Open-chain thiamine analogues as potent inhibitors of thiamine pyrophosphate (TPP)-dependent enzymes

Alex H. Y. Chan, ${ }^{\ddagger}$ Terence C. S. Ho, ${ }^{\ddagger}$ and Finian J. Leeper*Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, UK
\ddagger Contributed equally

* Corresponding author, e-mail: fjl1@cam.ac.uk
Supplementary Information (SI)
Enzyme Inhibition Assays - Methods and Results (Figure S1 and Table S1) S2
Computational Docking - Methods and Results (Figures S2-8) S4
Calculation of Molecular Properties S10
Synthetic Experimental Procedures S11
NMR spectra S22
References S71

Enzyme assays

Evaluation of the inhibitory activity of compounds against Porcine PDH E1 in vitro

Porcine PDH E1 was purchased from Sigma. Porcine PDH E1 activity was determined by monitoring 2,6-dichlorophenolindophenol (DCPIP) reduction at 600 nm using a microplate reader (CLARIOstar) and conducted as described ${ }^{2}$ with some modifications. The percentage inhibition of compounds against porcine PDH E1 was assayed at specified concentrations. The reaction buffer ($50 \mathrm{mM} \mathrm{KH} 2 \mathrm{PO}_{4}$ and $1 \mathrm{mM} \mathrm{MgCl} 2, \mathrm{pH} 7$) contained thiamine pyrophosphate (TPP) at specified concentrations, 0.25 mM 2,6-dichlorophenolindophenol (DCPIP), and $2 \mathrm{mg} / \mathrm{mL}$ porcine PDH E1. The reaction mixture was preincubated at $37{ }^{\circ} \mathrm{C}$ for 30 min , then reaction was initiated by adding pyruvate to a final concentration of 50 mM . To determine the half-maximal inhibitory concentration (IC_{50}) the TPP concentration was set at $10 \mu \mathrm{M}$, and inhibitor concentration was varied. Specific activity was calculated using the molar extinction coefficient of DCPIP, $21 \mathrm{mM}^{-1} \mathrm{~cm}^{-1} .{ }^{3}$ The enzyme IC_{50} values were calculated from non-linear regression curve fitting using GraphPad Prism. The compound affinity (K_{1}) values were calculated by comparison to the K_{M} value of TPP; $K_{M(T P P)}$ was found to be $0.05 \mu \mathrm{M}$ which is consistent with the value previously reported. ${ }^{4}$

Figure S1. Measurement of porcine PDH E1 IC_{50} values at [TPP] $=\mathbf{1 0} \boldsymbol{\mu} \mathrm{M}$. Measurements were made in triplicate. Where the error bars are not visible, they are smaller than the symbols. Best-fit nonlinear regression curves are shown.
S. cerevisiae PDC inhibitory activity assay. S. cerevisiae PDC was purchased from Sigma. Its activity was determined by monitoring DCPIP reduction at 600 nm using a microplate reader (CLARIOstar) and conducted as described above with some modifications. The percentage inhibition of compounds was assayed at the specified final concentration. The reaction buffer $\left(50 \mathrm{mM} \mathrm{KH}_{2} \mathrm{PO}_{4}\right.$ and $1 \mathrm{mM} \mathrm{MgCl} 2, \mathrm{pH}$ 7) contained $200 \mu \mathrm{M}$ TPP, 0.27 mM DCPIP, and $0.15 \mathrm{mg} / \mathrm{mL}$ S. cerevisiae PDC. The reaction mixture was preincubated at $37^{\circ} \mathrm{C}$ for 60 min , then reaction was initiated by adding pyruvate to a final concentration of 70 mM . Specific activity was calculated using the molar extinction coefficient of DCPIP, $21 \mathrm{mM}^{-1} \mathrm{~cm}^{-1} .{ }^{3}$
E. coli OGDH E1 inhibitory activity assay. E. coli OGDH E1 was from our previous work ${ }^{5}$ and had been donated by R. Frank. Its activity was determined by monitoring DCPIP reduction at 600 nm using a microplate reader (CLARIOstar) and conducted as described ${ }^{5}$ with some modifications. The percentage inhibition of compounds was assayed at the specified final concentration. The reaction buffer (50 mM $\mathrm{KH}_{2} \mathrm{PO}_{4}$ and $2 \mathrm{mM} \mathrm{MgCl} 2, \mathrm{pH} 7$) contained $50 \mu \mathrm{M}$ TPP, 0.5 mM DCPIP, and $6.7 \mathrm{mg} / \mathrm{mL}$ E. coli OGDH E1. The reaction mixture was preincubated at $37{ }^{\circ} \mathrm{C}$ for 60 min , then reaction was initiated by adding α ketoglutarate to a final concentration of 10 mM . Specific activity was calculated using the molar extinction coefficient of DCPIP, $21 \mathrm{mM}^{-1} \mathrm{~cm}^{-1}$. ${ }^{3}$
A. viridans PO inhibitory activity assay. A. viridans PO and horseradish peroxidase were purchased from Sigma. A. viridans PO activity was determined by monitoring appearance of quinoneimine dye at 550 nm using a microplate reader (CLARIOstar) and conducted as described ${ }^{6}$ with some modifications. The percentage inhibition of compounds was assayed at the specified final concentration. The reaction buffer ($50 \mathrm{mM} \mathrm{KH} 2 \mathrm{PO}_{4}$ and $10 \mathrm{mM} \mathrm{MgCl} 2, \mathrm{pH} 5.9$) contained $50 \mu \mathrm{M}$ TPP, $10 \mu \mathrm{M}$ flavin adenine dinucleotide (FAD), 0.15\% 4-aminoantipyrine, $0.3 \% \mathrm{~N}$-ethyl- N -(2-hydroxy-3- sulfopropyl)-m-toluidine (EHSPT), $50 \mu \mathrm{~g} / \mathrm{mL}$ horseradish peroxidase and $0.35 \mathrm{U} / \mathrm{mL} A$. viridans PO. The reaction mixture was preincubated at $37{ }^{\circ} \mathrm{C}$ for 30 min , then reaction was initiated by adding pyruvate to a final concentration of 50 mM . 1 unit of PO activity is defined as $1 \mu \mathrm{~mol}$ of hydrogen peroxide produced per minute.
Z. mobilis PDC inhibitory activity assay. Z. mobilis PDC was expressed and purified following a reported method. ${ }^{7}$ Z. mobilis PDC activity was determined by monitoring reduced nicotinamide adenine dinucleotide (NADH) consumption at 340 nm using a microplate reader (CLARIOstar) and conducted as described ${ }^{7}$ with some modifications. The percentage inhibition of compounds was assayed at the specified final concentration. The reaction buffer (50 mM MES-KOH and $5 \mathrm{mM} \mathrm{MgCl}{ }_{2}$, pH 6.5) contained $50 \mu \mathrm{M}$ TPP, $150 \mu \mathrm{M}$ NADH, $10 \mathrm{U} / \mathrm{mL}$ alcohol dehydrogenase (ADH) and $0.5 \mu \mathrm{M}$ of active sites of Z. mobilis PDC. The reaction mixture was preincubated at $37^{\circ} \mathrm{C}$ for 60 min , then reaction was initiated by adding pyruvate to a final concentration of 10 mM .

Table S1. Summary of inhibitory activity of hydroxamate 17 b on TPP-dependent enzymes.

	Inhibition (\%) ${ }^{\text {a }}$			
[TPP]:[inhibitor]	${\text { S. cerevisiae } \text { PDC }^{\mathbf{b}}}$	Z. mobilis PDC $^{\mathbf{c}}$	E. coli OGDH E1	
A. viridans PO				
$1: 1$	<15	48 ± 4	27 ± 5	<15
$1: 5$	<15	71 ± 6	60 ± 5	<15

[^0]
Computational docking

Docking of TPP, compounds were executed using CCDC GOLD docking program with PDB: 6CFO for human PDH E1. The ligand (adduct of TPP with acetyl phosphinate) that forms part of chain A was removed and the resulting cavity was selected as the binding site. Our molecules were generated using Mercury. GA runs were set at 50 and efficiency of docking calculations was set to "Very Flexible" (200\%). No early termination was permitted. CHEMPLP and GoldScore were the docking scoring and rescoring respectively. ${ }^{1}$ For all other GOLD-specific docking options the default settings were used. Interactions between docked compounds and protein models are shown using CCDC GOLD. Goldscores were used to select best binding poses as GOLD has been optimised for the prediction of the best ligand binding poses; many factors are ignored or approximated when calculating a docking score so it does not reflect binding affinities.

Figure S2. The two possible binding modes of the longest bis-pyrimidine 12c in the TPP pocket of human PDH E1. The expected binding mode in which the pyrimidine- CH_{2}-triazole motif occupies the binding region of TPP's pyrimidine-CH2-thiazolium (left, Goldscore 47.5) and the alternative binding mode in which the pyrimidine- CH_{2}-amide motif occupies the binding region instead (right, Goldscore 40.5). In both cases, there is a pyrimidine moiety extending deeper into the pyrophosphate pocket. The Goldscores suggest that the left-hand pose, with the triazole in the thiazolium pocket and amide in the pyrophosphate pocket, is slightly more favourable.

Figure S3. Predicted binding modes of 25 and 26 in TPP pocket of human PDH E1 with potential interactions with $\mathbf{M g}^{\mathbf{2 +}}$. Compounds $\mathbf{2 5}$ and $\mathbf{2 6}$ are $\mathbf{1 2 c}$ with one or the other aminopyrimidine ring replaced by a methyl group. Docking of $\mathbf{2 5}$ with the aminopyrimidine ring in the aminopyrimidine pocket (top left, Goldscore 54.5) and in the pyrophosphate pocket (top right, Goldscore 34.5). Docking of 26 with aminopyrimidine in aminopyrimidine pocket (bottom left, Goldscore 60.7) and aminopyrimidine in pyrophosphate pocket (bottom right, Goldscore 35.9). The Goldscores suggest a strong preference for aminopyrimidine-containing compounds to adopt a pose with the aminopyrimidine ring in the aminopyrimidine binding pocket rather than in the pyrophosphate pocket.

Figure S4. Predicted binding modes of carboxylates 18a-c in the TPP pocket of human PDH E1. All show the terminal carboxylate interacting with the Mg^{2+} while the terminal phenyl group extends deeper into the pyrophosphate pocket. 18a (top), 18b (middle) and 18c (bottom). The Goldscores of 18a, 18b and 18c are 44.3, 36.8 and 41.0 respectively.

Figure S5. Predicted binding modes of hydroxamates 22a-c in the TPP pocket of human PDH E1. All show the terminal hydroxamate as a bidentate MBG interacting with the Mg^{2+} while the terminal phenyl group flips towards the central region (green). Regions of the active site cavity highlighted in green are lined with hydrophobic residues. TPP-dependent enzymes all have this hydrophobic central region that stabilises the catalytically active TPP ylide. These phenylalanine-derived ligands have the terminal phenyl group positioned close to this central region and thus stabilised by the hydrophobic interactions. The binding modes of 22a (top) and 22b (middle) are very similar and so their binding affinities are comparable (Table 1), although the slightly shorter interaction distance between the hydroxamate and Mg^{2+} with 22b may explain why it is slightly more potent than 22a. The alkyl linker in 22c (bottom) seems to be too long so may have distorted the optimal binding mode, thus lowering the affinity. Goldscores of 22a, 22b and 22c are 42.6, 36.2 and 39.2 respectively.

