Electronic Supplementary Material (ESI) for Organic & Biomolecular Chemistry. This journal is © The Royal Society of Chemistry 2023

SI-1

Electronic Supplementary Information

Base-catalyzed diastereodivergent thia-Michael addition to chiral β-

trifluoromethyl-α,β-unsaturated N-acylated oxazolidin-2-ones

Sasirome Racochote,^a Phiphob Naweephattana, Panida Surawatanawong,^a Chutima Kuhakarn,^a

Pawaret Leowanawat,^a Vichai Reutrakul,^a and Darunee Soorukram^a*

^aDepartment of Chemistry and Center of Excellence for Innovation in Chemistry (PERCH-CIC), Faculty

of Science, Mahidol University, Rama VI Road, Bangkok 10400, Thailand

Fax: 02-354-7151, E-mail: darunee.soo@mahidol.ac.th

Table of Contents

	Page
General Methods	SI-2
Synthesis of (R,S) - 3A and (R,R) - 3B	SI-2
Synthesis of acids 4	SI-20
Synthesis of 5	SI-22
Synthesis of 6	SI-23
Synthesis of 7	SI-25
Spectral data of all synthesized compounds	SI-27
The information of the crystal measurement	SI-205
X-ray diffraction analysis of compound (R,R) - 3aB (CCDC 2257377)	SI-206
X-ray diffraction analysis of compound (R,R) - 3pB (CCDC 2257378)	SI-211
Attempts to record ¹ H and ¹⁹ F NMR spectra of the intermediate G	SI-216

EXPERIMENTAL

General Methods

The ¹H NMR spectra were recorded with a Bruker AscendTM 400 (400 MHz), a Bruker Avance-500 (500 MHz), or a JEOL 400 YH (JMTC-400) (400 MHz) spectrometer in CDCl₃ or acetone- d_6 or CD₃OD using tetramethylsilane as an internal standard. The ¹³C NMR spectra were recorded with a Bruker AscendTM 400 (100 MHz), a Bruker Avance-500 (125 MHz), or a JEOL 400 YH (JMTC-400) (100 MHz) spectrometer in CDCl₃ or acetone- d_6 or CD₃OD using residual nondeuterated solvent peaks as an internal standard. The ¹⁹F NMR spectra were recorded with a Bruker AscendTM 400 (376 MHz) or a Bruker Avance-500 (470 MHz) spectrometer in CDCl₃ or acetone d_6 or CD₃OD using hexafluorobenzene as an external standard. The IR spectra were recorded with a Bruker FT-IR spectrometer (ALPHA). The high-resolution mass spectra were recorded with a HR-TOF-MS Micromass model VQ-TOF2 mass spectrometer, a Bruker MicroTOF spectrpmeter, a Bruker UHR-TOF (Ultra High Resolution-TOF), or a Jeol DARTTM. The mass spectra were recorded with a Thermo Finnigan Polaris Q mass spectrometer, or a Jeol DARTTM. Melting points were recorded with a Jasco P-1020 polarimeter.

Tetrahydrofuran (THF) was distilled from sodium-benzophenone ketyl. Dichloromethane (CH₂Cl₂), toluene, and ethyl acetate (EtOAc) were distilled over calcium hydride and stored over activated molecular sieves (4 Å). Acetone and acetonitrile (MeCN) were distilled over potassium carbonate and calcium hydride, respectively. Methanol (MeOH) and ethanol (EtOH) were distilled over Mg turnings. Acetone, MeCN, MeOH, and EtOH were stored without using activated molecular sieves. Other common solvents (CH₂Cl₂, hexanes, and EtOAc) were distilled before use. All glassware including needles and syringes were oven-dried and kept in a desiccator before use. Column chromatography was performed by using Merck silica gel 60 (Art. 7734). (*R*)-*E*-4-Phenyl-3-(4,4,4-trifluorobut-2-enoyl)oxazolidin-2-one [(*R*)-*E*-1] was synthesized according to the literature.^[1]

