Electronic Supplementary Information

Near-Infrared Fluorescent Turn-On Probe for Hydrazine Detection: Environmental Samples and live cell imaging

Anwesha Maiti,^a Dipanjan Banik,^a Satyajit Halder,^b Saikat Kumar Manna,^c Anirban Karak,^a Kuladip Jana,^b andAjit Kumar Mahapatra ^{a*}

^aMolecular Sensor and Supramolecular Chemistry Laboratory, Department of Chemistry, Indian Institute of Engineering Science and Technology, Shibpur, Howrah-711103, West Bengal, India,E-mail:akmahapatra@chem.iiests.ac.in

^bDivision of Molecular Medicine, Bose Institute, P 1/12, CIT Scheme VIIM, Kolkata-700054, India.

^c Department of Chemistry, Haldia Government College, Debhog, Haldia, Purba Medinipur-721657, West Bengal, India.

Table of Contents

1. NMR Characterization data of compound **3** and **4**.

2. ¹HNMR of compound **3** in MeOH- d_{4}

3. ¹³C NMR of compound **3** in MeOH-d₄

 $4.^{1}$ H NMR of compound **4** in DMSO-d₆

5. ¹³C NMR of compound 4in DMSO-d.

- 6. HRMS of probe **BPN**.
- 7.¹H NMR of probe **BPN**in DMSO-d

8. ¹³C NMR of probe **BPN**in DMSO-d_c.

9. UV-vis absorbance spectra, fluorescence emission spectra and quantum yield of compound3

10. UV-vis absorbance spectra, fluorescence emission spectra and quantum yield of compound4.

11.UV-vis absorbance of probe **BPN**.

12. ComparativeFluorescence spectrum of compound 4 and R1.

13.Comparative UV–vis absorption spectrum of probe BPN, Compound 3 and BPN treated with N_2H_4 .

14.ComparativeFluorescence spectrum of probe BPN, Compound 3 and BPN treated with $\mathrm{N_2H_{4.}}$

15.Change of fluorescence emission intensity of **BPN**upon addition of interfering analytes and then hydrazine.

16.Change of fluorescence emission intensities of **BPN** in presence of hydrazine and other interfering analytes in 1:1 and n:1 crowded environments.

17.Detection limit calculation.

18.Kinetic plot of probe **BPN**.

19. Fluorescence quantum yield calculation.

20. MTT assay for determination cytotoxic effect of probe BPN on MDA-MB 231 cells.

21. Pictorial fluorescence intensity change of untreated cell and cell treated with hydrazine.

22. HRMS of **BPN-N₂H₄ adduct**.

23. ¹H NMR titration of probe **BPN** upon addition of hydrazine.

24. Summary of previously reported hydrazine sensing fluorescent chemosensors with latest work.

25. References.

Structure and NMR characterization data of compounds 3,4:

¹H NMR (400 MHz, MeOH-d₄): 8 0.63 (t, J=8.0Hz, 6H), 1.25(q,J=8.0Hz, 4H), 3.71 (s,2H), 4.75 (s,1H), 5.33 (d,J=8.0Hz,2H), 6.43 (s,1H), 7.30 (t, J=8.0Hz,2H), 7.87 (d,J=8.0Hz,1H), 7.96 (d,J=8.0Hz,1H).

¹³C NMR (400 MHz, MeOH-d₄): § 11.40 (2C), 44.20 (2C), 90.50 (1C), 111.79 (1C), 120.21 (1C), 120.50 (1C), 121.20(1C), 122.21 (1C), 122.70 (1C), 123.69 (1C), 123.96 (1C), 124.07 (2C), 125.30 (1C), 132.06 (1C), 140.07 (1C), 145.96 (1C), 148.77 (1C).

¹H NMR (400 MHz, DMSO-d₆): 81.26 (t,J=8.0Hz,6H), 3.08 (s,1H), 3.46 (q,J=8.0Hz,4H), 5.39 (d,J=8.0Hz,2H), 6.19 (s,1H), 7.01 (d,J=8.0Hz, 2H), 7.03 (s,1H),7.05 (d,J=8.0Hz, 2H), 7.54 (t,J=8.0Hz,2H), 7.96 (d,J=8.0Hz, 2H), 7.99 (d, J=8.0Hz,1H), 9.50 (s,1H), 11.0 (s, 1H).

¹³C NMR (400 MHz, DMSO-d₆): 8 11.43 (2C), 44.70 (2C), 90.82 (1C), 99.38 (1C), 112.40 (1C), 120.21 (1C), 120.55 (1C),121.24 (6C), 122.60 (1C), 122.77 (2C), 123.69 (2C), 123.71 (1C), 123.74 (2C), 126.06 (2C), 130.70 (1C), 132.45 (1C), 142.52 (1C), 149.31 (1C), 160.82(1C), 162.08 (1C).

