Regio- and Diastereoselective Synthesis of Diverse Spirocyclic

Indenes by Cyclization with Indene-Dienes as Two Carbon

Building Blocks

Yi-Hang Deng,^a Wen-Li Xu,^a Lei Wang,^a Cheng-Yang Tang,^a Ji-Ya Fu^{*a} and Chuan-

Bao Zhang^{*a,b}

AUTHOR ADDRESS.

^a Henan Engineering Research Center of Functional Materials and Catalytic Reaction, College of Chemistry and Chemical Engineering, Henan University, Kaifeng, 475004, China. E-mail: fujiya@126.com.

^b School of Pharmacy, Zhengzhou Railway Vocational & Technical College, Zhengzhou, China. E-mail: <u>zhangchuanbao@zzrvtc.edu.cn</u>.

Table of Contents

1. General experimental information	
2. Optimization of the reaction conditions of [3+2] cyclization of indene-dienes	
with N-2,2,2-trifluoroethylisatin ketimines	
3. Optimization of the reaction conditions of catalytic asymmetric [3+2]	
cyclization of indene-dienes with <i>p</i> -QM5	
4. General experimental procedures for synthesis of compounds 3	
5. Experimental procedure for gram scale synthesis of 3ax	
6. General experimental procedures for synthesis of compounds 5	
7. Experimental procedure for gram scale synthesis of 5aa	
8. Experimental procedures for synthesis of compound 655	
9. Experimental procedures for synthesis of compound 7aa56	
10. X-ray crystal structure of compound 3ar	
11. X-ray crystal structure of compound 3ab'	
12. X-ray crystal structure of compound 5aa	
13. NMR spectra	

1. General experimental information

Reactions were monitored by TLC and visualization of the developed chromatogram was performed by ultraviolet light. Unless otherwise noted, all reagents including solvents were obtained from commercial supplier without any purification. The forced-flow column chromatography was performed using silica gel eluting with dichloromethane and petroleum ether. NMR spectra were recorded with tetramethylsilane as the internal standard. ¹H NMR, ¹⁹F NMR and ¹³C NMR spectra of CDCl₃ or DMSO-d₆ solutions were recorded either at 400, 376 and 100 MHz or at 500, 471 and 125 MHz (Bruker Avance), respectively and resonances (δ) are given in parts per million (ppm) relatives to tetramethylsilane (TMS). Data for NMR are reported as follows: chemical shift, multiplicity (s = singlet, d = doublet, t = triplet, m = multiplet), coupling constants (Hz) and integration. High resolution mass spectra were obtained with the Q-TOF-Premier mass spectrometer. The X-ray crystal-structure determinations of **3ar**, **3ab**' and **5aa** were obtained on Bruker APEX DUO and Bruker D8 VENTURE PHOTON II systems. All melting points are determined on a SGW X-4 melting apparatus and are uncorrected.

2. Optimization of the reaction conditions of [3+2] cyclization of indene-dienes with N-2,2,2-trifluoroethylisatin ketimines

	NC 1a	CN Ph +	CF ₃ N N 4a	NC Cat. (20 mol%) ►	CN Ph CF O 5aa N	-3
Entry	Cat.	Solvent	Т	Cat. Loading	Time	Yield
			(°C)	(mol%)	(days)	(%)
1	DIPEA	DCM	25	20	3	84
2	DABCO	DCM	25	20	3	41

Table S1. Optimization of the reaction conditions ^a

3	PBu ₃	DCM	25	20	3	65
4	PPh ₃	DCM	25	20	3	43
5	Et ₃ N	DCM	25	20	3	67
6	K ₂ CO ₃	DCM	25	20	3	64
7	Cs ₂ CO ₃	DCM	25	20	3	65
8	DIPEA	DCE	25	20	3	79
9	DIPEA	THF	25	20	3	78
10	DIPEA	DMF	25	20	3	47
11	DIPEA	DMSO	25	20	3	56
12	DIPEA	PhCl	25	20	3	67
13	DIPEA	MeCN	25	20	3	74
14	DIPEA	МеОН	25	20	3	72
15	DIPEA	PhMe	25	20	3	12
16	DIPEA	CHCl ₃	25	20	3	17
17	DIPEA	Cyclohecane	40	20	3	71
18	DIPEA	DCM	40	20	3	88
19	DIPEA	DCM	40	5	3	64
20	DIPEA	DCM	40	10	3	82
21	DIPEA	DCM	40	30	3	61

22°	DIPEA	DCM	40	20	5	95
23 ^d	DIPEA	DCM	40	20	5	84

-

^a Reaction conditions: **1a** (0.2 mmol), **4a** (0.2 mmol), catalyst (20 mol%), solvent (2.0 mL), 25 °C, 3 days. ^b Yield of isolated **5aa** after purification by silica gel column chromatography (two isomers). ^c The molar ratios to 1.5:1.0 (**1a/4a**). ^d The molar ratios to 2.0:1.0 (**1a/4a**).

3. Optimization of the reaction conditions of catalytic asymmetric [3+2] cyclization of indene-dienes with *p*-QM.

Table S2. Optimization of the reaction conditions ^a

Entry	Cat.	Additive	Time (h)	dr ^b	yield ^c (%)	ee (%)
1	А	Na ₂ CO ₃	24	1:2.8	59	40 (n.d.)
2	В	Na ₂ CO ₃	48	1:2	52	38 (n.d.)
3	Α	-	120		N.R.	
4	В	-	120	N.R.		
5	С	-	120		N.R.	

6	D	-	120	N.R.
7	Ε	-	120	N.R.
8	F	-	120	N.R.
9	G	-	120	N.R.

^a Unless otherwise indicated, the reaction conditions were **1a** (0.10 mmol), **2a** (0.10 mmol) and additive (20 mol%) in the presence of catalyst (20 mol%) in DCM (1.0 mL) at 25 °C. ^b the dr was determined by ¹H NMR. ^c Yield of isolated **7aa** after purification by silica gel column chromatography (two isomers).

4. General experimental procedures for synthesis of compounds 3.

A mixture of Cs_2CO_3 (0.03 mmol, 0.2 equiv.), **1** (0.15 mmol, 1.0 equiv.) and **2** (0.30 mmol, 2.0 equiv.) and 1,2 - dichloroethane (1.5 mL) were added to a sealed reaction tube equipped with a stir bar. The tube was then sealed and the resulting mixture was stirred at 25 °C for the 24-36 h. Upon completion (monitored by TLC, visualized by UV light), the reaction solution was concentrated in vacuo. The crude product was purified by column chromatography on silica gel (eluent PE:DCM = 3:1-2:1) to afford pure products **3**.

2-(4-(3,5-di-tert-butyl-4-hydroxyphenyl)-2-phenylspiro[chromane-3,2'-inden]-1'(3'H)-ylidene)malononitrile (3aa)

The compound was prepared according to general procedure with petroleum ether/dichloromethane = 3:1-2:1 as eluent. $R_f = 0.40$ (petroleum ether/ethyl acetate = 20:1). Yellow solid, 78.0 mg, 90% yield (two isomers), 10:1 dr, reaction time = 24 h, m.p. 226.2-227.5 °C. ¹H NMR (500 MHz, CDCl₃) δ 8.57 (d, J = 8.2 Hz, 1H), 7.65 (td, J = 7.5, 1.0 Hz, 1H), 7.53 (t, J = 7.7 Hz, 1H), 7.47 (d, J = 7.6 Hz, 1H), 7.38 – 7.35 (m, 2H), 7.35 – 7.32 (m, 3H), 7.28 – 7.24 (m, 1H), 7.10 (dd, J = 8.3, 1.2 Hz, 1H), 6.99 (dd, J = 7.7, 1.7 Hz, 1H), 6.92 (td, J = 7.4, 1.2 Hz, 1H), 6.84 (d, J = 2.2 Hz, 1H), 6.56 (d, J = 2.2 Hz, 1H), 6.09 (s, 1H), 5.29 (s, 1H), 4.03 (d, J = 17.9 Hz, 1H), 3.79 (s, 1H), 3.08 (d, J = 18.0 Hz, 1H), 1.49 (s, 9H), 1.32 (s, 9H).¹³C NMR (125 MHz, CDCl₃) δ 175.1, 154.8, 154.0, 148.6, 136.3, 136.2, 134.9, 134.8, 131.7, 129.7, 129.2, 129.0, 128.9, 128.8, 128.8, 128.6, 128.4, 126.8, 126.2, 123.9, 121.6, 116.9, 113.9, 112.4, 80.0, 77.4, 77.2, 76.9, 75.3, 59.2, 56.3, 41.3, 34.5, 34.3, 30.4, 30.1. IR (KBr) v: 762, 936, 1005, 1151, 1237, 1311, 1441, 1482, 1569, 2220, 2875, 1960, 3033, 3628 cm⁻¹. HRMS (ESI, m/z): calculated for C₄₀H₃₈N₂O₂ [M + H]⁺: 579.3006; Found: 597.3001.

2-(4-(3,5-di-tert-butyl-4-hydroxyphenyl)-5'-methoxy-2-phenylspiro[chromane-3,2'-inden]-3'(1'H)-ylidene)malononitrile (3ab)

The compound was prepared according to general procedure with petroleum ether/dichloromethane = 3:1-2:1 as eluent. $R_f = 0.43$ (petroleum ether/ethyl acetate = 20:1). Yellow solid, 86.8 mg, 95% yield (two isomers), 6:1 dr, reaction time = 36 h, m.p. 236.5-237.7 °C. ¹H NMR (500 MHz, CDCl₃) δ 8.05 (d, J = 2.3 Hz, 1H), 7.33 (q, J = 3.5 Hz, 5H), 7.24 (dt, J = 7.7, 1.9 Hz, 2H), 7.08 (dd, J = 8.3, 1.2 Hz, 1H), 6.98 (dd, J = 7.7, 1.7 Hz, 1H), 6.92 (td, J = 7.4, 1.2 Hz, 1H), 6.84 (d, J = 2.2 Hz, 1H), 6.57 (d, J = 2.2 Hz, 1H), 6.06 (s, 1H), 5.29 (s, 1H), 3.96 (d, J = 17.7 Hz, 1H), 3.90 (s, 3H), 3.78

(s, 1H), 3.00 (d, J = 17.6 Hz, 1H), 1.50 (s, 9H), 1.32 (s, 9H).¹³C NMR (125 MHz, CDCl₃) δ 175.4, 160.0, 154.8, 154.0, 141.3, 137.3, 136.2, 136.1, 134.8, 131.7, 129.9, 129.3, 129.0, 128.9, 128.8, 128.7, 128.6, 128.4, 127.7, 127.4, 124.1, 124.0, 121.6, 117.0, 114.1, 112.4, 108.0, 79.6, 75.3, 60.0, 56.6, 55.8, 40.8, 34.6, 34.3, 30.4, 30.1. IR (KBr) υ : 747, 813, 924, 1014, 1114, 1152, 1239, 1304, 1364, 1439, 1487, 1559, 1596, 2218, 2875, 2960, 3056, 3610 cm⁻¹. HRMS (ESI) m/z: Calcd for C₄₁H₄₁N₂O₃ [M + H]⁺ 609.3112; Found 609.3112.

2-(4-(3,5-di-tert-butyl-4-hydroxyphenyl)-5'-methyl-2-phenylspiro[chromane-3,2'inden]-1'(3'H)-ylidene)malononitrile (3ac)

The compound was prepared according to general procedure with petroleum ether/dichloromethane = 3:1-2:1 as eluent. $R_f = 0.40$ (petroleum ether/ethyl acetate = 20:1). Yellow solid, 85.7 mg, 96% yield (two isomers), 14:1 dr, reaction time = 36 h, m.p. 240.8-241.4 °C.¹H NMR (400 MHz, CDCl₃) δ 8.38 (s, 1H), 7.49 (dd, J = 7.9, 1.5 Hz, 1H), 7.40 – 7.31 (m, 6H), 7.30 – 7.24 (m, 1H), 7.11 (dd, J = 8.4, 1.2 Hz, 1H), 7.00 (dd, J = 7.7, 1.7 Hz, 1H), 6.93 (td, J = 7.4, 1.2 Hz, 1H), 6.86 (d, J = 2.2 Hz, 1H), 6.60 (d, J = 2.2 Hz, 1H), 6.11 (s, 1H), 5.32 (s, 1H), 4.00 (d, J = 17.8 Hz, 1H), 3.80 (s, 1H), 3.05 (d, J = 17.9 Hz, 1H), 2.52 (s, 3H), 1.52 (s, 9H), 1.35 (s, 9H). ¹³C NMR (100 MHz, CDCl₃) δ 175.2, 154.8, 154.0, 145.9, 138.7, 136.5, 136.2, 136.1, 134.8, 131.7, 129.8, 129.2, 128.9, 128.7, 128.4, 126.5, 126.1, 124.0, 121.6, 116.9, 114.0, 112.5, 79.6, 75.3, 59.4, 56.4, 41.0, 34.5, 34.3, 30.4, 30.1, 21.8. IR (KBr) υ : 744, 814, 905, 1025, 1145, 1237, 1304, 1439, 1486, 1552, 2218, 2875, 2960, 3056, 3610 cm⁻¹. HRMS (ESI) m/z: Calcd for C₄₁H₄₀N₂O₂ [M + H]⁺ 593.3163; Found 593.3170.

2-(4-(3,5-di-tert-butyl-4-hydroxyphenyl)-5'-fluoro-2-phenylspiro[chromane-3,2'-

inden]-1'(3'H)-ylidene)malononitrile (3ad)

The compound was prepared according to general procedure with petroleum ether/dichloromethane = 3:1-2:1 as eluent. $R_f = 0.50$ (petroleum ether/ethyl acetate = 20:1). Yellow solid, 85.5 mg, 95% yield (two isomers), 8:1 dr, reaction time = 36 h, m.p. 214.0-215.3 °C. ¹H NMR (400 MHz, CDCl₃) δ 8.60 (dd, J = 9.0, 4.9 Hz, 1H), 7.41 – 7.31 (m, 5H), 7.32 – 7.23 (m, 1H), 7.23 (td, J = 8.8, 8.2, 2.0 Hz, 1H), 7.15 (dd, J = 8.0, 2.5 Hz, 1H), 7.11 (dd, J = 8.4, 1.2 Hz, 1H), 7.01 (dd, J = 7.8, 1.7 Hz, 1H), 6.94 (td, J = 7.4, 1.2 Hz, 1H), 6.85 (d, J = 2.2 Hz, 1H), 6.57 (d, J = 2.2 Hz, 1H), 6.09 (s, 1H), 5.32 (s, 1H), 4.03 (d, J = 18.2 Hz, 1H), 3.81 (s, 1H), 3.08 (d, J = 18.2 Hz, 1H), 1.50 (s, 9H), 1.34 (s, 9H). ¹³C NMR (100 MHz, CDCl₃) δ 173.5, 166.8 (d, J = 259.8 Hz), 154.6, 154.1, 151.9 (d, J = 9.9 Hz), 136.3, 136.1, 134.9, 132.5 (d, J = 2.4 Hz), 131.7, 129.6, 129.1 (d, J = 7.2 Hz), 128.8, 128.7, 128.6, 128.6, 128.5, 127.5, 123.6, 121.7, 117.0, 116.8 (d, J = 23.3 Hz), 113.8 (d, J = 22.3 Hz) 112.3, 79.6, 79.5, 75.1, 59.8, 56.3, 41.2, 41.2, 34.5, 34.3, 30.3, 30.3, 30.1. IR (KBr) v: 754, 813, 879, 941, 1000, 1116, 1150, 1251, 1322, 1366, 1441, 1483, 1570, 1599, 2220, 2875, 2958, 3032, 3628 cm⁻¹. HRMS (ESI) m/z: Calcd for C₄₀H₃₇FN₂O₂ [M + H]⁺ 597.2912; Found 597.2917.

2-(5'-chloro-4-(3,5-di-tert-butyl-4-hydroxyphenyl)-2-phenylspiro[chromane-3,2'inden]-1'(3'H)-ylidene)malononitrile (3ae)

The compound was prepared according to general procedure with petroleum ether/dichloromethane = 3:1-2:1 as eluent. $R_f = 0.50$ (petroleum ether/ethyl acetate = 20:1). Yellow solid, 89.4 mg, 97% yield (two isomers), 8:1 dr, reaction time = 36 h, m.p. 215.4-216.3 °C. ¹H NMR (400 MHz, CDCl₃) δ 8.52 (d, *J* = 8.7 Hz, 1H), 7.51 (dd, *J* = 8.7, 2.0 Hz, 1H), 7.46 (d, *J* = 1.9 Hz, 1H), 7.36 (td, *J* = 7.2, 6.8, 3.8 Hz, 5H), 7.33 – 7.24 (m, 1H), 7.11 (dd, *J* = 8.4, 1.1 Hz, 1H), 7.01 (dd, *J* = 7.8, 1.8 Hz, 1H), 6.95 (td, *J* = 7.4, 1.2 Hz, 1H), 6.85 (d, *J* = 2.2 Hz, 1H), 6.56 (d, *J* = 2.2 Hz, 1H), 6.09 (s, 1H), 5.33 (s, 1H), 4.02 (d, *J* = 18.1 Hz, 1H), 3.80 (s, 1H), 3.07 (d, *J* = 18.2 Hz, 1H), 1.50 (s, 9H), 1.34 (s, 9H). ¹³C NMR (100 MHz, CDCl₃) δ 173.5, 154.6, 154.1, 150.2, 141.5, 136.3, 136.0, 134.9, 134.7, 131.7, 129.5, 129.3, 129.1, 129.0, 128.8, 128.7, 128.6, 127.5, 127.2, 127.0, 123.5, 121.7, 117.0, 113.7, 112.2, 80.3, 75.1, 59.5, 56.3, 41.0, 34.5, 34.3, 30.3, 30.1. IR (KBr) υ : 756, 814, 903, 1001, 1081, 1151, 1235, 1315, 1363, 1440, 1483, 1564, 2221, 2876, 2958, 3030, 3629 cm⁻¹. HRMS (ESI) m/z: Calcd for C₄₀H₃₇ClN₂O₂ [M + H]⁺ 613.2616; Found 613.2614.

2-(4-(3,5-di-tert-butyl-4-hydroxyphenyl)-2-(2-methoxyphenyl)spiro[chromane-3,2'-inden]-1'(3'H)-ylidene)malononitrile (3af)

The compound was prepared according to general procedure with petroleum ether/dichloromethane = 3:1-2:1 as eluent. $R_f = 0.33$ (petroleum ether/ethyl acetate = 20:1). Yellow solid, 88.3 mg, 97% yield (two isomers), >20:1 dr, reaction time = 36 h, m.p. 265.1-266.0 °C.¹H NMR (500 MHz, CDCl₃) δ 8.55 (d, *J* = 8.1 Hz, 1H), 7.68 (td, *J* = 7.5, 1.0 Hz, 1H), 7.55 (t, *J* = 7.9 Hz, 1H), 7.52 (d, *J* = 7.6 Hz, 1H), 7.34-7.31 (m, 1H), 7.27 – 7.20 (m, 1H), 7.08 (dd, *J* = 8.4, 1.2 Hz, 1H), 7.01 – 6.97 (m, 2H), 6.94 (d, *J* = 2.2 Hz, 1H), 6.90 (td, *J* = 7.4, 1.2 Hz, 1H), 6.72 (td, *J* = 7.5, 1.0 Hz, 1H), 6.68 (dd,

J = 7.8, 1.8 Hz, 1H), 6.55 (d, J = 2.2 Hz, 1H), 6.36 (s, 1H), 5.26 (s, 1H), 4.19 (d, J = 18.2 Hz, 1H), 3.85 (s, 3H), 3.78 (s, 1H), 3.18 (d, J = 18.3 Hz, 1H), 1.47 (s, 9H), 1.34 (s, 9H).¹³C NMR (125 MHz, CDCl₃) δ 175.2, 159.5, 155.7, 153.9, 148.3, 136.6, 135.9, 134.7, 134.6, 131.8, 130.8, 129.9, 129.1, 129.0, 128.6, 128.2, 127.5, 126.9, 126.1, 124.5, 124.2, 121.3, 119.8, 117.0, 114.0, 112.6, 111.3, 79.9, 70.3, 58.6, 57.3, 56.2, 42.3, 34.5, 34.3, 30.4, 30.1. IR (KBr) υ : 759, 938, 1019, 1125, 1153, 1243, 1300, 1373, 1444, 1483, 1570, 1595, 2220, 2873, 2957, 3066, 3617 cm⁻¹. HRMS (ESI) m/z: Calcd for C₄₁H₄₀N₂O₃ [M + H]⁺ 609.3112; Found 609.3107.

2-(4-(3,5-di-tert-butyl-4-hydroxyphenyl)-2-(o-tolyl)spiro[chromane-3,2'-inden]-1'(3'H)-ylidene)malononitrile (3ag)

The compound was prepared according to general procedure with petroleum ether/dichloromethane = 3:1-2:1 as eluent. $R_f = 0.45$ (petroleum ether/ethyl acetate = 20:1). Yellow solid, 88.3 mg, 99% yield (two isomers), 14:1 dr, reaction time = 24 h, m.p. 243.1-244.3 °C.¹H NMR (500 MHz, CDCl₃) δ 8.59 (d, J = 8.1 Hz, 1H), 7.70 (td, J = 7.5, 1.1 Hz, 1H), 7.58 (t, J = 7.7 Hz, 1H), 7.54 (d, J = 7.6 Hz, 1H), 7.31 (dd, J = 7.8, 1.4 Hz, 1H), 7.28 – 7.23 (m, 2H), 7.07 (dd, J = 8.3, 1.2 Hz, 1H), 7.00 (dd, J = 7.8, 1.7 Hz, 1H), 6.96-6.92 (m, 2H), 6.87 (d, J = 2.2 Hz, 1H), 6.60 (d, J = 7.8 Hz, 1H), 6.57 (d, J = 2.1 Hz, 1H), 6.12 (s, 1H), 5.28 (s, 1H), 4.15 (d, J = 18.1 Hz, 1H), 3.81 (s, 1H), 3.18 (d, J = 18.2 Hz, 1H), 2.57 (s,3H), 1.48 (s,9H), 1.32 (s, 9H).¹³C NMR (125 MHz, CDCl₃) δ 175.7, 155.2, 153.9, 148.2, 140.3, 136.5, 136.0, 134.9, 134.7, 133.4, 132.1, 131.9, 129.9, 129.4, 129.1, 128.8, 128.7, 128.5, 127.1, 126.2, 126.0, 125.4, 124.4, 121.8, 116.8, 113.8, 111.7, 79.8, 73.0, 58.5, 57.1, 42.1, 34.5, 34.3, 30.4, 30.1, 19.5. IR (KBr) v: 762, 935, 1006, 1126, 1149, 1236, 1302, 1356, 1441, 1478, 1569, 2219, 2870,

2961, 3068, 3610 cm⁻¹. HRMS (ESI) m/z: Calcd for $C_{41}H_{40}N_2O_2$ [M + H]⁺ 593.3163; Found 593.3160.

2-(4-(3,5-di-tert-butyl-4-hydroxyphenyl)-2-(2-ethylphenyl)spiro[chromane-3,2'inden]-1'(3'H)-ylidene)malononitrile (3ah)

The compound was prepared according to general procedure with petroleum ether/dichloromethane = 3:1-2:1 as eluent. $R_f = 0.37$ (petroleum ether/ethyl acetate = 20:1). Yellow solid, 80.0 mg, 88% yield (two isomers), >20:1 dr, reaction time = 36 h, m.p. 266.4-267.3 °C.¹H NMR (400 MHz, CDCl₃) δ 8.60 (d, J = 8.1 Hz, 1H), 7.70 (td, J = 7.5, 1.0 Hz, 1H), 7.58 (t, J = 7.7 Hz, 1H), 7.53 (d, J = 7.6 Hz, 1H), 7.39 (d, J = 7.3 Hz, 1H), 7.31 (t, J = 7.5 Hz, 1H), 7.30 – 7.21 (m, 1H), 7.06 (d, J = 7.8 Hz, 1H), 7.00 (dd, J = 7.7, 1.4 Hz, 1H), 7.00 – 6.89 (m, 2H), 6.86 (d, J = 2.1 Hz, 1H), 6.63 – 6.55 (m, 2H), 6.21 (s, 1H), 5.28 (s, 1H), 4.15 (d, J = 18.2 Hz, 1H), 3.81 (s, 1H), 3.18 (d, J = 18.3 Hz, 1H), 3.02-283 (m, 2H), 1.48 (s, 9H), 1.40 (t, J = 7.5 Hz, 3H), 1.32 (s, 9H).¹³C NMR (125 MHz, CDCl₃) δ 175.5, 155.0, 154.0, 148.3, 145.8, 136.5, 136.0, 134.8, 134.7, 132.8, 131.9, 129.9, 129.9, 129.5, 129.1, 128.8, 128.8, 128.4, 127.1, 126.2, 126.0, 125.1, 124.5, 121.8, 116.8, 113.9, 111.7, 79.9, 72.7, 58.5, 57.0, 42.1, 34.5, 34.3, 30.4, 30.0, 24.9, 14.5. IR (KBr) υ : 767, 938, 1005, 1125, 1148, 1238, 1302, 1366, 1443, 1480, 1570, 2221, 2872, 2961, 3068, 3613 cm⁻¹. HRMS (ESI) m/z: Calcd for C₄₂H₄₂N₂O₂ [M + H]⁺ 607.3319; Found 607.3316.

