Electrochemicalbromocyclizationenables3,5-diversification of heterocyclic indolines

Hai Ren,^{*, a, b} Rui-An Wang,^{a, b} Jun Shi,^{a, b} Jun-Rong Song,^{a, b} Wei Wu,^{a, b} Qin Chi,^{a, b} Ni Zhang^{a, b}

^{*a*} State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang, 550014, P. R. China;

^b Natural Products Research Center of Guizhou Province, Guiyang, 550014, P. R. China

E-mail: renhai@gmc.edu.cn/renh0206@163.com

Supporting Information

Content

1.	General Information	S-1
2.	Optimization of the reaction conditions	S-2
3.	Control experiments	S-5
4.	Experimental procedures and characterizations	S-7
5.	Scale-up experiments	S-17
6.	Synthetic transformations and applications	S-18
7.	X-ray Dates	S-29
8.	References	S-31
9.	¹ H NMR, ¹³ C NMR and ¹⁹ F NMR spectra of compounds	S-32

1. General Information

All solvents and reagents were obtained from commercial sources and were purified according to standard procedures before use (unless stated otherwise). Column chromatography was performed on silica gel (Qingdao, 300 - 400 mesh) using the indicated eluents. ¹H and ¹³C NMR data were collected on a Varian Mercury 400 MHz or Agilent Mercury 600 MHz NMR spectrometer at room temperature using chloroform-d or DMSO-d₆ as a solvent and TMS as an internal standard, and chemical shift (δ) was expressed in parts per million (ppm). ¹H and ¹³C NMR spectra were internally referenced to the proton (¹H) of the internal TMS signal at 0.00 ppm or the solvent residue of DMSO- d_6 at 2.50 ppm and the residual carbon nuclei (¹³C) of the solvent at 77.0 or 39.5 ppm, respectively. The following abbreviations were used in expressing the multiplicity: s = singlet, brs = broad singlet, d = doublet, t = triplet, q = quartet, m = multiplet. High resolution mass spectra (HRMS-ESI) were recorded on a Bruker ESI-QTOF mass spectrometer. The course of the reactions was monitored by thin-layer chromatography (TLC). Melting points are measured in WRX-4 melting point apparatus purchased from Shanghai YICE Instrumental Company. The NaBr was obtained commercially and used directly without further purification.

2. Optimization of the reaction conditions

2.1 Electrolysis general informations

Electrochemical reactions were performed with ElectraSyn 2.0 package (IKA) using the constant current or constant voltage modes. The reactions were conducted in a 10 mL vial for 4 mL of solvent with a stir bar and a carbon graphite-SK-50 ($5.0 \times 0.8 \times 0.2$ cm) working electrode (anode and cathode) with a distance of 0.6 cm between the two electrodes.

2.2 Conditions screening ^a

Table S1						
Enters	NaBr	Additivos	CCE	H_2O	Time	2a
Enuy	(x equiv.)	Auditives	(mA)	(µL)	(h)	(%)
1	2	-	5	100	12	31
2	2.5	-	5	0	12	35
3	3	-	5	100	12	35
4	4	-	5	0	12	40
5	2.5	CH ₃ CO ₂ H (10 µL)	5	100	12	66
6	2.5	CH ₃ CO ₂ H (20 µL)	5	100	12	70
7	2.5	CH ₃ CO ₂ H (30 µL)	5	100	12	71
8	2.5	CH ₃ CO ₂ H (50 µL)	5	100	12	59
9	2.5	CH ₃ CO ₂ H (30 µL)	5	30	12	78
10	2.5	CH ₃ CO ₂ H (30 µL)	5	50	9	75
11	2.5	CH ₃ CO ₂ H (30 µL)	5	80	9	61
12	2.5	CH ₃ CO ₂ H (30 µL)	10	30	4	85
13	2.5	CH ₃ CO ₂ H (20 µL)	10	30	3	85
14	2.5	CH ₃ CO ₂ H (20 µL)	10	-	12	0
15	2.5	-	10	30	3	17
16	2.5	CH ₃ CO ₂ H (20 µL)	-	30	12	0
17	2.5	PhCO ₂ H (40 μL)	10	30	3	84
18	2.5	EtOH (20 μL)	10	30	3	24
19	2.5	HFIP (37 μ L)	10	30	3	0
20	2.5	CH ₃ SO ₃ H (23 µL)	10	30	3	67
21	2.5	C ₂ H ₅ CO ₂ H (26 µL)	10	30	3	84
22	2.5	CH ₃ CO ₂ Na (28.7 mg)	10	30	3	trace
23	2.5	CH ₃ CO ₂ NH ₄ (27.0 mg)	10	30	3	trace

^a Conditions: undivided cell, carbon-cloth anode and cathode, **1a** (0.2 mmol), NaBr, CH₃CN (4 mL), H₂O (30 μ L), Additives (CH₃CO₂H, 20 μ L = 0.35 mmol), 3 – 12 h (13.6 – 37.6 F mol⁻¹), RT, under air. Yields are isolated by column chromatography. CCE = constant current electrolysis.

Table	S2
-------	-----------

Entry	Derivation from standard conditons	2a (%)	3a (%)
1	None	85	0
2	Without CH ₃ CO ₂ H	17	79
3	Without H ₂ O	0	89
4	EtOH instead of CH ₃ CO ₂ H	24	72
5	HFIP instead of CH ₃ CO ₂ H	0	38
6	CH ₃ SO ₃ H instead of CH ₃ CO ₂ H	67	0
7	C ₂ H ₅ CO ₂ H instead of CH ₃ CO ₂ H	84	0
8	CH ₃ CO ₂ Na instead of CH ₃ CO ₂ H	trace	72
9	CH ₃ CO ₂ NH ₄ instead of CH ₃ CO ₂ H	trace	90
10	CF ₃ CO ₂ H instead of CH ₃ CO ₂ H	0	78
11	PhCO ₂ H instead of CH ₃ CO ₂ H	84	0
12	30 uL CH ₃ CO ₂ H	85	0
13	No electric current	0	0
14	NaCl instead of NaBr	0	trace (3a')
15	NaI instead of NaBr	0	49 (3a'')
16	TBAB instead of NaBr	0	53
17	Pt electrode instead of C electrode	0	0

^a Conditions: undivided cell, carbon-cloth anode and cathode, **1a** (0.2 mmol), NaBr (0.5 mmol), CH₃CN (4 mL), additive H₂O (30 μ L), CH₃COOH (20 μ L = 0.35 mmol), CCE = 10.0 mA, 3 –12 h (13.6–37.6 F mol⁻¹), RT, under air. Yields are based on product isolated by column chromatography. CCE = constant current electrolysis.

3. Control experiments

Several control experiments were conducted to investigate the functions of the protonic acid. In our previous work, a 4/0.1 (v/v) mixture of acetonitrile and water enabled highly selective 3-bromocyclization (3a: 83% yield), and a trace amount of 3,5-dibromoindoline 2a was not observed (eq. 1). When CH₃COOH was added under such conditions, the 3.5-dibromoindoline 2a was obtained as the final product in 84% yield (eq. 2). These results indicate that CH₃COOH plays a key role in the 5-bromination process. When CH₃COONa or CH₃COONH₄ was used as the additive instead of CH₃COOH, the dibromination reaction was significantly restrained, which suggests that the hydrogen ion (H⁺) plays an important role in promotion of the bromination reactions (eqs. 2 and 3). When the 3-bromoindoline 3a was employed under the optimal conditions, the 3, 5-dibromoindoline 2a was successfully obtained vield which indicates in high (eq. 5), that a cascade electrophilic C3a-bromocyclization and C5a-bromination process may be responsible for this reaction.

In our previous work,¹ a 2.5/1.5 (ν/ν) mixture of acetonitrile and water enabled highly selective 5-bromocyclization to form the 5-bromoindoline **19**, and none of 3,5-dibromoindoline **2a** was observed (eq. 1). The mechanism of the formation of 5-bromoindoline has been verified through a key reductive hydrodebromination of 3a-bromofuranindoline at the cathode.¹ On the basis of the previous conditions (eq. 1), when CH₃COOH was added into this condition, the 5-bromoindoline **19** was obtained in 71% yield after 10 h and none of 3, 5-dibromoindoline **2a** was detected. These results suggested that the reductive hydrodebromination of 3a-bromoindoline at the cathode was mainly controlled by the use of more amount of water and the electrophilic 5-bromoniation process was accelerated by CH₃COOH.

When the N-methyl indole substrates were employed in the standard conditions, none of desired dibromoindoline product was obtained and the substrates decomposed. We assumed that the electron-rich of indole was unstable under the current electronic oxidative conditions, an electron-withdrawing group is necessary for the reaction.

4. Experimental procedures and characterizations

4.1 Preparation of tryptamine/tryptophol substrates

All of the different tryptamine/tryptophol substrates were prepared according to the published procedures^[1].