Figure S6. Predicted binding modes of O-benzyl hydroxamates 21a and 21c in the TPP pocket of human PDH E1. (Top) The crystal structure of TPP in complex with a pyruvate mimic in human PDH E1 (PDB entry 6CFO). This image helps to define the approximate location and the size of the pyruvate pocket. (Bottom left) Docking of 21c into the active site of human PDH E1. The terminal phenyl group occupies a hydrophobic side-pocket off the entrance tunnel and the benzyloxygroup is in the entrance tunnel. (Bottom right) Docking of 21a into the active site of human PDH E1. The benzyloxygroup is again in the entrance tunnel but the terminal phenyl group does not reach the side-pocket and instead occupies part of the pyruvate pocket. This may explain why 21c is more potent than 21a. Goldscores of 21a and 21c are 32.8 and 39.8 respectively.

Figure S7. Predicted binding modes of 24a-c in TPP pocket of human PDH E1. 24a (top right), 24b (bottom left) and 24c (bottom right). [We thank one of the referees for suggesting we should dock these compounds.] All show the terminal amide and hydroxamate interacting with the Mg^{2+} while the terminal phenyl group extends deeper into the pyrophosphate pocket. Goldscores of $\mathbf{2 4 a} \mathbf{a} \mathbf{2 4 b}$ and $\mathbf{2 4 c}$ are $60.2,76.3$ and 65.7 respectively. These scores suggest that 24a-c would be well worth synthesising and testing but time did not allow this in the current project.

Calculation of cavities in human PDH E1

The calculation was perform by program Caver Analyser 1.0, using the Caver 3.0 algorithm, on PBD entry 6CFO. The minimum and maximum probe diameters were 1.5 and $3.0 \AA$. The two active sites (containing the two adducts of TPP with acetyl phosphinate) were the two largest cavities found and are shown in Figure S8.

Figure S8. Overall structure of human PDH E1 showing the two active site cavities. The protein is an $\alpha_{2} \beta_{2}$ tetramer and each chain, in cartoon view, is coloured differently (β chains have the lighter colours). The active-site cavity in gold contains the adduct between TPP and inhibitor acetyl phosphinate (red dots, part of chain C in PDB entry 6CFO). The blue cavity (which contained the ligand in chain A in 6CFO) contains the docked structure of 21c (yellow dots). The Mg^{2+} ions are cyan dots.

Computational calculation of molecular properties

Physicochemical properties of all key compounds in this work were calculated using MarvinSketch 21.2.

For compounds considered as drug-like and predicted to be orally bioavailable, the Lipinski's Rule of Five ${ }^{8}$ is a well-known guideline since its first publication in 1997. However, since then many studies have further refined the guidelines and provided new recommendations ${ }^{9}$ for drug design:

- Molecular weight (MW): ≤ 400
- Log P: $\leq 3-4$
- HB donors (HBDs, i.e., no. of N-H and O-H bonds): ≤ 5
- HB acceptors (HBAs, i.e., no. of N and O atoms): ≤ 10

Ligand efficiency (LE) calculation: Binding free energy ΔG (in kcal per mole) / ligand’s non-hydrogen (heavy) atoms. Preferred LE: > 0.3. ${ }^{10}$

Synthetic Procedures

General synthesis methods

Oxygen- and moisture-sensitive reactions were carried out in flame-dried glassware under a nitrogen atmosphere. Unless otherwise stated, all chemicals and reagents were purchased from commercial suppliers and used without further purification.

Reaction progress was monitored by analytical thin-layer chromatography (TLC). TLC was conducted using Merck glass plates with silica Kieselgel 60 F254 of thickness 0.25 mm and visualised under 254 nm UV lamp or potassium permanganate staining solution (with gentle heating).

Flash column chromatography was carried out in the indicated solvent system using prepacked silica gel cartridges for use on the Biotage Purification System.

All solvents were removed under reduced pressure using a Büchi rotary evaporator with dry ice traps.
Reverse-phase HPLC: 0-80\% MeOH in water (with 0.1% formic acid).
All yields refer to chromatographically and spectroscopically pure compounds unless otherwise stated. Compounds were characterised by, at minimum, ${ }^{1} \mathrm{H}$ NMR spectroscopy, ${ }^{13} \mathrm{C}$ NMR spectroscopy and HRMS, unless otherwise stated.

Melting points of compounds were measured using a Reichert machine and are uncorrected.
${ }^{1} \mathrm{H}$ NMR spectra were recorded at 400 MHz in CDCl_{3} or $\mathrm{CD}_{3} \mathrm{OD}$ solution on a Bruker 400 MHz or 700 MHz spectrometer and chemical shifts were recorded in parts per million (ppm). ${ }^{13} \mathrm{C}$ NMR spectra were recorded on a Bruker 400 MHz or 700 MHz spectrometer. Resonances are described using the following abbreviations: s (singlet), d (doublet), t (triplet), q (quartet), qnt (quintet), sext (sextet), m (multiplet), br (broad), dd (doublet of doublets), etc. Coupling constants (J) are given in Hz and are rounded to the nearest 0.1 Hz . All NMR data were collected at $25^{\circ} \mathrm{C}$.

Mass spectra used electrospray ionisation (ESI).
Optical Rotations were measured on a Perkin Elmer Model 343 Polarimeter using a sodium lamp ($\lambda=$ $589 \mathrm{~nm}, \mathrm{D}$-line). $[\alpha]_{\mathrm{D}}$ values are reported at the stated temperature, with concentration in $\mathrm{g} / 100 \mathrm{~mL}$.

The synthesis and characterisation data for $\mathbf{8}^{2}, \mathbf{9}^{2}, 16^{11}$ and 19^{12} have been described previously.

Experimental procedures - Synthesis

General procedure for preparation of 11a-c:

To a stirred solution of the alkynoic acid 10a-c (1.3 equiv.) and DCC (3 equiv.) in dry DMF ($15 \mathrm{~mL}, 0.2$ M) under nitrogen at $0^{\circ} \mathrm{C}$ was added DMAP (1.3 equiv.) and amine 9 ($3 \mathrm{mmol}, 1$ equiv.). The resultant mixture was stirred at $40{ }^{\circ} \mathrm{C}$ for 2 days, diluted with DCM, filtered through cotton wool (to remove DCC/DCU), treated with aqueous phosphate buffer (pH 7), and extracted with DCM. The organic phase was dried over MgSO_{4}, filtered, and evaporated under reduced pressure. The residue was purified by silica flash chromatography ($10 \% \mathrm{MeOH}$ in DCM) to yield amide 11a-c as a solid.

N-[(4-Amino-2-methylpyrimidin-5-yl)methyl]pent-4-ynamide 11a

Prepared from 4-pentynoic acid. White solid (405 mg, 62\%). m.p. $111-114{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR (400 MHz , $\mathrm{CD}_{3} \mathrm{OD}$) $\delta 7.95$ ($\mathrm{s}, 1 \mathrm{H}, \mathrm{H}-6^{\prime}$), $4.24(\mathrm{~s}, 2 \mathrm{H}, \mathrm{H}-6), 2.42-2.52(\mathrm{~m}, 4 \mathrm{H}, \mathrm{H}-2$ and $\mathrm{H}-3), 2.40\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{H}-7^{\prime}\right), 2.28(\mathrm{t}$, $1 \mathrm{H}, \mathrm{J}=2.5 \mathrm{~Hz}, \mathrm{H}-5) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$) $\delta 173.4$ (C-1), 166.2 (C-2'), 162.1 (C-4'), 153.7 ($\mathrm{C}-6^{\prime}$), 111.3 (C-5'), 81.9 (C-4), 69.1 (C-5), 36.5 (C-2), 34.5 (C-6), 23.4 (C-7'), 14.2 (C-3). HRMS (ESI) m/z: [M+H+] calculated for $\mathrm{C}_{11} \mathrm{H}_{14} \mathrm{~N}_{4} \mathrm{O}: 219.1240$; found: 219.1255 .

N-[(4-Amino-2-methylpyrimidin-5-yl)methyl]hex-5-ynamide 11b

Prepared from 5-hexynoic acid. White solid ($473 \mathrm{mg}, 68 \%$). m.p. $113-116^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$) $\delta 7.92\left(\mathrm{~s}, 1 \mathrm{H}, \mathrm{H}-6^{\prime}\right), 4.23(\mathrm{~s}, 2 \mathrm{H}, \mathrm{H}-7), 2.40\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{H}-7^{\prime}\right), 2.37(\mathrm{t}, 2 \mathrm{H}, \mathrm{J}=7.3 \mathrm{~Hz}, \mathrm{H}-2), 2.17-2.26(\mathrm{~m}, 3 \mathrm{H}$, $\mathrm{H}-4$ and $\mathrm{H}-6$), 1.82 (qnt, $2 \mathrm{H}, \mathrm{J}=7.3 \mathrm{~Hz}, \mathrm{H}-3$). ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$) $\delta 174.7$ (C-1), 166.3 (C-2'), 162.1 (C-4'), 153.8 (C-6'), 111.4 (C-5'), 82.5 (C-5), 68.9 (C-6), 36.5 (C-7), 34.2 (C-2), 24.3 (C-3), 23.4 (C7^{\prime}), 17.1 (C-4). HRMS (ESI) $\mathrm{m} / \mathrm{z}:\left[\mathrm{M}+\mathrm{H}^{+}\right]$calculated for $\mathrm{C}_{12} \mathrm{H}_{16} \mathrm{~N}_{4} \mathrm{O}: 233.1397$; found: 233.1400

N-[(4-Amino-2-methylpyrimidin-5-yl)methyl]hept-6-ynamide 11c

Prepared from 6-heptynoic acid. White solid (524 mg, 71\%). m.p. $115-117{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H} \mathbf{N M R}(400 \mathrm{MHz}$, $\mathrm{CD}_{3} \mathrm{OD}$) $\delta 7.92\left(\mathrm{~s}, 1 \mathrm{H}, \mathrm{H}-6^{\prime}\right), 4.23(\mathrm{~s}, 2 \mathrm{H}, \mathrm{H}-8), 2.40\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{H}-7^{\prime}\right), 2.26(\mathrm{t}, 2 \mathrm{H}, \mathrm{J}=7.4 \mathrm{~Hz}, \mathrm{H}-2), 2.18-2.22$ ($\mathrm{m}, 3 \mathrm{H}, \mathrm{H}-5$ and $\mathrm{H}-7$), 1.71-1.76 (m, 2H, H-3), 1.51-1.55 (m, $2 \mathrm{H}, \mathrm{H}-4$). ${ }^{13} \mathrm{C}$ NMR (100 MHz, CD $\mathrm{C}_{3} \mathrm{OD}$) δ 175.2 (C-1), 166.3 (C-2'), 162.1 (C-4'), 153.8 (C-6'), 111.4 (C-5'), 83.1 (C-6), 68.3 (C-7), 36.5 (C-8), 34.9 (C-2), 27.6 (C-4), 24.5 (C-3), 23.4 (C-7'), 17.3 (C-5). HRMS (ESI) m / z : $\left[\mathrm{M}+\mathrm{H}^{+}\right]$calculated for $\mathrm{C}_{13} \mathrm{H}_{18} \mathrm{~N}_{4} \mathrm{O}$: 247.1553; found: 247.1566.