2-(4-(3,5-di-tert-butyl-4-hydroxyphenyl)-2-(2-fluorophenyl)spiro[chromane-3,2'inden]-1'(3'H)-ylidene)malononitrile (3ai)

The compound was prepared according to general procedure with petroleum ether/dichloromethane = 3:1-2:1 as eluent. $R_f = 0.23$ (petroleum ether/ethyl acetate = 20:1). Yellow solid, 82.9 mg, 93% yield (two isomers), 8:1 dr, reaction time = 36 h, m.p. 223.5-224.1 °C. ¹H NMR (500 MHz, CDCl₃) δ 8.58 (d, *J* = 8.1 Hz, 1H), 7.70 (t, *J* = 7.5 Hz, 1H), 7.58 (t, *J* = 7.7 Hz, 1H), 7.54 (d, *J* = 7.6 Hz, 1H), 7.36 (q, *J* = 7.3 Hz, 1H), 7.30 – 7.22 (m, 1H), 7.23 – 7.15 (m, 1H), 7.08 (d, *J* = 8.3 Hz, 1H), 6.99 (d, *J* = 6.9 Hz, 1H), 6.95 (t, *J* = 7.4 Hz, 2H), 6.91 (d, *J* = 2.1 Hz, 1H), 6.76 (t, *J* = 7.3 Hz, 1H), 6.36 (s, 1H), 5.30 (s, 1H), 4.10 (d, *J* = 18.1 Hz, 1H), 3.81 (s, 1H), 3.19 (d, *J* = 18.1 Hz, 1H), 1.48 (s, 9H), 1.34 (s, 9H). ¹³C NMR (125 MHz, CDCl₃) δ 174.6, 162.8 (d, *J* = 246.6 Hz), 154.4, 154.1, 148.5, 138.9, 138.8, 136.3, 136.2, 135.0, 134.9, 131.7, 130.2 (d, *J* = 8.2 Hz), 129.6, 129.2, 128.8, 128.6, 126.8, 126.3, 124.2 (d, *J* = 2.8 Hz), 123.8, 121.8, 116.9, 116.2 (d, *J* = 22.4 Hz). 115.9, 113.8, 112.5, 80.1, 74.6, 59.3, 56.2, 41.0, 34.6, 34.3, 30.4, 30.1. IR (KBr) v: 744, 768, 886, 106, 1119, 1153, 1241, 1313, 1361, 1440, 1482, 1576, 2219, 2874, 2959, 3069, 3630 cm⁻¹. HRMS (ESI) m/z: Calcd for C₄₀H₃₇FN₂O₂ [M + H]⁺ 597.2912; Found 597.2916.

2-(2-(2-chlorophenyl)-4-(3,5-di-tert-butyl-4-hydroxyphenyl)spiro[chromane-3,2'inden]-1'(3'H)-ylidene)malononitrile (3aj)

The compound was prepared according to general procedure with petroleum

ether/dichloromethane = 3:1-2:1 as eluent. $R_f = 0.23$ (petroleum ether/ethyl acetate = 20:1). Yellow solid, 85.0 mg, 93% yield (two isomers), >20:1 dr, reaction time = 36 h, m.p. 223.7-224.5 °C. ¹H NMR (500 MHz, CDCl₃) δ 8.59 (d, J = 8.1 Hz, 1H), 7.72 (td, J = 7.5, 1.1 Hz, 1H), 7.59 (t, J = 7.7 Hz, 1H), 7.57 – 7.53 (m, 2H), 7.32 – 7.29 (m, 1H), 7.27 (d, J = 5.9 Hz, 1H), 7.11 (dd, J = 8.4, 1.2 Hz, 1H), 7.06 (td, J = 7.7, 1.3 Hz, 1H), 7.00 (dd, J = 7.8, 1.7 Hz, 1H), 6.97 – 6.93 (m, 2H), 6.74 (dd, J = 8.0, 1.5 Hz, 1H), 6.57 (d, J = 2.2 Hz, 1H), 6.33 (s, 1H), 5.30 (s, 1H), 4.12 (d, J = 18.2 Hz, 1H), 3.83 (s, 1H), 3.21 (d, J = 18.3 Hz, 1H), 1.49 (s, 9H), 1.34 (s, 9H).¹³C NMR (125 MHz, CDCl₃) δ 175.1, 155.2, 154.1, 148.1, 137.9, 136.5, 136.1, 135.1, 134.9, 133.1, 131.9, 131.6, 130.6, 129.8, 129.0, 129.0, 129.0, 128.6, 127.7, 127.2, 126.3, 126.3, 124.4, 122.0, 117.0, 113.8, 111.4, 80.0, 73.0, 58.6, 57.3, 42.0, 34.6, 34.4, 30.4, 30.2. IR (KBr) υ : 749, 904, 939, 1009, 1042, 1161, 1237, 1310, 1322, 1440, 1477, 1572, 2223, 2875, 2959, 3069, 3631 cm⁻¹. HRMS (ESI) m/z: Calcd for C₄₀H₃₇ClN₂O₂ [M + H]⁺ 613.2616; Found 613.2614.

2-(2-(2-bromophenyl)-4-(3,5-di-tert-butyl-4-hydroxyphenyl)spiro[chromane-3,2'inden]-1'(3'H)-ylidene)malononitrile (3ak)

The compound was prepared according to general procedure with petroleum ether/dichloromethane = 3:1-2:1 as eluent. $R_f = 0.26$ (petroleum ether/ethyl acetate = 20:1). Yellow solid, 85.5 mg, 87% yield (two isomers), 11:1 dr, reaction time = 36 h, m.p. 227.3-228.4 °C.¹H NMR (500 MHz, CDCl₃) δ 8.59 (d, J = 8.1 Hz, 1H), 7.74 (dd, 1H), 7.71 (t, J = 7.6 Hz, 1H), 7.59 (t, J = 7.7 Hz, 1H), 7.55 (d, J = 7.6 Hz, 1H), 7.29 – 7.25 (m, 1H), 7.21 (td, J = 7.7, 1.6 Hz, 1H), 7.13 – 7.08 (m, 2H), 7.00 (dd, J = 7.8, 1.7 Hz, 1H), 6.97 – 6.93 (m, 2H), 6.72 (dd, J = 7.9, 1.5 Hz, 1H), 6.56 (d, J = 2.2 Hz, 1H),

6.21 (s, 1H), 5.29 (s, 1H), 4.10 (d, J = 18.2 Hz, 1H), 3.82 (s, 1H), 3.20 (d, J = 18.3 Hz, 1H), 1.48 (s, 9H), 1.34 (s, 9H).¹³C NMR (125 MHz, CDCl₃) δ 175.0, 155.1, 154.0, 148.0, 136.4, 136.1, 135.0, 134.9, 134.8, 134.4, 131.8, 130.7, 129.7, 129.0, 128.9, 128.9, 128.5, 128.4, 127.7, 127.1, 126.9, 126.2, 124.4, 121.9, 117.0, 113.8, 111.4, 80.0, 75.0, 58.7, 57.2, 41.9, 34.6, 34.3, 30.4, 30.1. IR (KBr) υ : 749, 871, 1020, 1151, 1235, 1305, 1361, 1440, 1478, 1568, 2219, 2874, 2958, 3070, 3626 cm⁻¹. HRMS (ESI) m/z: Calcd for C₄₀H₃₇BrN₂O₂ [M + H]⁺ 657.2111; Found 657.2116.

2-(4-(3,5-di-tert-butyl-4-hydroxyphenyl)-2-(2-(trifluoromethyl)phenyl)spiro[chromane-3,2'-inden]-1'(3'H)ylidene)malononitrile (3al)

The compound was prepared according to general procedure with petroleum ether/dichloromethane = 3:1-2:1 as eluent. $R_f = 0.25$ (petroleum ether/ethyl acetate = 20:1). Yellow solid, 91.4 mg, 94% yield (two isomers), 11:1 dr, reaction time = 36 h, m.p. 220.0-221.1 °C.¹H NMR (500 MHz, CDCl₃) δ 8.64 (d, J = 8.2 Hz, 1H), 7.87 (d, J = 7.9 Hz, 1H), 7.73 (t, J = 7.5 Hz, 1H), 7.61 (t, J = 7.8 Hz, 1H), 7.55 (d, J = 7.7 Hz, 1H), 7.49 (t, J = 7.9 Hz, 1H), 7.33 (t, J = 7.8 Hz, 1H), 7.27 (t, J = 7.6 Hz, 1H), 7.08 (d, J = 8.3 Hz, 1H), 6.98 (d, J = 7.6 Hz, 1H), 6.94 (t, J = 7.4 Hz, 1H), 6.85 (s, 1H), 6.78 (d, J = 7.9 Hz, 1H), 6.56 (d, J = 5.5 Hz, 2H), 5.30 (s, 1H), 4.01 (d, J = 18.2 Hz, 1H), 3.81 (s, 1H), 3.18 (d, J = 18.2 Hz, 1H), 1.49 (s, 9H), 1.31 (s, 9H).¹³C NMR (125 MHz, CDCl₃) δ 175.3, 154.6, 154.1, 148.0, 136.3, 136.1, 135.1, 134.7, 133.9, 131.7, 131.1, 129.7, 129.5, 129.3 (q, J = 5.8 Hz) 129.0, 128.9, 128.8, 128.5, 127.2, 127.1, 126.3, 124.2, 122.0, 117.0, 113.8, 111.6, 79.8, 72.2, 72.2, 58.7, 57.0, 41.6, 34.6, 34.2, 30.3, 29.9. IR (KBr) υ : 763, 931, 1035, 1126, 1236, 1304, 1366, 1440, 1480, 1568, 2221,

2875, 1898, 3068, 3632 cm⁻¹. HRMS (ESI) m/z: Calcd for $C_{41}H_{37}F_3N_2O_2$ [M + H]⁺ 647.2880; Found 647.2880.

2-(4-(3,5-di-tert-butyl-4-hydroxyphenyl)-2-(2-

(trifluoromethoxy)phenyl)spiro[chromane-3,2'-inden]-1'(3'H)-

ylidene)malononitrile (3am)

The compound was prepared according to general procedure with petroleum ether/dichloromethane = 3:1-2:1 as eluent. $R_f = 0.33$ (petroleum ether/ethyl accetate = 20:1). Yellow solid, 79.2 mg, 80% yield (two isomers), >20:1 dr, reaction time = 36 h, m.p. 258.7-259.5 °C.¹H NMR (400 MHz, CDCl₃) δ 8.60 (d, J = 8.1 Hz, 1H), 7.72 (t, J = 7.4 Hz, 1H), 7.60 (t, J = 7.7 Hz, 1H), 7.55 (d, J = 7.6 Hz, 1H), 7.42 (d, J = 4.5 Hz, 2H), 7.32 – 7.22 (m, 1H), 7.12 – 7.03 (m, 2H), 7.00 (dd, J = 7.6, 1.4 Hz, 1H), 6.95 (t, J = 7.3 Hz, 1H), 6.90 (d, J = 2.0 Hz, 1H), 6.77 (d, J = 7.8 Hz, 1H), 6.58 (d, J = 2.2 Hz, 1H), 6.36 (s, 1H), 5.31 (s, 1H), 4.11 (d, J = 18.2 Hz, 1H), 3.83 (s, 1H), 3.22 (d, J = 18.2 Hz, 1H), 1.49 (s, 9H), 1.33 (s, 9H).¹³C NMR (100 MHz, CDCl₃) δ 174.9, 154.9, 154.0, 149.9, 147.9, 136.3, 136.1, 135.0, 134.8, 131.7, 130.9, 129.6, 128.9, 128.9, 128.5, 127.9, 127.5, 127.1, 126.2, 125.7, 124.1, 121.8, 120.5, 116.8, 113.7, 111.4, 79.9, 70.2, 58.1, 57.0, 41.8, 34.6, 34.2, 30.3, 29.9. IR (KBr) υ : 763, 936, 1009, 1172, 1250, 1301, 1360, 1444, 1486, 1571, 2221, 2872, 2960, 3071, 3620 cm⁻¹. HRMS (ESI) m/z: Calcd for C₄₁H₃₇F₃N₂O₃ [M + H]⁺ 663.2829; Found 663.2825.

2-(4-(3,5-di-tert-butyl-4-hydroxyphenyl)-2-(2-phenoxyphenyl)spiro[chromane-3,2'-inden]-1'(3'H)-ylidene)malononitrile (3an)

The compound was prepared according to general procedure with petroleum ether/dichloromethane = 3:1-2:1 as eluent. $R_f = 0.33$ (petroleum ether/ethyl acetate = 20:1). Yellow solid, 97.6 mg, 97% yield (two isomers), 9:1 dr, reaction time = 36 h, m.p. 209.6-210.8 °C.¹H NMR (500 MHz, CDCl₃) δ 8.59 (d, J = 8.1 Hz, 1H), 7.70 (t, J = 7.5 Hz, 1H), 7.58 (t, J = 7.7 Hz, 1H), 7.53 (d, J = 7.6 Hz, 1H), 7.34 (t, J = 7.9 Hz, 2H), 7.32 – 7.25 (m, 1H), 7.17 – 7.09 (m, 4H), 6.94 (td, J = 6.5, 5.9, 1.3 Hz, 2H), 6.90 – 6.85 (m, 3H), 6.76 (d, J = 8.2 Hz, 2H), 6.57 (d, J = 2.1 Hz, 1H), 6.49 (s, 1H), 5.26 (s, 1H), 4.16 (d, J = 18.1 Hz, 1H), 3.80 (s, 1H), 3.20 (d, J = 18.1 Hz, 1H), 1.49 (s, 9H), 1.22 (s, 9H).¹³C NMR (125 MHz, CDCl₃) δ 175.2, 157.6, 157.2, 155.2, 153.9, 148.2, 136.5, 136.0, 134.8, 134.7, 131.6, 130.6, 129.9, 129.6, 129.0, 128.9, 128.7, 128.3, 127.5, 127.0, 126.3, 126.2, 124.3, 123.5, 122.2, 121.5, 119.8, 119.8, 119.0, 116.7, 113.9, 111.5, 79.9, 70.8, 58.4, 57.0, 42.0, 34.6, 34.2, 30.4, 30.3, 29.9 IR (KBr) v: 747, 863, 1006, 1119, 1156, 1239, 1308, 1372, 1444, 1484, 1575, 2222, 2875, 2958, 3069, 3628 cm⁻¹. HRMS (ESI) m/z: Calcd for C₄₆H₄₂N₂O₃ [M + H]⁺ 671.3268; Found 671.3272.

2-(4-(3,5-di-tert-butyl-4-hydroxyphenyl)-2-(3-methoxyphenyl)spiro[chromane-3,2'-inden]-1'(3'H)-ylidene)malononitrile (3ao)

The compound was prepared according to general procedure with petroleum ether/dichloromethane = 3:1-2:1 as eluent. $R_f = 0.33$ (petroleum ether/ethyl acetate = 20:1). Yellow solid, 87.1 mg, 95% yield (two isomers), >20:1 dr, reaction time = 36 h, m.p. 200.3-201.1 °C.¹H NMR (500 MHz, CDCl₃) δ 8.59 (d, J = 8.2 Hz, 1H), 7.65 (td, J = 7.5, 1.0 Hz, 1H), 7.52 (t, J = 7.7 Hz, 1H), 7.47 (d, J = 7.6 Hz, 1H), 7.31 – 7.26 (m, 1H), 7.28 – 7.21 (m, 1H), 7.16 – 7.10 (m, 2H), 7.03 – 6.98 (m, 2H), 6.99 – 6.90 (m, 1H), 6.88 (dd, J = 8.1, 2.3 Hz, 1H), 6.85 (d, J = 2.3 Hz, 1H), 6.59 (d, J = 2.3 Hz, 1H), 6.09 (s, 1H), 5.33 (s, 1H), 4.03 (d, J = 17.9 Hz, 1H), 3.80 (s, 1H), 3.75 (s, 3H), 3.08 (d, J = 17.9 Hz, 1H), 1.51 (s, 9H), 1.34 (s, 9H). ¹³C NMR (125 MHz, CDCl₃) δ 174.9, 159.6, 154.6, 154.0, 148.7, 137.8, 136.2, 136.2, 134.9, 134.8, 131.6, 129.7, 129.7, 129.2, 128.8, 128.6, 128.4, 126.7, 126.2, 123.8, 121.6, 120.8, 116.9, 115.1, 114.2, 114.0, 112.5, 80.0, 75.1, 59.4, 56.1, 55.3, 41.2, 34.5, 34.3, 30.3, 30.1. IR (KBr) υ : 743, 768, 952, 1014, 1126, 1150, 1239, 1302, 1350, 1441, 1481, 1571, 2220, 2874, 2956, 3072, 3611 cm⁻¹. HRMS (ESI) m/z: Calcd for C₄₁H₄₀N₂O₃ [M + H]⁺ 609.3112; Found 609.3115.

2-(4-(3,5-di-tert-butyl-4-hydroxyphenyl)-2-(m-tolyl)spiro[chromane-3,2'-inden]-1'(3'H)-ylidene)malononitrile (3ap)

The compound was prepared according to general procedure with petroleum ether/dichloromethane = 3:1-2:1 as eluent. $R_f = 0.34$ (petroleum ether/ethyl acetate = 20:1). Yellow solid, 81.7 mg, 92% yield (two isomers), >20:1 dr, reaction time = 36 h, m.p. 213.2-214.0 °C.¹H NMR (500 MHz, CDCl₃) δ 8.58 (d, *J* = 8.2 Hz, 1H), 7.65 (t, *J* = 7.5 Hz, 1H), 7.53 (t, *J* = 7.8 Hz, 1H), 7.47 (d, *J* = 7.6 Hz, 1H), 7.29 (s, 1H), 7.30 – 7.23 (m, 1H), 7.17 (t, *J* = 7.6 Hz, 1H), 7.14 (d, *J* = 7.4 Hz, 1H), 7.11 (d, *J* = 8.3 Hz, 1H),

7.04 (d, J = 7.5 Hz, 1H), 6.99 (d, J = 7.4 Hz, 1H), 6.92 (t, J = 7.3 Hz, 1H), 6.84 (s, 1H), 6.56 (s, 1H), 6.06 (s, 1H), 5.30 (s, 1H), 4.03 (d, J = 17.9 Hz, 1H), 3.78 (s, 1H), 3.07 (d, J = 17.9 Hz, 1H), 2.33 (s, 3H), 1.49 (s, 9H), 1.33 (s, 9H). ¹³C NMR (125 MHz, CDCl₃) δ 175.1, 154.8, 154.0, 148.7, 138.5, 136.3, 136.2, 136.2, 134.8, 131.7, 130.2, 129.8, 129.8, 129.2, 128.8, 128.6, 128.4, 128.4, 128.3, 126.8, 126.2, 125.2, 123.9, 121.5, 117.0, 114.0, 112.4, 80.0, 75.3, 59.3, 56.3, 41.3, 34.5, 34.3, 30.4, 30.1, 21.7. IR (KBr) υ : 739, 768, 903, 1010, 1127, 1147, 1234, 1303, 1356, 1440, 1478, 1556, 2219, 2869, 2690, 3055, 3609 cm⁻¹ cm⁻¹. HRMS (ESI) m/z: Calcd for C₄₁H₄₀N₂O₂ [M + H]⁺ 593.3163; Found 593.3171.

2-(4-(3,5-di-tert-butyl-4-hydroxyphenyl)-2-(3-fluorophenyl)spiro[chromane-3,2'inden]-1'(3'H)-ylidene)malononitrile (3aq)

The compound was prepared according to general procedure with petroleum ether/dichloromethane = 3:1-2:1 as eluent. $R_f = 0.31$ (petroleum ether/ethyl acetate = 20:1). Yellow solid, 70.3 mg, 79% yield (two isomers), 7:1 dr, reaction time = 36 h, m.p. 215.0-216.1 °C.¹H NMR (500 MHz, CDCl₃) δ 8.57 (d, J = 8.2 Hz, 1H), 7.65 (td, J = 7.5, 1.0 Hz, 1H), 7.52 (t, J = 7.6 Hz, 1H), 7.46 (d, J = 7.6 Hz, 1H), 7.34 – 7.25 (m, 2H), 7.18-7.14 (m, 1H), 7.12-7.11 (m, 1H), 7.09 (dd, J = 8.4, 1.1 Hz, 1H), 7.04-7.00 (m, 1H), 6.98 (dd, J = 7.7, 1.8 Hz, 1H), 6.93 (td, J = 7.4, 1.2 Hz, 1H), 6.79 (d, J = 2.3 Hz, 1H), 6.08 (s, 1H), 5.30 (s, 1H), 3.92 (d, J = 17.9 Hz, 1H), 3.77 (s, 1H), 1.48 (s, 9H), 1.31 (s, 9H). ¹³C NMR (125 MHz, Chloroform-d) δ 174.7, 162.8 (d, J = 246.4 Hz), 154.4, 154.6, 148.5, 138.9, 138.8, 136.4, 136.2, 135.1, 134.9, 131.7, 130.2 (d, J = 8.1 Hz), 129.6, 129.2, 128.8, 128.6, 126.8, 126.3, 124.2 (d, J = 3.2 Hz), 123.8, 121.8, 116.9, 116.2 (d, J = 22.2 Hz). 116.0, 113.8, 112.5, 80.1, 74.6, 59.3,

56.2, 41.0, 34.6, 34.3, 30.4, 30.1 cm⁻¹. HRMS (ESI) m/z: Calcd for C₄₀H₃₇FN₂O₂ [M + H]⁺ 597.2912; Found 597.2915.

2-(2-(3-chlorophenyl)-4-(3,5-di-tert-butyl-4-hydroxyphenyl)spiro[chromane-3,2'inden]-1'(3'H)-ylidene)malononitrile (3ar)

The compound was prepared according to general procedure with petroleum ether/dichloromethane = 3:1-2:1 as eluent. $R_f = 0.32$ (petroleum ether/ethyl acetate = 20:1). Yellow solid, 85.9 mg, 94% yield (two isomers), >20:1 dr, reaction time = 36 h, m.p. 207.2-208.0 °C.¹H NMR (500 MHz, CDCl₃) δ 8.58 (d, J = 8.2 Hz, 1H), 7.65 (td, J = 7.5, 0.9 Hz, 1H), 7.57 – 7.48 (m, 2H), 7.47 (d, J = 7.6 Hz, 1H), 7.31 (d, J = 8.0 Hz, 1H), 7.31 – 7.24 (m, 1H), 7.23 (t, J = 7.8 Hz, 1H), 7.19 (d, J = 7.9 Hz, 1H), 7.11 (d, J = 8.2 Hz, 1H), 6.99 (dd, J = 7.6, 1.4 Hz, 1H), 6.94 (t, J = 7.3 Hz, 1H), 6.80 (d, J = 2.2 Hz, 1H), 6.56 (d, J = 2.2 Hz, 1H), 6.08 (s, 1H), 5.31 (s, 1H), 3.91 (d, J = 17.8 Hz, 1H), 3.78 (s, 1H), 3.06 (d, J = 17.8 Hz, 1H), 1.49 (s, 9H), 1.32 (s, 9H). ¹³C NMR (125 MHz, CDCl₃) δ 174.6, 154.3, 154.1, 148.5, 138.5, 136.3, 136.1, 135.1, 134.9, 134.8, 131.6, 129.8, 129.5, 129.5, 129.2, 129.2, 128.7, 128.6, 126.8, 126.3, 126.3, 123.7, 121.8, 116.9, 113.8, 112.5, 80.0, 74.5, 59.3, 56.1, 41.0, 34.5, 34.3, 30.4, 30.1. IR (KBr) υ : 747, 766, 872, 1010, 1119, 1153, 1237, 1308, 1361, 1438, 1478, 1569, 2220, 2875, 2959, 3070, 3624 cm⁻¹. HRMS (ESI) m/z: Calcd for C₄₀H₃₇ClN₂O₂ [M + H]⁺ 613.2616; Found 613.2618.

2-(2-(3-bromophenyl)-4-(3,5-di-tert-butyl-4-hydroxyphenyl)spiro[chromane-3,2'inden]-1'(3'H)-ylidene)malononitrile (3as)

The compound was prepared according to general procedure with petroleum ether/dichloromethane = 3:1-2:1 as eluent. $R_f = 0.20$ (petroleum ether/ethyl acetate = 20:1). Yellow solid, 97.1 mg, 99% yield (two isomers), 17:1 dr, reaction time = 36 h, m.p. 236.5-237.3 °C.¹H NMR (500 MHz, CDCl₃) δ 8.59 (d, J = 8.1 Hz, 1H), 7.71 (t, J = 7.5 Hz, 1H), 7.59 (t, J = 7.8 Hz, 1H), 7.55 (d, J = 8.0 Hz, 2H), 7.34 – 7.24 (m, 2H), 7.11 (d, J = 8.3 Hz, 1H), 7.06 (td, J = 7.6, 1.2 Hz, 1H), 7.00 (dd, J = 7.8, 1.6 Hz, 1H), 6.98 – 6.91 (m, 2H), 6.73 (dd, J = 7.8, 1.4 Hz, 1H), 6.57 (d, J = 2.2 Hz, 1H), 6.33 (s, 1H), 5.30 (s, 1H), 4.12 (d, J = 18.2 Hz, 1H), 3.83 (s, 1H), 3.21 (d, J = 18.2 Hz, 1H), 1.49 (s, 9H), 1.34 (s, 9H). ¹³C NMR (125 MHz, CDCl₃) δ 175.0, 155.1, 154.0, 148.0, 137.8, 136.4, 136.0, 134.9, 134.8, 133.0, 131.8, 131.5, 130.5, 129.7, 128.9, 128.9, 128.5, 127.6, 127.1, 126.2, 126.2, 124.3, 121.9, 116.9, 113.7, 111.3, 79.9, 72.9, 58.5, 57.2, 41.9, 34.5, 34.3, 30.3, 30.1. IR (KBr) υ : 747, 905, 940, 1008, 1042, 1120, 1237, 1310, 1322, 1440, 1478, 1570, 2223, 2875, 2958, 3069, 3632 cm⁻¹. HRMS (ESI) m/z: [M+H]⁺ Calcd for C₄₀H₃₇BrN₂O₂ [M + H]⁺ 657.2111; Found 657.2116.