1. Synthesis of (R,S)-3A and (R,R)-3B

(*R*)-4-Phenyl-3-[(*S*)-4,4,4-trifluoro-3-(phenylthio)butanoyl]oxazolidin-2-one [(*R*,*S*)-3aA] and (*R*)-4-Phenyl-3-[(*R*)-4,4,4-trifluoro-3-(phenylthio)butanoyl]oxazolidin-2-one [(*R*,*R*)-3aB]

Conditions A: A flame-dried round bottom flask equipped with a magnetic stirring bar, an argon inlet, and a rubber septum was charged with **1** (57.4 mg, 0.20 mmol) and dry acetone (1 mL). The resulting solution was cooled at -78 °C then thiophenol (**2a**, 24 µL, 0.22 mmol) and *N*,*N*-diisopropylethylamine (*i*-Pr₂NEt) (2 µL, 0.01 mmol) were added. After stirring at -78 °C for 30 min, the reaction mixture was quenched with water (5 mL) and extracted with EtOAc (3 × 10 mL). The combined organic layer was washed with a saturated aqueous NaCl solution (20 mL) and dried over anhydrous Na₂SO₄. After removal of the solvent *in vacuo*, the crude mixture of (*R*,*S*)-**3aA** and (*R*,*R*)-**3aB** (89:11 dr, ¹H NMR analysis) was purified by column chromatography (50% CH₂Cl₂ in

hexanes) to afford (R,S)-**3aA** (58.4 mg, 75% yield) as colorless viscous oil and (R,R)-**3aB** (8.8 mg, 11% yield) as a white solid.

Conditions B: A flame-dried round bottom flask equipped with a magnetic stirring bar, an argon inlet, and a rubber septum was charged with **1** (58.0 mg, 0.20 mmol), 1,4-diazabicyclo[2.2.2]octane (DABCO) (2.2 mg, 0.02 mmol), and dry THF (1 mL). The resulting solution was cooled at -78 °C then **2a** (24 µL, 0.22 mmol) was added. After stirring at -78 °C for 30 min, the reaction mixture was quenched with water (5 mL) and extracted with EtOAc (3 × 10 mL). The combined organic layer was washed with a saturated aqueous NaCl solution (20 mL) and dried over anhydrous Na₂SO₄. After removal of the solvent *in vacuo*, the crude mixture of (*R*,*S*)-**3aA** and (*R*,*R*)-**3aB** (21:79 dr, ¹H NMR analysis) was purified by column chromatography (50% CH₂Cl₂ in hexanes) to afford (*R*,*S*)-**3aA** (13.0 mg, 17% yield) and (*R*,*R*)-**3aB** (49.0 mg, 62% yield).

Scale-up synthesis: According to the *Conditions A*, the reaction of **1** (287 mg, 1 mmol) with **2a** (0.12 mL, 1.1 mmol) and *i*-Pr₂NEt (10 μ L, 0.05 mmol) in dry acetone (5 mL) afforded (*R*,*S*)-**3aA** (303 mg, 77% yield) and (*R*,*R*)-**3aB** (38.1 mg, 10% yield).

(*R*,*S*)-**3aA**: $R_f 0.30$ (50% CH₂Cl₂ in hexanes); $[\alpha]_D^{25}$ -61.4 (*c* 0.8, CHCl₃). ¹H NMR (400 MHz, CDCl₃): δ 7.60–7.54 (m, 2H, Ar*H*), 7.44–7.34 (m, 3H, Ar*H*), 7.34–7.29 (m, 5H, Ar*H*), 5.50 (dd, *J* = 3.4, 8.8 Hz, 1H, C*H*N), 4.75 (dd, *J* = 8.8, 8.8 Hz, 1H, C*H*HO), 4.34 (dd, *J* = 3.4, 8.8 Hz, 1H, CHHO), 4.13–4.02 (m, 1H, CHCF₃), 3.63 (dd, *J* = 10.6, 18.4 Hz, 1H,