The physical datas for new substrate compounds were provided below:

tert-butyl 3-(2-((tert-butoxycarbonyl)amino)ethyl)-6-(trifluoromethyl)-1*H*-indole -1-carboxylate (1y)

MHz, Chloroform-*d*) δ 155.9, 149.2, 134.7, 132.9, 126.5 (q, ${}^{2}J_{C-F} = 31.4$ Hz), 125.5, 124.8 (q, ${}^{1}J_{C-F} = 271.6$ Hz), 119.3, 119.2 (q, ${}^{3}J_{C-F} = 3.0$ Hz), 117.6, 112.8 (q, ${}^{3}J_{C-F} = 4.4$ Hz), 84.4, 79.4, 40.2, 28.3, 28.1, 25.5 ppm. ¹⁹F NMR (565 MHz, Chloroform-*d*) δ -61.0 ppm. **HRMS** (ESI) *m/z*: [M + Na]⁺ Calcd for C₂₁H₂₇O₄N₂F₃Na 451.1815; Found 451.1807.

4.2 General Procedure for cyclic 3a, 5a-dibromoindolines

A mixture of **1a** (52.26 mg, 0.2 mmol), NaBr (51.4 mg, 0.5 mmol) and CH₃CN (4 mL), H₂O (30 μ L), CH₃CO₂H (20 μ L) were added in a 10 mL vial, then the vial was covered with the electrode holder at room temperature, the electrolysis was carried out using a constant current of 10.0 mA a carbon graphite anode and carbon graphite cathode (1.4 × 0.8 × 0.2 cm submerged in solution) with stirring. After completion as detected by TLC. The reaction mixture was diluted with EA. The organic phase was washed with brine, dried over Na₂SO₄ and concentrated under reduced pressure, purified by flash column chromatography petroleum ether/ethyl acetate= 10/1 to give compound **2a** (71.3 mg, 85% yield).

tert-butyl (3a*S*,8a*R*)-3a,5-dibromo-2,3,3a,8a-tetrahydro-8*H*-furo[2,3-*b*]indole-8carboxylate (2a)

Light yellow oil, 4 h, 71.3 mg, 85% yield; ¹H NMR (600 MHz, CDCl₃) δ 7.73 (brs, 1H), 7.51 (s, 1H), 7.38 (d, J = 8.2 Hz, 1H), 6.15 (brs, 1H), 4.01 (t, J = 8.2 Hz, 1H), 3.52 – 3.48 (m, 1H), 2.90 – 2.85 (m, 1H), 2.78 – 2.75 (m, 1H), 1.59 (s, 9H) ppm.

(3a*S*,8a*R*)-3a,5-dibromo-8-tosyl-3,3a,8,8a-tetrahydro-2*H*-furo[2,3-*b*]indole (2b)

White solid, 4 h, 44.6 mg, 47% yield; ¹H NMR (600 MHz, CDCl₃) δ 7.77 (d, J = 8.2 Hz, 2H), 7.45 (d, J = 1.8 Hz, 1H), 7.39 – 7.35 (m, 2H), 7.27 (d, J = 8.2 Hz, 2H), 6.21 (s, 1H), 4.03 – 4.00 (m, 1H), 3.46 – 3.42 (m, 1H), 2.84 – 2.79 (m, 1H), 2.71 – 2.68 (m, 1H), 2.38

(s, 3H) ppm; ¹³C NMR (150 MHz, Chloroform-*d*) δ 144.7, 139.6, 135.2, 134.5, 133.5, 129.8, 128.3, 127.3, 117.2, 115.7, 103.5, 68.0, 60.1, 44.5, 21.6 ppm; **HRMS** (ESI) m/z: [M + Na]⁺ Calcd for C₁₇H₁₅O₃NBr₂NaS 493.9031; Found 493.9027.

benzyl (3a*S*,8a*R*)-3a,5-dibromo-2,3,3a,8a-tetrahydro-8*H*-furo[2,3-*b*]indole-8-carboxylate (2c)

¹³**C NMR** (150 MHz, Chloroform-*d*) δ 152.1, 140.5, 135.5, 133.5, 129.0, 128.6, 128.4, 127.9, 127.1, 116.4, 116.3, 100.8, 67.9, 67.8, 60.4, 44.8 ppm; **HRMS** (ESI) m/z: [M + Na]⁺ Calcd for C₁₈H₁₅O₃NBr₂Na 473.9311; Found 473.9307.

(3a*S*,8a*R*)-3a,5-dibromo-8-((4-nitrophenyl)sulfonyl)-3,3a,8,8a-tetrahydro-2*H*-fur o[2,3-*b*]indole (2d)

Br N Ns 2d

Light yellow oil, 4 h, 53.9 mg, 50% yield; ¹H NMR (600 MHz, CDCl₃) δ 8.33 (d, J = 8.8 Hz, 2H), 8.11 (d, J = 9.0 Hz, 2H), 7.50 (d, J = 1.8 Hz, 1H), 7.44 (dd, J = 8.8, 2.0 Hz, 1H), 7.39 (d, J = 8.6 Hz, 1H), 6.20 (s, 1H), 4.04 – 4.01 (m, 1H), 3.41 – 4.37 (m, 1H), 2.86 –

2.81 (m, 1H), 2.75 – 2.72 (m, 1H) ppm. ¹³C NMR (150 MHz, Chloroform-*d*) δ 133.5, 128.7, 128.5, 128.4, 128.2, 127.9, 116.4, 116.3, 100.8, 67.9, 67.8, 44.8, 1.0 ppm; HRMS (ESI) m/z: [M + Na]⁺ Calcd for C₁₆H₁₂O₅N₂Br₂NaS 524.8726; Found 524.8707.

tert-butyl (3a*S*,8a*R*)-3a,5-dibromo-8a-methyl-2,3,3a,8a-tetrahydro-8*H*-furo[2,3*b*]-indole-8-carboxylate (2e)

ppm; ¹³C NMR (150 MHz, Chloroform-*d*) δ 151.6, 141.0, 133.4, 133.1, 128.0, 116.8, 115.3, 104.2, 82.5, 70.0, 66.2, 46.2, 28.3, 26.3 ppm; **HRMS** (ESI) m/z: [M + Na]⁺ Calcd for C₁₆H₁₉O₃NBr₂Na 453.9624; Found 453.9624.

tert-butyl (3a*S*,8a*R*)-3a,5-dibromo-8a-phenyl-2,3,3a,8a-tetrahydro-8*H*-furo[2,3-*b*] indole-8-carboxylate (2f)

Br Yellow solid, 4 h, 90.9 mg, 92% yield; ¹H NMR (600 MHz,
CDCl₃)
$$\delta$$
 7.87 (d, J = 8.8 Hz, 1H), 7.63 (s, 1H), 7.54 (d, J = 2.0 Hz
1H), 7.48 - 7.30 (m, 4H), 7.15 (s, 1H), 4.26 - 4.15 (m, 1H), 3.70 - 3.66 (m, 1H), 2.92 - 2.87 (m, 1H), 2.82 - 2.76 (m, 1H), 1.14 (s, 12) + 1.14 (s, 12) +

9H) ppm; ¹³C NMR (150 MHz, Chloroform-*d*) δ 151.5, 141.6, 141.5, 133.2, 133.1, 128.27, 128.2, 127.7, 127.4, 126.8, 125.3, 116.2, 115.5, 107.0, 82.0, 71.0, 66.8, 46.8, 27.6 ppm; HRMS (ESI) m/z: [M + Na]⁺ Calcd for C₂₁H₂₁O₃NBr₂Na 515.9780; Found 515.9776.

tert-butyl (3a*S*,8a*R*)-3a,5-dibromo-4-fluoro-2,3,3a,8a-tetrahydro-8*H*-furo[2,3-*b*]indole-8-carboxylate (2g)

Chloroform-*d*) δ 154.9 (d, ${}^{1}J_{C-F}$ = 250.0 Hz), 151.2, 143.3, 135.4, 119.4, 111.9 (d, ${}^{3}J_{C-F}$ = 4.5 Hz), 102.2 (d, ${}^{2}J_{C-F}$ = 17.5 Hz), 101.7, 82.8, 68.1, 57.6, 42.8, 28.2 ppm; ${}^{19}F$ NMR (565 MHz, Chloroform-*d*) δ -110.8 ppm; HRMS (ESI) m/z: [M + Na]⁺ Calcd for C₁₅H₁₆O₃NBr₂FNa 457.9373; Found 457.9370.

tert-butyl (3a*S*,8a*R*)-3a-bromo-5-chloro-2,3,3a,8a-tetrahydro-8*H*-furo[2,3-*b*]indole-8-carboxylate (2h)

(150 MHz, Chloroform-*d*) δ 151.5, 140.5, 133.3, 130.4, 128.6, 124.8, 116.0, 101.0, 82.4, 67.7, 60.6, 44.8, 28.2 ppm; **HRMS** (ESI) m/z: [M + Na]⁺ Calcd for

C₁₅H₁₇O₃NBrClNa 395.9972; Found 395.9972.