2-(4-(3,5-di-tert-butyl-4-hydroxyphenyl)-2-(4-methoxyphenyl)spiro[chromane-3,2'-inden]-1'(3'H)-ylidene)malononitrile (3at)

The compound was prepared according to general procedure with petroleum ether/dichloromethane = 3:1-2:1 as eluent. $R_f = 0.20$ (petroleum ether/ethyl acetate =

20:1). Yellow solid, 78.7 mg, 86% yield (two isomers), 10:1 dr, reaction time = 36 h, m.p. 211.6-212.7 °C.¹H NMR (500 MHz, CDCl₃) δ 8.56 (d, *J* = 8.1 Hz, 1H), 7.65 (td, *J* = 7.5, 1.0 Hz, 1H), 7.52 (t, *J* = 7.7 Hz, 1H), 7.47 (d, *J* = 7.6 Hz, 1H), 7.30 – 7.21 (m, 3H), 7.08 (dd, *J* = 8.4, 1.2 Hz, 1H), 6.98 (dd, *J* = 7.8, 1.7 Hz, 1H), 6.91 (td, *J* = 7.4, 1.2 Hz, 1H), 6.88 – 6.81 (m, 3H), 6.55 (d, *J* = 2.2 Hz, 1H), 6.01 (s, 1H), 5.29 (s, 1H), 4.04 (d, *J* = 17.9 Hz, 1H), 3.77 (s, 4H), 3.07 (d, *J* = 18.0 Hz, 1H), 1.48 (s, 9H), 1.32 (s, 9H). ¹³C NMR (125 MHz, CDCl₃) δ 175.2, 159.8, 154.9, 154.0, 148.6, 136.4, 136.2, 134.9, 134.8, 131.7, 130.3, 129.8, 129.2, 128.8, 128.6, 128.4, 128.2, 126.8, 126.2, 123.9, 121.5, 117.0, 114.1, 114.0, 112.4, 80.0, 75.0, 59.4, 56.5, 55.4, 41.4, 34.5, 34.3, 30.4, 30.1. IR (KBr) v: 730, 763, 914, 1001, 1030, 1176, 1234, 1306, 1361, 1442, 1473, 1570, 1610, 2222, 2876, 2960, 3069, 3628 cm⁻¹. HRMS (ESI) m/z: Calcd for C₄₁H₄₀N₂O₃ [M + H]⁺ 609.3112; Found 609.3115.

2-(4-(3,5-di-tert-butyl-4-hydroxyphenyl)-2-(p-tolyl)spiro[chromane-3,2'-inden]-1'(3'H)-ylidene)malononitrile (3au)

The compound was prepared according to general procedure with petroleum ether/dichloromethane = 3:1-2:1 as eluent. $R_f = 0.35$ (petroleum ether/ethyl acetate = 20:1). Yellow solid, 84.6 mg, 95% yield (two isomers), 10:1 dr, reaction time = 36 h, m.p. 220.8-221.7 °C.¹H NMR (500 MHz, CDCl₃) δ 8.58 (d, J = 8.1 Hz, 1H), 7.66 (td, J = 7.5, 1.0 Hz, 1H), 7.53 (t, J = 7.7 Hz, 1H), 7.48 (d, J = 7.6 Hz, 1H), 7.26 (d, J = 2.9 Hz, 2H), 7.24 (d, J = 2.3 Hz, 1H), 7.14 (d, J = 8.1 Hz, 2H), 7.09 (d, J = 7.9 Hz, 1H), 6.99 (dd, J = 7.8, 1.7 Hz, 1H), 6.93 (td, J = 7.4, 1.2 Hz, 1H), 6.85 (d, J = 2.3 Hz, 1H), 6.57 (d, J = 2.2 Hz, 1H), 6.06 (s, 1H), 5.30 (s, 1H), 4.06 (d, J = 17.9 Hz, 1H), 3.79 (s, 1H), 3.08 (d, J = 18.0 Hz, 1H), 2.33 (s, 3H), 1.50 (s, 9H), 1.33 (s, 9H). ¹³C NMR (125

MHz, CDCl₃) δ 175.2, 154.9, 154.0, 148.6, 138.8, 136.4, 136.2, 134.8, 134.8, 133.2, 131.7, 129.8, 129.4, 129.2, 128.8, 128.8, 128.6, 128.4, 126.8, 126.2, 123.9, 121.5, 117.0, 114.0, 112.4, 80.0, 75.2, 59.3, 56.4, 41.4, 34.5, 34.3, 30.4, 30.1, 21.3. IR (KBr) υ : 760, 918, 1006, 1124, 1153, 1235, 1309, 1361, 1441, 1479, 1568, 2222, 2875, 2958, 3631 cm⁻¹. IR (KBr) υ : 760, 918, 1006, 1124, 1153, 1235, 1309, 1361, 1441, 1479, 1361, 1441, 1479, 1568, 2222, 2875, 2958, 3631 cm⁻¹. IR (KBr) υ : 760, 918, 1006, 1124, 1153, 1235, 1309, 1361, 1441, 1479, 1568, 2222, 2875, 2958, 3631 cm⁻¹. HRMS (ESI) m/z: Calcd for C₄₁H₄₀N₂O₂ [M + H]⁺ 593.3169; Found 593.3170.

2-(4-(3,5-di-tert-butyl-4-hydroxyphenyl)-2-(4-ethylphenyl)spiro[chromane-3,2'inden]-1'(3'H)-ylidene)malononitrile (3av)

The compound was prepared according to general procedure with petroleum ether/dichloromethane = 3:1-2:1 as eluent. $R_f = 0.38$ (petroleum ether/ethyl acetate = 20:1). Yellow solid, 83.6 mg, 92% yield (two isomers), 13:1 dr, reaction time = 36 h, m.p. 222.8-223.5 °C.¹H NMR (500 MHz, CDCl₃) δ 8.58 (d, J = 8.2 Hz, 1H), 7.66 (td, J = 7.5, 1.0 Hz, 1H), 7.57 – 7.50 (m, 1H), 7.48 (d, J = 7.7 Hz, 1H), 7.30 – 7.22 (m, 3H), 7.16 (d, J = 8.2 Hz, 2H), 7.13 – 7.07 (m, 1H), 6.99 (dd, J = 7.7, 1.4 Hz, 1H), 6.96 – 6.89 (m, 1H), 6.85 (d, J = 2.1 Hz, 1H), 6.57 (d, J = 2.2 Hz, 1H), 6.07 (s, 1H), 5.30 (s, 1H), 4.06 (d, J = 17.9 Hz, 1H), 3.79 (s, 1H), 3.08 (d, J = 17.9 Hz, 1H), 2.63 (q, J = 7.7 Hz, 2H), 1.50 (s, 9H), 1.33 (s, 9H), 1.22 (t, J = 7.6 Hz, 3H). ¹³C NMR (125 MHz, CDCl₃) δ 175.2, 154.9, 154.0, 148.6, 145.0, 136.4, 136.2, 134.8, 134.8, 133.4, 131.7, 129.8, 129.2, 128.9, 128.8, 128.6, 128.4, 128.3, 126.8, 126.2, 123.9, 121.5, 117.0, 114.0, 112.4, 80.0, 75.2, 59.3, 56.4, 41.4, 34.5, 34.3, 30.4, 30.1, 28.6, 15.3. IR (KBr) v: 762, 927, 1012, 1125, 1155, 1234, 1309, 1362, 1440, 1477, 1566, 2222, 2960, 3611 cm⁻¹. HRMS (ESI) m/z: Calcd for C₄₂H₄₂N₂O₂ [M+H]⁺ 607.3319; Found 607.3320.

2-(4-(3,5-di-tert-butyl-4-hydroxyphenyl)-2-(4-isopropylphenyl)spiro[chromane-3,2'-inden]-1'(3'H)-ylidene)malononitrile (3aw)

The compound was prepared according to general procedure with petroleum ether/dichloromethane = 3:1-2:1 as eluent. $R_f = 0.50$ (petroleum ether/ethyl acetate = 20:1). Yellow solid, 91.0 mg, 98% yield (two isomers), 14:1 dr, reaction time = 36 h, m.p. 242.5-243.1 °C.¹H NMR (400 MHz, CDCl₃) δ 8.58 (d, J = 8.2 Hz, 1H), 7.65 (td, J = 7.5, 1.0 Hz, 1H), 7.53 (t, J = 7.7 Hz, 1H), 7.48 (d, J = 7.8 Hz, 1H), 7.31 – 7.21 (m, 3H), 7.18 (d, J = 8.3 Hz, 2H), 7.09 (d, J = 7.8 Hz, 1H), 6.98 (dd, J = 7.7, 1.7 Hz, 1H), 6.92 (td, J = 7.4, 1.2 Hz, 1H), 6.84 (d, J = 2.3 Hz, 1H), 6.56 (d, J = 2.3 Hz, 1H), 6.07 (s, 1H), 5.29 (s, 1H), 4.05 (d, J = 17.9 Hz, 1H), 3.78 (s, 1H), 3.08 (d, J = 18.0 Hz, 1H), 2.93-2.83 (m, 1H), 1.49 (s, 9H), 1.33 (s, 9H), 1.23 (s, 3H), 1.21 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 175.3, 154.8, 154.0, 149.6, 148.7, 136.4, 136.2, 134.8, 134.8, 133.4, 131.7, 129.8, 129.2, 128.8, 128.8, 128.6, 128.4, 126.9, 126.8, 126.2, 123.9, 121.5, 117.0, 114.0, 112.4, 80.0, 75.2, 59.3, 56.4, 41.4, 34.5, 34.3, 33.9, 30.4, 30.1, 23.9, 23.9. IR (KBr) υ : 732, 839, 920, 1005, 1149, 1233, 1302, 1355, 1440, 1473, 1568, 2221, 2872, 2959, 3065, 3604 cm⁻¹. HRMS (ESI) m/z: Calcd for C₄₃H₄₄N₂O₂ [M + H]⁺ 621.3476; Found 621.3479.

2-(4-(3,5-di-tert-butyl-4-hydroxyphenyl)-2-(4-fluorophenyl)spiro[chromane-3,2'inden]-1'(3'H)-ylidene)malononitrile (3ax)

The compound was prepared according to general procedure with petroleum ether/dichloromethane = 3:1-2:1 as eluent. $R_f = 0.30$ (petroleum ether/ethyl acetate = 20:1). Yellow solid, 82.9 mg, 93% yield (two isomers), >20:1 dr, reaction time = 36 h, m.p. 225.8-226.3 °C.¹H NMR (500 MHz, CDCl₃) δ 8.59 (d, J = 8.2 Hz, 1H), 7.67 (t, J = 7.4 Hz, 1H), 7.55 (t, J = 7.7 Hz, 1H), 7.49 (d, J = 7.6 Hz, 1H), 7.40 – 7.34 (m, 2H), 7.31 – 7.24 (m, 1H), 7.10 (dd, J = 8.3, 1.1 Hz, 1H), 7.07 – 6.98 (m, 3H), 6.94 (td, J = 7.4, 1.2 Hz, 1H), 6.84 (d, J = 2.2 Hz, 1H), 6.57 (d, J = 2.2 Hz, 1H), 6.08 (s, 1H), 5.32 (s, 1H), 4.00 (d, J = 18.0 Hz, 1H), 3.81 (s, 1H), 3.10 (d, J = 18.0 Hz, 1H), 1.50 (s, 9H), 1.34 (s, 9H). ¹³C NMR (125 MHz, CDCl₃) δ 174.9, 162.8 (d, J = 248.9 Hz), 154.6, 154.1, 148.4, 136.3, 136.2, 135.0, 134.9, 132.2 (d, J = 3.3 Hz), 131.7, 130.8 (d, J = 8.3 Hz), 129.6, 129.2, 128.7, 128.5, 126.8, 126.3, 123.8, 121.7, 116.9, 115.8 (d, J = 21.6 Hz), 113.8, 112.5, 80.0, 74.7, 59.3, 56.3, 41.1, 34.5, 34.3, 30.4, 30.1. IR (KBr) υ : 744, 785, 936, 1008, 1154, 1235, 1309, 1360, 1441, 1479, 1563, 2220, 2875, 2959, 3070, 3627 cm⁻¹. HRMS (ESI) m/z: Calcd for C₄₀H₃₇FN₂O₂ [M + H]⁺ 597.2912; Found 597.2913.

2-(2-(4-chlorophenyl)-4-(3,5-di-tert-butyl-4-hydroxyphenyl)spiro[chromane-3,2'inden]-1'(3'H)-ylidene)malononitrile (3ay)

The compound was prepared according to general procedure with petroleum ether/dichloromethane = 3:1-2:1 as eluent. $R_f = 0.35$ (petroleum ether/ethyl acetate = 20:1). Yellow solid, 80.7 mg, 91% yield (two isomers), 16:1 dr, reaction time = 36 h, m.p. 223.7-224.5 °C.¹H NMR (500 MHz, CDCl₃) δ 8.57 (dd, J = 8.2, 2.8 Hz, 1H), 7.65 (dt, J = 7.5, 3.7 Hz, 1H), 7.53 (t, J = 6.8 Hz, 1H), 7.47 (d, J = 6.7 Hz, 1H), 7.31 (t, J = 2.4 Hz, 4H), 7.26 (d, J = 3.0 Hz, 1H), 7.11 – 7.05 (m, 1H), 6.99 (d, J = 7.6 Hz, 1H), 6.97 – 6.89 (m, 1H), 6.81 (s, 1H), 6.55 (s, 1H), 6.06 (d, J = 2.9 Hz, 1H), 5.31 (d, J = 2.9 Hz, 1H), 3.94 (dd, J = 18.1, 2.8 Hz, 1H), 3.79 (d, J = 2.8 Hz, 1H), 3.07 (dd, J = 18.1, 2.8 Hz, 1H), 1.48 (d, J = 3.0 Hz, 9H), 1.32 (d, J = 3.0 Hz, 9H). ¹³C NMR (125 MHz, CDCl₃) δ 174.8, 154.5, 154.1, 148.4, 136.3, 136.2, 135.1, 135.0, 134.9, 134.8, 131.7, 130.3, 129.6, 129.2, 129.0, 128.8, 128.7, 128.5, 126.8, 126.3, 123.8, 121.8, 116.9, 113.8, 112.5, 80.0, 74.6, 59.2, 56.2, 41.1, 34.5, 34.3, 30.4, 30.1. IR (KBr) υ : 747, 763, 805, 833, 915, 1010, 1107, 1154, 1235, 1310, 1359, 1441, 1484, 1562, 2220, 2875, 2959, 3070, 3626 cm⁻¹. HRMS (ESI) m/z: Calcd for C₄₀H₃₇ClN₂O₂ [M + H]⁺ 613.2676; Found 613.2669.

2-(2-(4-bromophenyl)-4-(3,5-di-tert-butyl-4-hydroxyphenyl)spiro[chromane-3,2'inden]-1'(3'H)-ylidene)malononitrile (3az)

The compound was prepared according to general procedure with petroleum ether/dichloromethane = 3:1-2:1 as eluent. $R_f = 0.33$ (petroleum ether/ethyl acetate = 20:1). Yellow solid, 94.6 mg, 96% yield (two isomers), 13:1 dr, reaction time = 36 h, m.p. 214.5-215.1 °C.¹H NMR (500 MHz, CDCl₃) δ 8.57 (dd, J = 8.2, 2.8 Hz, 1H), 7.66 (td, J = 7.5, 2.8 Hz, 1H), 7.54 (td, J = 8.0, 2.6 Hz, 1H), 7.47 (dd, J = 7.9, 2.6 Hz, 1H), 7.35 – 7.29 (m, 4H), 7.26 (d, J = 3.2 Hz, 1H), 7.09 (dd, J = 8.3, 2.8 Hz, 1H), 6.99 (d, J

= 7.6 Hz, 1H), 6.94 (td, J = 7.6, 2.7 Hz, 1H), 6.81 (s, 1H), 6.56 (s, 1H), 6.06 (d, J = 2.9 Hz, 1H), 5.31 (d, J = 2.9 Hz, 1H), 3.95 (dd, J = 18.0, 2.8 Hz, 1H), 3.79 (d, J = 2.8 Hz, 1H), 3.07 (dd, J = 18.1, 2.8 Hz, 1H), 1.49 (d, J = 3.0 Hz, 9H), 1.32 (d, J = 3.0 Hz, 9H). ¹³C NMR (125 MHz, CDCl₃) δ 174.7, 154.5, 154.1, 148.4, 136.3, 136.2, 135.4, 135.1, 134.9, 131.9, 131.8, 131.7, 130.5, 129.5, 129.2, 128.8, 128.7, 128.5, 126.8, 126.3, 123.8, 123.2, 121.8, 116.9, 113.8, 112.5, 80.1, 74.7, 59.2, 56.2, 41.1, 34.5, 34.3, 30.4, 30.4, 30.1. IR (KBr) v: 762, 829, 919, 1008, 1079, 1117, 1233, 1308, 1359, 1443, 1482, 1567, 2222, 2874, 2959, 3070, 3626 cm⁻¹. HRMS (ESI) m/z: Calcd for C₄₀H₃₇BrN₂O₂ [M + H]⁺ 657.2111; Found 657.2113.

2-(4-(3,5-di-tert-butyl-4-hydroxyphenyl)-2-(4-

(trifluoromethyl)phenyl)spiro[chromane-3,2'-inden]-1'(3'H)-

ylidene)malononitrile (3aa')

The compound was prepared according to general procedure with petroleum ether/dichloromethane = 3:1-2:1 as eluent. $R_f = 0.45$ (petroleum ether/ethyl acetate = 20:1). Yellow solid, 97.0 mg, 53% yield (two isomers), 11:1 dr, reaction time = 36 h, m.p. 257.5-258.1 °C. ¹H NMR (400 MHz, CDCl₃) δ 8.59 (d, J = 8.2 Hz, 1H), 7.67 (t, J = 7.4 Hz, 1H), 7.61 (d, J = 8.4 Hz, 2H), 7.53 (d, J = 8.2 Hz, 3H), 7.47 (d, J = 7.6 Hz, 1H), 7.31 – 7.25 (m, 1H), 7.09 (d, J = 8.1 Hz, 1H), 7.00 (dd, 1H), 6.95 (t, J = 7.3 Hz, 1H), 6.82 (d, J = 2.0 Hz, 1H), 6.57 (d, J = 2.3 Hz, 1H), 6.16 (s, 1H), 5.32 (s, 1H), 3.93 (d, J = 18.0 Hz, 1H), 3.81 (s, 1H), 3.09 (d, J = 18.0 Hz, 1H), 1.49 (s, 9H), 1.32 (s, 9H). ¹³C NMR (100 MHz, Chloroform-d) δ 174.6, 154.3, 154.2, 148.3, 140.3, 136.3, 136.1, 135.2, 134.9, 131.7, 129.5, 129.3, 129.2, 128.8, 128.7, 128.6, 126.8, 126.3, 125.7 (q, J = 3.6 Hz), 123.7, 121.9, 116.8, 113.7, 112.5, 80.0, 77.5, 77.2, 76.8, 74.6, 59.1, 56.1, 41.0, 34.5, 34.3, 30.4, 30.1.IR (KBr) υ :763, 845, 932, 1010, 1068, 1125, 1165, 1233, 1320, 1362, 1442, 1481, 1566, 2221, 2875, 2959, 3073, 3627 cm⁻¹.HRMS (ESI) m/z: Calcd for $C_{41}H_{37}F_3N_2O_2$ [M + H]⁺ 647.2880; Found 647.2888.

2-(2-(4-cyanophenyl)-4-(3,5-di-tert-butyl-4-hydroxyphenyl)spiro[chromane-3,2'inden]-1'(3'H)-ylidene)malononitrile (3ab')

The compound was prepared according to general procedure with petroleum ether/dichloromethane = 3:1-2:1 as eluent. $R_f = 0.20$ (petroleum ether/ethyl acetate = 20:1). Yellow solid, 73.2 mg, 80% yield (two isomers), >20:1 dr, reaction time = 36 h, m.p. 233.0-234.0 °C. ¹H NMR (400 MHz, CDCl₃) δ 8.07 (d, *J* = 8.3 Hz, 1H), 7.70 (d, *J* = 8.3 Hz, 2H), 7.62 (d, *J* = 4.6 Hz, 2H), 7.33 – 7.23 (m, 2H), 7.06 (t, *J* = 7.6 Hz, 3H), 6.98 (t, *J* = 7.7 Hz, 2H), 6.70 (s, 1H), 6.30 (s, 1H), 5.34 (s, 1H), 4.97 (s, 1H), 3.50 (d, *J* = 18.8 Hz, 1H), 3.26 (d, *J* = 18.8 Hz, 1H), 1.27 (d, *J* = 53.6 Hz, 18H). ¹³C NMR (125MHz, CDCl₃) δ 180.4, 154.4, 153.4, 151.1, 141.5, 136.7, 135.6, 132.4, 130.5, 128.7, 128.3, 127.8, 126.6, 125.6, 124.9, 123.6, 121.8, 118.3, 117.0, 115.0, 113.5, 112.9, 79.0, 76.0, 58.7, 52.5, 34.2, 34.0, 30.2. IR (KBr) v:763, 1042, 1125, 1231, 1307, 1363, 1438, 1476, 1550, 1707, 2223, 2959, 3074, 3615 cm⁻¹. HRMS (ESI, m/z): calculated for C₄₁H₃₇N₃O₂ [M + H]⁺: 604.2959, found:604.2965.

2-(4-(3,5-di-tert-butyl-4-hydroxyphenyl)-2-(4-methoxy-2methylphenyl)spiro[chromane-3,2'-inden]-1'(3'H)-ylidene)malononitrile (3ac')

The compound was prepared according to general procedure with petroleum ether/dichloromethane = 3:1-2:1 as eluent. $R_f = 0.30$ (petroleum ether/ethyl acetate = 20:1). Yellow solid, 83.6 mg, 90% yield (two isomers), >20:1 dr, reaction time = 36 h, m.p. 221.1-221.9 °C.¹H NMR (400 MHz, CDCl₃) δ 8.59 (d, J = 8.1 Hz, 1H), 7.70 (t, J = 7.4 Hz, 1H), 7.58 (t, J = 7.7 Hz, 1H), 7.53 (d, J = 7.6 Hz, 1H), 7.30 – 7.21 (m, 1H), 7.07 (d, J = 8.0 Hz, 1H), 7.03 – 6.96 (m, 1H), 6.93 (td, J = 7.4, 1.2 Hz, 1H), 6.87 (d, J = 2.4 Hz, 2H), 6.57 (d, J = 2.0 Hz, 1H), 6.53 (d, J = 8.6 Hz, 1H), 6.48 (dd, J = 8.6, 2.6 Hz, 1H), 6.06 (s, 1H), 5.29 (s, 1H), 4.14 (d, J = 18.2 Hz, 1H), 3.81 (s, 1H), 3.76 (s, 3H), 3.17 (d, J = 18.2 Hz, 1H), 2.55 (s, 3H), 1.49 (s, 9H), 1.33 (s, 9H). ¹³C NMR (100 MHz, CDCl₃) δ 175.7, 159.9, 155.2, 153.9, 148.3, 142.1, 136.5, 136.0, 134.8, 134.7, 131.9, 129.9, 129.1, 128.7, 128.4, 127.2, 127.1, 126.2, 125.8, 124.4, 121.7, 117.8, 116.8, 113.9, 111.7, 110.3, 79.9, 72.7, 58.6, 57.2, 55.2, 42.2, 34.5, 34.3, 30.4, 30.1, 19.8. IR (KBr) v: 732, 763, 807, 909, 998, 1044, 1123, 1156, 1235, 1305, 1360, 1443, 1471, 1572, 1613, 2221, 2876, 2960, 3072, 3631 cm⁻¹. HRMS (ESI) m/z: Calcd for C₄₂H₄₂N₂O₃ [M + H]⁺ 623.3268; Found 623.3264.

