum (126 MHz, CDCl₃) of compound 9g

¹³C NMR spectrum (151 MHz, CDCl₃) of compound 9h

¹³C NMR spectrum (126 MHz, CDCl₃) of compound 9i
¹³C/APT NMR spectrum (151 MHz, CDCl₃) of compound 9i

¹³C NMR spectrum (151 MHz, CDCl₃) of compound 10a

¹H NMR spectrum (500 MHz, CDCl₃) of compound 10b

S149

¹H NMR spectrum (400 MHz, CDCl₃) of compound 10c

¹³C NMR spectrum (151 MHz, CDCl₃) of compound 10c

¹H NMR spectrum (400 MHz, CDCl₃) of compound 10d

¹³C NMR spectrum (151 MHz, CDCl₃) of compound 10d

¹³C NMR spectrum (126 MHz, CDCl₃) of compound 10e

¹³C NMR spectrum (126 MHz, CDCl₃) of compound 10f.

¹H NMR spectrum (400 MHz, CDCl₃) of compound 10g

¹³C NMR spectrum (101 MHz, CDCl₃) of compound 10g

¹³C NMR spectrum (101 MHz, CDCl₃) of compound 10h

¹H NMR spectrum (400 MHz, CDCl₃) of compound 10i

¹³C NMR spectrum (151 MHz, CDCl₃) of compound 10i

S163

¹H NMR spectrum (500 MHz, CDCl₃) of compound 11a

¹³C NMR spectrum (151 MHz, CDCl₃) of compound 11a

¹³C NMR spectrum (126 MHz, CDCl₃) of compound 11b

¹³C NMR spectrum (101 MHz, CDCl₃) of compound 11c

13C/APT NMR spectrum (151 MHz, CDCl₃) of compound 11c

¹H NMR spectrum (400 MHz, CDCl₃) of compound 11e

¹³C NMR spectrum (126 MHz, CDCl₃) of compound 11e

¹³C NMR spectrum (126 MHz, CDCl₃) of compound 11h

¹H NMR spectrum (500 MHz, CDCl₃) of compound 12b

¹³C NMR spectrum (151 MHz, CDCl₃) of compound 12b

¹H NMR spectrum (500 MHz, CDCl₃) of compound 12c

¹H NMR spectrum (400 MHz, CDCl₃) of compound 12d

¹³C NMR spectrum (126 MHz, CDCl₃) of compound 12d

¹H NMR spectrum (400 MHz, CDCl₃) of compound 12e

¹³C NMR spectrum (151 MHz, CDCl₃) of compound 12e

¹H NMR spectrum (300 MHz, CDCl₃) of compound 12f

¹³C NMR spectrum (101 MHz, CDCl₃) of compound 12f

¹H NMR spectrum (400 MHz, CDCl₃) of compound 12g

¹³C NMR spectrum (151 MHz, CDCl₃) of compound 12g

¹H NMR spectrum (400 MHz, CDCl₃) of compound 12h

¹³C NMR spectrum (126 MHz, CDCl₃) of compound 12h

¹³C NMR spectrum (101 MHz, CDCl₃) of compound 12i

¹³C/APT NMR spectrum (151 MHz, CDCl₃) of compound 12i

1H NMR spectrum (400 MHz, CDCl₃) of compound 13g

13C NMR spectrum (151 MHz, CDCl3) of compound 13g

HSBC NMR spectrum (151 MHz, CDCl3) of compound 13g