(3a*S*,8a*R*)-3a-bromo-5-chloro-8-tosyl-3,3a,8,8a-tetrahydro-2*H*-furo[2,3-*b*]indole (2i)

CI
N
Ts
Si
White solid, 5 h, 61.7 mg, 72% yield; ¹H NMR (600 MHz, CDCl₃)

$$\delta$$
 7.77 (d, $J = 8.4$ Hz, 2H), 7.42 (d, $J = 8.7$ Hz, 1H), 7.30 (d, $J = 2.2$
Hz, 1H), 7.27 (d, $J = 8.2$ Hz, 2H), 7.24 (dd, $J = 8.6$, 2.0 Hz, 1H),
 6.21 (s, 1H), 4.04 – 4.01 (m, 1H), 3.47 – 3.42 (m, 1H), 2.85 – 2.80

(m, 1H), 2.71 – 2.68 (m, 1H), 2.38 (s, 3H) ppm; ¹³C NMR (150 MHz, Chloroform-*d*) δ 144.7, 139.1, 135.2, 134.2, 130.7, 129.9, 129.8, 127.3, 125.3, 115.3, 103.5, 67.9, 60.2, 44.4, 21.6 ppm; **HRMS** (ESI) m/z: [M + Na]⁺ Calcd for C₁₇H₁₅O₃NBrClNaS 449.9537; Found 449.9532.

tert-butyl (3a*S*,8a*R*)-3a,5-dibromo-6-fluoro-2,3,3a,8a-tetrahydro-8*H*-furo[2,3-*b*]indole-8-carboxylate (2j)

9H) ppm; ¹³C NMR (150 MHz, Chloroform-*d*) δ 158.8 (d, ¹*J*_{C-F} = 241.5 Hz), 151.9, 128.1, 103.5 (d, ²*J*_{C-F} = 30.0 Hz), 101.2 (d, ²*J*_{C-F} = 22.5 Hz), 94.0, 82.1, 66.4, 44.3, 33.8, 28.3 ppm. ¹⁹F NMR (565 MHz, Chloroform-*d*) δ -106.7 ppm; HRMS (ESI) m/z: [M + Na]⁺ Calcd for C₁₅H₁₆O₃NBr₂FNa 457.9373; Found 457.9363.

tert-butyl (3a*S*,8a*R*)-3a,5-dibromo-6-chloro-2,3,3a,8a-tetrahydro-8*H*-furo[2,3-*b*]indole-8-carboxylate (2k)

Light yellow oil, 7 h, 55.5 mg, 61% yield; ¹H NMR (600 MHz, CDCl₃) δ 8.02 (brs, 1H), 7.61 (s, 1H), 6.15 (brs, 1H), 4.02 (t, J = 8.2 Hz, 1H), 3.52 – 3.48 (m, 1H), 2.89 – 2.84 (m, 1H), 2.76 – 2.73 (m, 1H), 1.59 (s, 9H) ppm; ¹³C NMR (150 MHz, Chloroform-*d*) δ

151.2, 141.7, 136.4, 132.0, 129.3, 116.6, 115.8, 101.2, 82.8, 67.8, 59.7, 44.8, 28.2;

HRMS (ESI) m/z: $[M + Na]^+$ Calcd for $C_{15}H_{16}O_3NBr_2ClNa$ 473.9078; Found 473.9069.

tert-butyl 3a,5-dibromo-7-ethyl-2,3,3a,8a-tetrahydro-8*H*-furo[2,3-*b*]indole-8carboxylate (2l)

NMR (150 MHz, Chloroform-*d*) δ 152.3, 139.0, 136.6, 136.4, 133.5, 124.6, 118.4, 102.9, 82.5, 67.8, 60.3, 43.2, 28.1, 25.7, 13.2 ppm; **HRMS** (ESI) m/z: [M + Na]+ Calcd for C₁₇H₂₁O₃NBr₂Na 467.9780; Found 467.9760.

di-tert-butyl (3a*S*,8a*S*)-3a,5-dibromo-2,3,3a,8a-tetrahydropyrrolo[2,3-*b*]indole-1,8-dicarboxylate (2n)

benzyl (3a*S*,8a*S*)-3a,5-dibromo-8-tosyl-3,3a,8,8a-tetrahydropyrrolo[2,3-*b*]indole-1(2*H*)-carboxylate (20)

Br

Colorless oil, 6 h, 77.1 mg, 64% yield; ¹H NMR (600 MHz, CDCl₃) δ 7.73 – 7.28 (m, 10H), 7.17 (d, J = 7.3 Hz, 2H), 6.26 (brs, 1H), 5.30 – 5.19 (m, 2H), 3.85 – 3.81 (m, 1H), 2.86 (s, 1H), 2.70 – 2.59 (m, 2H), 2.34 (s, 3H) ppm. ¹³C

NMR (150 MHz, Chloroform-*d*) δ 153.7, 144.6, 140.3, 136.0, 135.5, 134.9, 133.7, 129.6, 128.5, 128.3, 127.8, 127.4, 119.3, 118.4, 87.0, 67.8, 60.6, 45.9, 42.3, 21.6 ppm. **HRMS** (ESI) m/z: [M + Na]⁺ Calcd for C₂₅H₂₂O₄N₂Br₂NaS 626.9559; Found 626.9552.

1-benzyl 8-(tert-butyl) (3a*S*,8a*S*)-3a,5-dibromo-2,3,3a,8a-tetrahydropyrrolo[2,3-*b*] indole-1,8-dicarboxylate (2p)

ppm; ¹³C NMR (150 MHz, Chloroform-*d*) δ 153.8, 151.7, 141.0, 136.3, 134.4, 133.4, 128.4, 128.1, 128.0, 126.8, 118.8, 116.3, 84.3, 82.6, 67.3, 60.8, 46.3, 41.1, 28.1 ppm. HRMS (ESI) m/z: [M + Na]⁺ Calcd for C₂₃H₂₄O₄N₂Br₂Na 572.9995; Found 572.9978.

di-tert-butyl (3a*S*,8a*S*)-3a,5-dibromo-8a-methyl-2,3,3a,8a-tetrahydropyrrolo[2,3*b*]indole-1,8-dicarboxylate (2q)

Yellow oil, 24 h, 78.4 mg, 74% yield; ¹H NMR (600 MHz, CDCl₃) δ 7.60 (brs, 1H), 7.46 (d, J = 2.2 Hz, 1H), 7.36 (dd, J = 8.8, 2.2 Hz, 1H), 3.44 (t, J = 9.6 Hz, 1H), 2.95 – 2.90 (m, 1H), 2.81 – 2.77 (m, 1H), 2.66 – 2.60 (m, 1H), 2.12 (s, 3H), 1.59 (s, 3H),

9H), 1.41 (s, 9H) ppm. ¹³C NMR (150 MHz, Chloroform-*d*) δ 141.3, 134.1, 132.9, 126.0, 119.9, 115.4, 88.5, 82.1, 80.5, 69.2, 45.7, 35.9, 28.4, 28.3, 24.0 ppm. HRMS (ESI) m/z: [M + Na]⁺ Calcd for C₂₁H₂₈O₄N₂Br₂Na 553.0308; Found 553.0289.

di-tert-butyl (3a*S*,8a*S*)-3a,5-dibromo-4-methyl-2,3,3a,8a-tetrahydropyrrolo[2,3*b*]indole-1,8-dicarboxylate (2r)

3H), 1.57 (s, 9H), 1.49 (s, 9H) ppm. ¹³C NMR (150 MHz, Chloroform-*d*) δ 153.4, 151.8, 141.9, 134.7, 134.1, 130.8, 120.3, 116.0, 84.9, 82.4, 80.8, 63.0, 46.1, 40.8, 28.3, 28.2, 19.2 ppm. **HRMS** (ESI) m/z: [M + Na]⁺ Calcd for C₂₁H₂₈O₄N₂Br₂Na 553.0308; Found 553.0289.

di-tert-butyl (3a*S*,8a*S*)-3a,5-dibromo-4-fluoro-2,3,3a,8a-tetrahydropyrrolo[2,3-*b*] indole-1,8-dicarboxylate (2s)

NMR (150 MHz, Chloroform-*d*) δ 154.7 (d, ${}^{1}J_{C-F} = 250.5$ Hz), 153.2, 151.5, 143.5 (d, ${}^{3}J_{C-F} = 4.5$ Hz), 135.2, 132.1 (d, ${}^{2}J_{C-F} = 9.0$ Hz), 120.4, 113.7, 102.7, 85.0, 82.8, 81.0, 58.8, 46.5, 40.2, 28.3, 28.1 ppm. ¹⁹F NMR (565 MHz, Chloroform-*d*) δ -111.2 ppm. **HRMS** (ESI) m/z: [M + Na]⁺ Calcd for C₂₀H₂₅O₄N₂Br₂NaF 557.0057; Found 557.0053.