2-(4-(3,5-di-tert-butyl-4-hydroxyphenyl)-2-(2,4-dimethylphenyl)spiro[chromane-3,2'-inden]-1'(3'H)-ylidene)malononitrile (3ad')

The compound was prepared according to general procedure with petroleum ether/dichloromethane = 3:1-2:1 as eluent. $R_f = 0.40$ (petroleum ether/ethyl acetate = 20:1). Yellow solid, 86.1 mg, 95% yield (two isomers), 14:1 dr, reaction time = 36 h, m.p. 274.8-275.6 °C.¹H NMR (400 MHz, CDCl₃) δ 8.58 (d, *J* = 8.1 Hz, 1H), 7.69 (t, *J* = 7.4 Hz, 1H), 7.57 (t, *J* = 7.7 Hz, 1H), 7.53 (d, *J* = 7.6 Hz, 1H), 7.27 – 7.20 (m, 1H), 7.12 (s, 1H), 7.06 (d, *J* = 8.2 Hz, 1H), 6.98 (d, *J* = 6.8 Hz, 1H), 6.92 (t, *J* = 7.4 Hz, 1H),

6.85 (d, J = 1.8 Hz, 1H), 6.75 (d, J = 7.9 Hz, 1H), 6.56 (d, J = 1.8 Hz, 1H), 6.47 (d, J = 7.9 Hz, 1H), 6.07 (s, 1H), 5.27 (s, 1H), 4.14 (d, J = 18.2 Hz, 1H), 3.79 (s, 1H), 3.16 (d, J = 18.2 Hz, 1H), 2.52 (s, 3H), 2.27 (s, 3H), 1.48 (s, 9H), 1.31 (s, 9H). ¹³C NMR (125 MHz, CDCl₃) δ 175.8, 155.3, 153.9, 148.3, 140.1, 139.2, 136.6, 136.0, 134.8, 134.7, 132.9, 131.9, 130.5, 129.9, 129.1, 128.7, 128.7, 128.4, 127.1, 126.2, 126.0, 125.9, 124.4, 121.7, 116.8, 113.9, 111.7, 79.8, 72.9, 58.6, 57.1, 42.1, 34.5, 34.3, 30.4, 30.1, 21.2, 19.4. IR (KBr) υ : 729, 765, 827, 910, 1003, 1032, 1122, 1161, 1235, 1311, 1374, 1441, 1474, 1569, 2223, 2875, 2960, 3070, 3627 cm⁻¹. HRMS (ESI) m/z: Calcd for C₄₂H₄₂N₂O₂ [M + H]⁺ 607.3319; Found 607.3317.

2-(4-(3,5-di-tert-butyl-4-hydroxyphenyl)-2-(5-fluoro-2-

methylphenyl)spiro[chromane-3,2'-inden]-1'(3'H)-ylidene)malononitrile (3ae')

The compound was prepared according to general procedure with petroleum ether/dichloromethane = 3:1-2:1 as eluent. $R_f = 0.43$ (petroleum ether/ethyl acetate = 20:1). Yellow solid, 91.1 mg, 99% yield (two isomers), >20:1 dr, reaction time = 36 h, m.p. 225.7-226.5 °C. ¹H NMR (400 MHz, CDCl₃) δ 8.60 (d, *J* = 8.1 Hz, 1H), 7.72 (t, *J* = 7.5 Hz, 1H), 7.59 (t, *J* = 7.7 Hz, 1H), 7.55 (d, *J* = 7.6 Hz, 1H), 7.31 – 7.23 (m, 2H), 7.07 (d, *J* = 8.2 Hz, 1H), 7.02-6.93 (m, 3H), 6.85 (d, *J* = 2.2 Hz, 1H), 6.58 (d, *J* = 2.2 Hz, 1H), 6.34 (dd, *J* = 10.0, 2.6 Hz, 1H), 6.08 (s, 1H), 5.30 (s, 1H), 4.10 (d, *J* = 18.3 Hz, 1H), 3.82 (s, 1H), 3.19 (d, *J* = 18.3 Hz, 1H), 2.53 (s, 3H), 1.49 (s, 9H), 1.32 (s, 9H). ¹³C NMR (100 MHz, CDCl₃) δ 175.2, 160.2 (d, *J* = 243.5 Hz), 155.0, 154.0, 147.9, 136.3, 135.9 (d, *J* = 3.2 Hz), 135.2 (d, *J* = 6.8 Hz) 134.8, 133.2 (d, *J* = 7.7 Hz), 131.9, 129.7, 129.1, 129.0, 128.7, 128.5, 127.1, 126.2, 124.3, 122.0, 116.7, 115.9 (d, *J* = 20.4 Hz), 113.7, 113.4 (d, *J* = 22.8 Hz) 111.7, 79.8, 72.7, 72.7, 58.4, 57.2, 41.8, 34.5, 34.3,

30.4, 30.0, 18.8. IR (KBr) υ: 742, 824, 900, 1008, 1122, 1157, 1239, 1310, 1364, 1440, 1473, 1572, 2222, 2875, 2958, 3070, 3632 cm⁻¹. HRMS (ESI) m/z: Calcd for C₄₁H₃₉FN₂O₂ [M + H]⁺ 611.3068; Found 611.3065.

2-(2-(2-bromo-5-fluorophenyl)-4-(3,5-di-tert-butyl-4-

hydroxyphenyl)spiro[chromane-3,2'-inden]-1'(3'H)-ylidene)malononitrile (3af')

The compound was prepared according to general procedure with petroleum ether/dichloromethane = 3:1-2:1 as eluent. $R_f = 0.38$ (petroleum ether/ethyl acetate = 20:1). Yellow solid, 97.0 mg, 96% yield (two isomers), 11:1 dr, reaction time = 36 h, m.p. 257.5-258.1 °C.¹H NMR (500 MHz, CDCl₃) δ 8.59 (d, J = 8.2 Hz, 1H), 7.75 – 7.66 (m, 2H), 7.59 (t, J = 7.7 Hz, 1H), 7.55 (d, J = 7.6 Hz, 1H), 7.31 – 7.24 (m, 1H), 7.11 (d, J = 8.2 Hz, 1H), 7.00-6.94 (m, 3H), 6.90 (d, J = 2.1 Hz, 1H), 6.55 (d, J = 2.2 Hz, 1H), 6.44 (dd, J = 9.3, 2.9 Hz, 1H), 6.16 (s, 1H), 5.30 (s, 1H), 4.04 (d, J = 18.2 Hz, 1H), 3.82 (s, 1H), 3.20 (d, J = 18.3 Hz, 1H), 1.48 (s, 9H), 1.32 (s, 9H). ¹³C NMR (125 MHz, CDCl₃) δ 174.6, 160.9 (d, J = 247.5 Hz), 154.9, 154.1, 147.7, 136.3 (d, J = 6.7 Hz), 136.2, 136.1, 136.0 (d, J = 8.0 Hz), 135.2, 134.8, 131.8, 129.5, 129.1, 129.0, 128.9, 128.6, 127.2, 126.3, 124.3, 122.6 (d, J = 3.3 Hz), 122.1, 117.7 (d, J = 22.1 Hz), 116.9, 115.4 (d, J = 24.3 Hz), 113.6, 111.4, 80.0, 74.8, 58.6, 57.3, 41.6, 34.6, 34.4, 30.4, 30.1. IR (KBr) ψ : 744, 823, 898, 1027, 1121, 1161, 1237, 1311, 1365, 1441, 1473, 1572, 2222, 2875, 2958, 3070, 3632 cm⁻¹. HRMS (ESI) m/z: Calcd for C₄₀H₃₆BrFN₂O₂ [M + H]⁺ 675.2017; Found 675.2019.

2-(4-(3,5-di-tert-butyl-4-hydroxyphenyl)-2-(naphthalen-1-yl)spiro[chromane-3,2'-inden]-1'(3'H)-ylidene)malononitrile (3ag')

The compound was prepared according to general procedure with petroleum ether/dichloromethane = 3:1-2:1 as eluent. $R_f = 0.40$ (petroleum ether/ethyl acetate = 20:1). Yellow solid, 92.1 mg, 98% yield (two isomers), 11:1 dr, reaction time = 36 h, m.p. 226.9-227.5 °C. ¹H NMR (500 MHz, CDCl₃) δ 8.60 (d, *J* = 8.1 Hz, 1H), 7.86 (d, J = 8.7 Hz, 1H), 7.82 (d, J = 7.9 Hz, 1H), 7.77 (s, 1H), 7.72 (d, J = 8.0 Hz, 1H), 7.66 (t, J = 7.4 Hz, 1H), 7.61 (dd, J = 8.7, 1.7 Hz, 1H), 7.53 (t, J = 7.7 Hz, 1H), 7.51 – 7.45 (m, 2H), 7.48 - 7.41 (m, 1H), 7.33 - 7.26 (m, 1H), 7.15 (d, J = 8.0 Hz, 1H), 7.06 - 7.00(m, 1H), 6.96 (t, J = 7.0 Hz, 1H), 6.90 (d, J = 2.0 Hz, 1H), 6.60 (d, J = 2.4 Hz, 1H), 6.29 (s, 1H), 5.32 (s, 1H), 4.15 (d, J = 17.9 Hz, 1H), 3.84 (s, 1H), 3.14 (d, J = 17.9 Hz, 1H), 1.51 (s, 9H), 1.36 (s, 9H). ¹³C NMR (100 MHz, CDCl3) & 175.0, 154.7, 154.1, 148.6, 136.3, 134.9, 134.8, 133.7, 133.3, 132.8, 131.7, 129.7, 129.2, 128.8, 128.7, 128.7, 128.6, 128.5, 127.9, 127.6, 126.9, 126.8, 126.6, 126.4, 126.2, 123.9, 121.7, 116.9, 113.9, 112.6, 80.1, 75.3, 59.5, 56.3, 41.3, 34.5, 34.3, 30.4, 30.2. IR (KBr) v: 740, 812, 863, 898, 1005, 1119, 1157, 1231, 1310, 1362, 1441, 1478, 1567, 2219, 2875, 2959, 3059, 3627 cm⁻¹. HRMS (ESI) m/z: Calcd for $C_{44}H_{40}N_2O_2$ [M + H]⁺ 629.3163; Found 629.3167.

2-(4-(3,5-di-tert-butyl-4-hydroxyphenyl)-2-(pyridin-2-yl)spiro[chromane-3,2'inden]-1'(3'H)-ylidene)malononitrile (3ah')

The compound was prepared according to general procedure with petroleum ether/dichloromethane = 3:1-2:1 as eluent. $R_f = 0.30$ (petroleum ether/ethyl acetate = 20:1). Yellow solid, 91.1 mg, 96% yield (two isomers), 11:1 dr, reaction time = 36 h, m.p. 230.6-231.4 °C.¹H NMR (400 MHz, CDCl₃) δ 8.55 (d, J = 8.1 Hz, 1H), 8.31-8.29 (m, 1H), 7.80 – 7.73 (m, 2H), 7.62 (td, J = 7.5, 1.1 Hz, 1H), 7.50 (t, J = 7.8 Hz, 1H), 7.44 (d, J = 7.6 Hz, 1H), 7.31 – 7.21 (m, 1H), 7.24 – 7.17 (m, 1H), 7.10 (d, J = 8.3 Hz, 1H), 7.00 (dd, J = 7.7, 1.4 Hz, 1H), 6.98 – 6.89 (m, 1H), 6.85 (d, J = 2.1 Hz, 1H), 6.56 (d, J = 2.3 Hz, 1H), 6.19 (s, 1H), 5.28 (s, 1H), 4.38 (d, J = 16.8 Hz, 1H), 3.78 (s, 1H), 2.97 (d, J = 16.8 Hz, 1H), 1.49 (s, 9H), 1.34 (s, 9H). ¹³C NMR (125 MHz, CDCl₃) δ 177.7, 155.9, 154.6, 153.8, 149.7, 148.0, 136.9, 136.7, 135.9, 134.7, 134.3, 131.8, 130.2, 129.0, 128.4, 128.3, 127.9, 126.5, 126.0, 125.9, 124.2, 123.6, 121.7, 116.8, 114.3, 113.0, 77.9, 75.8, 59.0, 55.5, 42.1, 34.5, 34.3, 30.4, 30.1. IR (KBr) υ : 765, 808, 861, 904, 998, 1043, 1123, 1156, 1236, 1305, 1360, 1443, 1488, 1572, 1612, 2224, 2878, 2959, 3070, 3626 cm⁻¹. HRMS (ESI) m/z: Calcd for C₃₉H₃₇N₃O₂ [M + H]⁺ 580.2959; Found 580.2956.

2-(4-(3,5-di-tert-butyl-4-hydroxyphenyl)-6-methyl-2-phenylspiro[chromane-3,2'inden]-1'(3'H)-ylidene)malononitrile (3ba)

The compound was prepared according to general procedure with petroleum ether/dichloromethane = 3:1-2:1 as eluent. $R_f = 0.38$ (petroleum ether/ethyl acetate = 20:1). Yellow solid, 81.1 mg, 83% yield (two isomers), 9:1 dr, reaction time = 36 h, m.p. 236.3-237.0 °C.¹H NMR (400 MHz, CDCl₃) δ 8.57 (d, *J* = 8.1 Hz, 1H), 7.65 (t, *J* = 7.4 Hz, 1H), 7.52 (t, *J* = 7.7 Hz, 1H), 7.46 (d, *J* = 7.6 Hz, 1H), 7.34 (td, *J* = 8.6, 7.0, 4.0 Hz, 5H), 7.06 (dd, *J* = 8.4, 1.8 Hz, 1H), 6.99 (d, *J* = 8.4 Hz, 1H), 6.88 (d, *J* = 2.0

Hz, 1H), 6.79 (s, 1H), 6.56 (d, J = 1.9 Hz, 1H), 6.07 (s, 1H), 5.31 (s, 1H), 4.02 (d, J = 18.0 Hz, 1H), 3.74 (s, 1H), 3.07 (d, J = 18.0 Hz, 1H), 2.22 (s, 3H), 1.50 (s, 9H), 1.34 (s, 9H). ¹³C NMR (125 MHz, CDCl₃) δ 175.2, 154.0, 152.6, 148.7, 136.3, 136.3, 136.2, 134.8, 134.8, 131.6, 130.8, 129.8, 129.3, 129.2, 128.9, 128.7, 128.6, 128.6, 127.6, 126.8, 126.2, 123.4, 116.6, 114.0, 112.4, 79.9, 75.2, 59.3, 56.4, 41.3, 34.5, 34.3, 30.4, 30.2, 20.6. IR (KBr) υ : 730, 768, 813, 898, 1008, 1148, 1236, 1305, 1364, 1438, 1492, 1560, 2218, 2874, 2874, 2960, 3627 cm⁻¹. HRMS (ESI) m/z: Calcd for C₄₁H₄₀N₂O₂ [M + H]⁺ 593.3163; Found 593.3168.

2-(4-(3,5-di-tert-butyl-4-hydroxyphenyl)-6-fluoro-2-phenylspiro[chromane-3,2'inden]-1'(3'H)-ylidene)malononitrile (3ca)

The compound was prepared according to general procedure with petroleum ether/dichloromethane = 3:1-2:1 as eluent. $R_f = 0.35$ (petroleum ether/ethyl acetate = 20:1). Yellow solid, 79.6 mg, 89% yield (two isomers), 13:1 dr, reaction time = 36 h, m.p. 239.8-240.9 °C.¹H NMR (500 MHz, CDCl₃) δ 8.56 (d, *J* = 8.1 Hz, 1H), 7.66 (t, *J* = 7.3 Hz, 1H), 7.53 (t, *J* = 7.7 Hz, 1H), 7.48 (d, *J* = 7.6 Hz, 1H), 7.33 (s, 5H), 7.05 (dd, *J* = 9.1, 4.8 Hz, 1H), 6.97 (td, *J* = 8.9, 8.5, 3.0 Hz, 1H), 6.84 (d, *J* = 2.1 Hz, 1H), 6.70 (dd, *J* = 8.8, 2.9 Hz, 1H), 6.53 (d, *J* = 2.0 Hz, 1H), 6.06 (s, 1H), 5.31 (s, 1H), 4.02 (d, *J* = 17.9 Hz, 1H), 3.74 (s, 1H), 3.04 (d, *J* = 18.0 Hz, 1H), 1.47 (s, 9H), 1.33 (s, 9H). ¹³C NMR (125 MHz, CDCl₃) δ 174.9, 157.5 (d, *J* = 240.0 Hz), 154.2, 150.9, 150.9, 148.3, 136.3, 136.2, 136.0, 135.0, 129.2, 129.1, 128.9, 128.8, 128.8, 128.6, 126.9, 126.3, 125.0 (d, *J* = 7.3 Hz), 118.1 (d, *J* = 8.1 Hz), 117.2 (d, *J* = 22.9 Hz), 115.8 (d, *J* = 23.5 Hz) 113.8, 112.4, 80.1, 75.5, 59.0, 56.4, 41.3, 34.6, 34.3, 30.3, 30.1. IR (KBr) v: 732, 766, 808, 904, 1016, 1145, 1230, 1311, 1373, 1436, 1489, 1554, 1606, 2219, 2876, 2958,

3063, 3600 cm⁻¹. HRMS (ESI) m/z: Calcd for $C_{40}H_{37}FN_2O_2$ [M + H]⁺ 597.2912; Found 597.2905.

2-(6-chloro-4-(3,5-di-tert-butyl-4-hydroxyphenyl)-2-phenylspiro[chromane-3,2'inden]-1'(3'H)-ylidene)malononitrile (3da)

The compound was prepared according to general procedure with petroleum ether/dichloromethane = 3:1-2:1 as eluent. $R_f = 0.38$ (petroleum ether/ethyl accetate = 20:1). Yellow solid, 85.7 mg, 93% yield (two isomers), 12:1 dr, reaction time = 36 h, m.p. 248.4-249.1 °C.¹H NMR (400 MHz, CDCl₃) δ 8.57 (d, J = 8.2 Hz, 1H), 7.66 (t, J = 7.4 Hz, 1H), 7.53 (t, J = 7.6 Hz, 1H), 7.48 (d, J = 7.7 Hz, 1H), 7.34 (s, 5H), 7.22 (dd, J = 8.8, 2.4 Hz, 1H), 7.04 (d, J = 8.8 Hz, 1H), 6.99 (d, J = 2.3 Hz, 1H), 6.84 (d, J = 1.8 Hz, 1H), 6.55 (d, J = 1.7 Hz, 1H), 6.10 (s, 1H), 5.34 (s, 1H), 4.01 (d, J = 17.9 Hz, 1H), 3.74 (s, 1H), 3.02 (d, J = 17.9 Hz, 1H), 1.49 (s, 9H), 1.35 (s, 9H). ¹³C NMR (125 MHz, CDCl₃) δ 174.6, 154.3, 153.3, 148.2, 136.4, 136.1, 135.8, 135.1, 135.0, 130.9, 129.2, 129.1, 129.0, 128.8, 128.8, 128.8, 128.7, 128.5, 126.8, 126.4, 126.3, 125.4, 118.4, 113.8, 112.3, 80.1, 75.5, 58.9, 56.1, 41.2, 34.5, 34.3, 30.3, 30.2, 30.2, 30.1. IR (KBr) v: 737, 810, 907, 1014, 1145, 1237, 1309, 1373, 1438, 1479, 1554, 1594, 2217, 2876, 2959, 3064, 3606 cm⁻¹. HRMS (ESI) m/z: Calcd for C₄₀H₃₇ClN₂O₂ [M + H]⁺ 613.2616; Found 613.2618.

2-(6-bromo-4-(3,5-di-tert-butyl-4-hydroxyphenyl)-2-phenylspiro[chromane-3,2'inden]-1'(3'H)-ylidene)malononitrile (3ea)

The compound was prepared according to general procedure with petroleum ether/dichloromethane = 3:1-2:1 as eluent. $R_f = 0.37$ (petroleum ether/ethyl acetate = 20:1). Yellow solid, 82.4 mg, 84% yield (two isomers), 17:1 dr, reaction time = 36 h, m.p. 249.5-250.9 °C.¹H NMR (400 MHz, CDCl₃) δ 8.57 (d, J = 8.2 Hz, 1H), 7.66 (t, J = 7.4 Hz, 1H), 7.53 (t, J = 7.6 Hz, 1H), 7.48 (d, J = 7.6 Hz, 1H), 7.40 – 7.31 (m, 6H), 7.13 (d, J = 2.3 Hz, 1H), 7.00 (d, J = 8.8 Hz, 1H), 6.84 (d, J = 2.0 Hz, 1H), 6.55 (d, J = 2.2 Hz, 1H), 6.10 (s, 1H), 5.34 (s, 1H), 4.00 (d, J = 17.9 Hz, 1H), 3.74 (s, 1H), 3.02 (d, J = 17.9 Hz, 1H), 1.49 (s, 9H), 1.36 (s, 9H). ¹³C NMR (125 MHz, CDCl₃) δ 174.5, 154.3, 153.8, 148.2, 136.4, 136.1, 135.8, 135.1, 135.0, 133.9, 131.6, 129.2, 129.1, 128.9, 128.8, 128.8, 128.8, 128.5, 126.8, 126.2, 126.0, 118.8, 113.8, 113.7, 112.3, 80.1, 75.5, 58.9, 56.0, 41.2, 34.5, 34.3, 30.3, 30.1. IR (KBr) v: 732, 815, 908, 1009, 1121, 1235, 1301, 1359, 1399, 1438, 1470, 1565, 2223, 2874, 2959, 3069, 3616 cm⁻¹. HRMS (ESI) m/z: Calcd for C₄₀H₃₇BrN₂O₂ [M + H]⁺ 657.2111; Found 657.2122.

5. Experimental procedure for gram scale synthesis of 3ax

A mixture of Cs_2CO_3 (0.6 mmol, 0.2 equiv.), **1x** (3 mmol, 1.0 equiv.) and **2a** (6 mmol, 2.0 equiv.) and 1,2-dichloroethane (30 mL) were added to a sealed reaction tube equipped with a stir bar. The tube was then sealed and the resulting mixture was stirred at 25 °C in oil bath heating for the 24 h. Upon completion (monitored by TLC), the reaction solution was concentrated in vacuo. The crude product was purified by column
chromatography on silica gel (eluent PE:DCM = 3:1) to afford products 3ax as a mixture of the major and minor diastereomers of 3ax in 93% yield (1.66 g).

A mixture of DIPEA (0.02 mmol, 0.2 equiv.), **1** (0.15 mmol, 1.5 equiv.) and **4** (0.10 mmol, 1.0 equiv.) and dichloromethane (1.0 mL) were added to a sealed reaction tube equipped with a stir bar. The tube was then sealed and the resulting mixture was stirred at 40 °C in oil bath heating for the 120 h. Upon completion (monitored by TLC), the reaction solution was concentrated in vacuo. The crude product was purified by column chromatography on silica gel (eluent PE:DCM = 1:2 to 1:3) to afford pure products **5**.

2-(1''-methyl-2''-oxo-4'-phenyl-5'-(trifluoromethyl)dispiro[indene-2,3'pyrrolidine-2',3''-indolin]-1(3H)-ylidene)malononitrile (5aa)

The compound was prepared according to general procedure with petroleum ether/dichloromethane = 1:1-3:1 as eluent. $R_f = 0.25$ (petroleum ether/ethyl acetate = 3:1). Yellow solid, 48.3 mg, 95% yield (two isomers), >20:1 dr, reaction time = 120 h, m.p. 197.8-198.7 °C.¹H NMR (500 MHz, CDCl₃) δ 7.95 (dd, J = 7.3, 1.1 Hz, 1H), 7.91 (d, J = 8.1 Hz, 1H), 7.66 (d, J = 7.2 Hz, 2H), 7.46 (t, J = 7.5 Hz, 1H), 7.41 (t, J = 7.7 Hz, 2H), 7.36 (dt, J = 7.7, 3.8 Hz, 2H), 7.32 (t, J = 7.4 Hz, 1H), 7.30 – 7.23 (m, 1H), 7.22 (t, J = 7.7 Hz, 1H), 6.57 (dd, J = 7.8, 0.9 Hz, 1H), 5.40 (d, J = 10.5 Hz, 1H), 4.86 – 4.75 (m, 1H), 3.88 (d, J = 15.3 Hz, 1H), 3.20 (d, J = 15.4 Hz, 1H), 3.14 (d, J = 8.8 Hz, 1H), 2.39 (s, 3H). ¹³C NMR (125 MHz, CDCl₃) δ 176.2, 172.0, 147.9, 141.3, 136.0,

134.7, 133.8, 130.6, 130.4, 129.9, 129.2, 128.5, 127.7, 126.7, 126.4, 125.1, 123.9, 114.9, 113.3, 107.7, 78.9, 76.0, 73.6, 63.4 (q, J = 29.7 Hz) 46.8, 36.0, 25.9. ¹⁹F NMR (471 MHz, CDCl₃) δ -74.14. IR (KBr) υ : 695, 743, 862, 971, 1020, 1137, 1235, 1286, 1373, 1438, 1561, 1614, 1707, 2219, 2934, 2969, 3065, 3327 cm⁻¹. HRMS (ESI, m/z): calculated for C₃₀H₂₁F₃N₄O [M + Na]⁺: 533.1560, found:533.1563.

2-(5-methoxy-1''-methyl-2''-oxo-4'-phenyl-5'-(trifluoromethyl)dispiro[indene-2,3'-pyrrolidine-2',3''-indolin]-3(1H)-ylidene)malononitrile (5ab)

The compound was prepared according to general procedure with petroleum ether/dichloromethane = 1:1-3:1 as eluent. $R_f = 0.20$ (petroleum ether/ethyl acetate = 2:1). Yellow solid, 44.2 mg, 83% yield (two isomers), >20:1 dr, reaction time = 120 h, m.p. 106.7-107.5 °C.¹H NMR (500 MHz, CDCl₃) δ 7.94 (dd, J = 7.4, 1.1 Hz, 1H), 7.68 – 7.62 (m, 2H), 7.43 – 7.35 (m, 4H), 7.32 (t, J = 7.4 Hz, 1H), 7.26 (t, 3H), 7.24 (d, J = 8.5 Hz, 1H), 7.04 (dd, J = 8.5, 2.4 Hz, 1H), 6.60 (d, J = 7.7 Hz, 1H), 5.38 (d, J = 10.5 Hz, 1H), 4.84 – 4.75 (m, 1H), 3.79 (d, J = 15.0 Hz, 1H), 3.73 (s, 3H), 3.17 – 3.09 (m, 2H), 2.46 (s, 3H).¹³C NMR (125 MHz, CDCl₃) δ 176.3, 172.2, 159.2, 141.3, 140.7, 137.0, 133.9, 130.7, 130.4, 129.8, 129.1, 128.4, 127.0, 126.7, 123.8, 123.5, 114.9, 113.5, 107.7, 107.4, 78.5, 76.1, 74.2, 63.4 (q, J = 29.6 Hz), 55.9, 46.8, 35.2, 29.8, 26.0. ¹⁹F NMR (471 MHz, CDCl₃) δ -71.88. IR (KBr) υ : 710, 776, 837, 979, 1031, 1163, 1213, 1290, 1333, 1439, 1487, 1612, 1694, 2436, 2837, 2925, 3020, 3369 cm⁻¹. HRMS (ESI, m/z): calculated for C₃₁H₂₃F₃N₄O₂ [M + Na]⁺: 563.1665, found:563.1659.