General procedure for preparation of 12a-c:

To a stirred solution of alkyne 11a-c (0.2 mmol, 1 equiv.) and azide $\mathbf{8}$ (1 equiv.) in t - BuOH and water ($2: 1,0.2 \mathrm{M}$) was added $\mathrm{CuSO}_{4} \cdot 5 \mathrm{H}_{2} \mathrm{O}$ (0.03 equiv.) and sodium ascorbate (0.3 equiv.). The resultant mixture was stirred at $40^{\circ} \mathrm{C}$ for 2 days. The reaction mixture was concentrated under reduced pressure, diluted in EtOAc, washed with $1 \mathrm{M} \mathrm{K}_{2} \mathrm{CO}_{3}$, dried over MgSO_{4}, filtered, and evaporated under reduced pressure. The residue was purified by silica flash chromatography ($10-30 \% \mathrm{MeOH}$ in DCM) to yield bispyrimidine 12a-c as a solid.

N-[(4-Amino-2-methylpyrimidin-5-yl)methyl]-3-\{1-[(4-amino-2-methylpyrimidin-5-yl)methyl]-1H-

1,2,3-triazol-4-yl\}propanamide 12a

Prepared from 11a. White solid (19 mg, 25\%). m.p. $165-167^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$) $\delta 8.01$ (s, $1 \mathrm{H}, \mathrm{H}-6^{\prime}$), $7.87\left(\mathrm{~s}, 1 \mathrm{H}, \mathrm{H}-6^{\prime \prime}\right), 7.73(\mathrm{~s}, 1 \mathrm{H}, \mathrm{H}-5), 5.44\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{H}-8^{\prime}\right), 4.18\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{H}-8^{\prime \prime}\right), 3.00(\mathrm{t}, 2 \mathrm{H}, \mathrm{J}=7.4$ $\mathrm{Hz}, \mathrm{H}-3), 2.59(\mathrm{t}, 2 \mathrm{H}, \mathrm{J}=7.4 \mathrm{~Hz}, \mathrm{H}-2), 2.42\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{H}-\mathrm{T}^{\prime}\right), 2.40\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{H}-7{ }^{\prime \prime}\right) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$) $\delta 173.8$ (C-1), 167.5 ($\mathrm{C}-2^{\prime}$), 166.3 (C-2"), 162.0 and 162.1 ($\mathrm{C}-4^{\prime}$ and $\mathrm{C}-4^{\prime \prime}$), 154.9 ($\mathrm{C}-6^{\prime}$), 153.8 ($\mathrm{C}-6^{\prime \prime}$), 146.6 (C-4), 122.1 (C-5), 111.3 (C-5"), 108.5 (C-5'), 47.2 (C-8'), 36.5 (C-8"), 34.7 (C-2), 23.6 (C-7'), 23.4 (C-7"), 20.9 (C-3). HRMS (ESI) $m / z:\left[M+H^{+}\right]$calculated for $\mathrm{C}_{17} \mathrm{H}_{22} \mathrm{~N}_{10} \mathrm{O}: 383.2051$; found: 383.2065.

N-[(4-Amino-2-methylpyrimidin-5-yl)methyl]-4-\{1-[(4-amino-2-methylpyrimidin-5-yl)methyl]-1H-1,2,3-triazol-4-yl\}butanamide 12b

Prepared from 11b. White solid ($21 \mathrm{mg}, 27 \%$). m.p. $175-176{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$) $\delta 8.03$ (s, $1 \mathrm{H}, \mathrm{H}-6^{\prime}$), $7.91\left(\mathrm{~s}, 1 \mathrm{H}, \mathrm{H}-6^{\prime \prime}\right), 7.78$ ($\mathrm{s}, 1 \mathrm{H}, \mathrm{H}-6$), 5.46 ($\mathrm{s}, 2 \mathrm{H}, \mathrm{H}-8^{\prime}$), $4.20\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{H}-8^{\prime \prime}\right), 2.71(\mathrm{t}, 2 \mathrm{H}, \mathrm{J}=7.6$ $\mathrm{Hz}, \mathrm{H}-4), 2.41\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{H}-7^{\prime}\right), 2.39\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{H}-7^{\prime \prime}\right), 2.28(\mathrm{t}, 2 \mathrm{H}, \mathrm{J}=7.2 \mathrm{~Hz}, \mathrm{H}-2), 1.96$ (qnt, $2 \mathrm{H}, \mathrm{J}=7.4 \mathrm{~Hz}, \mathrm{H}-$ 3). ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$) $\delta 174.8$ (C-1), 167.5 (C-2'), 166.3 (C-2"), 162.1 (C-4'), 162.0 ($\mathrm{C}-4^{\prime \prime}$), 155.0 (C-6'), 153.8 (C-6"), 147.4 (C-5), 122.0 (C-6), 111.4 (C-5"), 108.5 (C-5'), 47.2 (C-8'), 36.5 (C-8"), 34.7 (C2), 25.1 (C-3), 24.2 (C-4), 23.6 (C-7'), 23.4 (C-7"). HRMS (ESI) m / z : $\left[\mathrm{M}+\mathrm{H}^{+}\right]$calculated for $\mathrm{C}_{18} \mathrm{H}_{24} \mathrm{~N}_{10} \mathrm{O}$: 397.2207; found: 397.2219.

N-[(4-Amino-2-methylpyrimidin-5-yl)methyl]-5-\{1-[(4-amino-2-methylpyrimidin-5-yl)methyl]-1H-1,2,3-triazol-4-yl\}pentanamide 12c

Prepared from 11c. White solid ($25 \mathrm{mg}, 30 \%$). m.p. $179-180^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$) $\delta 8.03$ (s, $\left.1 \mathrm{H}, \mathrm{H}-6^{\prime}\right), 7.91\left(\mathrm{~s}, 1 \mathrm{H}, \mathrm{H}-6^{\prime \prime}\right), 7.76(\mathrm{~s}, 1 \mathrm{H}, \mathrm{H}-7), 5.46\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{H}-8^{\prime}\right), 4.21\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{H}-8^{\prime \prime}\right), 2.68-2.72(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}-$ 5), $2.42\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{H}^{\prime} \mathrm{7}^{\prime}\right), 2.39\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{H}-\mathrm{7}^{\prime \prime}\right), 2.23-2.28(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}-2), 1.62-1.70(\mathrm{~m}, 4 \mathrm{H}, \mathrm{H}-3$ and $\mathrm{H}-4) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$) $\delta 175.2$ (C-1), 167.5 ($\mathrm{C}-2^{\prime}$), 166.3 (C-2"), 162.1 ($\mathrm{C}-4^{\prime}$), 162.0 (C-4"), 154.9 ($\mathrm{C}-6^{\prime}$), 153.8 (C-6"), 147.9 (C-6), 121.8 (C-7), 111.4 (C-5"), 108.5 (C-5'), 47.2 (C-8'), 36.5 (C-8"), 35.1 (C-2), 28.4 (C-3), 24.8 (C-5), 24.4 (C-4), 23.7 (C-7'), 23.6 (C-7"). HRMS (ESI) m / z : $\left[\mathrm{M}+\mathrm{H}^{+}\right]$calculated for $\mathrm{C}_{19} \mathrm{H}_{26} \mathrm{~N}_{10} \mathrm{O}$: 411.2364; found: 411.2359.

General procedure for preparation of 14a-c:

To a stirred solution of alkyne 11a-c (0.2 mmol, 1 equiv.) and 2-azidoacetic acid 13 (1 equiv.) in DMF (0.2 M) was added $\mathrm{CuSO}_{4} \cdot 5 \mathrm{H}_{2} \mathrm{O}$ (0.03 equiv.) and sodium ascorbate (0.3 equiv.). The resultant mixture was stirred at $40{ }^{\circ} \mathrm{C}$ for 8 h , diluted in sat. aq. NaHCO_{3}, and then washed with EtOAc. The aqueous phase was evaporated under reduced pressure, dissolved in a minimal amount of water, and purified by reverse-phase HPLC to yield carboxylic acid 14a-c as a solid.

2-[4-(2-\{[(4-Amino-2-methylpyrimidin-5-yl)methyl]carbamoyl\}ethyl)-1H-1,2,3-triazol-1-yl]acetic acid 14a

Prepared from 11a. White solid ($10 \mathrm{mg}, 15 \%$). m.p. $212-215^{\circ} \mathrm{C} .{ }^{1} \mathrm{H} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}\right) \delta 7.92$ (s, $\left.1 \mathrm{H}, \mathrm{H}-6^{\prime \prime}\right), 7.74(\mathrm{~s}, 1 \mathrm{H}, \mathrm{H}-3), 5.18(\mathrm{~s}, 2 \mathrm{H}, \mathrm{H}-2), 4.21\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{H}-8^{\prime \prime}\right), 2.95\left(\mathrm{t}, 2 \mathrm{H}, \mathrm{J}=7.5 \mathrm{~Hz}, \mathrm{H}-3^{\prime}\right), 2.55(\mathrm{t}, 2 \mathrm{H}$, $\left.J=7.5 \mathrm{~Hz}, \mathrm{H}-2^{\prime}\right), 2.37\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{H}-7^{\prime \prime}\right) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$) $\delta 174.1$ (C-1'), 170.2 (C-1), 166.7 (C-2"), 162.3 (C-4"), 153.5 (C-6"), 145.6 (C-4), 122.1 (C-3), 111.1 (C-5"), 55.0 (C-2), 36.6 (C-8"), 34.8 (C-2'), 23.5 (C-7"), 21.1 (C-3'). HRMS (ESI) $m / z:\left[M+\mathrm{H}^{+}\right]$calculated for $\mathrm{C}_{13} \mathrm{H}_{17} \mathrm{~N}_{7} \mathrm{O}_{3}$: 320.1466; found: 320.1477.

2-[4-(3-\{[(4-Amino-2-methylpyrimidin-5-yl)methyl]carbamoyl\}propyl)-1H-1,2,3-triazol-1-yl]acetic acid 14b

Prepared from 11b. White solid ($8 \mathrm{mg}, 11 \%$). m.p. 201-203 ${ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$) $\delta 7.94$ (s, 1H, H-6"), 7.71 (s, 1H, H-3), 5.17 (s, 2H, H-2), 4.22 ($s, 2 H, H-8 "), 2.63-2.68\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}-4^{\prime}\right), 2.39(\mathrm{~s}, 3 \mathrm{H}, \mathrm{H}-$ $\left.7^{\prime \prime}\right), 2.20-2.25\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}-2^{\prime}\right), 1.91-1.96\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}-3^{\prime}\right) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$) $\delta 174.7$ (C-1'), 170.5 (C-1), 166.6 (C-2"), 162.4 (C-4"), 154.1 (C-6"), 145.9 (C-4), 122.0 (C-3), 111.4 (C-5"), 54.4 (C-2), 36.3 (C$8^{\prime \prime}$), 34.3 (C-2'), 25.2 (C-3'), 24.2 (C-4'), 23.9 (C-7"). HRMS (ESI) $m / z:\left[M+\mathrm{H}^{+}\right]$calculated for $\mathrm{C}_{14} \mathrm{H}_{19} \mathrm{~N}_{7} \mathrm{O}_{3}$: 334.1622; found: 334.1635.