di-tert-butyl (3a*S*,8a*S*)-3a,5-dibromo-6-methyl-2,3,3a,8a-tetrahydropyrrolo[2,3-*b*] indole-1,8-dicarboxylate (2t)

Chloroform-*d*) δ 153.2, 152.0, 141.5, 140.2, 132.1, 127.3, 119.2, 118.8, 84.4, 82.4, 80.8, 61.3, 46.2, 41.8, 28.3, 28.2, 23.6 ppm. **HRMS** (ESI) m/z: [M + Na]⁺ Calcd for C₂₁H₂₈O₄N₂Br₂Na 553.0308; Found 553.0303.

di-tert-butyl (3a*S*,8a*S*)-3a,5,6-tribromo-2,3,3a,8a-tetrahydropyrrolo[2,3-*b*]indole-1,8-dicarboxylate (2u)

White foam oil, 10 h, 70.4 mg, 61% yield; ¹H NMR (600 MHz, CDCl₃) δ 7.97 (brs, 1H), 7.57 (s, 1H), 6.42 (s, 1H), 3.80 – 3.76 (m, 1H), 2.86 – 2.82 (m, 1H), 2.73 – 2.65 (m, 2H), 1.59 (s, 9H), 1.48 (s, 9H) ppm. ¹³C NMR (150 MHz, Chloroform-*d*)

δ 153.1, 151.5, 142.0, 133.7, 128.4, 126.5, 121.9, 118.5, 84.5, 83.0, 81.0, 60.4, 46.2, 41.9, 28.3, 28.1 ppm. **HRMS** (ESI) m/z: [M + Na]⁺ Calcd for C₂₀H₂₅O₄N₂Br₃Na 616.9257; Found 616.9242.

di-tert-butyl (3a*S*,8a*S*)-3a,5-dibromo-7-methyl-2,3,3a,8a-tetrahydropyrrolo[2,3-*b*] indole-1,8-dicarboxylate (2v)

¹³**C NMR** (150 MHz, Chloroform-*d*) δ 153.3, 140.9, 137.2, 135.0, 133.0, 123.4, 118.6, 86.2, 82.3, 80.7, 61.1, 45.5, 37.8, 28.5, 28.1, 19.2 ppm. **HRMS** (ESI) m/z: [M + Na]⁺ Calcd for C₂₁H₂₈O₄N₂Br₂Na 553.0308; Found 553.0303.

di-tert-butyl (3a*S*,8a*S*)-3a,5-dibromo-8a-phenyl-2,3,3a,8a-tetrahydropyrrolo[2,3*b*]indole-1,8-dicarboxylate (2w)

3.25 - 3.20 (m, 1H), 2.77 - 2.74 (m, 1H), 2.42 - 2.36 (m, 1H), 1.36 (s, 9H), 1.24 (s, 9H) ppm. ¹³C NMR (150 MHz, Chloroform-*d*) δ 151.8, 151.6, 141.9, 135.8, 133.6, 133.0, 132.8, 128.1, 126.8, 126.1, 125.5, 125.4, 119.5, 115.1, 92.5, 81.6, 80.2, 71.9, 47.1, 35.4, 28.2, 27.5 ppm. **HRMS** (ESI) m/z: [M + Na]+ Calcd for C₂₆H₃₀O₄N₂Br₂Na 615.0464; Found 615.0449.

di-tert-butyl

(3a*S*,8a*S*)-3a-bromo-6-(trifluoromethyl)-2,3,3a,8a-tetrahydro-pyrrolo[2,3-*b*]indol e-1,8-dicarboxylate (3y)

 $F_{3}C$ $F_{3}C$ F

1H), 7.36 (d, J = 8.0 Hz, 1H), 6.48 (s, 1H), 3.78 (dd, J = 10.8, 7.2 Hz, 1H), 2.84 – 2.73 (m, 3H), 1.60 (s, 9H), 1.49 (s, 9H) ppm. ¹³**C NMR** (150 MHz, Chloroform-*d*)) δ 153.2, 151.6, 142.3, 136.2, 132.4 (q, ${}^{2}J_{C-F} = 33.0$ Hz), 124.3, 123.8 (q, ${}^{1}J_{C-F} = 271.6$ Hz), 120.9, 114.4, 84.2, 82.8, 81.0, 60.7, 46.1, 41.5, 28.3, 28.1 ppm. ¹⁹**F NMR** (565 MHz, Chloroform-*d*) δ -62.7 ppm. **HRMS** (ESI) m/z: [M + Na]⁺ Calcd for C₂₁H₂₆O₄N₂F₃BrNa 529.0920; Found 529.0911.

5. Scale-up experiments

A mixture of **1a** (261.32 mg, 1.0 mmol), NaBr (257.23 mg, 2.5 mmol) and CH₃CN (8 mL), H₂O (150 μ L), CH₃CO₂H (100 μ L) were added in a 10 mL vial, then the vial was covered with the electrode holder at room temperature, the electrolysis was carried out using a constant current of 10.0 mA a carbon graphite anode and carbon graphite cathode (1.4 × 0.8 × 0.2 cm submerged in solution) with stirring. After completion as detected by TLC. The reaction mixture was diluted with EA. The organic phase was washed with brine, dried over Na₂SO₄ and concentrated under reduced pressure, purified by flash column chromatography petroleum ether/ethyl acetate= 10/1 to give compound **2a** (295.0 mg, 70% yield).

A mixture of **1a** (360.45 mg, 1.0 mmol), NaBr (257.23 mg, 2.5 mmol) and CH₃CN (8 mL), H₂O (150 μ L), CH₃CO₂H (100 μ L) were added in a 10 mL vial, then the vial was covered with the electrode holder at room temperature, the electrolysis was carried out using a constant current of 10.0 mA a carbon graphite anode and carbon graphite cathode (1.4 × 0.8 × 0.2 cm submerged in solution) with stirring. After completion as detected by TLC. The reaction mixture was diluted with EA. The organic phase was washed with brine, dried over Na₂SO₄ and concentrated under reduced pressure, purified by flash column chromatography petroleum ether/ethyl acetate= 10/1 to give compound **2a** (379.8 mg, 73% yield).

6. Synthetic transformations and applications

To a solution of **2a** (83.82 mg, 0.2 mmol) in THF (4 mL) were sequentially added PhB(OH)₂ (48.78 mg, 0.4 mmol), K₂CO₃ (30.41 mg, 0.22 mmol), Pd(OAc)₂ (13.46 mg, 0.06 mmol), PPh₃ (15.72 mg, 0.06 mmol) and H₂O (54 μ L, 3.0 mmol) under argon atmosphere, the mixture was stirred at room temperature, the reaction was completed after for 12 h. The solution was washed with water and the aqueous layer was extracted with DCM, the organic phase was washed with brine, dried over Na₂SO₄ and concentrated under reduced pressure, the crude product was purified by flash column chromatography petroleum ether/ethyl acetate to afford the product **3** as colorless oil (60.2 mg, 72% yield).

tert-butyl (3a*S*,8a*R*)-3a-bromo-5-phenyl-2,3,3a,8a-tetrahydro-8*H*-furo[2,3-*b*] indole-8-carboxylate (3)

¹**H NMR** (600 MHz, CDCl₃) δ 7.89 (brs, 1H), 7.63 (s, 1H), 7.57 (d, J = 7.6 Hz, 2H), 7.53 (d, J = 8.2 Hz, 1H), 7.44 (t, J = 7.6 Hz, 2H), 7.34 (t, J = 7.4 Hz, 1H), 6.22 (brs, 1H), 4.03 (t, J = 8.4 Hz, 1H), 3.57 – 3.53 (m, 1H), 2.96 – 2.91 (m, 1H), 2.87 – 2.84 (m, 1H), 1.62 (s, 9H) ppm. ¹³**C NMR** (150 MHz, Chloroform-*d*) δ 140.2, 137.0, 129.4, 128.8, 127.2, 126.8, 115.1, 101.1, 67.8, 45.1, 28.3 ppm. **HRMS** (ESI) m/z: $[M + Na]^+$ Calcd for C₂₁H₂₂O₃NBrNa 438.0675; Found 438.0672.

A mixture of **2a** (83.82 mg, 0.2 mmol), DavePhos (11.8 mg, 0.03 mmol), Pd₂(dba)₃ (18.3 mg, 0.02 mmol), NaO'Bu (38.4 mg, 0.4 mmol) and morpholine (52.4 μ L, 0.6 mmol) were dissolved in 1,4-dioxane (2 mL) under argon atmosphere, then the mixture was stirred at 100 °C and the reaction was completed as monitored by

TLC. The solution was washed with water and the aqueous layer was extracted with DCM, the organic phase was washed with brine, dried over Na_2SO_4 and concentrated under reduced pressure, purified by flash column chromatography petroleum ether/ethyl acetate= 2/1 to give **4** as a yellow oil (25.0 mg, 29% yield).

tert-butyl

3a-bromo-5-morpholino-2,3,3a,8a-tetrahydro-8*H*-furo[2,3-*b*]indole-8-carboxylate (4)

¹**H NMR** (600 MHz, CDCl₃) δ 7.71 (brs, 1H), 6.80 (s, 2H), 6.16 (br, 1H), 3.98 (t, J = 8.0 Hz, 1H), 3.91 - 3.82 (m, 4H), 3.48 - 3.44 (m, 1H), 3.13 - 3.06 (m, 4H), 2.37 - 2.24 (m, 1H), 2.10 - 2.08 (m, 1H), 1.58 (s, 9H) ppm.¹³**C NMR** (150 MHz, Chloroform-*d*) δ 147.7, 136.7, 132.1, 128.4, 116.0, 114.8, 112.8, 93.5, 81.0, 66.9, 66.3, 50.5, 45.3, 33.7, 28.4 ppm. **HRMS** (ESI) m/z: [M + Na]⁺ Calcd for C₁₉H₂₆O₄N₂Br 425.1070; Found 425.1073.