2-(1'',5-dimethyl-2''-oxo-4'-phenyl-5'-(trifluoromethyl)dispiro[indene-2,3'pyrrolidine-2',3''-indolin]-3(1H)-ylidene)malononitrile (5ac)

The compound was prepared according to general procedure with petroleum ether/dichloromethane = 1:1-3:1 as eluent. $R_f = 0.23$ (petroleum ether/ethyl acetate = 2:1). Yellow solid, 46.8 mg, 89% yield (two isomers), 10:1 dr, reaction time = 120 h, m.p. 221.5-222.3 °C.¹H NMR (500 MHz, CDCl₃) δ 7.94 (d, J = 7.3 Hz, 1H), 7.69 (s, 1H), 7.66 (d, J = 7.6 Hz, 2H), 7.41 (t, J = 7.7 Hz, 2H), 7.37 (t, J = 7.7 Hz, 1H), 7.32 (t, J = 7.4 Hz, 1H), 7.29 – 7.26 (m, 2H), 7.24 (d, J = 8.1 Hz, 1H), 6.58 (d, J = 7.7 Hz, 1H), 5.39 (d, J = 10.5 Hz, 1H), 4.85 – 4.75 (m, 1H), 3.82 (d, J = 15.2 Hz, 1H), 3.18 – 3.11 (m, 2H), 2.40 (s, 3H), 2.30 (s, 3H).¹³C NMR (125 MHz, CDCl₃) δ 176.3, 172.1, 145.2, 141.3, 137.8, 136.2, 135.9, 133.9, 130.6, 130.4, 129.9, 129.8, 129.1, 128.4, 126.7, 126.1, 124.9, 123.8, 115.0, 113.4, 107.7, 78.4, 76.0, 73.8, 63.4 (q, J = 29.9 Hz) 46.8, 35.5, 29.8, 25.8, 21.4. ¹⁹F NMR (376 MHz, CDCl₃) δ -74.12. IR (KBr) v: 695, 740, 867, 1021, 1141, 1237, 1285, 1374, 1443, 1491, 1559, 1615, 1704, 2219, 2936, 2974, 3034, 3322 cm⁻¹. HRMS (ESI, m/z): calculated for C₃₁H₂₃F₃N₄O [M + Na]⁺: 547.1716, found:547.1717.

2-(5-fluoro-1''-methyl-2''-oxo-4'-phenyl-5'-(trifluoromethyl)dispiro[indene-2,3'pyrrolidine-2',3''-indolin]-1(3H)-ylidene)malononitrile (5ad)

The compound was prepared according to general procedure with petroleum ether/dichloromethane = 1:1-3:1 as eluent. $R_f = 0.27$ (petroleum ether/ethyl acetate = 2:1). Yellow solid, 44.4 mg, 84% yield (two isomers), 5:1 dr, reaction time = 120 h, m.p. 207.6-208.9 °C.¹H NMR (500 MHz, CDCl₃) δ 7.97 – 7.90 (m, 2H), 7.67 – 7.62

(m, 2H), 7.42 (t, J = 7.8 Hz, 2H), 7.37 (td, J = 7.7, 1.2 Hz, 1H), 7.35 – 7.31 (m, 1H), 7.29 – 7.26 (m, 1H), 7.07 – 7.02 (m, 1H), 6.92 (td, J = 8.7, 2.5 Hz, 1H), 6.60 (d, J = 7.7Hz, 1H), 5.39 (d, J = 10.4 Hz, 1H), 4.83 – 4.75 (m, 1H), 3.89 (d, J = 15.6 Hz, 1H), 3.18 (d, J = 15.6 Hz, 1H), 3.13 (d, J = 8.8 Hz, 1H), 2.50 (s, 3H). ¹³C NMR (125 MHz, CDCl₃) δ 176.2, 176.2, 170.4, 166.4 (d, J = 260.2 Hz), 151.2 (d, J = 10.4 Hz), 141.3, 133.6, 132.2 (d, J = 2.4 Hz), 130.6, 130.4, 130.4, 129.8, 129.3, 128.6, 127.5 (d, J = 10.1 Hz), 126.8, 124.0, 115.8 (d, J = 23.5 Hz), 114.8, 113.4 (d, J = 22.7 Hz), 113.3, 107.8, 78.5, 75.9, 73.7, 63.3 (q, J = 29.9 Hz), 46.9, 35.9, 26.0. ¹⁹F NMR (471 MHz, CDCl₃) δ -74.07, -102.45. IR (KBr) v: 696, 754, 857, 1102, 1150, 1262, 1370, 1480, 1563, 1613, 1711, 2223, 2308, 2898, 2980, 3071, 3326 cm⁻¹. HRMS (ESI, m/z): calculated for C₃₀H₂₀F₄N₄O [M + H]⁺: 529.1646, found:529.1651.

2-(5-chloro-1"-methyl-2"-oxo-4'-phenyl-5'-(trifluoromethyl)dispiro[indene-2,3'pyrrolidine-2',3"-indolin]-1(3H)-ylidene)malononitrile (5ae)

The compound was prepared according to general procedure with petroleum ether/dichloromethane = 1:1-3:1 as eluent. $R_f = 0.37$ (petroleum ether/ethyl acetate = 2:1). Yellow solid, 52.3 mg, 96% yield (two isomers), >20:1 dr, reaction time = 120 h, m.p. 207.0-208.6 °C.¹H NMR (500 MHz, CDCl₃) δ 7.93 (d, J = 1.3 Hz, 1H), 7.84 (d, J = 8.6 Hz, 1H), 7.66 – 7.61 (m,2H), 7.42 (dd, J = 8.4, 7.0 Hz, 2H), 7.37 (td, J = 7.7, 1.2 Hz, 1H), 7.35 – 7.30 (m, 2H), 7.30 – 7.25 (m, 1H), 7.22 – 7.16 (m, 1H), 6.59 (d, J = 7.6 Hz, 1H), 5.39 (d, J = 10.5 Hz, 1H), 4.86 – 4.74 (m, 1H), 3.87 (d, J = 15.5 Hz, 1H), 3.16 (d, J = 15.6 Hz, 1H), 3.11 (d, J = 8.7 Hz, 1H), 2.49 (s, 3H). ¹³C NMR (125 MHz, CDCl₃) δ 176.3, 170.5, 149.5, 141.3, 141.3, 134.5, 133.7, 130.6, 130.5, 129.82, 129.3, 128.7, 128.3, 126.9, 126.5, 126.2, 124.0, 114.7, 113.1, 107.9, 79.3, 76.0, 74.3, 63.4 (q, J = 29.8 Hz), 46.9, 35.9, 26.0. ¹⁹F NMR (471 MHz, CDCl₃) δ -74.16. IR (KBr) v: 695, 752, 861, 911, 1088, 1152, 1234, 1284, 1368, 1456, 1559, 1609, 1711, 2221, 2886, 2933,

2971, 3325 cm⁻¹. HRMS (ESI, m/z): calculated for $C_{30}H_{20}ClF_3N_4O [M + H]^+$: 545.1351, found:545.1350.

2-(1"-methyl-2"-oxo-4'-(o-tolyl)-5'-(trifluoromethyl)dispiro[indene-2,3'pyrrolidine-2',3"-indolin]-1(3H)-ylidene)malononitrile (5af)

The compound was prepared according to general procedure with petroleum ether/dichloromethane = 1:1-3:1 as eluent. $R_f = 0.37$ (petroleum ether/ethyl acetate = 3:1). Yellow solid, 52.3 mg, 36% yield (two isomers), >20:1 dr, reaction time = 120 h, m.p. 117.7-118.5 °C. ¹H NMR (500 MHz, CDCl₃) δ 7.72 (d, *J* = 7.8 Hz, 1H), 7.58 (d, *J* = 8.1 Hz, 1H), 7.38 – 7.30 (m, 2H), 7.28 – 7.09 (m, 3H), 7.09 – 7.02 (m, 2H), 6.98 (d, *J* = 7.6 Hz, 1H), 6.91 (t, *J* = 7.8 Hz, 1H), 6.25 – 6.19 (m, 1H), 5.52 – 5.43 (m, 1H), 5.30 (d, *J* = 9.6 Hz, 1H), 3.11 (d, *J* = 17.0 Hz, 1H), 2.92 (s, 3H), 2.59 (d, *J* = 4.2 Hz, 1H), 2.51 (d, *J* = 17.0 Hz, 1H), 2.47 (s, 3H). ¹³C NMR (125 MHz, CDCl₃) δ 179.3, 178.8, 146.9, 143.0, 138.5, 137.2, 135.6, 135.2, 134.4, 131.1, 130.1, 129.5, 128.0, 127.7, 126.9, 126.8, 125.6, 124.3, 123.3, 122.9, 114.0, 112.8, 110.1, 107.6, 78.7, 75.9, 70.3, 63.5 (q, *J* = 30.0 Hz), 49.5, 42.8, 24.9, 17.5. ¹⁹F NMR (471 MHz, CDCl₃) δ -71.97. IR (KBr) v: 690, 742, 873, 957, 1054, 1123, 1288, 1366, 1402, 1467, 1563, 1609, 1686, 2223, 2976, 3067, 3292 cm⁻¹. HRMS (ESI, m/z): calculated for C₃₁H₂₃F₃N₄O [M + Na]⁺: 547.1716, found:547.1725.

2-(4'-(2-fluorophenyl)-1''-methyl-2''-oxo-5'-(trifluoromethyl)dispiro[indene-2,3'pyrrolidine-2',3''-indolin]-1(3H)-ylidene)malononitrile (5ag)

The compound was prepared according to general procedure with petroleum ether/dichloromethane = 1:1-3:1 as eluent. $R_f = 0.40$ (petroleum ether/ethyl acetate = 3:1). Yellow solid, 32.8 mg, 62% yield (two isomers), 5:1 dr, reaction time = 120 h, m.p. 184.3-185.1 °C.¹H NMR (400 MHz, CDCl₃) δ 7.90 (td, 1H), 7.85 – 7.80 (m, 2H), 7.44 (t, J = 7.5 Hz, 1H), 7.38 – 7.28 (m, 3H), 7.22 (t, J = 7.6 Hz, 2H), 7.20 – 7.10 (m, 2H), 6.50 (d, J = 7.7 Hz, 1H), 5.37 (d, J = 10.3 Hz, 1H), 5.33 – 5.20 (m, 1H), 3.90 (d, J = 15.8 Hz, 1H), 3.08 (d, J = 8.1 Hz, 1H), 2.93 (dd, J = 15.8, 3.7 Hz, 1H), 2.46 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 176.6, 173.0, 161.3 (d, J = 246.6 Hz), 147.9, 141.5, 135.9, 134.6, 132.5 (d, J = 3.9 Hz), 130.8, 130.7, 130.4, 130.2, 127.7, 126.1, 125.9, 125.4, 125.4, 125.3, 123.6, 121.6 (d, J = 10.3 Hz), 117.1 (d, J = 24.2 Hz), 114.6, 113.4, 107.8, 78.8, 75.5, 73.6, 61.2 (d, J = 30.0 Hz), 44.9, 37.9, 25.8. ¹⁹F NMR (376 MHz, CDCl₃) δ -74.56, -105.34. IR (KBr) υ : 691, 752, 880, 1049, 1091, 1234, 1290, 1380, 1454, 1562, 1617, 1708, 2219, 2888, 2974, 3324 cm⁻¹. HRMS (ESI) m/z: Calcd for C₃₀H₂₀F₄N₄O [M + H]⁺ 529.1646; Found 529.1646.

2-(1"-methyl-2"-oxo-5'-(trifluoromethyl)-4'-(2-

(trifluoromethyl)phenyl)dispiro[indene-2,3'-pyrrolidine-2',3''-indolin]-1(3H)ylidene)malononitrile (5ah)

The compound was prepared according to general procedure with petroleum ether/dichloromethane = 1:1-3:1 as eluent. $R_f = 0.25$ (petroleum ether/ethyl acetate = 3:1). Yellow solid, 18.7 mg, 32% yield (two isomers), >20:1 dr, reaction time = 120 h, m.p. 158.2-159.9 °C.¹H NMR (500 MHz, CDCl₃) δ 8.19 (d, J = 8.0 Hz, 1H), 7.76 – 7.68 (m, 2H), 7.61 (d, J = 8.2 Hz, 1H), 7.46 (t, J = 7.7 Hz, 1H), 7.38 – 7.32 (m, 1H), 7.22 (td, J = 7.5, 0.9 Hz, 1H), 7.09 – 7.03 (m, 2H), 6.95 (d, J = 7.6 Hz, 1H), 6.90 (t, J = 7.8 Hz, 1H), 6.28 – 6.21 (m, 1H), 5.58 – 5.47 (m, 1H), 5.35 (d, J = 9.2 Hz, 1H), 3.04 (d, J = 16.7 Hz, 1H), 2.96 (s, 3H), 2.64 (d, J = 4.3 Hz, 1H), 2.45 (d, J = 16.7 Hz, 1H).

¹³C NMR (125 MHz, CDCl₃) δ 179.2, 175.9, 146.0, 142.9, 136.2, 135.4, 134.1, 132.6, 132.1, 130.3, 128.2, 127.8, 126.6, 126.4 (q, J = 5.9 Hz) 125.8, 124.4, 123.1, 123.0, 114.1, 112.3, 107.7, 79.4, 75.4, 70.6, 64.9 (q, J = 30.5 Hz), 44.1, 43.3, 25.9. ¹⁹F NMR (471 MHz, CDCl₃) δ -57.66, -71.63. IR (KBr) υ: 683, 758, 874, 1059, 1123, 1160, 1235, 1308, 1360, 1446, 1566, 1610, 1692, 2224, 2869, 2933, 3072, 3295 cm⁻¹. HRMS (ESI, m/z): calculated for C₃₁H₂₀F₆N₄O [M + H]⁺: 579.1614, found:579.1623.

2-(4'-(3-methoxyphenyl)-1''-methyl-2''-oxo-5'-(trifluoromethyl)dispiro[indene-2,3'-pyrrolidine-2',3''-indolin]-1(3H)-ylidene)malononitrile (5ai)

The compound was prepared according to general procedure with petroleum ether/dichloromethane = 1:1-3:1 as eluent. $R_f = 0.28$ (petroleum ether/ethyl acetate = 3:1). Yellow solid, 53.6 mg, 99% yield (two isomers), >20:1 dr, reaction time = 120 h, m.p. 188.5-189.3 °C.¹H NMR (400 MHz, CDCl₃) δ 7.92 (dd, J = 11.5, 7.7 Hz, 2H), 7.46 (t, J = 7.5 Hz, 1H), 7.40 – 7.30 (m, 3H), 7.27 (d, J = 7.8 Hz, 2H), 7.20 (t, J = 8.2 Hz, 2H), 6.86 (dd, J = 8.3, 2.3 Hz, 1H), 6.57 (d, J = 7.7 Hz, 1H), 5.35 (d, J = 10.5 Hz, 1H), 4.84 – 4.66 (m, 1H), 3.87 (d, J = 15.5 Hz, 1H), 3.82 (s, 3H), 3.24 (d, J = 15.3 Hz, 1H), 3.13 (d, J = 8.9 Hz, 1H), 2.39 (s, 3H). ¹³C NMR (125MHz, CDCl₃) δ 176.2, 172.1, 160.0, 147.9, 141.3, 136.0, 135.4, 134.7, 130.7, 130.4, 130.0, 127.7, 126.7, 126.7, 126.4, 125.1, 123.9, 121.9, 116.3, 115.0, 113.6, 113.3, 107.7, 78.8, 76.0, 73.6, 63.4 (q, J = 29.8 Hz), 55.5, 46.9, 36.1, 25.8. ¹⁹F NMR (471 MHz, CDCl₃) δ -74.24. IR (KBr) u: 696, 745, 869, 1046, 1099, 1144, 1168, 1281, 1379, 1466, 1496, 1564, 1608, 1706, 2220, 2926, 2970, 3069, 3321 cm⁻¹. HRMS (ESI) m/z: Calcd for C₃₁H₂₃F₃N₄O₂ [M + H]⁺ 541.1846; Found 541.1844.

2-(1''-methyl-2''-oxo-4'-(m-tolyl)-5'-(trifluoromethyl)dispiro[indene-2,3'pyrrolidine-2',3''-indolin]-1(3H)-ylidene)malononitrile (5aj)

The compound was prepared according to general procedure with petroleum ether/dichloromethane = 1:1-3:1 as eluent. $R_f = 0.33$ (petroleum ether/ethyl accetate = 3:1). Yellow solid, 51.5 mg, 98% yield (two isomers), >20:1 dr, reaction time = 96 h, m.p. 181.4-182.1 °C.¹H NMR (500 MHz, CDCl₃) δ 7.94 (d, *J* = 7.3 Hz, 1H), 7.90 (d, *J* = 8.1 Hz, 1H), 7.49 – 7.41 (m, 3H), 7.36 (t, *J* = 7.7 Hz, 2H), 7.33 – 7.23 (m, 2H), 7.22 (t, *J* = 7.7 Hz, 1H), 7.13 (d, *J* = 7.5 Hz, 1H), 6.57 (d, *J* = 7.7 Hz, 1H), 5.35 (d, *J* = 10.4 Hz, 1H), 4.85 – 4.73 (m, 1H), 3.87 (d, *J* = 15.4 Hz, 1H), 3.21 (d, *J* = 15.3 Hz, 1H), 3.14 (d, *J* = 8.9 Hz, 1H), 2.39 (d, *J* = 2.9 Hz, 6H). ¹³C NMR (125 MHz, CDCl₃) δ 176.3, 172.1, 147.9, 141.3, 138.8, 136.0, 134.6, 133.8, 130.7, 130.6, 130.4, 129.2, 128.9, 127.7, 126.9, 126.7, 126.4, 125.1, 123.8, 114.9, 113.4, 107.7, 78.8, 76.0, 73.6, 63.4 (q, *J* = 29.7 Hz), 46.8, 36.1, 25.8, 21.8. ¹⁹F NMR (376 MHz, CDCl₃) δ -74.13. IR (KBr) u: 698, 745, 865, 973, 1050, 1104, 1141, 1168, 1282, 1378, 1467, 1563, 1614, 1709, 2222, 2930, 2973, 3067, 3327 cm⁻¹. HRMS (ESI) m/z: Calcd for C₃₁H₂₃F₃N₄O [M + H]⁺ 525.1897; Found 525.1895.

2-(4'-(3-fluorophenyl)-1''-methyl-2''-oxo-5'-(trifluoromethyl)dispiro[indene-2,3'pyrrolidine-2',3''-indolin]-1(3H)-ylidene)malononitrile (5ak)

The compound was prepared according to general procedure with petroleum ether/dichloromethane = 1:1-3:1 as eluent. $R_f = 0.33$ (petroleum ether/ethyl acetate = 3:1). Yellow solid, 40.7 mg, 77% yield (two isomers), >20:1 dr, reaction time = 96 h, m.p. 205.4-207.0 °C.¹H NMR (500 MHz, CDCl₃) δ 7.91 (dd, J = 7.4, 1.3 Hz, 2H), 7.51 – 7.45 (m, 2H), 7.43 – 7.33 (m, 4H), 7.29 – 7.25 (m, 1H), 7.25 – 7.21 (m, 1H), 7.07 –

7.00 (m, 1H), 5.39 (d, J = 10.5 Hz, 1H), 4.81 – 4.70 (m, 1H), 3.89 (d, J = 15.3 Hz, 1H), 3.18 – 3.12 (m, 2H), 2.40 (s, 3H).¹³C NMR (125 MHz, CDCl₃) δ 176.1, 171.8, 162.9 (d, J = 247.4 Hz), 147.6, 141.3, 136.4 (d, J = 7.2 Hz), 135.9, 134.8, 130.8 (d, J = 8.4 Hz), 130.5, 130.4, 127.9, 126.6, 126.4, 125.7 (d, J = 3.0 Hz), 125.2, 123.9, 117.0 (d, J = 22.7 Hz) 115.7 (d, J = 20.8 Hz) 114.9, 113.2, 107.8, 78.9, 76.0, 73.3, 63.5 (q, J = 30.0 Hz) 46.5, 36.0, 25.9. ¹⁹F NMR (471 MHz, CDCl₃) δ -74.03, -110.05. IR (KBr) υ : 691, 756, 864, 1020, 1102, 1145, 1238, 1374, 1447, 1489, 1568, 1610, 1707, 2221, 2877, 2937, 2973, 3068, 3338 cm⁻¹. HRMS (ESI, m/z): calculated for C₃₀H₂₀F₄N₄O [M + Na]⁺: 551.1465, found:551.1479.

2-(4'-(3-chlorophenyl)-1''-methyl-2''-oxo-5'-(trifluoromethyl)dispiro[indene-2,3'pyrrolidine-2',3''-indolin]-1(3H)-ylidene)malononitrile (5al)

The compound was prepared according to general procedure with petroleum ether/dichloromethane = 1:1-3:1 as eluent. $R_f = 0.35$ (petroleum ether/ethyl acetate = 3:1). Yellow solid, 51.2 mg, 94% yield (two isomers), >20:1 dr, reaction time = 96 h, m.p. 169.7-170.8 °C.¹H NMR (400 MHz, CDCl₃) δ 7.91 (d, J = 7.7 Hz, 2H), 7.64 – 7.57 (m, 2H), 7.48 (t, J = 7.5 Hz, 1H), 7.40 – 7.30 (m, 4H), 7.29 – 7.25 (m, 1H), 7.25 – 7.21 (m, 1H), 6.57 (d, J = 7.7 Hz, 1H), 5.37 (d, J = 10.5 Hz, 1H), 4.83 – 4.66 (m, 1H), 3.89 (d, J = 15.3 Hz, 1H), 3.14 (d, J = 6.6 Hz, 1H), 3.11 (s, 1H), 2.40 (s, 3H). ¹³C NMR (125 MHz, CDCl₃) δ 176.2, 171.8, 147.6, 141.3, 136.1, 136.0, 135.1, 134.8, 130.5, 130.5, 130.4, 129.9, 128.9, 128.3, 127.9, 126.6, 126.4, 125.2, 123.9, 114.8, 113.2, 107.8, 78.9, 76.0, 73.3, 63.6 (q, J = 30.0 Hz), 46.6, 36.1, 25.9. ¹⁹F NMR (471 MHz, CDCl₃) δ -74.13. IR (KBr) υ : 693, 750, 797, 862, 1019, 1097, 1138, 1174, 1235, 1281, 1370, 1434, 1473, 1715, 2224, 2855, 2924, 2962, 3066, 3331 cm⁻¹. HRMS (ESI) m/z: Calcd for C30H20ClF3N4O [M + H]⁺ 545.1351; Found 545.1351.

2-(4'-(4-methoxyphenyl)-1''-methyl-2''-oxo-5'-(trifluoromethyl)dispiro[indene-2,3'-pyrrolidine-2',3''-indolin]-1(3H)-ylidene)malononitrile (5am)

The compound was prepared according to general procedure with petroleum ether/dichloromethane = 1:1-3:1 as eluent. $R_f = 0.25$ (petroleum ether/ethyl acetate = 3:1). Yellow solid, 48.3 mg, 89% yield (two isomers), >20:1 dr, reaction time = 96 h, m.p. 183.4-185.0 °C.¹H NMR (400 MHz, CDCl₃) δ 7.94 (dd, J = 7.4, 1.2 Hz, 1H), 7.90 (d, J = 8.1 Hz, 1H), 7.62 – 7.53 (m, 2H), 7.46 (td, J = 7.5, 1.0 Hz, 1H), 7.39 – 7.32 (m, 2H), 7.29 – 7.19 (m, 2H), 6.98 – 6.87 (m, 2H), 6.57 (d, J = 7.6 Hz, 1H), 5.36 (d, J = 10.6 Hz, 1H), 4.80 – 4.66 (m, 1H), 3.86 (d, J = 15.3 Hz, 1H), 3.79 (s, 3H), 3.22 (d, J = 15.4 Hz, 1H), 3.15 (d, J = 8.8 Hz, 1H), 2.39 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 176.2, 172.1, 159.4, 147.9, 141.2, 136.0, 134.7, 131.0, 130.7, 130.4, 127.7, 126.6, 126.4, 125.4, 125.1, 123.8, 114.9, 114.5, 113.3, 107.7, 78.8, 75.9, 73.8, 63.4 (q, J = 29.6 Hz) 55.4, 46.2, 35.8, 25.8.¹⁹F NMR (376 MHz, CDCl₃) δ -71.95. IR (KBr) υ : 688, 755, 844, 1045, 1141, 1174, 1234, 1272, 1375, 1463, 1518, 1561, 1612, 1711, 2220, 2928, 2973, 3071, 3352 cm⁻¹. HRMS (ESI, m/z): calculated for C₃₁H₂₃F₃N₄O₂ [M + H]⁺: 541.1846, found:541.1849.