2-[4-(4-\{[(4-Amino-2-methylpyrimidin-5-yl)methyl]carbamoyl\}butyl)-1H-1,2,3-triazol-1-yl]acetic acid 14c

Prepared from 11c. White solid ($14 \mathrm{mg}, 19 \%$). m.p. $213-216^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$) $\delta 7.94$ (s, $1 \mathrm{H}, \mathrm{H}-6^{\prime \prime}$), 7.72 ($\mathrm{s}, 1 \mathrm{H}, \mathrm{H}-3$), 5.16 ($\mathrm{s}, 2 \mathrm{H}, \mathrm{H}-2$), 4.25 ($\mathrm{s}, 2 \mathrm{H}, \mathrm{H}-8^{\prime \prime}$), 2.63-2.67 ($\mathrm{m}, 2 \mathrm{H}, \mathrm{H}-5^{\prime}$), 2.38 ($\mathrm{s}, 3 \mathrm{H}, \mathrm{H}-$ $\left.7^{\prime \prime}\right)$, 2.22-2.26 (m, 2H, H-2'), 1.60-1.65 (m, 4H, H-3' and H-4'). ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$) $\delta 174.9$ (C1^{\prime}), 170.0 ($\mathrm{C}-1$), 166.1 ($\mathrm{C}-2^{\prime \prime}$), 162.5 (C-4"), 153.8 (C-6"), 146.2 (C-4), 122.3 (C-3), 111.3 (C-5"), 54.8 (C2), 36.7 (C-8"), 35.3 ($\mathrm{C}-2^{\prime}$), 28.2 (C-3'), 24.4 and 24.7 (C-4' and $\mathrm{C}-5^{\prime}$), 23.6 ($\mathrm{C}-7^{\prime \prime}$). HRMS (ESI) $m / \mathrm{z}:\left[\mathrm{M}+\mathrm{H}^{+}\right]$ calculated for $\mathrm{C}_{15} \mathrm{H}_{21} \mathrm{~N}_{7} \mathrm{O}_{3}$: 348.1779; found: 348.1785.

General procedure for preparation of 17a-c:

To a stirred solution of alkyne 11a-c ($0.3 \mathrm{mmol}, 1$ equiv.) and azide 16 (1.5 equiv.) in $t-\mathrm{BuOH}$ and water ($2: 1,0.2 \mathrm{M}$) was added $\mathrm{CuSO}_{4} \cdot 5 \mathrm{H}_{2} \mathrm{O}$ (0.03 equiv.) and sodium ascorbate (0.3 equiv.). The resultant mixture was stirred at $40^{\circ} \mathrm{C}$ for 2 days. The reaction mixture was concentrated under reduced pressure, diluted in DCM, washed with aqueous phosphate buffer (pH 7), dried over MgSO_{4}, filtered, and evaporated under reduced pressure. The residue was purified by silica flash chromatography (10\% MeOH in DCM) to yield ester 17a-c as a solid.

Methyl (2S)-2-[4-(2-\{[(4-amino-2-methylpyrimidin-5-yl)methyl]carbamoyl\}ethyl)-1H-1,2,3-triazol-1-yl]-3-phenylpropanoate 17a

Prepared from 11a. White solid ($61 \mathrm{mg}, 48 \%$). m.p. $185-186^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$) $\delta 7.90$ (s, $\left.1 \mathrm{H}, \mathrm{H}-6^{\prime \prime}\right), 7.75\left(\mathrm{~s}, 1 \mathrm{H}, \mathrm{H}-\mathrm{l}^{\prime}\right), 7.06-7.19$ (m, 5H, H-5, H-6 and H-7), 5.65 (dd, $1 \mathrm{H}, \mathrm{J}=5.4$ and $10.4 \mathrm{~Hz}, \mathrm{H}-$ 2), $4.20\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{H}-8^{\prime \prime}\right), 3.77(\mathrm{~s}, 3 \mathrm{H}, \mathrm{H}-8), 3.59(\mathrm{dd}, 1 \mathrm{H}, \mathrm{J}=5.4$ and $14.2 \mathrm{~Hz}, \mathrm{H}-3 \mathrm{a}), 3.43$ (dd, $1 \mathrm{H}, \mathrm{J}=10.4$ and $14.2 \mathrm{~Hz}, \mathrm{H}-3 \mathrm{~b}), 2.98\left(\mathrm{t}, 2 \mathrm{H}, \mathrm{J}=7.5 \mathrm{~Hz}, \mathrm{H}-3^{\prime}\right), 2.55\left(\mathrm{t}, 2 \mathrm{H}, \mathrm{J}=7.5 \mathrm{~Hz}, \mathrm{H}-4^{\prime}\right), 2.36\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{H}-7^{\prime \prime}\right) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$) $\delta 173.8$ ($\mathrm{C}-5^{\prime}$), 168.7 (C-1), 166.3 (C-2"), 162.1 (C-4"), 153.9 (C-6"), 145.9 (C-2'), 135.4 (C-4), 128.5, 128.1 and 126.8 (C-5, C-6 and C-7), 122.3 (C-1'), 111.4 (C-5"), 63.9 (C-2), 52.1 (C-8), 37.5 (C-3), 36.6 (C-8"), 34.7 (C-4'), 23.4 (C-7"), 20.8 (C-3'). HRMS (ESI) $m / z:\left[M+\mathrm{H}^{+}\right]$calculated for $\mathrm{C}_{21} \mathrm{H}_{25} \mathrm{~N}_{7} \mathrm{O}_{3}$: 424.2092; found: 424.2089. [$\left.\alpha\right]_{\mathrm{D}}{ }^{25}=-64.2^{\circ}(\mathrm{c}=0.4, \mathrm{MeOH})$.

Methyl (2S)-2-[4-(3-\{[(4-amino-2-methylpyrimidin-5-yl)methyl]carbamoyl\}propyl)-1H-1,2,3-triazol-1-yl]-3-phenylpropanoate 17b

Prepared from 11b. White solid ($76 \mathrm{mg}, 58 \%$). m.p. $181-183^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$) $\delta 7.93$ (s, $1 \mathrm{H}, \mathrm{H}-6$ "), 7.76 (s, 1H, H-1'), 7.06-7.21 (m, 5H, H-5, H-6 and H-7), 5.67 (dd, 1H, J = 5.3 and $10.5 \mathrm{~Hz}, \mathrm{H}-$ 2), 4.23 (s, $2 \mathrm{H}, \mathrm{H}-8^{\prime \prime}$), 3.77 ($\mathrm{s}, 3 \mathrm{H}, \mathrm{H}-8$), 3.61 (dd, $1 \mathrm{H}, \mathrm{J}=5.3$ and $14.1 \mathrm{~Hz}, \mathrm{H}-3 \mathrm{a}$), 3.46 (dd, $1 \mathrm{H}, \mathrm{J}=10.5$ and $14.1 \mathrm{~Hz}, \mathrm{H}-3 \mathrm{~b}), 2.67\left(\mathrm{t}, 2 \mathrm{H}, \mathrm{J}=7.5 \mathrm{~Hz}, \mathrm{H}-3^{\prime}\right), 2.40\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{H}-7^{\prime \prime}\right), 2.22\left(\mathrm{t}, 2 \mathrm{H}, \mathrm{J}=7.5 \mathrm{~Hz}, \mathrm{H}-5^{\prime}\right), 1.91$ (qnt, 2H, J = 7.5 Hz, H-4'). ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$) $\delta 174.8$ (C-6'), 168.7 (C-1), 166.3 (C-2"), 162.1 (C-4"), 153.9 (C-6"), 146.6 (C-2'), 135.5 (C-4), 128.6, 128.2, 126.8 (C-5, C-6 and C-7), 122.4 (C-1'), 111.5 (C-5"), 63.9 (C-2), 52.1 (C-8), 37.4 (C-3), 36.5 (C-8"), 34.5 ($\mathrm{C}-5^{\prime}$), 25.1 ($\mathrm{C}-4^{\prime}$), 24.1 ($\mathrm{C}-3^{\prime}$), 23.4 ($\mathrm{C}-7^{\prime \prime}$). HRMS (ESI) m / z : $\left[\mathrm{M}+\mathrm{H}^{+}\right]$calculated for $\mathrm{C}_{22} \mathrm{H}_{27} \mathrm{~N}_{7} \mathrm{O}_{3}$: 438.2248; found: 438.2258. $[\alpha]_{\mathrm{D}}{ }^{25}=-55.4^{\circ}(\mathrm{c}=0.35$, MeOH).

Methyl (2S)-2-[4-(4-\{[(4-amino-2-methylpyrimidin-5-yl)methyl]carbamoyl\}butyl)-1H-1,2,3-triazol-1-yl]-3-phenylpropanoate 17c

Prepared from 11c. White solid ($75 \mathrm{mg}, 56 \%$). m.p. $193-195^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$) $\delta 7.93$ (s, $\left.1 \mathrm{H}, \mathrm{H}-6^{\prime \prime}\right), 7.74\left(\mathrm{~s}, 1 \mathrm{H}, \mathrm{H}-\mathrm{l}^{\prime}\right), 7.06-7.20(\mathrm{~m}, 5 \mathrm{H}, \mathrm{H}-5, \mathrm{H}-6$ and $\mathrm{H}-7), 5.67(\mathrm{dd}, 1 \mathrm{H}, \mathrm{J}=5.2$ and $10.5 \mathrm{~Hz}, \mathrm{H}-$ 2), 4.23 (s, 2H, H-8"), 3.78 (s, 3H, H-8), 3.61 (dd, $1 \mathrm{H}, J=5.2$ and $14.2 \mathrm{~Hz}, \mathrm{H}-3 \mathrm{a}$), 3.47 (dd, $1 \mathrm{H}, \mathrm{J}=10.5$ and $14.2 \mathrm{~Hz}, \mathrm{H}-3 \mathrm{~b}$), 2.66 ($\mathrm{t}, 2 \mathrm{H}, \mathrm{J}=7.0 \mathrm{~Hz}, \mathrm{H}-3^{\prime}$), $2.39\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{H}-7^{\prime \prime}\right), 2.24\left(\mathrm{t}, 2 \mathrm{H}, \mathrm{J}=7.0 \mathrm{~Hz}, \mathrm{H}-6^{\prime}\right), 1.57-$ $1.64\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{H}-4^{\prime}\right.$ and $\left.\mathrm{H}-5^{\prime}\right) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$) $\delta 175.2$ (C-7'), 168.7 (C-1), 166.3 (C-2"), 162.1 (C-4"), 153.9 (C-6"), 147.1 (C-2'), 135.5 (C-4), 128.6, 128.1 and 126.8 (C-5, C-6 and C-7), 122.2 (C-1'), 111.1 (C-5"), 63.9 (C-2), 52.1 (C-8), 37.4 (C-3), 36.5 (C-8"), 35.1 (C-6'), 28.4 (C-5'), 24.6 (C-3'), 24.3 (C4^{\prime}), 23.4 ($\mathrm{C}-7^{\prime \prime}$). HRMS (ESI) $m / z:\left[\mathrm{M}+\mathrm{H}^{+}\right]$calculated for $\mathrm{C}_{23} \mathrm{H}_{29} \mathrm{~N}_{7} \mathrm{O}_{3}$: 452.2405; found: 452.2417. [$\left.\alpha\right]_{\mathrm{D}}{ }^{25}$ $=-44.7^{\circ}(\mathrm{c}=0.2, \mathrm{MeOH})$.

General procedure for preparation of 18a-c:

To a stirred solution of ester 17a-c ($0.1 \mathrm{mmol}, 1$ equiv.) in THF and water (1:1, 0.1 M) was added potassium hydroxide (1 equiv.). The reaction mixture was stirred at r.t. for 1-2 h and then evaporated under reduced pressure to yield carboxylate 18a-c as a solid.