To a solution of **2a** (83.82 mg, 0.2 mmol) and AgOAc (36.72 mg, 0.22 mmol) in AcOH was heated to 40 $^{\circ}$ C in the dark, the reaction was completed as monitored by TLC, after 4 h. The reaction was extracted with EA, the organic phase was washed with brine and dried over Na₂SO₄, purified by flash column chromatography to afford the product **5** as a white foam oil (66.3 mg, 83% yield).

tert-butyl 3a-acetoxy-5-bromo-2,3,3a,8a-tetrahydro-8*H*-furo[2,3-*b*]indole-8carboxylate (5)

¹**H NMR** (600 MHz, CDCl₃) δ 7.77 (brs, 1H), 7.61 (d, J = 2.0 Hz, 1H), 7.41 (d, J = 8.0 Hz, 1H), 6.06 (brs, 1H), 4.10 (t, J = 8.8 Hz, 1H), 3.57 – 3.53 (m, 1H), 2.68 –2.57 (m, 2H), 2.06 (s, 3H), 1.58 (s, 9H) ppm. ¹³**C NMR** (150 MHz, Chloroform-*d*) δ 169.8, 151.8, 140.3, 133.5, 130.5, 128.1, 116.3, 115.3, 96.7, 90.7, 82.1, 67.0, 39.7, 28.3, 21.3 ppm. **HRMS** (ESI) m/z: [M + Na]⁺ Calcd for C₁₇H₂₀O₅NBrNa 420.0417; Found 420.0402.

A mixture of **5** (39.83 mg, 0.1 mmol), K_3PO_4 (63.68 mg, 0.3 mmol), $PdCl_2(dppf)$ (7.26 mg, 0.01 mmol), and B_2Pin_2 (27.93 mg, 0.11 mmol) were dissolved in DMF (3 mL) under argon atmosphere, the mixture was heated to 80 °C and the reaction was monitored by TLC. The mixture was extracted with EA, the organic phase was washed with brine, dried over Na₂SO₄, purified by flash column chromatography petroleum ether/ethyl acetate= 4/1 to give compound **6** as a colorless oil (29.5 mg, 46% yield).

di-tert-butyl (3a*S*,3'a*S*,8a*R*,8'a*R*)-3a,3'a-diacetoxy-2,2',3,3a,3',3'a,8a,8'a octahy-dro-8*H*,8'*H*-[5,5'-bifuro[2,3-*b*]indole]-8,8'-dicarboxylate (6)

¹**H NMR** (600 MHz, CDCl₃) δ 7.92 (brs, 2H), 7.67 (s, 2H), 7.52 (d, J = 8.0 Hz, 2H), 6.12 (brs, 2H), 4.12 (t, J = 8.4 Hz, 2H), 3.63 – 3.58 (m, 2H), 2.78 – 2.73 (m, 2H), 2.68 – 2.63 (m, 2H), 2.07 (s, 3H), 2.06 (s, 3H), 1.61 (s, 18H) ppm. ¹³**C NMR** (150 MHz, Chloroform-*d*) δ 169.8, 152.0, 143.4, 138.9, 135.6, 129.2, 123.2, 115.0, 96.8, 91.3, 81.7, 67.0, 39.7, 28.3, 21.4 ppm. **HRMS** (ESI) m/z: [M + Na]⁺ Calcd for C₃₄H₄₀O₁₀N₂Na 659.2575; Found 659.2574.

To a solution of **5** (79.65 mg, 0.2 mmol) in THF (4 mL) were sequentially added PhB(OH)₂ (48.78 mg, 0.4 mmol), K₂CO₃ (30.41 mg, 0.22 mmol), Pd(OAc)₂ (13.46 mg, 0.06 mmol), PPh₃ (15.72 mg, 0.06 mmol) and H₂O (54 μ L, 3.0 mmol) under argon atmosphere, the mixture was stirred at room temperature, the reaction was completed after for 12 h. The solution was washed with water and the aqueous layer was extracted with DCM, the organic phase was washed with brine, dried over

 Na_2SO_4 and concentrated under reduced pressure, the crude product was purified by silica gel column chromatography on silica gel to afford the product **7** as a colorless oil (44.3 mg, 56% yield).

tert-butyl 3a-acetoxy-5-phenyl-2,3,3a,8a-tetrahydro-8*H*-furo[2,3-*b*]indole-8carboxylate (7)

¹**H NMR** (600 MHz, CDCl₃) δ 7.94 (brs, 1H), 7.75 (s, 1H), 7.61 – 7.51 (m, 3H), 7.42 (t, J = 7.7 Hz, 2H), 7.31 (t, J = 7.4 Hz, 1H), 6.12 (brs, 1H), 4.12 (t, J = 8.5 Hz, 1H), 3.63 – 3.58 (m, 1H), 2.78 – 2.75 (m, 1H), 2.67 – 2.62 (m, 1H), 2.05 (s, 3H), 1.61 (s, 9H) ppm. ¹³**C NMR** (150 MHz, Chloroform-*d*) δ 169.8, 151.9, 143.5, 140.4, 136.3, 129.5, 128.7, 127.0, 126.7, 123.7, 114.9, 96.8, 91.3, 81.7, 67.1, 39.6, 28.3, 21.3 ppm. **HRMS** (ESI) m/z: [M + Na]⁺ Calcd for C₂₃H₂₅O₅NNa 418.1625; Found 418.1614.

A mixture of **5** (79.65 mg, 0.2 mmol), DavePhos (11.8 mg, 0.03 mmol), $Pd_2(dba)_3$ (18.3 mg, 0.02 mmol), NaO'Bu (38.4 mg, 0.4 mmol) and morpholine (52.4 μ L, 0.6 mmol) were dissolved in 1,4-dioxane (2 mL) under argon atmosphere, then the mixture was stirred at 100 °C and the reaction was completed as monitored by TLC. The solution was washed with water and the aqueous layer was extracted with DCM, the organic phase was washed with brine, dried over Na₂SO₄ and concentrated under reduced pressure, purified by flash column chromatography petroleum ether/ethyl acetate= 2/1 to give compound **8** as a yellow oil (50.0 mg, 69% yield).

tert-butyl 3a-hydroxy-5-morpholino-2,3,3a,8a-tetrahydro-8*H*-furo[2,3-*b*]indole-8-carboxylate (8)

¹**H NMR** (600 MHz, CDCl₃) δ 7.73 (brs, 1H), 6.93 (s, 1H), 6.87 (d, J = 8.8 Hz, 1H), 5.70 (s, 1H), 4.03 (t, J = 8.4 Hz, 1H), 3.84 – 3.78 (m, 4H), 3.56 – 3.50 (m, 1H), 3.47 (s, 1H), 3.06 – 2.98 (m, 4H), 2.51 – 2.46 (m, 1H), 2.34 – 2.32 (m, 1H), 1.56 (s, 9H) ppm. ¹³**C NMR** (150 MHz, CDCl₃) δ 152.3, 147.8, 136.8, 132.4, 118.7, 115.4, 111.7, 98.6, 86.7, 81.4, 67.7, 66.7, 50.4, 40.4, 28.3 ppm. **HRMS** (ESI) m/z: $[M + Na]^+$ Calcd

for C₁₉H₂₆O₅N₂Na 385.1733; Found 385.1728.

To a solution of **5** (79.65 mg, 0.2 mmol) in dry DMF (4 mL) and was added MeONa in MeOH (4.0 M, 0.8 mL), the reaction was heated to 70 $^{\circ}$ C under argon atmosphere, the reaction was completed as monitored by TLC, after 1 h. The reaction was extracted with EA, the organic phase was washed with brine and dried over Na₂SO₄, purified by column chromatography on silica gel to afford the product **9** as a white foam oil (55.8 mg, 78% yield).

tert-butyl 5-bromo-3a-hydroxy-2,3,3a,8a-tetrahydro-8*H*-furo[2,3-*b*]indole-8carboxylate (9)

¹**H NMR** (600 MHz, CDCl₃) δ 7.67 (brs, 1H), 7.50 (s, 1H), 7.40 (d, J = 8.6 Hz, 1H), 5.73 (s, 1H), 4.04 (t, J = 8.4 Hz, 1H), 3.56 – 3.49 (m, 1H), 2.98 (s, 1H), 2.52 – 2.46 (m, 1H), 2.35 – 2.32 (m, 1H), 1.56 (s, 9H) ppm. ¹³**C NMR** (150 MHz, Chloroform-*d*) δ 152.1, 142.0, 133.7, 133.2, 127.1, 116.4, 115.5, 98.5, 86.3, 82.2, 67.7, 40.7, 28.3 ppm. **HRMS** (ESI) m/z: [M + Na]⁺ Calcd for C₁₅H₁₈O₄NBrNa 378.0311; Found 378.0308.