Figure S1: ¹HNMR of compound 3 in MeOH-d

Figure S2: ¹³CNMR of compound 3 in MeOH-d₄

Figure S3: ¹HNMR of compound 4 in DMSO-d₆

Figure S4: ¹³CNMR of compound 4 in DMSO-d₆

Figure S5: HRMS of probe BPN

Figure S6: ¹HNMR of probe **BPN** in DMSO- d_6

Figure S7:¹³C NMR of probe **BPN** in DMSO-d₆

FigureS8:UV–vis absorbance of compound 3 (c = 4×10^{-5} M) in aq. DMSO (DMSO/H₂O = 1:9 v/v, 10 mM PBS buffer, pH = 7.4).

Figure S9: Fluorescence spectrum of compound 3 ($c = 4 \times 10^{-5}$ M) in aq. DMS(DMSO/H₂O = 1:9 v/v, 10 mM PBS buffer, pH = 7.4).

The quantum yield of compound 3 is 0.28 using Rhodamine B in ethanol as standard.

Figure S10: UV–vis absorbance of compound 4 ($c = 4 \times 10^{-5}$ M) in aq. DMSO (DMSO/H₂O = 1:9 v/v, 10 mM PBS buffer, pH = 7.4).

Figure S11: Fluorescence spectrum of compound 4 (c = 4×10^{-5} M) in aq. DMSO (DMSO/H₂O = 1:9 v/v, 10 mM PBS buffer, pH = 7.4).

The quantum yield of compound 4 is 0.62 using Rhodamine B in ethanol as standard.

Figure S12: UV–vis absorbance of probe BPN ($c = 4 \times 10^{-5}$ M) in aq. DMSO (DMSO/H₂O = 1:9 v/v, 10 mM PBS buffer, pH = 7.4).

Figure S13: ComparativeUV–vis absorption spectrum of compound 4 and R1 ($c = 4 \times 10^{-5}$ M) in aq. DMSO (DMSO/H₂O = 1:9 v/v, 10 mM PBS buffer, pH = 7.4)

Figure S14: Comparative UV–vis absorption spectrum of probe BPN, Compound 3 and BPN treated with $N_2H_4(c = 4 \times 10^{-5} \text{ M})$ in aq. DMSO (DMSO/H₂O = 1:9 v/v, 10 mM PBS buffer, pH = 7.4).

Figure S15: ComparativeFluorescence spectrum of probe BPN, Compound 3 and BPN treated with $N_2H_4(c = 4 \times 10^{-5} \text{ M})$ in aq. DMSO (DMSO/H₂O = 1:9 v/v, 10 mM PBS buffer, pH = 7.4).

Figure S16: Change of fluorescence emission intensities of **BPN**($c = 4 \times 10^{-5}$ M)upon addition of other interfering analytes (20 equivalents) and then hydrazine(10 equivalents).

Figure S17: Change of fluorescence emission intensities of **BPN** in presence of hydrazine and other interfering analytes both in 1:1 and n:1 crowded environment.

Calculation of Detection limit:

By using the following equation DL = K*Sb1/S;the detection limit (DL) of probe**BPN** for N₂H₄ wascalculated,where K= 2 or 3 (we take 2 in this case); Sb1 is the standard deviation of the blank solution; S is the slope of the calibration curve.

FigureS18: From the graph we get slope (S)= 6.77765×10^{14} , Standard deviation (Sb1=102355.53087). Thus, using the formula, we get the detection limit = 4.5×10^{-10} M

Kinetic study of probe BPN:

Figure S19:Pseudo first order kinetic diagram of probe BPN(1×10^{-5} M) with N₂H₄ (1×10^{-4} M) in DMSO-H₂O.

Figure S20: pH mediated absorbance change of probe BPN in presence of hydrazine.

Calculation of fluorescence quantum yield of BPN and BPN-N₂H₄ adduct:

Here, the fluorescence quantum yield Φ was calculated by using the following equation:

$$\Phi_{\rm x} = \Phi_{\rm s} \left(F_{\rm x}/F_{\rm s} \right) \left(A_{\rm s} / A_{\rm x} \right) \left(\eta_{\rm x}^2 / \eta_{\rm s}^2 \right)$$

Where,

X and S indicate the unknown and standard solution respectively, $\Phi =$ quantum yield

F = Area under the emission curve, A = Absorbance at the excitation wavelength,

 η = Refractive index of solvent. Here Φ measurements were performed using Rhodamine B in ethanol as standard [Φ = 0.49]

The fluorescence quantum yield of **BPN** and **BPN-N₂H₄** product was calculated by taking Rhodamine B ($\Phi = 0.49$ in ethanol) as standard.