Potassium (2S)-2-[4-(2-\{[(4-amino-2-methylpyrimidin-5-yl)methyl]carbamoyl\}ethyl)-1H-1,2,3-triazol-1-yl]-3-phenylpropanoate 18a

Prepared from 17a. White solid ($44 \mathrm{mg}, 98 \%$). m.p. 202-204 ${ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$) $\delta 7.91$ (s, $1 \mathrm{H}, \mathrm{H}-6$ "), 7.76 (s, 1H, H-1'), 7.03-7.19 (m, 5H, H-5, H-6 and H-7), 5.28 (dd, $1 \mathrm{H}, \mathrm{J}=4.6$ and $10.6 \mathrm{~Hz}, \mathrm{H}-$ 2), $4.20\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}-8^{\prime \prime}\right), 3.57(\mathrm{dd}, 1 \mathrm{H}, \mathrm{J}=4.6$ and $14.2 \mathrm{~Hz}, \mathrm{H}-3 \mathrm{a}), 3.32(\mathrm{dd}, 1 \mathrm{H}, \mathrm{J}=10.6$ and $14.2 \mathrm{~Hz}, \mathrm{H}-$ 3b), $2.97\left(\mathrm{t}, 2 \mathrm{H}, \mathrm{J}=7.4 \mathrm{~Hz}, \mathrm{H}-3^{\prime}\right), 2.55\left(\mathrm{t}, 2 \mathrm{H}, \mathrm{J}=7.4 \mathrm{~Hz}, \mathrm{H}-4^{\prime}\right), 2.35\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{H}-\mathrm{7}^{\prime \prime}\right) .{ }^{13} \mathrm{C}$ NMR (100 MHz , $\mathrm{CD}_{3} \mathrm{OD}$) $\delta 174.0$ ($\mathrm{C}-5^{\prime}$), 173.1 ($\mathrm{C}-1$), 166.3 ($\mathrm{C}-2^{\prime \prime}$), 162.1 ($\mathrm{C}-4^{\prime \prime}$), 153.9 ($\mathrm{C}-6^{\prime \prime}$), 145.3 ($\left.\mathrm{C}-2^{\prime}\right), 137.4$ (C-4), 128.4, 127.9, 126.2 (C-5, C-6 and C-7), 121.9 (C-1'), 111.4 (C-5"), 67.8 (C-2), 39.0 (C-3), 36.6 (C-8"), 35.0 (C-4'), 23.4 (C-7"), 21.1 ($\mathrm{C}-3^{\prime}$). HRMS (ESI) $\mathrm{m} / \mathrm{z}:\left[\mathrm{M}+\mathrm{H}^{+}\right]$calculated for $\mathrm{C}_{20} \mathrm{H}_{23} \mathrm{~N}_{7} \mathrm{O}_{3}$: 410.1935; found: 410.1944. $[\alpha]_{D}{ }^{25}=-22.2^{\circ}(c=0.5, \mathrm{MeOH})$.

Potassium (2S)-2-[4-(3-\{[(4-amino-2-methylpyrimidin-5-yl)methyl]carbamoyl\}propyl)-1H- 1,2,3-triazol-1-yl]-3-phenylpropanoate 18b

Prepared from 17b. White solid ($44 \mathrm{mg}, 95 \%$). m.p. 205-207 ${ }^{\circ} \mathrm{C}$. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$) $\delta 7.94$ (s, $1 \mathrm{H}, \mathrm{H}-6^{\prime \prime}$), 7.72 ($\mathrm{s}, 1 \mathrm{H}, \mathrm{H}-\mathrm{1}^{\prime}$), 7.06-7.21 (m,5H, H-5, H-6 and H-7), 5.29-5.33 (m, 1H, H-2), 4.23 ($\mathrm{s}, 2 \mathrm{H}$, $\left.\mathrm{H}-8^{\prime \prime}\right), 3.58-3.62(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-3 \mathrm{a}), 3.36-3.39(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-3 \mathrm{~b}), 2.65-2.67\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}-3^{\prime}\right), 2.40\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{H}-7^{\prime \prime}\right), 2.18-$ 2.23 ($\mathrm{m}, 2 \mathrm{H}, \mathrm{H}-5^{\prime}$), 1.91-1.96 (m, 2H, H-4'). ${ }^{13} \mathrm{C}$ NMR (100 MHz, CD ${ }_{3} \mathrm{OD}$) $\delta 174.9$ (C-6'), 173.2 (C-1), 166.3 (C-2"), 162.1 (C-4"), 154.0 (C-6"), 145.8 (C-2'), 137.4 (C-4), 128.4, 127.9, 126.3 (C-5, C-6 and C7), 122.1 (C-1'), 111.5 (C-5"), 67.7 (C-2), 38.8 (C-3), 36.5 (C-8"), 34.4 (C-5’), 25.1 (C-4’), 24.0 (C-3'), 23.4 (C-7"). HRMS (ESI) m / z : $\left[\mathrm{M}+\mathrm{H}^{+}\right]$calculated for $\mathrm{C}_{21} \mathrm{H}_{25} \mathrm{~N}_{7} \mathrm{O}_{3}$: 424.2092; found: 424.2098. [$\left.\alpha\right]_{\mathrm{D}}{ }^{25}=-31.4^{\circ}$ ($c=0.7, \mathrm{MeOH}$).

Prepared from 17c. White solid ($46 \mathrm{mg}, 97 \%$). m.p. $210-212{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$) $\delta 7.94$ (s, $1 \mathrm{H}, \mathrm{H}-6 "$), 7.73 (s, 1H, H-1'), 7.06-7.17 (m, 5H, H-5, H-6 and H-7), 5.30 (dd, $1 \mathrm{H}, \mathrm{J}=4.5$ and $10.8 \mathrm{~Hz}, \mathrm{H}-$ 2), 4.22 ($\mathrm{s}, 2 \mathrm{H}, \mathrm{H}-8$) $), 3.59$ ($\mathrm{dd}, 1 \mathrm{H}, J=4.5$ and $14.3 \mathrm{~Hz}, \mathrm{H}-3 \mathrm{a}$), 3.38 ($\mathrm{dd}, 1 \mathrm{H}, J=10.8$ and $14.3 \mathrm{~Hz}, \mathrm{H}-3 \mathrm{~b}$), $2.66\left(\mathrm{t}, 2 \mathrm{H}, \mathrm{J}=6.7 \mathrm{~Hz}, \mathrm{H}-3^{\prime}\right), 2.38\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{H}-7^{\prime \prime}\right), 2.23\left(\mathrm{t}, 2 \mathrm{H}, \mathrm{J}=6.9 \mathrm{~Hz}, \mathrm{H}-6^{\prime}\right), 1.59-1.66\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{H}-4^{\prime}\right.$ and H-5'). ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$) $\delta 175.3$ ($\mathrm{C}-7^{\prime}$), 173.2 (C-1), 166.3 (C-2"), 162.1 (C-4"), 153.9 (C-6"), 146.4 (C-2'), 137.4 (C-4), 128.4, 127.9, 126.2 (C-5, C-6 and C-7), 121.9 (C-1'), 111.5 (C-5"), 67.7 (C-2), 38.9 (C-3), 36.5 ($\mathrm{C}-8^{\prime \prime}$), 35.1 (C-6'), 28.3 (C-5'), 24.7 (C-3'), 24.4 ($\mathrm{C}-4^{\prime}$), 23.4 (C-7"). HRMS (ESI) m/z: $\left[\mathrm{M}+\mathrm{H}^{+}\right]$calculated for $\mathrm{C}_{22} \mathrm{H}_{27} \mathrm{~N}_{7} \mathrm{O}_{3}$: 438.2248; found: 438.2250. [$\left.\alpha\right]_{\mathrm{D}}{ }^{25}=-26.5^{\circ}(\mathrm{c}=0.5, \mathrm{MeOH})$.
(2S)-2-Azido-N-(benzyloxy)-3-phenylpropanamide 20

To a stirred solution of carboxylic acid 19 ($573 \mathrm{mg}, 3 \mathrm{mmol}$) in dry THF and dry DMF (7:1, 0.1 M) under nitrogen was added CDI ($729 \mathrm{mg}, 4.5 \mathrm{mmol}$) slowly. The resultant mixture was stirred at r.t. for 1 h and then treated with $\mathrm{NH}_{2} \mathrm{OBn} \cdot \mathrm{HCl}(954 \mathrm{mg}, 6 \mathrm{mmol})$. The reaction mixture was stirred at r.t. overnight, concentrated under reduced pressure, diluted in aqueous phosphate buffer (pH 7), and extracted with EtOAc. The organic phase was washed with water, dried over MgSO_{4}, filtered, and evaporated under reduced pressure. The residue was purified by silica flash chromatography ($30 \% \mathrm{EtOAc}$ in hexane) to yield $\mathrm{O}-\mathrm{Bn}$ hydroxamate 20 as a colourless oil ($639 \mathrm{mg}, 72 \%$). ${ }^{1} \mathrm{H} \mathbf{N M R}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 9.69$ (br, 1H, NH), 7.25-7.42 (m, 10H, H-5, H-6, H-7, H-3', H-4' and H-5'), 4.80 (s, $2 \mathrm{H}, \mathrm{H}-1^{\prime}$), 4.04 (dd, $1 \mathrm{H}, \mathrm{J}=6.0$ and $7.5 \mathrm{~Hz}, \mathrm{H}-2$), 3.25 (dd, $1 \mathrm{H}, \mathrm{J}=6.0$ and $13.8 \mathrm{~Hz}, \mathrm{H}-3 \mathrm{a}$), 3.07 (dd, $1 \mathrm{H}, J=7.5$ and $13.8 \mathrm{~Hz}, \mathrm{H}-3 \mathrm{~b}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{Cl}$) $\delta 166.4$ (C-1), 135.7 (C-4), 134.7 (C-2'), 129.5, 129.4, 128.9, 128.7, 128.6, 127.3 (C-5, $\mathrm{C}-6, \mathrm{C}-7, \mathrm{C}-3^{\prime}, \mathrm{C}-4^{\prime}$ and $\mathrm{C}-5^{\prime}$), 78.4 (C-1'), 62.6 (C-2), 37.8 (C-3). HRMS (ESI) m / z : [M+H+ $\left.{ }^{+}\right]$calculated for $\mathrm{C}_{16} \mathrm{H}_{16} \mathrm{~N}_{4} \mathrm{O}_{2}$: 297.1346; found: 297.1362. $[\alpha]_{\mathrm{D}}{ }^{25}=+81.1^{\circ}(\mathrm{c}=0.1, \mathrm{MeOH})$.