A mixture of **9** (71.24 mg, 0.2 mmol), K_3PO_4 (127.4 mg, 0.6 mmol), $PdCl_2(dppf)$ (14.52 mg, 0.02 mmol), and B_2Pin_2 (55.86 mg, 0.22 mmol) were dissolved in DMF (3 mL) under argon atmosphere, the mixture was heated to 80 °C and the reaction was monitored by TLC. The mixture was extracted with EA, the organic phase was washed with brine, dried over Na₂SO₄, purified by flash column chromatography petroleum ether/ethyl acetate= 3/1 to give compound **10** as a colorless oil (45.6 mg, 41% yield).

di-tert-butyl (3aS,3'aS,8aR,8'aR)-3a,3'a-dihydroxy-2,2',3,3a,3',3'a,8a,8'a

octahy-dro-8H,8'H-[5,5'-bifuro[2,3-b]indole]-8,8'-dicarboxylate (10)

¹**H NMR** (600 MHz, CDCl₃) δ 7.82 (brs, 2H), 7.59 (d, J = 9.2 Hz, 2H), 7.50 (d, J = 8.4 Hz, 2H), 5.81 (brs, 2H), 4.10 – 4.08 (m, 2H), 3.61 – 3.56 (m, 2H), 2.63 (br, 2H), 2.59 – 2.53 (m, 2H), 2.45 – 2.40 (m, 2H), 1.60 (s, 18H) ppm. ¹³**C NMR** (150 MHz, Chloroform-*d*) δ 153.4, 151.5, 142.2, 133.4, 132.0, 126.1, 117.2, 115.1, 82.5, 80.6, 78.8, 60.5, 45.1, 28.4, 28.3 ppm. **HRMS** (ESI) m/z: $[M + Na]^+$ Calcd for C₃₀H₃₆O₈N₂Na 575.2364; Found 575.2345.

Under an argon atmosphere, freshly prepared CoCl(PPh₃)₃ (105.75 mg, 0.12 mmol) was added quickly to a degassed (nitrogen bubbling for 10 min) solution of **2m** (51.82 mg, 0.1 mmol) in dry acetone (1.0 mL). After 15 min, the reaction mixture was diluted with DCM and quenched with saturated NH₄Cl solution. The organic layer was separated and the aqueous layer was extracted with DCM. the organic phase was washed with brine, dried over Na₂SO₄, purified by flash column chromatography petroleum ether/ethyl acetate= 10/1 to give **11** as a Yellow oil (25.6 mg, 29% yield).

tetra-tert-butyl (3aR,3'aR,8aS,8'aS)-5,5'-dibromo-2,2',3,3'-tetrahydro-1H,1'H-[3a,3'a-bipyrrolo[2,3-*b*]indole]-1,1',8,8'(8aH,8'aH)-tetracarboxylate (11)

¹**H NMR** (600 MHz, CDCl₃) δ 7.49 (dd, J = 8.0, 1.2 Hz, 2H), 7.32 (dd, J = 7.6, 1.2 Hz, 2H), 7.07 (t, J = 7.8 Hz, 2H), 6.19 (s, 2H), 3.59 – 3.53 (m, 2H), 2.81 – 2.74 (m, 4H), 2.74 – 2.66 (m, 2H), 1.54 (s, 18H), 1.51 (s, 18H) ppm. ¹³**C NMR** (150 MHz, Chloroform-*d*) δ 153.4, 151.5, 142.2, 133.4, 132.0, 126.1, 117.2, 115.1, 82.5, 80.6, 78.8, 60.5, 45.1, 34.7, 28.4, 28.3 ppm. **HRMS** (ESI) m/z: [M + Na]⁺ Calcd for C₄₀H₅₂N₄Br₂O₈Na 897.2044; Found 897.2028.

Under an argon atmosphere, SnCl₄ (11.3 μ L, 1.0 mmol) was added to a solution of bromide **2m** (51.82 mg, 0.1 mmol) and trimethylsilylazide (0.26 mL, 1.0 mmol) in dry DCM (1.0 mL) by syringe at room temperature. After stirring at room temperature for 12h, the reaction mixture was cooled to 0 °C and quenched by saturated NaHCO₃ solution. The reaction mixture was diluted with water and extracted with DCM. The combined organic layers were dried over anhydrous Na₂SO₄, the solvent was concentrated under reduced pressure, purified by flash column chromatography petroleum ether/ethyl acetate= 10/1 to give **12** as a yellow solid (9.9 mg, 35% yield).

3a-azido-5-bromo-1,2,3,3a,8,8a-hexahydropyrrolo[2,3-*b*]indole (12)

¹**H NMR** (600 MHz, CDCl₃) δ 7.33 (d, J = 2.0 Hz, 1H), 7.25 (dd, J = 8.4, 2.0 Hz, 1H), 6.52 (d, J = 8.6 Hz, 1H), 5.14 (s, 1H), 3.17 – 3.14 (m, 1H), 2.86 – 2.81 (m, 1H), 2.26 – 2.23 (m, 1H), 2.18 – 2.13 (m, 1H) ppm. ¹³**C NMR** (150 MHz, Chloroform-*d*) δ 149.2, 133.1, 129.1, 127.2, 111.2, 110.7, 84.5, 79.0, 45.8, 40.7 ppm. **HRMS** (ESI) m/z: [M + Na]⁺ Calcd for C₁₀H₁₁N₅Br 280.0192; Found 280.0194.

A mixture of **2m** (51.82 mg, 0.1 mmol), DavePhos (11.8 mg, 0.03 mmol), Pd₂(dba)₃ (18.3 mg, 0.02 mmol), NaO^tBu (38.4 mg, 0.4 mmol) and morpholine (52.4 μ L, 0.6 mmol) were dissolved in 1,4-dioxane (2 mL) under argon atmosphere, then the mixture was stirred at 100 °C and the reaction was completed as monitored by TLC. The solution was washed with water and the aqueous layer was extracted with DCM, the organic phase was washed with brine, dried over Na₂SO₄ and concentrated under reduced pressure, purified by flash column chromatography petroleum ether/ethyl acetate= 10/1 to give compound **13** as a yellow oil (22.4 mg, 50% yield).

di-tert-butyl

5-morpholino-2,3,3a,8a-tetrahydropyrrolo[2,3-*b*]indole-1,8-dicarb-onxylate (13) ¹H NMR (600 MHz, Chloroform-*d*) δ 7.50 (br, 1H), 6.76 (d, *J* = 8.4 Hz, 2H), 6.41 (s, 1H), 3.95 (t, *J* = 7.3 Hz, 1H), 3.89 – 3.84 (m, 4H), 3.81 – 3.77 (m, 1H), 3.18 – 3.04 (m, 4H), 2.87 – 2.82 (m, 1H), 2.13 – 1.97 (m, 1H), 1.56 (s, 9H), 1.49 (s, 9H) ppm. ¹³C NMR (150 MHz, Chloroform-*d*) δ 154.0, 152.6, 147.9, 136.7, 133.1, 128.4, 115.8, 112.4, 81.1, 80.0, 76.2, 66.9, 50.5, 45.4, 44.9, 29.7, 28.4 ppm. HRMS (ESI) *m/z*: [M + Na]⁺ Calcd for C₂₄H₃₅O₃N₅Na 468.2469; Found 468.2474.