2-(1''-methyl-2''-oxo-4'-(p-tolyl)-5'-(trifluoromethyl)dispiro[indene-2,3'pyrrolidine-2',3''-indolin]-1(3H)-ylidene)malononitrile (5an)

The compound was prepared according to general procedure with petroleum

ether/dichloromethane = 1:1-3:1 as eluent. $R_f = 0.35$ (petroleum ether/ethyl acetate = 3:1). Yellow solid, 49.6 mg, 95% yield (two isomers), >20:1 dr, reaction time = 96 h, m.p. 195.4-196.1 °C.¹H NMR (400 MHz, CDCl₃) δ 7.95 (dd, J = 7.4, 1.2 Hz, 1H), 7.90 (d, J = 8.1 Hz, 1H), 7.54 (d, J = 8.0 Hz, 2H), 7.45 (td, J = 7.5, 1.0 Hz, 1H), 7.36 (td, J = 7.6, 1.4 Hz, 2H), 7.27 (d, J = 7.6 Hz, 1H), 7.25 – 7.19 (m, 3H), 6.57 (d, J = 7.7 Hz, 1H), 5.37 (d, J = 10.5 Hz, 1H), 4.84 – 4.72 (m, 1H), 3.87 (d, J = 15.4 Hz, 1H), 3.15 (d, J = 8.8 Hz, 1H), 2.39 (s, 3H), 2.33 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 176.2, 172.0, 147.9, 141.2, 138.3, 136.0, 134.6, 130.7, 130.6, 130.4, 129.8, 129.7, 127.7, 126.7, 126.4, 125.1, 123.8, 114.9, 113.3, 107.7, 78.8, 76.0, 73.7, 63.4 (q, J = 29.5 Hz), 46.5, 35.9, 25.8, 21.1. ¹⁹F NMR (376 MHz, CDCl₃) δ -74.18. IR (KBr) v: 693, 745, 862, 1020, 1137, 1170, 1234, 1284, 1374, 1438, 1465, 1520, 1557, 1614, 1706, 2218, 2930, 2972, 3066, 3328 cm⁻¹. HRMS (ESI, m/z): calculated for C₃₁H₂₃F₃N₄O [M + H]⁺: 525.1897, found: 525.1890.

2-(4'-(4-fluorophenyl)-1''-methyl-2''-oxo-5'-(trifluoromethyl)dispiro[indene-2,3'pyrrolidine-2',3''-indolin]-1(3H)-ylidene)malononitrile (5ao)

The compound was prepared according to general procedure with petroleum ether/dichloromethane = 1:1-3:1 as eluent. $R_f = 0.23$ (petroleum ether/ethyl acetate = 3:1). Yellow solid, 48.4 mg, 92% yield (two isomers), 12:1 dr, reaction time = 96 h, m.p. 216.5-217.4 °C.¹H NMR (500 MHz, CDCl₃) δ 7.96 – 7.86 (m, 2H), 7.68 – 7.61 (m, 2H), 7.47 (td, J = 7.5, 1.0 Hz, 1H), 7.39 – 7.33 (m, 2H), 7.27 (d, J = 1.0 Hz, 1H), 7.25 – 7.21 (m, 1H), 7.11 (t, J = 8.6 Hz, 2H), 6.57 (d, J = 7.7 Hz, 1H), 5.39 (d, J = 10.5 Hz, 1H), 4.83 – 4.62 (m, 1H), 3.88 (d, J = 15.2 Hz, 1H), 3.15 (d, J = 15.2 Hz, 1H), 3.11 (d, J = 8.7 Hz, 1H), 2.40 (s, 3H). ¹³C NMR (125 MHz, CDCl₃) δ 176.2, 176.2, 171.9, 162.50 (d, J = 249.0 Hz), 147.7, 141.3, 136.0, 134.8, 131.6 (d, J = 8.0 Hz), 130.5, 130.5,

129.6 (d, J = 3.3 Hz), 127.8, 126.6, 126.4, 125.2, 123.9, 116.2 (d, J = 21.4 Hz), 114.9, 113.2, 107.8, 78.8, 75.9, 73.4, 63.7 (q, J = 29.7 Hz) 46.2, 35.9, 25.9. ¹⁹F NMR (471 MHz, CDCl₃) δ -74.13, -113.04. IR (KBr) v: 691, 746, 850, 1020, 1134, 1233, 1286, 1371, 1434, 1468, 1513, 1564, 1614, 1707, 2220, 2871, 2934, 3070, 3329 cm⁻¹. HRMS (ESI, m/z): calculated for C₃₀H₂₀F₄N₄O [M + H]⁺: 529.1646, found:529.1655.

2-(4'-(4-chlorophenyl)-1''-methyl-2''-oxo-5'-(trifluoromethyl)dispiro[indene-2,3'pyrrolidine-2',3''-indolin]-1(3H)-ylidene)malononitrile (5ap)

The compound was prepared according to general procedure with petroleum ether/dichloromethane = 1:1-3:1 as eluent. $R_f = 0.25$ (petroleum ether/ethyl acetate = 3:1). Yellow solid, 48.6 mg, 89% yield (two isomers), 11:1 dr, reaction time = 96 h, m.p. 198.1-199.3 °C.¹H NMR (500 MHz, CDCl₃) δ 7.91 (dt, J = 8.0, 1.8 Hz, 2H), 7.64 – 7.57 (m, 2H), 7.47 (t, J = 7.5 Hz, 1H), 7.43 – 7.33 (m, 4H), 7.26 (t, 1H), 7.23 (t, J = 6.9 Hz, 1H), 6.57 (d, J = 7.7 Hz, 1H), 5.38 (d, J = 10.5 Hz, 1H), 4.80 – 4.63 (m, 1H), 3.87 (d, J = 15.2 Hz, 1H), 3.15 – 3.08 (m, 2H), 2.40 (s, 3H). ¹³C NMR (125 MHz, CDCl₃) δ 176.2, 171.8, 147.6, 141.3, 135.9, 134.8, 134.6, 132.4, 131.2, 130.5, 130.5, 129.4, 127.9, 126.6, 126.4, 125.2, 123.9, 114.9, 113.1, 107.8, 78.8, 75.9, 73.3, 63.5 (q, J = 30.0 Hz), 46.3, 35.9, 25.9. ¹⁹F NMR (471 MHz, CDCl₃) δ -74.24. IR (KBr) υ : 693, 749, 873, 1049, 1094, 1138, 1232, 1285, 1377, 1440, 1514, 1564, 1613, 1707, 2220, 2925, 2972, 3071, 3329 cm⁻¹. HRMS (ESI, m/z): calculated for C₃₀H₂₀ClF₃N₄O [M + Na]⁺: 567.1170, found:567.1166.

2-(4'-(4-bromophenyl)-1''-methyl-2''-oxo-5'-(trifluoromethyl)dispiro[indene-2,3'pyrrolidine-2',3''-indolin]-1(3H)-ylidene)malononitrile (5aq)

The compound was prepared according to general procedure with petroleum ether/dichloromethane = 1:1-3:1 as eluent. $R_f = 0.25$ (petroleum ether/ethyl acetate = 3:1). Yellow solid, 56.4 mg, 96% yield (two isomers), >20:1 dr, reaction time = 96 h, m.p. 186.4-187.3 °C.¹H NMR (500 MHz, CDCl₃) δ 7.95 – 7.85 (m, 2H), 7.54 (s, 4H), 7.47 (td, J = 7.5, 1.0 Hz, 1H), 7.39 – 7.33 (m, 2H), 7.29 – 7.25 (m, 1H), 7.23 (t, J = 6.7 Hz, 1H), 6.57 (d, J = 7.6 Hz, 1H), 5.36 (d, J = 10.5 Hz, 1H), 4.82 – 4.63 (m, 1H), 3.87 (d, J = 15.3 Hz, 1H), 3.17 – 3.06 (m, 2H), 2.40 (s, 3H). ¹³C NMR (125 MHz, CDCl₃) δ 176.2, 171.8, 147.6, 141.3, 136.0, 134.8, 132.9, 132.4, 131.5, 130.5, 130.5, 127.9, 126.7, 126.4, 125.22, 123.9, 122.8, 114.9, 113.1, 107.8, 78.9, 76.0, 73.3, 63.5 (q, J = 29.9 Hz), 46.4, 36.0, 25.9. ¹⁹F NMR (471 MHz, CDCl₃) δ -74.25. IR (KBr) v: 693, 754, 859, 1012, 1107, 1146, 1232, 1282, 1374, 1460, 1490, 1563, 1609, 1706, 2218, 2934, 2968, 3066, 3324 cm⁻¹. HRMS (ESI, m/z): calculated for C₃₀H₂₀BrF₃N₄O [M + H]⁺: 589.0845, found: 589.0847.

2-(1''-methyl-4'-(naphthalen-1-yl)-2''-oxo-5'-(trifluoromethyl)dispiro[indene-2,3'-pyrrolidine-2',3''-indolin]-1(3H)-ylidene)malononitrile (5ar)

The compound was prepared according to general procedure with petroleum ether/dichloromethane = 1:1-3:1 as eluent. $R_f = 0.30$ (petroleum ether/ethyl acetate = 3:1). Yellow solid, 37.6 mg, 67% yield (two isomers), 10:1 dr, reaction time = 96 h, m.p. 189.2-190.0 °C. ¹H NMR (400 MHz, CDCl₃) δ 8.23 (d, *J* = 1.9 Hz, 1H), 8.00 (dd,

J = 7.4, 1.3 Hz, 1H),7.90 (dd, J = 8.8, 5.1 Hz, 3H), 7.86 – 7.78 (m, 1H), 7.70 (dd, J = 8.7, 2.0 Hz, 1H), 7.55 – 7.47 (m, 2H), 7.43 (td, J = 7.5, 1.0 Hz, 1H), 7.38 (td, J = 7.8, 1.3 Hz, 1H), 7.35 – 7.27 (m, 2H), 7.20 (t, J = 7.7 Hz, 1H), 6.58 (dd, J = 7.8, 1.0 Hz, 1H), 5.59 (d, J = 10.4 Hz, 1H), 4.97 (s, 1H), 3.95 (d, J = 15.4 Hz, 1H), 3.29 – 3.16 (m, 2H), 2.41 (s, 3H). ¹³C NMR (125 MHz, CDCl₃) δ 176.3, 172.1, 147.8, 141.3, 136.0, 134.8, 133.3, 132.9, 131.2, 130.6, 130.4, 129.9, 128.7, 128.4, 127.7, 127.6, 127.6, 127.0, 126.9, 126.9, 126.6, 126.5, 126.3, 125.1, 123.9, 115.0, 113.3, 107.8, 78.9, 76.1, 73.8, 63.4 (q, J = 28.1 Hz), 47.0, 36.3, 25.8. ¹⁹F NMR (471 MHz, CDCl₃) δ -73.55. IR (KBr) υ : 693, 756, 878, 1049, 1089, 1145, 1237, 1283, 1376, 1465, 1564, 1610, 1709, 2218, 2892, 2929, 2974, 3063, 3342 cm⁻¹. HRMS (ESI) m/z: Calcd for C34H23F3N4O [M + H]⁺ 561.1897; Found 561.1894.

2-(1''-methyl-2''-oxo-4'-(pyridin-2-yl)-5'-(trifluoromethyl)dispiro[indene-2,3'pyrrolidine-2',3''-indolin]-1(3H)-ylidene)malononitrile (5as)

The compound was prepared according to general procedure with petroleum ether/dichloromethane = 1:1-3:1 as eluent. $R_f = 0.40$ (petroleum ether/ethyl acetate = 3:1). Yellow solid, 44.7 mg, 87% yield (two isomers), >20:1 dr, reaction time = 96 h, m.p. 215.7-216.3 °C. ¹H NMR (400 MHz, CDCl₃) δ 8.64 (dd, J = 4.8, 1.8 Hz, 1H), 8.00 (d, J = 7.4 Hz, 1H), 7.94 (d, J = 8.2 Hz, 1H), 7.88 (d, J = 7.9 Hz, 1H), 7.71 (td, J = 7.7, 1.9 Hz, 1H), 7.48 (t, J = 7.4 Hz, 1H), 7.44 – 7.34 (m, 2H), 7.31 – 7.18 (m, 3H), 5.47 (d, J = 10.1 Hz, 1H), 5.29 – 5.15 (m, 1H), 3.97 (d, J = 16.6 Hz, 1H), 3.70 (d, J = 16.5 Hz, 1H), 2.39 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 175.4, 171.8, 153.9, 149.3, 148.7, 141.3, 137.4, 136.0, 134.7, 130.6, 130.4, 127.5, 126.7, 126.0, 124.9, 123.9, 123.1, 115.0, 113.3, 107.7, 78.3, 76.5, 74.1, 63.0 (q, J = 29.9 Hz), 47.9, 35.3, 25.8. ¹⁹F NMR (376 MHz, CDCl₃) δ -74.38. IR (KBr) υ : 694, 748, 864, 1021, 1104, 1141, 1233, 1287,

1376, 1438, 1470, 1563, 1615, 1712, 2219, 2943, 3067, 3324 cm⁻¹. HRMS (ESI) m/z: Calcd for C₂₉H₂₀F₃N₅O [M + H]⁺ 512.1693; Found 512.1693.

2-(7"-methoxy-1"-methyl-2"-oxo-4'-phenyl-5'-(trifluoromethyl)dispiro[indene-2,3'-pyrrolidine-2',3"-indolin]-1(3H)-ylidene)malononitrile (5ba)

The compound was prepared according to general procedure with petroleum ether/dichloromethane = 1:1-3:1 as eluent. $R_f = 0.25$ (petroleum ether/ethyl acetate = 3:1). Yellow solid, 53.0 mg, 98% yield (two isomers), >20:1 dr, reaction time = 96 h, m.p. 187.1-187.9 °C.¹H NMR (500 MHz, CDCl₃) δ 7.86 (d, *J* = 8.1 Hz, 1H), 7.58 (d, *J* = 7.6 Hz, 2H), 7.49 (d, *J* = 7.3 Hz, 1H), 7.38 (t, *J* = 7.4 Hz, 1H), 7.33 (t, *J* = 7.7 Hz, 2H), 7.29 – 7.22 (m, 2H), 7.20 – 7.15 (m, 1H), 7.13 (t, 1H), 6.87 (d, *J* = 8.3 Hz, 1H), 5.30 (d, *J* = 10.5 Hz, 1H), 4.78 – 4.67 (m, 1H), 3.80 (d, *J* = 15.3 Hz, 1H), 3.72 (s, 3H), 3.08 (d, *J* = 15.3 Hz, 1H), 3.05 (d, *J* = 8.8 Hz, 1H), 2.56 (s, 3H). ¹³C NMR (125 MHz, CDCl₃) δ 176.4, 172.1, 147.8, 145.0, 136.0, 134.6, 133.9, 132.7, 129.9, 129.1, 128.6, 128.4, 127.7, 126.3, 125.2, 124.6, 119.5, 114.9, 114.6, 113.5, 78.4, 76.0, 73.6, 63.48 (q, *J* = 29.6 Hz), 56.4, 46.7, 36.0, 29.2. ¹⁹F NMR (376 MHz, CDCl₃) δ -73.89. IR (KBr) v: 728, 768, 868, 947, 1050, 1143, 1280, 1364, 1462, 1495, 1561, 1607, 1704, 2220, 2846, 2939, 2967, 3072, 3340 cm⁻¹. HRMS (ESI, m/z): calculated for C₃₁H₂₃F₃N₄O₂ [M + H]⁺: 541.1846, found: 541.1847.

2-(7''-fluoro-1''-methyl-2''-oxo-4'-phenyl-5'-(trifluoromethyl)dispiro[indene-2,3'pyrrolidine-2',3''-indolin]-1(3H)-ylidene)malononitrile (5ca)

The compound was prepared according to general procedure with petroleum ether/dichloromethane = 1:1-3:1 as eluent. $R_f = 0.38$ (petroleum ether/ethyl acetate = 3:1). Yellow solid, 46.3 mg, 88% yield (two isomers), >20:1 dr, reaction time = 96 h, m.p. 168.7-168.6 °C.¹H NMR (500 MHz, CDCl₃) δ 7.98 (d, J = 8.1 Hz, 1H), 7.75 (d, J = 7.4 Hz, 1H), 7.65 (d, J = 7.7 Hz, 2H), 7.48 (t, J = 7.4 Hz, 1H), 7.42 (t, J = 7.7 Hz, 2H), 7.38 – 7.31 (m, 2H), 7.30 – 7.25 (m, 1H), 7.21 (td, J = 8.0, 4.6 Hz, 1H), 7.10 (dd, J = 10.9, 8.7 Hz, 1H), 5.37 (d, J = 10.4 Hz, 1H), 4.86 – 4.76 (m, 1H), 3.86 (d, J = 15.4 Hz, 1H), 3.20 (d, J = 15.3 Hz, 1H), 3.13 (d, J = 8.5 Hz, 1H), 2.60 (d, J = 2.6 Hz, 2H). ¹³C NMR (125 MHz, CDCl₃) δ 176.0, 171.8, 147.7, 147.3 (d, J = 245.1 Hz), 135.9, 134.9, 133.7 (d, J = 1.9 Hz), 133.6, 129.8, 129.2, 128.6, 128.0, 127.6 (d, J = 8.3 Hz), 126.4, 125.3, 124.6 (d, J = 6.2 Hz), 122.7, 118.5 (d, J = 19.1 Hz) 114.8, 113.2, 78.8, 76.0, 73.7, 63.4 (q, J = 29.8 Hz, 46.7, 36.0, 28.5. ¹⁹F NMR (376 MHz, CDCl₃) δ -74.33, -136.27. IR (KBr) v: 564, 608, 717, 766, 875, 1055, 1137, 1247, 1283, 1345, 1370, 1476, 1603, 1632, 1717, 2222, 2858, 2938, 3067, 3337 cm⁻¹. HRMS (ESI) m/z: Calcd for C₃₀H₂₀F₄N₄O [M + H]⁺ 529.1646; Found 529.1643.

2-(7''-chloro-1''-methyl-2''-oxo-4'-phenyl-5'-(trifluoromethyl)dispiro[indene-2,3'pyrrolidine-2',3''-indolin]-1(3H)-ylidene)malononitrile (5da)

The compound was prepared according to general procedure with petroleum ether/dichloromethane = 1:1-3:1 as eluent. $R_f = 0.38$ (petroleum ether/ethyl acetate =

3:1). Yellow solid, 44.8 mg, 82% yield (two isomers), >20:1 dr, reaction time = 96 h, m.p. 207.6-208.3 °C. ¹H NMR (500 MHz, CDCl₃) δ 7.96 (d, *J* = 8.0 Hz, 1H), 7.82 (d, *J* = 7.3 Hz, 1H), 7.64 (d, *J* = 7.7 Hz, 2H), 7.48 (t, *J* = 7.4 Hz, 1H), 7.41 (t, *J* = 7.7 Hz, 2H), 7.36 – 7.32 (m, 2H), 7.32 – 7.27 (m, 2H), 7.18 (t, *J* = 7.8 Hz, 1H), 5.34 (d, *J* = 10.5 Hz, 1H), 4.86 – 4.76 (m, 1H), 3.82 (d, *J* = 15.3 Hz, 1H), 3.18 (d, *J* = 15.3 Hz, 1H), 3.10 (d, *J* = 8.4 Hz, 1H), 2.73 (s, 3H). ¹³C NMR (125 MHz, CDCl₃) δ 176.9, 171.9, 147.6, 137.0, 136.0, 134.9, 133.8, 133.6, 132.5, 129.8, 129.2, 128.6, 128.0, 126.3, 125.3, 125.0, 124.7, 115.4, 114.8, 113.2, 78.7, 75.6, 73.8, 63.4 (q, *J* = 29.9 Hz), 46.6, 36.2, 29.3. ¹⁹F NMR (376 MHz, CDCl₃) δ -74.29. IR (KBr) v: 702, 763, 904, 1017, 1063, 1128, 1166, 1282, 1361, 1458, 1561, 1603, 1710, 2219, 2855, 2924, 3064, 3341 cm⁻¹. HRMS (ESI, m/z): calculated for C₃₀H₂₀ClF₃N₄O [M + H]⁺: 545.1351, found: 545.1350.

2-(7"-bromo-1"-methyl-2"-oxo-4'-phenyl-5'-(trifluoromethyl)dispiro[indene-2,3'-pyrrolidine-2',3"-indolin]-1(3H)-ylidene)malononitrile (5ea)

The compound was prepared according to general procedure with petroleum ether/dichloromethane = 1:1-3:1 as eluent. $R_f = 0.38$ (petroleum ether/ethyl acetate = 3:1). Yellow solid, 36.7 mg, 62% yield (two isomers), >20:1 dr, reaction time = 96 h, m.p. 174.8-175.9 °C.¹H NMR (400 MHz, CDCl₃) δ 7.96 (d, J = 8.1 Hz, 1H), 7.86 (d, J = 6.9 Hz, 1H), 7.63 (d, J = 7.6 Hz, 2H), 7.51 – 7.44 (m, 2H), 7.41 (t, J = 7.6 Hz, 2H), 7.37 – 7.27 (m, 3H), 7.11 (t, J = 7.8 Hz, 1H), 5.33 (d, J = 10.6 Hz, 1H), 4.87 – 4.74 (m, 1H), 3.80 (d, J = 15.4 Hz, 1H), 3.17 (d, J = 15.4 Hz, 1H), 3.08 (d, J = 8.4 Hz, 1H), 2.74 (s, 3H). ¹³C NMR (125 MHz, CDCl₃) δ 177.1, 171.9, 147.5, 138.5, 136.0, 135.8, 134.9, 134.2, 133.6, 129.8, 129.2, 128.6, 128.0, 126.3, 125.5, 125.4, 125.1, 114.8, 113.1,

102.1, 78.7, 75.6, 73.9, 63.4 (q, J = 30.3 Hz), 46.5, 36.3, 29.5. ¹⁹F NMR (376 MHz, CDCl₃) δ -74.38. IR (KBr) υ : 700, 766, 854, 944, 1013, 1056, 1132, 1173, 1274, 1348, 1455, 1558, 1604, 1714, 2221, 2951, 3004, 3063, 3350 cm⁻¹. HRMS (ESI, m/z): calculated for C₃₀H₂₀BrF₃N₄O [M + H]⁺: 589.0845, found: 589.0845.

2-(1''-methyl-2''-oxo-4'-phenyl-5',7''-bis(trifluoromethyl)dispiro[indene-2,3'pyrrolidine-2',3''-indolin]-1(3H)-ylidene)malononitrile (5fa)

The compound was prepared according to general procedure with petroleum ether/dichloromethane = 1:1-3:1 as eluent. $R_f = 0.60$ (petroleum ether/ethyl acetate = 3:1). Yellow solid, 36.4 mg, 63% yield (two isomers), >20:1 dr, reaction time = 96 h, m.p. 202.2-203.3 °C. ¹H NMR (400 MHz, CDCl₃) δ 8.12 (d, *J* = 7.4 Hz, 1H), 7.91 (d, *J* = 8.1 Hz, 1H), 7.64 (dd, *J* = 10.2, 8.3 Hz, 3H), 7.48 (t, *J* = 7.5 Hz, 1H), 7.42 (t, *J* = 7.6 Hz, 2H), 7.34 (dd, *J* = 7.8, 4.8 Hz, 3H), 7.30 – 7.24 (m, 1H), 5.36 (d, *J* = 10.6 Hz, 1H), 4.90 – 4.77 (m, 1H), 3.81 (d, *J* = 15.4 Hz, 1H), 3.20 (d, *J* = 15.4 Hz, 1H), 3.10 (d, *J* = 8.3 Hz, 1H), 2.57 (q, *J* = 2.3 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 177.7, 171.7, 147.3, 139.3, 135.9, 135.1, 133.7, 133.4, 129.8, 129.7, 129.2, 128.7, 128.1, 128.0 (q, *J* = 5.9 Hz), 126.3, 125.5, 123.3, 114.7, 112.9, 78.9, 74.5, 73.8, 63.2 (q, *J* = 29.9 Hz), 46.6, 36.2, 28.6, 28.5, 28.4. ¹⁹F NMR (376 MHz, CDCl₃) δ -53.32, -74.28. IR (KBr) υ : 700, 770, 863, 958, 1128, 1174, 1273, 1341, 1458, 1556, 1600, 1737, 2220, 2897, 2973, 3067, 3341 cm⁻¹. HRMS (ESI, m/z): calculated for C₃₁H₂₀F₆N₄O [M + H]⁺: 579.1646, found: 579.1642.