General procedure for preparation of 21a-c:

To a stirred solution of alkyne 11a-c (0.4 mmol, 1 equiv.) and azide $\mathbf{2 0}$ (1.2 equiv.) in t - BuOH and water ($2: 1,0.2 \mathrm{M}$) was added $\mathrm{CuSO}_{4} \cdot 5 \mathrm{H}_{2} \mathrm{O}$ (0.03 equiv.) and sodium ascorbate (0.3 equiv.). The resultant mixture was stirred at $40^{\circ} \mathrm{C}$ for $2-3$ days. The reaction mixture was concentrated under reduced pressure, diluted in aqueous phosphate buffer (pH 7) (50 mL), and extracted with DCM (50 mL). The organic phase was dried over MgSO_{4}, filtered, and evaporated under reduced pressure. The residue was purified by silica flash chromatography ($10 \% \mathrm{MeOH}$ in DCM) to yield O - Bn hydroxamate 21a-c as a solid.
(2S)-2-[4-(2-\{[(4-Amino-2-methylpyrimidin-5-yl)methyl]carbamoyl\}ethyl)-1H-1,2,3-triazol-1-yl]-N-(benzyloxy)-3-phenylpropanamide 21a

Prepared from 11a. White solid ($102 \mathrm{mg}, 50 \%$). m.p. $166-168{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$) $\delta 7.91$ (s, 1H, H-1'), 7.88 (s, 1H, H-6"), 7.17-7.33 (m, 10H, H-5, H-6, H-7, H-10, H-11 and H-12), 5.27 (app. t, 1H, J $=7.9 \mathrm{~Hz}, \mathrm{H}-2), 4.75(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=11.0 \mathrm{~Hz}, \mathrm{H}-8 \mathrm{a}), 4.62(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=11.0 \mathrm{~Hz}, \mathrm{H}-8 \mathrm{~b}), 4.24(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=15.0 \mathrm{~Hz}, \mathrm{H}-$ $8 \prime \mathrm{a}$), 4.19 (d, $1 \mathrm{H}, \mathrm{J}=15.0 \mathrm{~Hz}, \mathrm{H}-8$ "b), 3.44 (dd, $1 \mathrm{H}, J=8.5$ and $13.5 \mathrm{~Hz}, \mathrm{H}-3 \mathrm{a}$), 3.28 (dd, $1 \mathrm{H}, J=7.5$ and $13.5 \mathrm{~Hz}, \mathrm{H}-3 \mathrm{~b}), 3.02$ (t, 2H, J = $7.2 \mathrm{~Hz}, \mathrm{H}-3^{\prime}$), $2.60\left(\mathrm{t}, 2 \mathrm{H}, \mathrm{J}=7.2 \mathrm{~Hz}, \mathrm{H}-4^{\prime}\right), 2.31\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{H}-7^{\prime \prime}\right) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$) $\delta 173.8$ (C-5'), 166.3 (C-2"), 164.7 (C-1), 162.1 (C-4"), 153.8 (C-6"), 146.2 (C-2'), 135.1 (C-4), 135.0 (C-9), 129.0, 128.9, 128.4, 128.3, 128.0, 127.0 (C-5, C-6, C-7, C-10, C-11 and C-12), 121.1 (C-1'), 111.4 (C-5"), 77.6 (C-8), 62.4 (C-2), 37.9 (C-3), 36.6 (C-8"), 34.7 (C-4'), 23.4 (C-7"), 20.9 (C3^{\prime}). HRMS (ESI) m / z : $\left[\mathrm{M}+\mathrm{H}^{+}\right]$calculated for $\mathrm{C}_{27} \mathrm{H}_{30} \mathrm{~N}_{8} \mathrm{O}_{3}: 515,2514$; found: 515,2522 . $[\alpha]_{\mathrm{D}}{ }^{25}=+23.1^{\circ}(\mathrm{c}=$ $0.4, \mathrm{MeOH}$).

N-[(4-Amino-2-methylpyrimidin-5-yl)methyl]-4-\{1-[(1S)-1-[(benzyloxy)carbamoyl]-2-phenylethyl]-1H-1,2,3-triazol-4-yl\}butanamide 21b

Prepared from 11b. White solid ($110 \mathrm{mg}, 52 \%$). m.p. $169-171^{\circ} \mathrm{C}$. ${ }^{1} \mathrm{H} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}\right) \delta 7.92$ (s, $2 \mathrm{H}, \mathrm{H}-1^{\prime}$ and $\mathrm{H}-6$ "), $7.18-7.33(\mathrm{~m}, 10 \mathrm{H}, \mathrm{H}-5, \mathrm{H}-6, \mathrm{H}-7, \mathrm{H}-10, \mathrm{H}-11$ and $\mathrm{H}-12$), 5.30 (app. $\mathrm{t}, 1 \mathrm{H}, \mathrm{J}=8.0 \mathrm{~Hz}$, $\mathrm{H}-2), 4.76(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=11.1 \mathrm{~Hz}, \mathrm{H}-8 \mathrm{a}), 4.63(\mathrm{~d}, 1 \mathrm{H}, J=11.1 \mathrm{~Hz}, \mathrm{H}-8 \mathrm{~b}), 4.23(\mathrm{~s}, 2 \mathrm{H}, \mathrm{H}-8$ "), $3.47(\mathrm{dd}, 1 \mathrm{H}, \mathrm{J}=$ 8.2 and $13.6 \mathrm{~Hz}, \mathrm{H}-3 \mathrm{a}), 3.33-3.38(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-3 \mathrm{~b}), 2.71\left(\mathrm{t}, 2 \mathrm{H}, \mathrm{J}=7.0 \mathrm{~Hz}, \mathrm{H}-3^{\prime}\right), 2.38\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{H}-7^{\prime \prime}\right), 2.26$ (t, $\left.2 \mathrm{H}, \mathrm{J}=7.0 \mathrm{~Hz}, \mathrm{H}-5^{\prime}\right), 1.96$ (qnt, $2 \mathrm{H}, J=7.0 \mathrm{~Hz}, \mathrm{H}-4^{\prime}$). ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$) $\delta 174.8$ (C-6'), 166.3 (C-2"), 164.8 (C-1), 162.1 (C-4"), 153.8 (C-6"), 146.9 (C-2'), 135.1 (C-4), 135.0 (C-9), 129.0, 128.9, 128.4, 128.4, 128.0, 127.0 (C-5, C-6, C-7, C-10, C-11 and C-12), 121.2 (C-1'), 111.5 (C-5"), 77.6 (C-8), 62.4 (C2), 37.8 (C-3), 36.5 (C-8"), 34.6 (C-5'), 25.1 (C-4'), 24.2 (C-3') 23.4 (C-7"). HRMS (ESI) $m / z:\left[M+H^{+}\right]$ calculated for $\mathrm{C}_{28} \mathrm{H}_{32} \mathrm{~N}_{8} \mathrm{O}_{3}$: 529.2670; found: 529.2679. $[\alpha]_{\mathrm{D}}{ }^{25}=+18.0^{\circ}(\mathrm{c}=0.6, \mathrm{MeOH})$.

N-[(4-Amino-2-methylpyrimidin-5-yl)methyl]-5-\{1-[(1S)-1-[(benzyloxy)carbamoyl]-2-phenylethyl]-1H-1,2,3-triazol-4-yl\}pentanamide 21c

Prepared from 11c. White solid ($98 \mathrm{mg}, 45 \%$). m.p. $175-178{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$) $\delta 7.92$ (s, $2 \mathrm{H}, \mathrm{H}-\mathbf{1}^{\prime}$ and $\mathrm{H}-6^{\prime \prime}$), 7.18-7.32 (m, 10H, H-5, H-6, H-7, H-10, H-11 and H-12), 5.29 (app. t, $1 \mathrm{H}, \mathrm{J}=8.1 \mathrm{~Hz}$, $\mathrm{H}-2), 4.77(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=11.2 \mathrm{~Hz}, \mathrm{H}-8 \mathrm{a}), 4.65(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=11.2 \mathrm{~Hz}, \mathrm{H}-8 \mathrm{~b}), 4.23\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{H}-8^{\prime \prime}\right), 3.48(\mathrm{dd}, 1 \mathrm{H}, \mathrm{J}=$ 8.1 and $13.7 \mathrm{~Hz}, \mathrm{H}-3 \mathrm{a}$), 3.35-3.39 (m, 1H, H-3b), 2.70 (t, 2H, J = 6.6 Hz, H-3'), 2.38 (s, 3H, H-7"), 2.242.28 ($\mathrm{m}, 2 \mathrm{H}, \mathrm{H}-6^{\prime}$), 1.63-1.67 (m, 4H, H-4'and H-5'). ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$) $\delta 175.2$ (C-7'), 166.3 (C-2"), 164.8 (C-1), 162.1 (C-4"), 153.8 (C-6"), 147.3 (C-2'), 135.3 (C-4), 135.2 (C-9), 129.0, 128.9, 128.3, $128.2,128.0,126.9$ (C-5, C-6, C-7, C-10, C-11 and C-12), 121.0 ($\mathrm{C}-1^{\prime}$), 111.5 (C-5"), 77.4 (C-8), 62.4 (C2), 37.8 (C-3), 36.5 ($\mathrm{C}-8^{\prime \prime}$), 35.1 ($\mathrm{C}-6^{\prime}$), 28.4 ($\mathrm{C}-5^{\prime}$), 24.7 (C-3'), 24.5 ($\mathrm{C}-4^{\prime}$), 23.4 (C-7"). HRMS (ESI) m / z : $\left[\mathrm{M}+\mathrm{H}^{+}\right]$calculated for $\mathrm{C}_{29} \mathrm{H}_{34} \mathrm{~N}_{8} \mathrm{O}_{3}$: 543.2827; found: 543.2855. [$\left.\alpha\right]_{\mathrm{D}}{ }^{25}=+37.9^{\circ}(\mathrm{c}=0.5, \mathrm{MeOH})$.

General procedure for preparation of 22a-c:

To a stirred solution of $O-B n$ hydroxamate 21a-c ($0.1 \mathrm{mmol}, 1$ equiv.) in dry DCM (0.1 M) under nitrogen at $-78{ }^{\circ} \mathrm{C}$ was added $\mathrm{BCl}_{3}(1 \mathrm{M}$ in DCM) (5 equiv.) dropwise. The reaction mixture was stirred at r.t. overnight and the resultant white suspension concentrated under reduced pressure. The residue was purified by silica flash chromatography ($15 \% \mathrm{MeOH}$ in DCM) to yield hydroxamate $\mathbf{2 2 a} \mathbf{~} \mathbf{c}$ as a solid.
(2S)-2-[4-(2-\{[(4-Amino-2-methylpyrimidin-5-yl)methyl]carbamoyl\}ethyl)-1H-1,2,3-triazol-1-yl]-N-hydroxy-3-phenylpropanamide 22a

Prepared from 21a. White solid (21 mg, 50\%). m.p. 206-207 ${ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$) $\delta 7.99$ (s, 1H, H-1'), 7.88 (s, 1H, H-6"), 7.18-7.28 (m, 5H, H-5, H-6 and H-7), 5.35 (app. t, 1H, J = 7.7 Hz, H-2), 4.27 (d, 1H, J = $15.4 \mathrm{~Hz}, \mathrm{H}-8^{\prime \prime} \mathrm{a}$), 4.17 (d, $1 \mathrm{H}, J=15.4 \mathrm{~Hz}, \mathrm{H}-8$ " b), 3.50 (dd, $1 \mathrm{H}, J=7.9$ and $13.6 \mathrm{~Hz}, \mathrm{H}-3 \mathrm{a}$), 3.38 (m, 1H, H-3b), 3.02 ($\mathrm{t}, 2 \mathrm{H}, \mathrm{J}=6.7 \mathrm{~Hz}, \mathrm{H}-3^{\prime}$), $2.64\left(\mathrm{t}, 2 \mathrm{H}, \mathrm{J}=6.7 \mathrm{~Hz}, \mathrm{H}-4^{\prime}\right), 2.44$ ($\left.\mathrm{s}, 3 \mathrm{H}, \mathrm{H}-7^{\prime \prime}\right) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$) $\delta 174.1$ (C-5’), 167.4 (C-2"), 165.2 (C-1), 163.0 (C-4"), 146.3 (C-6"), 146.1 (C-2'), 135.2 (C-4), 128.7 (C-5), 128.3 (C-6), 126.9 (C-7), 121.3 (C-1'), 112.2 (C-5"), 62.5 (C-2), 37.8 (C-3), 36.1 (C-8"), 34.5 (C-4'), 21.4 (C-7"), 20.7 (C-3'). HRMS (ESI) $m / z:\left[M+H^{+}\right]$calculated for $\mathrm{C}_{20} \mathrm{H}_{24} \mathrm{~N}_{8} \mathrm{O}_{3}$: 425.2044; found: 425.2050. $[\alpha]_{\mathrm{D}}{ }^{25}=+53.8^{\circ}(\mathrm{c}=0.1, \mathrm{MeOH})$.