To a solution of **2m** (103.65 mg, 0.2 mmol) in THF (4 mL) were sequentially added PhB(OH)₂ (48.78 mg, 0.4 mmol), K₂CO₃ (30.41 mg, 0.22 mmol), Pd(OAc)₂ (13.46 mg, 0.06 mmol), PPh₃ (15.72 mg, 0.06 mmol) and H₂O (54 μ L, 3.0 mmol) under argon atmosphere, the mixture was stirred at room temperature, the reaction was completed after for 12 h. The solution was washed with water and the aqueous layer was extracted with DCM, the organic phase was washed with brine, dried over Na₂SO₄ and concentrated under reduced pressure, the crude product was purified by silica gel column chromatography on silica gel to afford the product **14** as colorless oil (81.4 mg, 79% yield).

di-tert-butyl 3a-bromo-5-phenyl-2,3,3a,8a-tetrahydropyrrolo[2,3-*b*]indole-1,8dicarboxylate (14)

¹**H NMR** (600 MHz, CDCl₃) δ 7.65 (brs, 1H), 7.58 – 7.56 (m, 3H), 7.53 (dd, J = 8.4, 2.0 Hz, 1H), 7.43 (t, J = 7.6 Hz, 2H), 7.34 (t, J = 7.4 Hz, 1H), 6.48 (s, 1H), 3.79 – 3.75 (m, 1H), 2.89 – 2.83 (m, 2H), 2.79 – 2.71 (m, 1H), 1.60 (s, 9H), 1.50 (s, 9H) ppm. ¹³**C NMR** (150 MHz, Chloroform-*d*) δ 153.4, 152.1, 141.4, 140.3, 137.4, 133.2, 129.3, 128.8, 127.3, 126.8, 122.4, 117.6, 84.2, 82.2, 80.8, 62.2, 46.2, 42.1, 28.4, 28.3 ppm. **HRMS** (ESI) m/z: [M + Na]⁺ Calcd for C₂₆H₃₁O₄N₂BrNa 537.1359; Found 537.1346.

To a solution of **2m** (103.65 mg, 0.2 mmol) and AgOAc (36.72 mg, 0.22 mmol) in AcOH(20 mL) was heated to 40 $^{\circ}$ C in the dark, the reaction was completed as monitored by TLC, after 4 h. The reaction was extracted with EA, the organic phase was washed with brine and dried over Na₂SO₄, purified by column chromatography on silica gel to afford the product **15** as a white foam oil (81.7 mg, 82% yield)

di-tert-butyl 3a-acetoxy-5-bromo-2,3,3a,8a-tetrahydropyrrolo[2,3-*b*]indole-1,8dicarboxylate (15)

¹**H NMR** (600 MHz, CDCl₃) δ 7.72 – 7.50 (m, 1H), 7.43 (dd, J = 8.6, 2.0 Hz, 1H), 6.42 (s, 1H), 3.95 – 3.92 (m, 1H), 2.85 – 2.80 (m, 1H), 2.62 – 2.56 (m, 1H), 2.43 – 2.37 (m, 1H), 2.05 (s, 3H), 1.59 (s, 9H), 1.51 (s, 9H) ppm. ¹³**C NMR** (150 MHz, Chloroform-*d*) δ 169.5, 153.7, 152.0, 143.7, 133.4, 130.9, 127.7, 117.9, 115.4, 90.5, 82.1, 80.6, 80.1, 77.2, 77.0, 76.8, 44.9, 28.3, 28.3, 21.4 ppm. **HRMS** (ESI) m/z: [M + Na]⁺ Calcd for C₂₂H₂₉O₆N₂BrNa 519.1101; Found 519.1086.

To a solution of **15** (99.48 mg, 0.2 mmol) in THF (2 mL) were sequentially added PhB(OH)₂ (48.8 mg, 0.4 mmol), K₂CO₃ (30.41 mg, 0.22 mmol), Pd(OAc)₂ (13.5 mg, 0.06 mmol), PPh₃ (15.7 mg, 0.06 mmol) and H₂O (54 μ L, 3.0 mmol) under argon atmosphere, the mixture was stirred at room temperature, the reaction was completed after for 12 h. The solution was washed with water and the aqueous layer was extracted with DCM, the organic phase was washed with brine, dried over Na₂SO₄ and concentrated under reduced pressure, the crude product was purified by silica gel column chromatography on silica gel to afford the product **16** as a colorless oil (53.8 mg, 54% yield).

di-tert-butyl 3a-acetoxy-5-phenyl-2,3,3a,8a-tetrahydropyrrolo[2,3-*b*]indole-1,8dicarboxylate (16)

¹**H NMR** (600 MHz, CDCl₃) δ 7.83 – 7.64 (m, 2H), 7.57 – 7.49 (m, 3H), 7.42 (t, J = 7.8 Hz, 2H), 7.31 (t, J = 7.3 Hz, 1H), 6.45 (s, 1H), 3.94 – 3.91 (m, 1H), 2.89 – 2.85 (m, 1H), 2.71 – 2.68 (m, 1H), 2.47 – 2.42 (m, 1H), 2.02 (s, 3H), 1.60 (s, 9H), 1.51 (s, 9H) ppm. ¹³**C NMR** (150 MHz, Chloroform-*d*) δ 169.6, 153.8, 152.3, 143.9, 140.4, 136.5, 129.5, 129.4, 128.7, 127.0, 123.4, 120.1, 115.3, 91.0, 81.9, 80.1, 62.9, 45.1, 28.4, 28.3, 26.9, 21.4 ppm. **HRMS** (ESI) m/z: [M + Na]⁺ Calcd for C₂₈H₃₄O₆N₂Na 517.2309; Found 517.2299.

A mixture of **15** (99.48 mg, 0.2 mmol), DavePhos (11.8 mg, 0.03 mmol), Pd₂(dba)₃ (18.3 mg, 0.02 mmol), NaO^tBu (38.4 mg, 0.4 mmol) and morpholine (52.4 μ L, 0.6 mmol) were dissolved in 1,4-dioxane (2 mL) under argon atmosphere, then the mixture was stirred at 100 °C and the reaction was completed as monitored by TLC. The solution was washed with water and the aqueous layer was extracted with DCM, the organic phase was washed with brine, dried over Na₂SO₄ and concentrated under reduced pressure, purified by flash column chromatography petroleum ether/ethyl acetate= 2/1 to give compound **17** as a yellow oil (36.0 mg, 40% yield).

di-tert-butyl 3a-hydroxy-5-morpholino-2,3,3a,8a-tetrahydropyrrolo[2,3-*b*]indole-1,8-dicarboxylate (17)

¹**H NMR** (600 MHz, CDCl₃) δ 7.56 (brs, 1H), 6.93 (s, 1H), 6.87 (dd, J = 8.8, 2.6 Hz, 1H), 6.01 (s, 1H), 3.84 – 3.80 (m, 5H), 3.35 (br, 1H), 3.09 – 3.03 (m, 4H), 2.83 – 2.79 (m, 1H), 2.32 – 2.25 (m, 2H), 1.54 (s, 9H), 1.47 (s, 9H) ppm. ¹³**C NMR** (150 MHz, Chloroform-*d*) δ 154.0, 152.6, 147.9, 136.7, 133.1, 118.4, 117.0, 111.3, 86.4, 81.8, 81.4, 80.2, 77.2, 77.0, 76.8, 66.7, 50.4, 45.5, 38.6, 28.3 ppm. **HRMS** (ESI) m/z: [M + Na]⁺ Calcd for C₂₄H₃₅O₆N₃Na 484.2418; Found 484.2398.

To a solution of **15** (99.48 mg, 0.2 mmol) in dry DMF (4 mL) was added MeONa in MeOH (4.0 M, 0.8 mL), the reaction was heated to 70 $^{\circ}$ C under argon atmosphere, the reaction was completed as monitored by TLC, after 1 h. The reaction was extracted with EA, the organic phase was washed with brine and dried over Na₂SO₄, purified by column chromatography on silica gel to afford the product **18** as a white foam oil (65.6 mg, 83% yield)

di-tert-butyl 5-bromo-3a-hydroxy-2,3,3a,8a-tetrahydropyrrolo[2,3-*b*]indole-1,8dicarboxylate (18)

¹**H NMR** (600 MHz, CDCl₃) δ 7.56 (brs, 1H), 7.47 (d, J = 2.1 Hz, 1H), 7.39 (dd, J = 8.7, 2.1 Hz, 1H), 6.04 (s, 1H), 3.85 - 3.82 (m, 1H), 2.84 - 2.80 (m, 1H), 2.34 - 2.22 (m, 2H), 1.53 (s, 9H), 1.46 (s, 9H) ppm. ¹³**C NMR** (150 MHz, Chloroform-*d*) δ 154.0, 152.3, 142.1, 134.4, 133.0, 126.7, 117.8, 115.6, 86.0, 82.2, 81.9, 80.5, 45.6, 38.9, 28.3, 28.3 ppm. **HRMS** (ESI) m/z: [M + Na]⁺ Calcd for C₂₀H₂₇O₅N₂BrNa 477.0996; Found 477.0981.

7. X-ray Dates

Single-crystal X-ray diffraction measurements were carried out on an Agilent Gemini E diffractometer using graphite monochromated Mo radiation ($\lambda = 0.71073$ Å, 50kV 40mA). The crystal data was collected on a Agilent Gemini E diffractometer (Mo, 50kV 40mA) and reducted by CrysAlisPro (Rigaku). The structures were solved by direct methods using SHELXS-97. Refinements were performed with SHELXL-2013 using fullmatrix least-squares calculations on F2, with anisotropic displacement parameters for all the nonhydrogen atoms.

The single crystals of compound **2b** suitable for X-ray diffraction analysis were obtained by slow evaporation of a mixed THF/Petroleum ether solution of **2b** at room temperature.