2-(5''-bromo-1''-methyl-2''-oxo-4'-phenyl-5'-(trifluoromethyl)dispiro[indene-2,3'-pyrrolidine-2',3''-indolin]-1(3H)-ylidene)malononitrile (5ga)

The compound was prepared according to general procedure with petroleum ether/dichloromethane = 1:1-3:1 as eluent. $R_f = 0.13$ (petroleum ether/ethyl acetate = 3:1). Yellow solid, 52.6 mg, 89% yield (two isomers), >20:1 dr, reaction time = 96 h, m.p. 196.4-197.2 °C.¹H NMR (500 MHz, CDCl₃) δ 7.98 (d, *J* = 1.8 Hz, 1H), 7.95 (d, *J* = 8.1 Hz, 1H), 7.66 (d, *J* = 7.6 Hz, 2H), 7.51 (dd, *J* = 8.2, 1.9 Hz, 1H), 7.47 (t, *J* = 7.5 Hz, 1H), 7.42 (t, *J* = 7.7 Hz, 2H), 7.38 – 7.31 (m, 2H), 7.25 (d, *J* = 10.5 Hz, 1H), 6.48 (d, *J* = 8.2 Hz, 1H), 5.34 (d, *J* = 10.5 Hz, 1H), 4.83 – 4.73 (m, 1H), 3.85 (d, *J* = 15.4 Hz, 1H), 3.23 (d, *J* = 15.6 Hz, 1H), 3.13 (d, *J* = 8.7 Hz, 1H), 2.38 (s, 3H). ¹³C NMR (125 MHz, CDCl₃) δ 175.6, 171.4, 147.8, 140.3, 135.9, 134.9, 133.4, 133.2, 132.5, 130.0, 129.8, 129.2, 128.6, 127.9, 126.5, 125.1, 116.8, 114.5, 113.2, 109.2, 79.2, 76.1, 73.6, 63.3 (q, *J* = 29.7 Hz), 46.8, 35.8, 26.0. ¹⁹F NMR (376 MHz, CDCl₃) δ -74.24. IR (KBr) υ : 700, 733, 862, 1052, 1107, 1148, 1231, 1278, 1355, 1419, 1481, 1560, 1608, 1714, 2222, 2928, 2971, 3071, 3327 cm⁻¹. HRMS (ESI, m/z): calculated for C₃₀H₂₀BrF₃N₄O [M + H]⁺: 589.0845, found: 589.0853.

7. Experimental procedure for gram scale synthesis of 5aa

A mixture of DIPEA (0.6 mmol, 0.2 equiv.), **1** (4.5 mmol, 1.5 equiv.) and **4** (3.0 mmol, 1.0 equiv.) and dichloromethane (30 mL) were added to a sealed reaction tube equipped with a stir bar. The tube was then sealed and the resulting mixture was stirred at 40 °C for the 5 days. Upon completion (monitored by TLC, visualized by UV light), the reaction solution was concentrated in vacuo. The crude product was purified by column chromatography on silica gel (eluent PE:DCM = 1:2 to 1:3) to afford products **5aa** as a mixture of the major and minor diastereomers of **5aa** in 95% yield (1.26 g).

8. Experimental procedures for synthesis of compound 6

Under a nitrogen atmosphere, AlCl₃ (0.5 mmol, 66.5 mg) was added to the solution of **3ax** (0.1 mmol 59.7 mg) in anhydrous toluene (2 mL). Then, the reaction mixture was stirred at 50 °C for 3 hours. Next, another portion of AlCl₃ (0.5 mmol, 66.5 mg) was added to the reaction mixture. And the reaction solution was stirred overnight. Upon completion (monitored by TLC, visualized by UV light), the reaction solution was quenched with water (5 mL). Subsequently, the reaction mixture was extracted with ethyl acetate (10 mL) and the organic layer was dried over anhydrous sodium sulfate. The resultant solution was concentrated in vacuo. The crude product was purified by column chromatography on silica gel (eluent petroleum ether/ethyl acetate = 10:1-5:1) to afford the pure product 6. $R_f = 0.38$ (petroleum ether/ethyl acetate = 3:1). Brown solid, 9.7 mg, 20% yield, m.p. 95.5-96.3 °C.¹H NMR (500 MHz, DMSO-d₆) δ 10.01 (s, 1H), 7.88 (d, J = 7.9 Hz, 1H), 7.81 – 7.77 (m, 2H), 7.58 (dd, J = 7.7, 1.7 Hz, 1H), 7.39-7.31 (m, 2H), 7.30 - 7.21 (m, 4H), 7.12 (td, J = 7.5, 1.2 Hz, 1H), 6.99 (d, J = 8.9Hz, 1H), 6.92 – 6.90 (m, 2H), 6.87 (t, J = 8.8 Hz, 2H), 5.01 (s, 1H), 4.78 (s, 1H), 3.45 (d, J = 17.1 Hz, 1H), 2.65 (d, J = 16.9 Hz, 1H). ¹³C NMR (125 MHz, DMSO- d_6) δ 166.2, 161.6 (d, J = 244.2 Hz), 159.8, 156.3, 153.7, 148.9, 135.5, 133.5, 131.9 (d, J = 2.9 Hz), 131.6, 129.9, 129.1, 128.5 (d, J = 8.0 Hz), 127.4, 127.3, 125.4, 124.0, 121.7, 121.6, 116.9, 116.4, 115.0, 114.2 (d, *J* = 21.3 Hz), 96.3, 72.4, 60.7, 46.0, 35.6. IR (KBr) v: 762, 830, 998, 1021, 1106, 1164, 1233, 1279, 1380, 1458, 1510, 1550, 1604, 1657, 2215, 2855, 2925, 3440 cm⁻¹. HRMS (ESI, m/z): calculated for C₃₂H₂₂FN₂O₂ [M + H]⁺: 485.1660, found: 485.1661.

9. Experimental procedures for synthesis of compound 7aa

A mixture of chiral catalyst (0.02 mmol, 0.2 equiv.), **1a** (0.10 mmol, 1.0 equiv.) and **2a** (0.10 mmol, 1.0 equiv.) and CH_2Cl_2 (1.0 mL) were added to a sealed reaction tube equipped with a stir bar. The tube was then sealed and the resulting mixture was stirred

at 25 °C for the 24-120 h. Upon completion (monitored by TLC, visualized by UV light), the reaction solution was concentrated in vacuo. The crude product was purified by column chromatography on silica gel (eluent PE:DCM = 3:1-2:1) to afford pure products 7aa. Yellow solid. ee as determined by HPLC (Chiralpak IC-H, 99:1 nhexane/*i*-PrOH, 1.0 mL/min), tr (major) = 5.760 min, tr (minor) = 6.653 min. The ratio of 7aa-A/7aa-B was 0.51:1 as determined by ¹H NMR. ¹H NMR (500 MHz, CDCl₃, a mixture of two isomers) δ 8.48 (d, J = 8.2 Hz, 1H, isomer A), 7.97 (d, J = 8.3 Hz, 1H, isomer B), 7.57 (t, J = 7.5 Hz, 1H, isomer A), 7.50 – 7.45 (m, 2H, isomer B), 7.44 (d, J = 7.8 Hz, 1H, isomer A), 7.39 (d, J = 7.6 Hz, 1H, isomer A), 7.30 - 7.21 (m, 4H, 7.30 - 7.30 (m, 4H, 7.30 (mfor isomer A and isomer B, overlapped), 7.21 - 7.15 (m, 3H, for isomer A and isomer B, overlapped), 7.04 - 6.96 (m, 3H, for isomer A and isomer B, overlapped), 6.96 - 6.81 (m, 4.5H, for isomer A and isomer B, overlapped), 6.75 (d, J = 2.3 Hz, 1H, isomer A), 6.64 (s, 1H, isomer B), 6.47 (d, J = 2.2 Hz, 1H, isomer A), 6.19 (s, 1H, isomer B), 6.00 (s, 1H, isomer A), 5.26 (s, 1H, isomer B), 5.21 (S, 1H, isomer A), 4.87 (s, 1H, isomer B), 3.94 (d, J = 17.9 Hz, 1H, isomer A), 3.70 (s, 1H, isomer A), 3.66 (s, 1H, isomer B), 3.62 (d, J = 18.8 Hz, 1H, isomer B), 3.17 (d, J = 18.7 Hz, 1H, isomer B), 2.99 (d, J = 18.0 Hz, 1H, isomer A), 1.40 (s, 9H, isomer A), 1.32 – 0.95 (m, 23H, for isomer A and isomer B, overlapped) ppm. ¹³C NMR (125 MHz, CDCl₃, a mixture of two isomers) δ 181.1, 175.0, 154.9, 154.6, 153.9, 153.1, 151.4, 148.5, 136.9, 136.2, 136.2, 136.1, 135.0, 134.8, 134.7, 131.6, 130.4, 129.6, 129.01, 128.9, 128.8, 128.8, 128.7, 128.7, 128.5, 128.4, 128.3, 127.5, 127.3, 127.0, 126.7, 126.1, 125.4, 124.8, 123.8, 123.7, 121.5, 121.2, 117.0, 116.8, 115.0, 113.8, 113.7, 112.3, 79.9, 79.9, 75.8, 75.2, 59.1, 58.8, 56.2, 52.6, 43.5, 41.2, 34.4, 34.2, 34.1, 30.2, 30.1, 30.0.

HPLC chromatogram of compound 7aa (Chiralpak IC-H, 99:1 n-hexane/i-PrOH, 1.0 mL/min): Racemic:

Enantioselective (A as a catalyst):

Enantioselective (B as a catalyst):

10. X-ray crystal structure of compound 3ar

Preparation of the single crystals of **3ar**: pure compound **3ar** (30 mg) was completely dissolved in the solvents of petroleum ether and DCM (20 mL, v/v = 1:2) at 2-8 °C. The bottle was sealed by a parafilm with several tiny holes, allowing slow evaporation of the solvents at room temperature. After a week, several small particles could be observed on the wall and at the bottom of the bottle. Then, the crystals were chosen and subjected to the crystal X-ray diffraction analysis for the determination of the structure of **3ar**. The crystal was kept at 296 K during data collection.

The relative configuration of product **3ar** was determined by X-ray diffraction on Bruker D8 VENTURE PHOTON II diffractometer with graphite-monochromated Mo K α ($\lambda = 0.71073$ Å) at 284(2) K using SAINT and SMART programs. The X-ray data have been deposited at the Cambridge Crystallographic Data Center (CCDC 2270813). Crystallographic data and structure refinements for compound **3ar** are listed in Table S2.

Figure S1. View of a molecule of compound **3ar** with the atom-labelling scheme.

Displacement ellipsoids are drawn at the 30% probability level.

Table S3. Crystal data and structure refinement for compound 3ar.

3ar
C40H37ClN2O2
613.33
296
monoclinic
$P2_1/n$
9.946(5)
32.16(2)
11.104(6)

α/°	90
β/°	110.730(16)
$\gamma/^{\circ}$	90
Volume/Å ³	3322(3)
Z	1
$\rho_{calc}g/cm^3$	1.226
µ/mm ⁻¹	0.152
F(000)	1296.0
Crystal size/mm ³	$0.16 \times 0.13 \times 0.07$
Radiation	MoKα ($\lambda = 0.71073$)
2Θ range for data collection/°	4.122 to 56.928
Index ranges	$\begin{array}{l} \textbf{-12} \leq h \leq 12, \textbf{-39} \leq k \leq 34, \textbf{-13} \leq 1 \\ \leq 13 \end{array}$
Reflections collected	26901
Independent reflections	6529 [R _{int} = 0.2271, R _{sigma} = 0.2093]
Data/restraints/parameters	6529/0/414
Goodness-of-fit on F ²	1.015
Final R indexes [I>= 2σ (I)]	$R_1 = 0.0863, wR_2 = 0.1941$
Final R indexes [all data]	$R_1 = 0.2231, wR_2 = 0.2777$
Largest diff. peak/hole / e Å ⁻³	1.08/-0.38

11. X-ray crystal structure of compound 3ab'

Preparation of the single crystals of **3ab**': pure compound **3ab**' (15 mg) was completely dissolved in the solvents of petroleum ether and DCM (15 mL, v/v = 1:2) at room temperature. The bottle was sealed by a parafilm with several tiny holes, allowing slow evaporation of the solvents at room temperature. After a week, several small particles could be observed on the wall and at the bottom of the bottle. Then, the crystals were chosen and subjected to the crystal X-ray diffraction analysis for the determination of the structure of **3ab**'. The crystal was kept at 100 K during data collection. The relative configuration of product **3ab**' was determined by X-ray diffraction on a Bruker APEX DUO system. The X-ray data have been deposited at the Cambridge Crystallographic Data Center (CCDC 2268414). Crystallographic data and structure refinements for compound **3ab**' are listed in Table S3.

Figure S2. View of a molecule of **3ab**' with the atom-labelling scheme.

Displacement ellipsoids are drawn at the 30% probability level.

Table S4. Crystal data and structure refinement for 3ab'.

Identification code	global	
Empirical formula	C41 H37 N3 O2	
Formula weight	603.73	
Temperature	100(2) K	
Wavelength	1.54178 Å	
Crystal system	Triclinic	
Space group	P-1	
Unit cell dimensions	a = 10.8858(2) Å	α= 90.7900(10)°.
	b = 12.1164(2) Å	β= 90.4010(10)°.
	c = 12.8017(3) Å	$\gamma = 108.7490(10)^{\circ}.$
Volume	1598.63(6) Å ³	
Z	2	
Density (calculated)	1.254 Mg/m ³	
Absorption coefficient	0.605 mm ⁻¹	
F(000)	640	
Crystal size	0.240 x 0.190 x 0.0	60 mm ³
Theta range for data collection	3.45 to 70.18°.	
Index ranges	-11<=h<=13, -14<=	=k<=14, -15<=l<=15
Reflections collected	29426	
Independent reflections	6084 [R(int) = 0.05	37]
Completeness to theta = 70.18°	99.7 %	
Absorption correction	Semi-empirical from	m equivalents

Max. and min. transmission	0.96 and 0.74
Refinement method	Full-matrix least-squares on F ²
Data / restraints / parameters	6084 / 0 / 422
Goodness-of-fit on F ²	1.056
Final R indices [I>2sigma(I)] R indices (all data)	R1 = 0.0414, wR2 = 0.1120 R1 = 0.0469, wR2 = 0.1157
Largest diff. peak and hole	0.357 and -0.337 e.Å ⁻³

12. X-ray crystal structure of compound 5aa

Preparation of the single crystals of **5aa**: pure compound **5aa** (10 mg) was completely dissolved in the solvents of petroleum ether and DCM (20 mL, v/v = 1:3) at room temperature. The bottle was sealed by a parafilm with several tiny holes, allowing slow evaporation of the solvents at room temperature. After a week, several small particles could be observed on the wall and at the bottom of the bottle. Then, the crystals were chosen and subjected to the crystal X-ray diffraction analysis for the determination of the structure of **5aa**. The crystal was kept at 150.01 K during data collection.

The relative configuration of product **5aa** was determined by X-ray diffraction on a Bruker D8 VENTURE PHOTON II diffractometer with graphite-monochromated Mo K α ($\lambda = 0.71073$ Å) at 284(2) K using SAINT and SMART programs. The X-ray data have been deposited at the Cambridge Crystallographic Data Center (CCDC 2268375). Crystallographic data and structure refinements for compound **5aa** are listed in Table S4.

Figure S3. View of a molecule of 5aa with the atom-labelling scheme. Displacement ellipsoids are drawn at the 30% probability level.

Table S5. Crystal data and structure refinement for **5aa**.

Identification code	5aa		
Empirical formula	$C_{120}H_{84}F_{12}N_{16}O_4$		
Formula weight	2046.06		
Temperature/K	150.01		
Crystal system	monoclinic		
Space group	P2 ₁ /c		
a/Å	11.7949(5)		
b/Å	10.0157(4)		
c/Å	20.5833(11)		
α/°	90		
β/°	90.996(2)		
$\gamma/^{\circ}$	90		
Volume/Å ³	2431.22(19)		
Z	1		
$\rho_{calc}g/cm^3$	1.397		
μ/mm^{-1}	0.103		
F(000)	1060.0		
Crystal size/mm ³	$0.16 \times 0.12 \times 0.06$		
Radiation	MoKa ($\lambda = 0.71073$)		
2Θ range for data collection/c	² 4.522 to 56.646		
Index ranges	$\text{-15} \leq h \leq \text{15}, \text{-13} \leq k \leq \text{13}, \text{-27} \leq \text{l} \leq \text{25}$		
Reflections collected	26603		
Independent reflections	$6050 [R_{int} = 0.0945, R_{sigma} = 0.0835]$		
Data/restraints/parameters	6050/0/344		
Goodness-of-fit on F ²	1.017		
Final R indexes [I>= 2σ (I)]	$R_1 = 0.0616, wR_2 = 0.1212$		
Final R indexes [all data]	$R_1 = 0.1268, wR_2 = 0.1525$		
Largest diff. peak/hole / e Å ⁻³ 0.60/-0.58			

13. NMR spectra

¹H NMR spectra for compound **3aa** (500 Hz, CDCl₃)

¹³C NMR spectra for compound **3aa** (125 Hz, CDCl₃)

175.09	112.475 113.630 136.20 136.20 136.20 134.89 128.84	80.01 77.41 77.16 76.91 75.30	59.24 56.32	41.31 34.53 34.29 30.37 30.13
1		SS/2	1 İ	$I \vee V$

¹H NMR spectra for compound **3ab** (500 Hz, CDCl₃)

$\begin{array}{c} & & & & & & & & & & & & & & & & & & &$	2.52	1.52

¹³C NMR spectra for compound **3ab** (125 Hz, CDCl₃)

16	20	202222222222222222222222222222222222222	10 4	- 0	0 4 N 0 0 0
ú.	4 4	00004-00000004-040	က်ကိ	4 4	0 0 0 0 F
2	15	4 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	79	56	21 334 21 334 21 30
	52				$ \vee \vee $

¹³C NMR spectra for compound **3ac** (100 Hz, CDCl₃)

.40	$\begin{array}{c} 99\\ 86\\ 86\\ 86\\ 86\\ 86\\ 86\\ 86\\ 86\\ 86\\ 86$	5 33 34	33.36	7 62874
175	159 159 159 159 1128 1234 137 137 137 128 1	79.6	55.6	40.7 34.5 34.5 30.3 30.1
1			157	IVV

¹³C NMR spectra for compound **3ad** (100 Hz, CDCl₃)

49 13 55	72 72 72 72 72 72 72 72 72 72 72 72 72 7	6676777864755777777777777777777777777777
173. 168. 165.	154. 151. 151. 151. 151. 151. 153. 153. 153	2011 2011 2011 2011 2011 2011 2011 2011
7.55		

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 f1 (ppm)

¹³C NMR spectra for compound **3ae** (100 Hz, CDCl₃)

173.46	11164.60 1454.11 1416.22 136.03 136.03 136.03 136.03 136.03 136.03 136.03 136.03 137.54 131.65 138.79 131.65 129.15 129.15 129.05 129.05 129.05 129.05 129.05 129.05 129.05 129.05 129.05 129.05 129.05 129.05 129.05 120.0	80.33	75.10	59.50	40.96	34.52 34.26 30.33 30.11
		1				$\vee \vee$

¹³C NMR spectra for compound **3af** (125 Hz, CDCl₃)

24	48 73 89	28 29 29 29 20 20 20 20 20 20 20 20 20 20 20 20 20	6 1 9 1 9	2 2 2 2	0 0 4 8 2
175.	155. 155.		72.9.9 77.1.4 76.9 70.2	58.5 57.3 56.2	34.5 30.3 30.0
Ì	151			512	

¹³C NMR spectra for compound **3aj** (125 Hz, CDCl₃)

- 175.09 - 155.21 - 155.21	148.06 137.94 137.94 137.94 133.15 13	80.01 77.51 77.26 77.01 73.01	58.57 57.29	$ \begin{array}{c} - 41.99 \\ 34.65 \\ 34.40 \\ 30.44 \\ 30.44 \\ 30.46 \\ 30.44 \\ 30.4$	< 30.10
----------------------------------	--	---	-----------------	--	---------

¹³C NMR spectra for compound **3ak** (125 Hz, CDCl₃)

- 175.03 - 155.10 - 155.10	148.01 136.41 136.41 134.95 14.05 14.0	75.05 77.141 77.16 76.91 75.05	~ 58.67 ~ 57.24		< 34.55 $ < 34.34 $ $ < 30.35 $ $ < 30.10$
----------------------------------	--	--	--------------------	--	--

¹³C NMR spectra for compound **3am** (100 Hz, CDCl₃)

174.93	154.87 149.02 147.09 147.09 147.09 136.12 136.12 136.12 136.12 136.12 136.12 136.12 136.12 136.12 136.12 128.93 128.95 128.95 128.95 128.95 128.95 128.95 128.95 128.95 128.95 127.55 12	79.91	70.18	58.14 56.96	41.81	34.57 34.18 30.33 29.91
		1		57	1	$\vee \vee$

¹³C NMR spectra for compound **3an** (125 Hz, CDCl₃)

.25	49.7225 2010 20	00	93 35 30 30 30 30 30 30 30 30 30 30 30 30 30
175	71112 727 727 727 727 727 727 727	58.3	41.9 34.4 334.2 29.9
1		57	$ \land \lor$

¹³C NMR spectra for compound **3ao** (125 Hz, CDCl₃)

92	61 58 04	65 75 75 75 75 75 75 75 7	6 1 9 1 8	0 0 0	2 0 0 4 -
174	159. 154.	11150011288888889113300113	79.9 77.4 77.1 75.0	55.2	30.5 30.5 30.5 30.5
	1 N			157	I YY

¹³C NMR spectra for compound **3ap** (125 Hz, CDCl₃)

H.76	5232	99 91 30 30	34 29	35	52 28 37 14	72
15/		79. 77. 76.	59.	41.	34. 30.	21.
52		\searrow			$\vee \vee$	1

— 175.10

¹³C NMR spectra for compound **3ar** (125 Hz, CDCl₃)

174.59	154.13 148.45 138.35 136.09 135.06 135.06 135.06 135.06 135.06 135.06 135.06 135.06 135.06 129.27 129.29 129.29 129.21 129.21 129.27 129.21 128.57 128.57 129.21 128.57 129.57 128.57 129.57 128.57 129.57 128.57 129.57 128.57 129.57 128.57 129.57 128.57 129.57 12	77.41 77.16 76.91 74.54	59.29 56.09	40.97 34.54 34.29 30.35 30.12
\		\checkmark		ert \lor \lor \lor

¹³C NMR spectra for compound **3at** (125 Hz, CDCl₃)

. 73	.84 .89 .00	60 115 15 15 119 119 119 119 119 119 119 1	6 7	36 48 36 24	33 33 37 33 39
a/1	159 154 154	4 C C C C C C C C C C C C C C C C C C C	80.1	55.5	34. 30.
1	$1 \leq 1$			1.57	

¹³C NMR spectra for compound **3au** (125 Hz, CDCl₃)

175.20	$\begin{array}{c} 154.86\\ 154.86\\ 138.86.3\\ 138.86.3\\ 138.86.3\\ 138.87\\ 138.17\\ 138.17\\ 138.17\\ 139.45\\ 1129.45\\ 1128.85\\ $	80.00 77.41 77.16 76.91	59.28 56.40	41.39	34.52 34.28 30.37 30.14	21.26
		\searrow		1	\lor \lor	1

¹³C NMR spectra for compound **3av** (125 Hz, CDCl₃)

— 175.23

154.86 154.00	148.64	145.02 136.37 136.37 136.37 134.83 133.35 133.35 128.83 10	79.99	75.24	59.26 56.38	41.39	34.53 34.28 30.37 30.13 28.59	15.30
52							$\forall \forall $	

¹³C NMR spectra for compound **3aw** (100 Hz, CDCl₃)

175.25	$\begin{array}{c} 154, 84\\ 154, 80\\ 148, 65\\ 148, 65\\ 136, 37\\ 136, 37\\ 136, 37\\ 133, 15\\ 133, 15\\ 133, 15\\ 133, 136\\ 133, 136\\ 132, 69\\ 122, 83\\ 122, 83\\ 122, 84\\ 122, 84\\ 122, 82\\ 122, 22\\ 122$	79.99	75.24	59.26 56.36	41.38 34.54 34.54 33.389 30.37 23.95 23.88 23.88
		1			$ \forall \lor \lor \lor$

¹³C NMR spectra for compound **3ay** (125 Hz, CDCl₃)

.76	11	506 507 507 508 508 508 508 508 508 508 508 508 508	4 - 9 - 6	5 1	ဆ က္စစ္တက
74	54	4 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	0.4.4.0.4	0.0	- 4400 0.900
~			8 ~ ~ ~ ~ ~	2 2	4 ოოოო
	\leq		\sim		ert ert ert ert ert

¹³C NMR spectra for compound **3aa'** (125 Hz, CDCl₃)

63	5 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	04	0 4007
74.	4 4 7 7 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	6.1	0.44.0
<u>.</u>	\dot{c}	ũ ũ	4 ოოო
			ert \lor \lor \lor

¹H NMR spectra for compound **3ab'** (500 Hz, CDCl₃)

08	71 69 63 63 30 30 30 07 07 00 07 00 98 99 89 60 70	30	34	26	2 2 9 8 2 2 4 8 3	33
có có	7.7.7.7.7.7.7.7.7.6.6.6.	6.	i.	4	က်က်က်က်	
\sim	YR YR KALL			1	12 51	

¹ H NMR spectra for compound 3ac' (400 Hz, CDCl ₃)							
0.000 <t< th=""><th></th></t<>							

¹³C NMR spectra for compound **3ac'** (100 Hz, CDCl₃)

0	ഗഗന		000000000000000000000000000000000000000					
~	0 N 0	2	0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	88947	0 M 4	2	~ ~ o ∞	2
		· · ·		$m \neq - m \sim$.		
ŝ	രഗര	œ	000444008800094008000			· · .		
N	ດີດ	4	4 ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~	50440	8 1 9	2	4400	6
~	~ ~ ~	~		~ ~ ~ ~ ~ ~	ດດດ	4	m m m m	~
	151			$\nabla \nabla \mathcal{L}$	517		$\vee \vee$	

¹H NMR spectra for compound **3ad'** (400 Hz, CDCl₃)

8.88 8.57 7.57 7.57 7.57 7.57 7.57 7.57	4.16	3.18 3.18 3.14	2.52 2.27	1.48 1.31
	52	1 52		

¹³C NMR spectra for compound **3ae'** (100 Hz, CDCl₃)

19	38 96 97	92	0 2 0 0 7 7 7 7 7 0 0 0 7 7 7 7 7 7 7 7	6 1	~	0004	ø
. ⁷ .	2. 8. 4. 4	1	ϕ		<u> </u>	4.0.0	~
1	00000	7		221	4	8888	4
	1151			57		$\lor \lor$	

¹³C NMR spectra for compound **3ah'** (125 Hz, CDCl₃)

ດ	8 - 9 8 - 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9			
Ö	συκκοσκοκοσσοσοσοσολάκασο	8 - 9	04	- 8 M 90
Ň	0,4,6,0,0,0,4,4,4,0,0,7,4,6,0,0,0,4,6,0,0,0,0,0,0,0,0,0,0,0,0,0	0,4 , 0,0	ō, ú,	- 4000
~		20111	2 20	N 4400
~		アファファ	2 2	4 ოოო
		St		

¹H NMR spectra for compound **3ba** (400 Hz, CDCl₃)

3055698889005574833334677569888837333333344577055698888333333344577	04 99 74	09	22	50 34
8887777777777777777777776999999999	4.0.0	ຕ່ຕ່	Ň	÷. ÷.
	121	52		

¹³C NMR spectra for compound **3ba** (125 Hz, CDCl₃)

175.24	142.05 142.06 142.06 148.66 148.66 148.66 148.66 148.66 143.86 143.86 143.67 143.77 143.67 143.77 147.77 147.77 147.77 147.77 147.77 147.77 147.77 147.77 147.77 147.77 14	79.95	59.27 56.36	41.31 34.55 34.31 30.38 30.16 20.64

¹³C NMR spectra for compound **3da** (125 Hz, CDCl₃)

/4.60	54.26 53.31 55.31 55.31 55.31 56.42 56.32 56.35 56.42 56.42 56.42 56.42 56.52 56.53 56.55 56.55 56.55 56.55 57.55 56.55 57.555	5.51	88.89 66.06	11.19 44.55 44.32 60.33 80.25 80.22
.		ω Γ	() ()	4000000

¹H NMR spectra for compound **3ea** (400 Hz, CDCl₃)

255 25 25 25 25 25 25 25 25 25	34	02 98 74	04 99	49 36
8877777777777777777779999999	5.	4 .	ώ	÷. ÷.
			52	1.1

174.55	154.27 153.81	148.22 136.11 13.56 13.56 135.06 135.06 135.06 135.05 133.85 133.85 133.85 133.85 133.85 133.85 133.85 133.85 128.80 128.80 128.80 128.80 128.80 128.85 128.55 128.	80.11 75.48	58.86 55.97	41.16 34.55	34.32 30.32 30.11
1	- SZ		i i	1 Î	i i	VV.