N-[(4-Amino-2-methylpyrimidin-5-yl)methyl]-4-\{1-[(1S)-1-(hydroxycarbamoyl)-2-phenylethyl]-1H-1,2,3-triazol-4-yl\}butanamide 22b

Prepared from 21b. White solid ($24 \mathrm{mg}, 55 \%$). m.p. $210-214{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$) $\delta 8.15$ (s, $1 \mathrm{H}, \mathrm{H}-6^{\prime \prime}$), 8.04 ($\mathrm{s}, 1 \mathrm{H}, \mathrm{H}-1^{\prime}$), 7.19-7.29 (m, 5H, H-5, H-6 and H-7), 5.43 (app. t, $1 \mathrm{H}, \mathrm{J}=8.2 \mathrm{~Hz}, \mathrm{H}-2$), 4.28 ($\mathrm{s}, 2 \mathrm{H}, \mathrm{H}-8$ "), 3.54 (dd, $1 \mathrm{H}, \mathrm{J}=7.4$ and $13.6 \mathrm{~Hz}, \mathrm{H}-3 \mathrm{a}$), 3.43 (dd, $1 \mathrm{H}, \mathrm{J}=8.6$ and $13.6 \mathrm{~Hz}, \mathrm{H}-3 \mathrm{~b}$), 2.76 (t , $2 \mathrm{H}, \mathrm{J}=7.3 \mathrm{~Hz}, \mathrm{H}-3^{\prime}$), 2.56 (s, 3H, H-7"), $2.32\left(\mathrm{t}, 2 \mathrm{H}, J=7.3 \mathrm{~Hz}, \mathrm{H}-5^{\prime}\right), 1.99$ (qnt, $2 \mathrm{H}, \mathrm{J}=7.3 \mathrm{~Hz}, \mathrm{H}-4^{\prime}$). ${ }^{13} \mathrm{C}$ NMR (100 MHz, CD ${ }_{3}$ OD) $\delta 175.2$ (C-6'), 164.7 (C-2"), 164.0 (C-1), 161.1 (C-4"), 146.0 (C-2'), 141.2 (C$\left.6^{\prime \prime}\right), 135.0(\mathrm{C}-4), 128.7(\mathrm{C}-5), 128.3(\mathrm{C}-6), 126.9(\mathrm{C}-7), 122.2$ (C-1'), 112.7 (C-5"), 62.9 (C-2), 37.7 (C-3), $36.0\left(\mathrm{C}-8^{\prime \prime}\right), 34.3$ ($\mathrm{C}-5^{\prime}$), 24.7 ($\mathrm{C}-4^{\prime}$), 23.8 ($\mathrm{C}-3^{\prime}$), 20.1 ($\mathrm{C}-7^{\prime \prime}$). HRMS (ESI) m / z : [$\left.\mathrm{M}+\mathrm{H}^{+}\right]$calculated for $\mathrm{C}_{21} \mathrm{H}_{26} \mathrm{~N}_{8} \mathrm{O}_{3}$: 439.2201; found: 439.2220. $[\alpha]_{\mathrm{D}}{ }^{25}=+56.5^{\circ}(\mathrm{c}=0.2, \mathrm{MeOH})$.

N-[(4-Amino-2-methylpyrimidin-5-yl)methyl]-5-\{1-[(1S)-1-(hydroxycarbamoyl)-2-phenylethyl]-1H-1,2,3-triazol-4-yl\}pentanamide 22c

Prepared from 18c. White solid ($23 \mathrm{mg}, 51 \%$). m.p. $218-220^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$) $\delta 7.97$ (s, $1 \mathrm{H}, \mathrm{H}-1^{\prime}$), 7.93 (s, 1H, H-6"), 7.17-7.27 (m, 5H, H-5, H-6 and H-7), 5.35 (app. t, 1H, J = $7.9 \mathrm{~Hz}, \mathrm{H}-2$), 4.26 (d, 1H, J = $15.4 \mathrm{~Hz}, \mathrm{H}-8^{\prime \prime} \mathrm{a}$), 4.21 (d, $1 \mathrm{H}, J=15.4 \mathrm{~Hz}, \mathrm{H}-8$ "b), 3.51 (dd, $1 \mathrm{H}, J=7.6$ and $13.7 \mathrm{~Hz}, \mathrm{H}-3 \mathrm{a}$), 3.39 (dd, 1H, J = 8.3 and $13.7 \mathrm{~Hz}, \mathrm{H}-3 \mathrm{~b}$), $2.70\left(\mathrm{t}, 2 \mathrm{H}, J=6.6 \mathrm{~Hz} \mathrm{H}-3^{\prime}\right), 2.39\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{H}-7^{\prime \prime}\right), 2.26(\mathrm{t}, 2 \mathrm{H}, J=6.6 \mathrm{~Hz}$, $\left.\mathrm{H}-6^{\prime}\right), 1.60-1.69\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{H}-4^{\prime}\right.$ and $\left.\mathrm{H}-5^{\prime}\right) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$) $\delta 175.3$ (C-7'), 166.4 (C-2"), 165.9 (C-1), 162.2 (C-4"), 153.1 (C-6"), 147.3 (C-2'), 135.2 (C-4), 128.7 (C-5), 128.2 (C-6), 126.8 (C-7), 121.0 (C-1'), 111.6 (C-5"), 62.5 (C-2), 37.9 (C-3), 36.4 (C-8"), 35.1 (C-6'), 28.4 (C-5'), 24.8 (C-3'), 24.3 (C-4’), 23.2 (C-7"). HRMS (ESI) m / z : $\left[\mathrm{M}+\mathrm{H}^{+}\right]$calculated for $\mathrm{C}_{22} \mathrm{H}_{28} \mathrm{~N}_{8} \mathrm{O}_{3}$: 453.2357; found: 453.2354. [$\left.\alpha\right]_{\mathrm{D}}{ }^{25}=$ $+57.6^{\circ}(\mathrm{c}=0.3, \mathrm{MeOH})$.

Preparation of hydroxamates 23a and 23b (enantiomers of 22a and 22b):

(2R)-2-Azido-N-(benzyloxy)-3-phenylpropanamide

Prepared from (2R)-2-azido-3-phenylpropanoic acid ${ }^{13}$ (1 mmol) by the same method as for synthesising 19. Colourless oil ($207 \mathrm{mg}, 70 \%$). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 9.63(\mathrm{br}, 1 \mathrm{H}, \mathrm{NH}), 7.24-7.42$ ($\mathrm{m}, 10 \mathrm{H}, \mathrm{H}-5, \mathrm{H}-6, \mathrm{H}-7, \mathrm{H}-3^{\prime}, \mathrm{H}-4^{\prime}$ and $\mathrm{H}-5^{\prime}$), 4.80 ($\mathrm{s}, 2 \mathrm{H}, \mathrm{H}-1^{\prime}$), 4.03 (dd, $1 \mathrm{H}, \mathrm{J}=6.1$ and $7.7 \mathrm{~Hz}, \mathrm{H}-2$), 3.27 (dd, $1 \mathrm{H}, \mathrm{J}=6.1$ and $13.8 \mathrm{~Hz}, \mathrm{H}-3 \mathrm{a}), 3.08(\mathrm{dd}, 1 \mathrm{H}, J=7.7$ and $13.8 \mathrm{~Hz}, \mathrm{H}-3 \mathrm{~b}) .{ }^{13} \mathrm{C}$ NMR (100 MHz , $\left.\mathrm{CD}_{3} \mathrm{Cl}\right) \delta 166.6$ (C-1), 135.8 (C-4), 134.6 (C-2'), 129.6, 129.4, 128.9, 128.7, 128.6, 127.2 (C-5, C-6, C-7, C-3', C-4' and C-5'), 78.7 (C-1'), 62.6 (C-2), 38.0 (C-3). HRMS (ESI) m / z : [$\left.\mathrm{M}^{\prime}+\mathrm{H}^{+}\right]$calculated for $\mathrm{C}_{16} \mathrm{H}_{16} \mathrm{~N}_{4} \mathrm{O}_{2}$: 297.1346; found: 297.1353. [$\alpha]_{D}{ }^{25}=-82.8^{\circ}(c=0.2, \mathrm{MeOH})$.

General procedure for preparation of 23a-b:

To a stirred solution of (2R)-2-azido- N -(benzyloxy)-3-phenylpropanamide ($90 \mathrm{mg}, 0.3 \mathrm{mmol}$) and alkyne 11a (or 11b) (0.3 mmol) in $t-\mathrm{BuOH}(1 \mathrm{~mL})$ and water ($0.5 \mathrm{~mL}, 0.2 \mathrm{M}$) was added $\mathrm{CuSO}_{4} \cdot 5 \mathrm{H}_{2} \mathrm{O}(1.4$ $\mathrm{mg}, 0.009 \mathrm{mmol}$) and sodium ascorbate ($18 \mathrm{mg}, 0.09 \mathrm{mmol}$). The resultant mixture was stirred at $40^{\circ} \mathrm{C}$ for 3 days, concentrated under reduced pressure, diluted in aqueous phosphate buffer (pH 7) (10 mL), and extracted with DCM ($3 \times 30 \mathrm{~mL}$). The combined organic phases were with dried over MgSO_{4}, filtered, and evaporated under reduced pressure to yield the \boldsymbol{O} - $\mathbf{B n}$ hydroxamate as a solid mixture, which was used in the next step without further purification. To a stirred solution of the resultant crude product in dry DCM ($3 \mathrm{~mL}, 0.1 \mathrm{M}$) under nitrogen at $-78{ }^{\circ} \mathrm{C}$ was added $\mathrm{BCl}_{3}(1 \mathrm{M}$ in DCM) (1.5 $\mathrm{mL}, 1.5 \mathrm{mmol}$.$) dropwise. The reaction mixture was stirred at r.t. overnight and the resultant white$ suspension concentrated under reduced pressure. The residue was purified by silica flash chromatography ($15 \% \mathrm{MeOH}$ in DCM) to yield hydroxamate $\mathbf{2 3 a}$ (or 23b) as a solid.
(2R)-2-[4-(2-\{[(4-Amino-2-methylpyrimidin-5-yl)methyl]carbamoyl\}ethyl)-1H-1,2,3-triazol-1-yl]-N-hydroxy-3-phenylpropanamide 23a