Molecular structure of **2b**, ellipsoids shown at 30% probability.


```
Crystal data and structure refinement for CCDC: 2288080.

Identification code global

Bond precision: C-C = 0.0055 A Wavelength=1.54178

Cell: a=8.1543(2) b=10.4250(2) c=12.7925(3) alpha=66.467(1) beta=77.140(1)

gamma=80.707(1)

Temperature: 150 K Calculated Reported

Volume 968.81(4) 968.81(4)

Space group P -1 P -1

Hall group -P 1 -P 1

Moiety formula C17 H15 Br2 N O3 S [+ solvent] C34 H30 Br4 N2 O6 S2

Sum formula C17 H15 Br2 N O3 S [+ solvent] C34 H30 Br4 N2 O6 S2
```

Mr 473.16 946.36 Dx, g cm-3 1.622 1.622 Z 2 1 Mu (mm-1) 6.439 6.439 F000 468.0 468.0 F000' 466.91 h, k, lmax 9,12,15 9,12,15 Nref 3565 3541 Tmin, Tmax 0.524, 0.637 0.190,0.660 Tmin' 0.387 Correction method= # Reported T Limits: Tmin=0.190 Tmax=0.660 AbsCorr = MULTI-SCAN Data completeness= 0.993 Theta (max)= 68.320

8. References

- Y.-A. Wu, R.-A. Wang, S.-Y. Jiang, T.-B. Jiang, J.-R. Song, J. Shi, W. Wu, W.-D. Pan and H. Ren, *Green Chem.* 2022, 24, 6720–6726.
- [2] T.-T. Sun, K. Liu, S.-X. Zhang, C.-R. Wang, C.-Z. Yao and J. Yu, Synlett. 2021, 32, 701–707.
- [3] A.-E. Blom, J.-Y. Su, L.-M. Repka, S.-E. Reisman and D. A. Dougherty, ACS Medicinal Chem. Lett. 2020, 11, 2204–2211.
- [4] W. Xie, G. Jiang, H. Liu, J. Hu, X. Pan, H. Zhang, X.-L. Wang, Y.-S. Lai and D. Ma, Angew. Chem. Int. Ed. 2013, 52, 12924–12927.

9. ¹H NMR, ¹³C NMR and ¹⁹F NMR spectra of compounds

--61.00

4,036 4,033 4,003 4,003 4,008 4,008 4,008 4,008 4,4084,408 4,4084,408 4,408 4,408 4,408 4,4084,408 4,408 4,408 4,4084,408 4,408 4,408 4,4084,408 4,408 4,4084,408 4,408 4,408 4,4084,408 4,408 4,4084,408 4,408 4,4084,408 4,408 4,4084,408 4,408 4,4084,408 4,408 4,4084,408 4,408 4,4084,408 4,4084,408 4,408 4,4084,408 4,4084,408 4,4084,408 4,4084,408 4,4084,408

Parameter	Value
Title	RV-0590-1.1.fid
Origin	Bruker BioSpin GmbH
Solvent	CDCI3
Temperature	298.0
Number of Scans	8
Acquisition Date	2022-07-15T14:47:35
Spectrometer Frequency	600 MHz
Nucleus	1H

Parameters		
Parameter	value	
Title	RV-0739.1.fid	
Origin	Bruker BioSpin GmbH	
Solvent	CDCl3	
Temperature	295.0	
Number of Scans	8	
Acquisition Date	2023-06-16T16:24:19	
Spectrometer Frequency	600 MHZ	
Nucleus	1H	

$\begin{array}{c} 8.342 \\ 8.327 \\ 8.327 \\ 7.498 \\ 7.498 \\ 7.495 \\ 7.443 \\ 7.7443 \\ 7.7379 \\ 7.379 \\ 7.379 \\ 7.379 \\ 7.379 \\ 7.379 \\ 7.379 \\ 7.379 \\ 7.3339 \\ 7.339 \\ 7.339 \\ 7.339 \\ 7.339 \\ 7.339 \\ 7.379 \\ 7.3$

Parameters		
Parameter	value	
Title	RV-0737-1.1.fid	
Origin	Bruker BioSpin GmbH	
Solvent	CDC13	
Temperature	295.0	
Number of Scans	4	
Acquisition Date	2023-06-09T16:59:32	
Spectrometer Frequency	600 MHZ	
Nucleus	1H	

Parameter	Value	
Title	RVS-0606.2.fid	
Origin	Bruker BioSpin GmbH	
Solvent	CDCI3	
Temperature	295.0	
Number of Scans	800	
Acquisition Date	2022-10-14T12:45:49	
Spectrometer Frequency	150 MHz	
Nucleus	13C	

2022-06-25T01:32:09

150 MHz

13C

Acquisition Date Spectrometer Frequency

Nucleus

Parameter	Value
Title	RVS-0604.2.fid
Origin	Bruker BioSpin GmbH
Solvent	CDCI3
Temperature	295.2
Number of Scans	16
Acquisition Date	2022-10-14T11:25:42
Spectrometer Frequency	565 MHz
Nucleus	19F

Parameter	Value
Title	RVS-0602.1.fid
Origin	Bruker BioSpin GmbH
Solvent	CDCI3
Temperature	295.0
Number of Scans	8
Acquisition Date	2022-10-13T11:34:57
Spectrometer Frequency	600 MHz
Nucleus	1H

4,026 4,013 3,517 3,510 3,511 3,511 3,511 3,511 3,511 3,511 3,511 2,515 2,2175 2,2175 2,2175 2,2175 2,2175 2,2775

Title	RVS-0601.1.fid
Origin	Bruker BioSpin GmbH
Solvent	CDCI3
Temperature	295.0
Number of Scans	240
Acquisition Date	2022-10-14T16:40:47
Spectrometer Frequency	150 MHz
Nucleus	13C

S-44

Parameter	Value
Title	RV-0630.3.fid
Origin	Bruker BioSpin GmbH
Solvent	CDCI3
Temperature	298.0
Number of Scans	16
Acquisition Date	2022-08-06T15:52:35
Spectrometer Frequency	565 MHz
Nucleus	19F

--106.65

_

100 90 f1 (ppm) 170 160 140 130

$$\int_{-2.383}^{7.515} \int_{-2.315}^{7.515} \int_{-2.315}^{7.515} \int_{-2.315}^{7.515} \int_{-2.315}^{7.515} \int_{-2.315}^{7.322} \int_{-2.315}^{7.322} \int_{-2.315}^{7.322} \int_{-2.315}^{7.322} \int_{-2.315}^{7.322} \int_{-3.314}^{3.334} \int_{-3.314}^{3.334} \int_{-3.314}^{3.334} \int_{-2.615}^{3.334} \int_{-2.615}^{3.334} \int_{-2.615}^{3.334} \int_{-2.615}^{2.345} \int_{-2.615}^{-3.334} \int_{-2.615}^{2.616} \int_{-2.615}^{-3.334} \int_{-2.615}^{2.616} \int_{-2.615}^{-3.345} \int_{-2.615}^{2.616} \int_{-2.615}^{-3.345} \int_{-2.615}^{2.616} \int_{-2.615}^{-3.345} \int_{-2.615}^{-2.616} \int_{-2.615}^{-3.345} \int_{-2.615}^{-3.345} \int_{-2.615}^{-3.345} \int_{-2.615}^{-3.345} \int_{-2.615}^{-2.616} \int_{-2.615}^{-3.345} \int_{-2.615}^{-3.245} \int_{-2.615}^{-3.245} \int_{-2.615}^{-3.245} \int_{-2$$

Parameter	Value
Title	RVS-0703.1.fid
Origin	Bruker BioSpin GmbH
Solvent	CDCI3
Temperature	295.0
Number of Scans	4
Acquisition Date	2023-03-01T00:40:07
Spectrometer Frequency	600 MHz
Nucleus	1H

Br N Cbz Boc 2p

S-52

-1 Ö fl (ppm)

Parameter	Value
Title	RP-0923-F.1.fid
Origin	Bruker BioSpin GmbH
Solvent	CDCI3
Temperature	295.2
Number of Scans	16
Acquisition Date	2023-07-21T13:59:11
Spectrometer Frequency	565 MHz
Nucleus	19F

7.895 7.577 7.577 7.557 7.555 7.555 7.553 7.451 7.451 7.426 7.330 7.330 - 6.217

Value
RVS-01.1.fid
Bruker BioSpin GmbH
CDCI3
298.0
4
2022-10-27T11:00:58
600 MHz
1H

S-68

S-69

7.232 7.257 7.254 7.243 7.240 7.240 6.526 6.512 -5.145

Parameter	Value
Title	RV-0694.2.fid
Origin	Bruker BioSpin GmbH
Solvent	CDCI3
Temperature	298.0
Number of Scans	4
Acquisition Date	2023-02-07T19:23:11
Spectrometer Frequency	600 MHz
Nucleus	1H

Value

Bruker BioSpin GmbH CDCl3

RV-0694-1.1.fid

298.0

Parameter

Title

 \rightarrow

S-72