¹H NMR spectra for compound **5aa** (500 Hz, CDCl₃)

20 10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 -2: f1 (ppm)

¹⁹F NMR spectra for compound **5ab** (471 Hz, CDCl₃)

20 10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 -2 f1 (ppm)

¹³C NMR spectra for compound **5ac** (125 Hz, CDCl₃)

176.25	172.07	145.25 137.79 136.24 135.92 135.92 130.63 130.63 130.36 129.83 129.85 10	107.67	78.39 77.41 76.91 73.83 63.73 63.01 63.01	46.78	35.52	29.83 25.78 21.45
1	1				i		215

 ^{19}F NMR spectra for compound **5ac** (376 Hz, CDCl₃)

10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 f1 (ppm)

¹H NMR spectra for compound **5ad** (500 Hz, CDCl₃)

¹³C NMR spectra for compound **5ad** (125 Hz, CDCl₃)

¹⁹F NMR spectra for compound **5ad** (471 Hz, CDCl₃)

20 10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 -2 f1 (ppm)

¹³C NMR spectra for compound **5ae** (125 Hz, CDCl₃)

¹⁹F NMR spectra for compound **5ae** (471 Hz, CDCl₃)

 1 H NMR spectra for compound **5af** (500 Hz, CDCl₃)

73 73 73 73 73 73 73 73 73 73 73 73 73 7	255 224 223 224 223 222 222 222 221 19 119 118 118 118 118 118 118 118 118	$\begin{array}{c} 16 \\ 07 \\ 06 \\ 06 \\ 06 \\ 03 \\ 03 \\ 03 \\ 03 \\ 03$	551 550 550 550 449 447 447 447 446 446 446 553 559 559 558 558 558 449 47 47 449 558 559 550 550 550 550 550 550 550 550 550
		6.6.6.6.6.6.7.7.7.7.7.7.7.7.7.7.7.7.7.7	ເລີ່ມ ເລີ

¹³C NMR spectra for compound **5af** (125 Hz, CDCl₃)

84	888 888 888 888 888 888 888 888 888 88	03 05 62	83812 8 831	5.22	12 52
179.	146. 1337. 1	114. 112. 110.	53, 6 53, 6 54, 7 54, 6 55, 6 56, 7 57, 7	45. 2 42. 8	24.8
Y		1211		2 ii	1

 19 F NMR spectra for compound **5af** (500 Hz, CDCl₃)

20 10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 -2 f1 (ppm)

¹H NMR spectra for compound **5ag** (400 Hz, CDCl₃)

92 92	6	600	20 20	85	84	83.8	4 4	5 4	42	38	38	36	34	32	31	29	26	24	22	20	19	18	16	13	12	10	51	49	38	35	32	31	30	29	58	27	20	0 0	25	24	23	92	88	60	29	5 6	5 5	- 6	46
~ ~	~	Ň	~ ~	~	~ 1	~ ~	- r	- ~	~	~	~	~	Ν.	Ζ.	۷.	Υ.	Υ.	Υ.	Υ.	Ν.	Ν.	~	~	~	~	Υ.	ö.	ö.	ú.	ú.	ю.	ю.	ю.	ю.	ю.	ю.	ώı	ດ່າ	ώı	'n۱	ġ,	ന്	ι.	ന്റ	ຕ່ຕ	NC	in	iN	N N
		_	-	_		1.1		C J	ر	1	_	_	_				_	_	_	-	_			_				_		_	_				1						_	_		_		-	_		

¹³C NMR spectra for compound **5ag** (100 Hz, CDCl₃)

¹⁹F NMR spectra for compound **5ag** (376 Hz, CDCl₃)

10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 f1 (ppm)

¹H NMR spectra for compound **5ah** (500 Hz, CDCl₃)

¹³C NMR spectra for compound **5ah** (125 Hz, CDCl₃)

— 179.24 — 175.94	146.02 136.16 135.42 135.42 135.42 135.42 132.68 132.68 132.68 132.68 132.68	126.64 126.64 126.63 126.38 126.38 126.29 126.29 126.29 124.35	L 123.02 	72.41 77.41 77.16 76.01	- 75.45 - 70.56 - 70.56 - 64.39 - 64.39 - 64.75 - 64.50	~ 44.09 ~ 43.34	— 25.85
				I			
1.	h				1 1		
 				L/	<u> </u>		

190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 f1 (ppm)

¹⁹F NMR spectra for compound **5ah** (471 Hz, CDCl₃)

20 10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 -2: f1 (ppm)

¹H NMR spectra for compound **5ai** (500 Hz, CDCl₃)

2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	5.37 5.37 5.34 4.81 4.75 5.34 4.75 5.34 4.75 5.38 5.38 5.38 5.38 5.38 5.38 5.38 5.3	2.39
	V VIIII VV	Ĩ

¹³C NMR spectra for compound **5ai** (125 Hz, CDCl₃)

0	œ	<u>е</u>	000000000000000000000000000000000000000				
Ň	Ó	0	0	4 - 0 - 0 0 - 0 4 0 0	8	8	40
	<u></u>	<u> </u>		ώ4700000707 ŭ	× v	Ó	8
Ű.	(N	ů.					
~		ů.	440000000000000000000000000000000000000		Ģ	Ū.	40
~	.	.			4	m	N
	1	1		ヘトレンフト トレント	1		

¹⁹F NMR spectra for compound **5ai** (471 Hz, CDCl₃)

20 10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 -2: f1 (ppm)

¹³C NMR spectra for compound **5aj** (125 Hz, CDCl₃)

176.26 172.10	147.93 141.26 138.82 138.85 133.56 133.56 133.56 133.56 130.56 130.56 122.54 122.56 122.55 122.55 125.66 112.68 125.66 112.68 125.66 112.53 125.66 112.53 125.66 112.53 125.75 12	80.01 77.41 76.91 75.40 75.43 63.56 63.33 63.09	46.79	36.06	25.84 21.82
			1		

¹⁹F NMR spectra for compound **5aj** (376 Hz, CDCl₃)

10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 f1 (ppm)

¹H NMR spectra for compound **5ak** (500 Hz, CDCl₃)

¹³C NMR spectra for compound **5ak** (125 Hz, CDCl₃)

¹⁹F NMR spectra for compound **5ak** (471 Hz, CDCl₃)

20 10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 -2 f1 (ppm)

¹³C NMR spectra for compound **5al** (125 Hz, CDCl₃)

¹⁹F NMR spectra for compound **5al** (471 Hz, CDCl₃)

20 10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 -2: f1 (ppm)

¹³C NMR spectra for compound **5am** (100 Hz, CDCl₃)

176.22 172.12	159.41	147,92 141,23 136,04 136,04 130,69 130,69 130,69 130,59 125,06 1125,54 1125,54 114,45 114,45 114,45 114,45 1114,45114,55 1114,55114,55 1114,55 1114,55114,55 1114,55 1114,55114,55 1114,55 1114,55114,	78.75 77.48 77.48 77.48 75.87 75.87 75.87 75.87 63.38 63.59 63.59 63.29 63.29 63.29	46.19	35.77	25.81
	1					

¹⁹F NMR spectra for compound **5am** (376 Hz, CDCl₃)

-10 -15 -20 -25 -30 -35 -40 -45 -50 -55 -60 -65 -70 -75 -80 -85 -90 -95 -100 -105 -110 -115 -120 -125 -130 -135 -140 -145 -15 f1 (ppm)

¹H NMR spectra for compound **5an** (400 Hz, CDCl₃)

7.96 7.94 7.94 7.94 7.55 7.55 7.47 7.47 7.47	7.45 7.45 7.43 7.38 7.38 7.36 7.36 7.36 7.34 7.34	7.28 7.24 7.24 7.23 7.23 7.22 7.22 7.22	6.58 6.56 5.39 5.36 5.36 4.82 4.82 4.79 4.79 73 5.36 5.36 5.36 5.36 5.36 5.39 5.36 5.39 5.39 5.39 5.39 5.39 5.39 5.39 5.39	44.75 44.75 33.33 44.75 44.75 33.33 33.23 33.23 33.19 46.73 47 75 33 33.23 33.23 33.23 46.75 75 75 75 75 75 75 75 75 75 75 75 75 7

¹³C NMR spectra for compound **5an** (100 Hz, CDCl₃)

- 176.23 - 172.03 - 172.03 - 172.03 - 172.03 - 172.03 - 136.55 - 138.33 - 130.65 - 133.65 - 133.65 - 133.65 - 125.50 - 113.34 - 1	$\begin{array}{c} 78.83\\ 77.48\\ 77.48\\ 77.48\\ 77.696\\ 63.81\\ 63.21\\ 62.92\\ 62.92\\ 62.92\\ 62.92\\ 62.92\\ 62.92\\ 62.92\\ 62.92\\ 62.92\\ 62.92\\ 62.92\\ 62.111\\ -21.11\end{array}$
---	--

¹⁹F NMR spectra for compound **5an** (376 Hz, CDCl₃)

10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 f1 (ppm)

¹H NMR spectra for compound **5ao** (500 Hz, CDCl₃)

¹³C NMR spectra for compound **5ao** (125 Hz, CDCl₃)

 ^{19}F NMR spectra for compound **5ao** (471 Hz, CDCl₃)

20 10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 -2: f1 (ppm)

¹H NMR spectra for compound **5ap** (500 Hz, CDCl₃)

9 9 9 9 9 9 9 9 9 9 9 9 9 9	.39 .36 .78 .77 .75	75 73 73 73 73 73 73 73	4 1 1 2 1 0	40
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	00 4444	444400	~~~~~	N



¹³C NMR spectra for compound **5ap** (125 Hz, CDCl₃)



-- (PP

¹⁹F NMR spectra for compound **5ap** (471 Hz, CDCl₃)



20 10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 -2: f1 (ppm)

¹H NMR spectra for compound **5aq** (500 Hz, CDCl₃)



¹³C NMR spectra for compound **5aq** (125 Hz, CDCl₃)



¹⁹F NMR spectra for compound **5aq** (471 Hz, CDCl₃)



20 10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 -2: f1 (ppm)

¹H NMR spectra for compound **5ar** (400 Hz, CDCl₃)



## ¹³C NMR spectra for compound **5ar** (125 Hz, CDCl₃)

30	12	62	332 $332 $ $332 $ $332 $ $332 $ $332 $ $332 $ $332 $ $332 $ $332 $ $332 $ $332 $ $332 $ $332 $ $332 $ $332 $ $332 $ $332 $ $332 $ $332 $ $332 $ $332 $ $332 $ $332 $ $332 $ $332 $ $332 $ $332 $ $332 $ $332 $ $332 $ $332 $ $332 $ $332 $ $332 $ $332 $ $332 $ $332 $ $332 $ $332 $ $332 $ $332 $ $332 $ $332 $ $332 $ $332 $ $332 $ $332 $ $332 $ $332 $ $332 $ $332 $ $332 $ $332 $ $332 $ $332 $ $332 $ $332 $ $332 $ $332 $ $332 $ $332 $ $332 $ $332 $ $332 $ $332 $ $332 $ $332 $ $332 $ $332 $ $332 $ $332 $ $332 $ $332 $ $332 $ $332 $ $332 $ $332 $ $332 $ $332 $ $332 $ $332 $ $332 $ $332 $ $332 $ $332 $ $332 $ $332 $ $332 $ $332 $ $332 $ $332 $ $332 $ $332 $ $332 $ $332 $ $332 $ $332 $ $332 $ $332 $ $332 $ $332 $ $332 $ $332 $ $332 $ $332 $ $332 $ $332 $ $332 $ $332 $ $332 $ $332 $ $332 $ $332 $ $332 $ $332 $ $332 $ $332 $ $332 $ $332 $ $332 $ $332 $ $332 $ $332 $ $332 $ $332 $ $332 $ $332 $ $332 $ $332 $ $332 $ $332 $ $332 $ $332 $ $332 $ $332 $ $332 $ $332 $ $332 $ $332 $ $332 $ $332 $ $332 $ $332 $ $332 $ $332 $ $332 $ $332 $ $332 $ $332 $ $332 $ $332 $ $332 $ $332 $ $332 $ $332 $ $332 $ $332 $ $332 $ $332 $ $332 $ $332 $ $332 $ $332 $ $332 $ $332 $ $332 $ $332 $ $332 $ $332 $ $332 $ $332 $ $332 $ $332 $ $332 $ $332 $ $332 $ $332 $ $332 $ $332 $ $332 $ $332 $ $332 $ $332 $ $332 $ $332 $ $332 $ $332 $ $332 $ $332 $ $332 $ $332 $ $332 $ $332 $ $332 $ $332 $ $332 $ $332 $ $332 $ $332 $ $332 $ $332 $ $332 $ $332 $ $332 $ $332 $ $332 $ $332 $ $332 $ $332 $ $332 $ $332 $ $332 $ $332 $ $332 $ $332 $ $332 $ $332 $ $332 $ $332 $ $332 $ $332 $ $332 $ $332 $ $332 $ $332 $ $332 $ $332 $ $332 $ $332 $ $332 $ $332 $ $332 $ $332 $ $332 $ $332 $ $332 $ $332 $ $332 $ $332 $ $332 $ $332 $ $332 $ $332 $ $332 $ $332 $ $332 $ $332 $ $332 $ $332 $ $332 $ $332 $ $332 $ $332 $ $332 $ $332 $ $332 $ $332 $ $332 $ $332 $ $332 $ $332 $ $332 $ $332 $ $332 $ $332 $ $332 $ $332 $ $332 $ $332 $ $332 $ $332 $ $332 $ $332 $ $332 $ $332 $ $332 $ $332 $ $332 $ $332 $ $332 $ $332 $ $332 $ $332 $ $332 $ $332 $ $332 $ $332 $ $332 $ $332 $ $332 $ $332$	800000	0.4.0.8	7	1-	0
				8 7 7 6 0 8	N 10 10 0		CN	80
76	72	47	01115226622662232333323341 0111522262222222222222222222222222222222	3.6.6.7.7.8	<u> </u>	.2	.9	ui.
-	_	-		for the first for the first		47	0.2	
				$\sim$	$\checkmark$			



¹⁹F NMR spectra for compound **5ar** (471 Hz, CDCl₃)



20 10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 -2 f1 (ppm)

¹H NMR spectra for compound **5as** (400 Hz, CDCl₃)



## ¹³C NMR spectra for compound **5as** (100 Hz, CDCl₃)

37	83	94	31	251 22 23 23 24 25 25 25 25 25 25 25 25 25 25 25 25 25	37.0	72	0.25.09	မ္ဆဆ္မွ	7	Ø.	Z
							$(1 \leftarrow = 0 \leftarrow 0)$	t~ → 00 00	φ,	64	<i>u</i> ,
10	-	c0	രമ		10 00	C-					
· ·	C	LO	* *	*******			8 2 2 9 9 9 4	0 0 0 0		LO LO	10
	-	-				-		9999	4	c0	C1
			- \/	1 111 1 11/1	11			$\leq$			



¹⁹F NMR spectra for compound **5as** (376 Hz, CDCl₃)



10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 f1 (ppm)

¹H NMR spectra for compound **5ba** (500 Hz, CDCl₃)



#### ¹³C NMR spectra for compound **5ba** (125 Hz, CDCl₃)

176.40	172.13	147.83 134.64 138.05 134.64 133.94 133.94 125.52 1125.22 1125.22 1125.22 1125.22 1125.22 1125.22 1125.22 1125.22 1125.22 1125.22 1125.22 1125.22 1125.22 1125.22 1125.22 1125.22 1125.22 1125.22 1125.22 1125.22 1125.22 1125.22 1125.22 1125.22 1125.22 1125.22 1125.22 1125.22 1125.22 1125.22 1125.22 1125.22 1125.22 1125.22 1125.22 1125.22 1125.22 1125.22 1125.22 1125.22 1125.22 1125.22 1125.22 1125.22 1125.22 1125.22 1125.22 1125.22 1125.22 1125.22 1125.22 1125.22 1125.22 1125.22 1125.22 1125.22 1125.22 1125.22 1125.22 1125.22 1125.22 1125.22 1125.22 1125.22 1125.22 1125.22 1125.22 1125.22 1125.22 1125.22 1125.22 1125.22 1125.22 1125.22 1125.22 1125.22 1125.22 1125.22 1125.22 1125.22 1125.22 1125.22 1125.22 1125.22 1125.22 1125.22 1125.22 1125.22 1125.22 1125.22 1125.22 1125.22 1125.22 1125.22 1125.22 1125.22 1125.22 1125.22 1125.22 1125.22 1125.22 1125.22 1125.22 1125.22 1125.22 1125.22 1125.22 1125.22 1125.22 1125.22 1125.22 1125.22 1125.22 1125.22 1125.22 1125.22 1125.22 1125.22 1125.22 1125.22 1125.22 1125.22 1125.22 1125.22 1125.22 1125.22 1125.22 1125.22 1125.22 1125.22 1125.22 1125.22 1125.22 1125.22 1125.22 1125.22 1125.22 1125.22 1125.22 1125.22 1125.22 1125.22 1125.22 1125.22 1125.22 1125.22 1125.22 1125.22 1125.22 1125.22 1125.22 1125.22 1125.22 1125.22 1125.22 1125.22 1125.22 1125.22 1125.22 1125.22 1125.22 1125.22 1125.22 1125.22 1125.22 1125.22 1125.22 1125.22 1125.22 1125.22 1125.22 1125.22 1125.22 1125.22 1125.22 1125.22 1125.22 1125.22 1125.22 1125.22 1125.22 1125.22 1125.22 1125.22 1125.22 1125.22 1125.22 1125.22 1125.22 1125.22 1125.22 1125.22 1125.22 1125.22 1125.22 1125.22 1125.22 1125.22 1125.22 1125.22 1125.22 1125.22 1125.22 1125.22 1125.22 1125.22 1125.22 1125.22 1125.22 1125.22 1125.22 1125.22 1125.22 1125.22 1125.22 1125.22 1125.22 1125.22 1125.22 1125.22 1125.22 1125.22 1125.22 1125.22 1125.22 1125.22 1125.22 1125.22 1125.22 1125.22 1125.22 1125.22 1125.22 1125.22 1125.22 1125.22 1125.22 1125.22 1125.22 1125.22 1125.22 1125.22 1125.22 1125.22 1125.22 1125.22 1125.22 1125.22 1125.22 12	78,42 77,41 77,16 76,91 76,04 63,59 63,59 63,59 63,12 63,12 63,12 63,12	46.70	36.03	29.17
					1	



 $^{19}\text{F}$  NMR spectra for compound **5ar** (376 Hz, CDCl₃)



10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 f1 (ppm)

¹H NMR spectra for compound **5ca** (500 Hz, CDCl₃)





¹³C NMR spectra for compound **5ca** (125 Hz, CDCl₃)





 $^{19}\text{F}$  NMR spectra for compound **5ca** (376 Hz, CDCl₃)



10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 f1 (ppm)

 1 H NMR spectra for compound **5da** (500 Hz, CDCl₃)

0088899944444888889977777897848	7 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	00444444444 <b>4</b> 00000000


¹³C NMR spectra for compound **5da** (125 Hz, CDCl₃)

6	-	ю < < < < < < < < < < < < < < < < < < <				
õ	ō	00000040404040474	0 7 9 7 9 7 0 7 0 7 0 7 0 7 0 7 0 7 0 7	~	0	9
ف	.	<u>, , , , , , , , , , , , , , , , , , , </u>	<u> </u>	ŝ	Ņ	Ņ
Ň	~	4 ਲ਼	8 N N O G G G G G G G G G G G G G G G G G	9	9	6
-	~		~~~~~	4	e	2

¹⁹F NMR spectra for compound **5da** (376 Hz, CDCl₃)

10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 f1 (ppm)

¹H NMR spectra for compound **5ea** (400 Hz, CDCl₃)

¹³C NMR spectra for compound **5ea** (125 Hz, CDCl₃)

f1 (ppm)

¹⁹F NMR spectra for compound **5ea** (376 Hz, CDCl₃)

10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 f1 (ppm)

 1 H NMR spectra for compound **5fa** (400 Hz, CDCl₃)

8.13 8.11 7.59 7.67 7.67 7.67 7.67 7.68 7.68 7.68 7.7 8 7.7 8 7.7 8 7.7 8 7.7 8 7.7 8 7.7 8 7.7 8 7.7 8 7.7 8 7.7 8 7.7 8 7.7 8 7.6 7 7.6 7 7.6 7 7 6 8 7 7 7 6 7 7 7 6 7 7 7 7 7 7 7	55.3 57.3 57.3 57.3 57.3 57.3 57.3 57.3

¹³C NMR spectra for compound **5fa** (100 Hz, CDCl₃)

— 177.75 — 171.74	(147, 33) (147, 33) (135, 92) (135, 92) (135, 92) (135, 92) (129, 81) (129, 81) (129, 81) (129, 81) (129, 81) (129, 12) (129, 12) (129, 12) (129, 12) (112, 92) (112, 92) (112	78.89 77.48 77.16 77.16 73.76 63.39 63.39 63.39 62.79		
----------------------	--	---	--	--

¹⁹F NMR spectra for compound **5fa** (376 Hz, CDCl₃)

53.32	74.28		
I	I		

10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 f1 (ppm)

¹H NMR spectra for compound **5ga** (500 Hz, CDCl₃)

7.98 7.98 7.95 7.52 7.55 7.55 7.55 7.55 7.44 7.44 7.44 7.42 7.33 7.33 7.33 7.33 7.33 7.33 7.33 7.3	55.335 57.335 44.77 44.77 53.335 44.77 53.33 53.25 53.25 53.25 53.12 53.12 53.12 53.12 53.12 53.12 53.12 53.12 53.12 53.12 53.12 53.12 53.25 53.35 54.77 54.	2.38
		Ĩ

¹³C NMR spectra for compound **5ga** (125 Hz, CDCl₃)

$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	72.18 77.16 77.16 76.91 76.13 73.61 63.64 63.14 62.93	— 46.80	— 35.76	— 25.97
---	---	---------	---------	---------

100 90 f1 (ppm)

¹⁹F NMR spectra for compound **5ga** (376 Hz, CDCl₃)

¹H NMR spectra for compound **6** (500 Hz, DMSO- d_6)

¹³C NMR spectra for compound **6** (125 Hz, DMSO- d_6)

¹H NMR spectra for compound 7aa (500 Hz, CDCl₃)