 $\eta_s = 1.3614$ (for ethanol); $\eta_x = 1.479$ (for DMSO)

The quantum yield of BPN was calculated using the above equation and the value is 0.0075.

The quantum yield of **BPN-N₂H₄** adduct was calculated using the above equation and the value is 0.6193.

FigureS21: Cell survivability of MDA-MB 231 and NKE cells exposed to different probeBPN concentration. Data are representative of at least three independent experiments and bar graph shows mean \pm SEM, **p < 0.001, *p < 0.01 were interpreted as statistically significant, as compared with the control.

Figure S22: Pictorial fluorescence intensity variation of untreated MDA-MB 231 cells (Control), cells treated with probe **BPN** $(10\mu M)$ + AEBSF(1 mM), probe**BPN** $(10\mu M)$ + AEBSF (1 mM) + Hydrazine together after 30 min and 1h, incubation period.

Figure S23: HRMS of BPN-N₂H₄ adduct.

Figure S24: ¹H NMR titration of probe BPN with hydrazine.

Sl. No	Probe structure	Excitation	Emissioon in presence of hydrazine	Detec tion limit	Response time	Application	Reference
1.		370 nm	415 nm [□] (N* form) and 540 nm [□] (T* form)	10 μΜ	60 min	Live stem cell and <i>invivozebraf</i> ish imaging	[1]
2.		480 nm	542nm	5.4 ppb	10 min	Live HeLa cell and <i>invivoz</i> ebraf ish imaging	[2]
3.		540 nm and 730 nm 2	662 nm₽ to825nm₽	2.56 ppb	7 min	Livecell, kidney tissue and <i>invivo</i> mouse body imaging	[3]
4.		385 nm	445 nm to545nm ₽	9.40 nM	5 min	Livecell and <i>invivozebraf</i> ish imaging	[4]

Table S2: Comparison data of previously reported $N_2 H_4$ sensors with current data

5.		-	390 nm₂ to508 nm₂	0.96 μM	60 min	Live HeLa cell imaging	[5]
6.		350 nm	440 nm₽	8.47 nM	180s	Live cancer cell imaging	[6]
7.		430 nm	532 nm₽	1.72 ppb	-	Livecell, kidney tissue and <i>invivo</i> mous e body imaging	[7]
8.	NC CN 0 0 0	560 nm	680 nm⊠	57 nM	1 min	(a)Detection in living cells (MCF- 7 cells); (b) Detection of hydrazine in solution by test kits.	[8]
9.		592 nm	654 nm⊵	3.4 ppb	-	Live HeLa cell imaging.	[9]

References:

[1] B. Liu, Q. Liu, M. Shah, J. Wang, G. Zhang and Y. Pang, Sens. Actuators, B, 2014, 202,194–200.

[2]Q. Fang, L. Yang, H. Xiong, S. Han, Y. Zhang, J. Wang, W. Chen and X. Song, *Chinese Chem. Lett.*, 2019, 2–5.

[3] Y. Song, G. Chen, X. Han, J. You and F. Yu, Sens. Actuators, B, 2019, 286, 69-76.

[4] X. Xia, F. Zeng, P. Zhang, J. Lyu, Y. Huang and S. Wu, Sens. Actuators, B, 2016, 227, 411-418.

[5] C. Liu, K. Liu, M. Tian and W. Lin, Spectrochim. Acta A, 2019, 212, 42–47.

[6]X.Wang, G. Ding, Y. Wang, S. Mao, K. Wang, Z. Ge, Y. Zhang, X. Li and C. H. Hung, *Tetrahedron Lett.*, 2020,**76**,131726.

[7]T. Li, J. Liu, L. Song, Z. Li, Q. Qi and W. Huang, J. Mater. Chem. B.2019, 7, 3197–3200.

[8] S.Zhang, D.Chen, L.Yan, Y.Xie, X.Mu, J. Zhu, Microchem., 2020,157,105066.

[9] S. H. Guo, T. H. Leng, K. Wang, Y. J. Shen and C.Y. Wang, *Spectrochim. Acta A*, 2019, **223**, 117344.

[10]Y.-Z.Ran,H.-R. Xu,K. Li, K. -K. Yu, J. Yang and X. -Q.Yu, *RSCAdv.*, **2016**, 6,111016-111019.

[11] J. Zhang, L. Ning, J. Liu, J. Wang, B. Yu, X. Liu, X. Yao, Z. Zhang and H. Zhang, *Anal. Chem.*, 2015, 87, 9101–9107.