Prepared from 11a. White solid ($45 \mathrm{mg}, 35 \%$ yield over two steps). m.p. 205-206 ${ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR (400 MHz , $\mathrm{CD}_{3} \mathrm{OD}$) $\delta 8.00\left(\mathrm{~s}, 1 \mathrm{H}, \mathrm{H}-1^{\prime}\right), 7.87(\mathrm{~s}, 1 \mathrm{H}, \mathrm{H}-6$) $), 7.19-7.28(\mathrm{~m}, 5 \mathrm{H}, \mathrm{H}-5, \mathrm{H}-6$ and $\mathrm{H}-7$), $5.36(\mathrm{t}, 1 \mathrm{H}, \mathrm{J}=7.8$ $\mathrm{Hz}, \mathrm{H}-2$), $4.26(\mathrm{~d}, 1 \mathrm{H}, J=15.5 \mathrm{~Hz}, \mathrm{H}-8 \prime \mathrm{a}$), $4.17(\mathrm{~d}, 1 \mathrm{H}, J=15.5 \mathrm{~Hz}, \mathrm{H}-8 \prime \mathrm{~b}), 3.50(\mathrm{dd}, 1 \mathrm{H}, J=7.8$ and 13.6 $\mathrm{Hz}, \mathrm{H}-3 \mathrm{a}$), 3.34 (m, 1H, H-3b), 3.03 (t, 2H, J=6.6 Hz, H-3'), $2.63\left(\mathrm{t}, 2 \mathrm{H}, J=6.6 \mathrm{~Hz}, \mathrm{H}-4^{\prime}\right), 2.44(\mathrm{~s}, 3 \mathrm{H}, \mathrm{H}-$ $\left.7^{\prime \prime}\right) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$) $\delta 174.3$ (C-5'), 167.9 (C-2"), 165.1 (C-1), 163.0 (C-4"), 146.5 (C-6"), 146.0 (C-2'), 135.1 (C-4), 128.7 (C-5), 128.2 (C-6), 126.9 (C-7), 121.2 (C-1'), 112.3 (C-5"), 62.3 (C-2), 37.6 (C-3), 35.9 ($\mathrm{C}-8^{\prime \prime}$), 34.4 ($\mathrm{C}-4^{\prime}$), 21.5 ($\left.\mathrm{C}-7^{\prime \prime}\right), 20.6\left(\mathrm{C}-3^{\prime}\right)$. HRMS (ESI) m / z : $\left[\mathrm{M}+\mathrm{H}^{+}\right]$calculated for $\mathrm{C}_{20} \mathrm{H}_{24} \mathrm{~N}_{8} \mathrm{O}_{3}$: 425.2044; found: 425.2042. $[\alpha]_{D^{25}}=-52.9^{\circ}(\mathrm{c}=0.1, \mathrm{MeOH})$.

N-[(4-Amino-2-methylpyrimidin-5-yl)methyl]-4-\{1-[(1R)-1-(hydroxycarbamoyl)-2-phenylethyl]-1H-1,2,3-triazol-4-yl\}butanamide 23b

Prepared from 11b. White solid ($54 \mathrm{mg}, 41 \%$ yield over two steps). White solid ($26 \mathrm{mg}, 60 \%$). m.p. 212-214 ${ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$) $\delta 8.15\left(\mathrm{~s}, 1 \mathrm{H}, \mathrm{H}-6^{\prime \prime}\right), 8.04\left(\mathrm{~s}, 1 \mathrm{H}, \mathrm{H}-1^{\prime}\right), 7.17-7.27(\mathrm{~m}, 5 \mathrm{H}, \mathrm{H}-5$, $\mathrm{H}-6$ and $\mathrm{H}-7$), 5.42 (dd, $1 \mathrm{H}, \mathrm{J}=7.5$ and $8.3 \mathrm{~Hz}, \mathrm{H}-2$), 4.29 (s, $2 \mathrm{H}, \mathrm{H}-8$ "), 3.56 (dd, $1 \mathrm{H}, \mathrm{J}=7.5$ and 13.4 Hz , $\mathrm{H}-3 \mathrm{a}$), 3.45 (dd, 1H, J = 8.3 and $13.4 \mathrm{~Hz}, \mathrm{H}-3 \mathrm{~b}$), 2.75 (t, 2H, J = $7.3 \mathrm{~Hz}, \mathrm{H}-3^{\prime}$), 2.55 ($\mathrm{s}, 3 \mathrm{H}, \mathrm{H}-7^{\prime \prime}$), 2.33 (t, $\left.2 \mathrm{H}, \mathrm{J}=7.3 \mathrm{~Hz}, \mathrm{H}-5^{\prime}\right), 1.97$ (qnt, $2 \mathrm{H}, \mathrm{J}=7.3 \mathrm{~Hz}, \mathrm{H}-4^{\prime}$). ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$) $\delta 175.2$ (C-6'), 165.1 (C-2"), 164.2 (C-1), 161.0 (C-4"), 146.5 (C-2'), 141.4 (C-6"), 135.1 (C-4), 128.9 (C-5), 128.2 (C-6), 127.0 (C-7), 122.1 (C-1'), 112.9 (C-5"), 63.0 (C-2), 37.7 (C-3), 36.0 (C-8"), 34.4 (C-5’), 24.8 (C-4’), 24.1 (C-3'), 20.0 (C-7"). HRMS (ESI) m / z : $\left[\mathrm{M}+\mathrm{H}^{+}\right]$calculated for $\mathrm{C}_{21} \mathrm{H}_{26} \mathrm{~N}_{8} \mathrm{O}_{3}$: 439.2201; found: 439.2206. [$\left.\alpha\right]_{\mathrm{D}}{ }^{25}=$ -57.1° ($c=0.2, \mathrm{MeOH}$).

${ }^{1} \mathrm{H}$ NMR of 12a in $\mathrm{CD}_{3} \mathrm{OD}$:

${ }^{1} \mathrm{H}$ NMR of $\mathbf{1 2 c}$ in $\mathrm{CD}_{3} \mathrm{OD}$:

${ }^{1} \mathrm{H}$ NMR of 14 a in $\mathrm{CD}_{3} \mathrm{OD}$:

${ }^{1} \mathrm{H}$ NMR of $\mathbf{1 7} \mathrm{c}$ in $\mathrm{CD}_{3} \mathrm{OD}$:

${ }^{1} \mathrm{H}$ NMR of $\mathbf{1 8} \mathrm{b}$ in $\mathrm{CD}_{3} \mathrm{OD}$:

${ }^{1} \mathrm{H}$ NMR of $\mathbf{1 8 c}$ in $\mathrm{CD}_{3} \mathrm{OD}$:

${ }^{1} \mathrm{H}$ NMR of $\mathbf{2 0}$ in $\mathrm{CDCl}_{3}:$

${ }^{13} \mathrm{C}$ NMR of $\mathbf{2 0}$ in $\mathrm{CDCl}_{3}:$

— M 78.4861
${ }^{1} \mathrm{H}$ NMR of 21a in $\mathrm{CD}_{3} \mathrm{OD}$:

8
8
8

${ }^{13} \mathrm{CNMR}$ of 21a in $\mathrm{CD}_{3} \mathrm{OD}$:
${ }^{13} \mathrm{C}$ DEPT-135 NMR of 21a in $\mathrm{CD}_{3} \mathrm{OD}$:

${ }^{1} \mathrm{H}$ NMR of 21b in $\mathrm{CD}_{3} \mathrm{OD}$:

${ }^{13} \mathrm{C}$ DEPT-135 NMR of 21b in $\mathrm{CD}_{3} \mathrm{OD}$:

${ }^{13} \mathrm{C}$ DEPT-135 NMR of 21c in $\mathrm{CD}_{3} \mathrm{OD}$:

${ }^{1} \mathrm{H}$ NMR of 23a in $\mathrm{CD}_{3} \mathrm{OD}$:

${ }^{13} \mathrm{C}$ NMR of 22a in $\mathrm{CD}_{3} \mathrm{OD}$:

${ }^{13} \mathrm{C}$ DEPT-135 NMR of 22a in $\mathrm{CD}_{3} \mathrm{OD}$:

${ }^{13} \mathrm{C}$ NMR of $\mathbf{2 2 b}$ in $\mathrm{CD}_{3} \mathrm{OD}$:

${ }^{13}$ C DEPT-135 NMR of $\mathbf{2 2} \mathbf{b}$ in $\mathrm{CD}_{3} \mathrm{OD}$:

${ }^{1} \mathrm{H}$ NMR of $\mathbf{2 2 c}$ in $\mathrm{CD}_{3} \mathrm{OD}$:

${ }^{13} \mathrm{C}$ DEPT-135 NMR of 22c in $\mathrm{CD}_{3} \mathrm{OD}$:

${ }^{1} \mathrm{H}$ NMR of (2R)-2-Azido-N-(benzyloxy)-3-phenylpropanamide in CDCl_{3} :

${ }^{1} \mathrm{H}$ NMR of 23a in $\mathrm{CD}_{3} \mathrm{OD}$:

${ }^{1} \mathrm{H}$ NMR of $\mathbf{2 3} \mathbf{b}$ in $\mathrm{CD}_{3} \mathrm{OD}$:

References

1. D. Merk, F. Grisoni, L. Friedrich, E. Gelzinyte and G. Schneider, J. Med. Chem., 2018, 61, 5442-5447.
2. A. H. Y. Chan, T. C. S. Ho, K. Agyei-Owusu and F. J. Leeper, Org. Biomol. Chem., 2022, 20, 8855-8858.
3. B. Jahn, N. S. W. Jonasson, H. Hu, H. Singer, A. Pol, N. M. Good, H. J. M. O. den Camp, N. C. Martinez-Gomez and L. J. Daumann, J. Biol. Inorg. Chem., 2020, 25, 199-212.
4. D. A. Walsh, R. H. Cooper, R. M. Denton, B. J. Bridges and P. J. Randle, Biochem. J., 1976, 157, 41-67.
5. S. Mann, C. Perez Melero, D. Hawksley and F. J. Leeper, Org. Biomol. Chem., 2004, 2, 1732.
6. B. Sedewitz, K. H. Schleifer and F. Götz, J. Bacteriol., 1984, 160, 273-278.
7. A. Iqbal, E.-H. Sahraoui and F. J. Leeper, Beilstein J. Org. Chem., 2014, 10, 2580-2585.
8. C. A. Lipinski, Drug Discov. Today: Technol., 2004, 1, 337-341.
9. N. A. Meanwell, Chem. Res. Toxicol., 2011, 24, 1420-1456.
10. A. L. Hopkins, G. M. Keserü, P. D. Leeson, D. C. Rees and C. H. Reynolds, Nat. Rev. Drug Discov., 2014, 13, 105-121.
11. N. J. Stanley, D. S. Pedersen, B. Nielsen, T. Kvist, J. M. Mathiesen, H. Bräuner-Osborne, D. K. Taylor and A. D. Abell, Bioorg. Med. Chem. Lett., 2010, 20, 7512-7515.
12. A. Isidro-Llobet, K. Hadje Georgiou, W. R. J. D. Galloway, E. Giacomini, M. R. Hansen, G. Méndez-Abt, Y. S. Tan, L. Carro, H. F. Sore and D. R. Spring, Org. Biomol. Chem., 2015, 13, 4570-4580.
13. A. Žula, I. Będziak, D. Kikelj and J. Ilaš, Marine Drugs, 2018, 16, 413.

[^0]: ${ }^{\text {a }}$ Data are the means of measurements in three technical replicates. ${ }^{\text {b }}$ [TPP] $=200 \mu \mathrm{M},[17 \mathrm{~b}]=200 \mu \mathrm{M}$ (1:1) and $1000 \mu \mathrm{M}(1: 5) .{ }^{\mathrm{c}}[\mathrm{TPP}]=50 \mu \mathrm{M},[17 \mathrm{~b}]=50 \mu \mathrm{M}(1: 1)$ and $250 \mu \mathrm{M}$ (1:5).