(*R*,*S*)-**3aA** C*H*H), 3.27 (dd, J = 3.1, 18.4 Hz, 1H, CH*H*). ¹³C NMR (125 MHz, CDCl₃): δ 168.1 (CO), 153.4 (CO), 138.5 (C), 133.5 (2 × CH), 132.5 (C), 129.3 (2 × CH), 129.1 (2 × CH), 129.0 (CH), 128.7 (CH), 126.3 (q, ¹*J*_{CF} = 277.2 Hz, CF₃), 125.9 (2 × CH), 70.3 (CH₂), 57.7 (CH), 47.3 (q, ²*J*_{CF} = 29.8 Hz, CH), 35.2 (CH₂). ¹⁹F NMR (470 MHz, CDCl₃): δ –70.7 (CF₃). IR (ATR): λ_{max} 1777*s*, 1704*s*, 1494*w*, 1440*s*, 1385*s*, 1313*s*, 1246*s*, 1154*s*, 1096*s* cm⁻¹. MS: *m*/*z* (%) relative intensity 396 [(M+ H)⁺, 94], 395 [M⁺, 100], 394 (13), 375 (6), 192 (15), 164 (7), 120 (11), 104 (8), 90 (5). HRMS (ESI-TOF) calcd for C₁₉H₁₆F₃NO₃SNa⁺ [M + Na]⁺: 418.0695, found: 418.0693.

(*R*,*R*)-**3aB**: *R_f* 0.25 (50% CH₂Cl₂ in hexanes); mp 139–141 °C (50% CH₂Cl₂ in hexanes); $[\alpha]_D^{25}$ –110.1 (*c* 0.7, CHCl₃). ¹H NMR (400 MHz, CDCl₃): δ 7.43–7.32 (m, 5H, Ar*H*), 7.30–7.17 (m, 5H, Ar*H*), 5.48 (dd, *J* = 4.2, 8.8 Hz, 1H, C*H*N), 4.73 (dd, *J* = 8.8, 8.8 Hz, 1H, C*H*HO), 4.32 (dd, *J* = 4.2, 8.8 Hz, 1H, CHHO), 4.02–3.88 (m, 1H, C*H*CF₃), 3.66 (dd, *J* = 10.4, 17.7 Hz, 1H, C*H*H), 3.27 (dd, *J* = 3.7, 17.7 Hz, 1H, CH*H*). ¹³C NMR (100 MHz, CDCl₃): δ 168.4 (CO), 153.5 (CO), 138.3 (C), 134.1 (2 × CH),

132.2 (C), 129.2 (2 × CH), 129.0 (2 × CH), 128.9 (CH), 128.8 (CH), 126.3 (q, ${}^{1}J_{CF}$ = 277.3 Hz, CF₃), 126.1 (2 × CH), 70.1 (CH₂), 57.9 (CH), 48.2 (q, ${}^{2}J_{CF}$ = 29.7 Hz, CH), 35.4 (q, ${}^{3}J_{CF}$ = 1.8 Hz, CH₂). ¹⁹F NMR (470 MHz, CDCl₃): δ –70.7 (CF₃). IR (ATR): λ_{max} 1781*s*, 1713*s*, 1580*m*, 1494*m*,

1386*s*, 1330*s*, 1308*s*, 1236*s*, 1155*s*, 1109*s*, 1075*s*, 1036*s*, 1025*s* cm⁻¹. MS: m/z (%) relative intensity 396 [(M+ H)⁺, 72], 395 [M⁺, 100], 393 (40), 191 (26), 120 (13), 109 (17), 104 (29). HRMS (ESI-TOF) calcd for C₁₉H₁₆F₃NO₃SNa⁺ [M + Na]⁺: 418.0695, found: 418.0693.

(*R*)-4-Phenyl-3-[(*S*)-4,4,4-trifluoro-3-(4-methylthio)butanoyl]oxazolidin-2-one [(*R*,*S*)-3bA] and (*R*)-4-Phenyl-3-[(*R*)-4,4,4-trifluoro-3-(4-methylthio)butanoyl]oxazolidin-2-one [(*R*,*R*)-3bB]

According to the *Conditions A*, the reaction of **1** (57.9 mg, 0.20 mmol) with 4-methylbenzenethiol (28.4 mg, 0.22 mmol) gave a crude mixture of (*R*,*S*)-**3bA** and (*R*,*R*)-**3bB** (89:11 dr, ¹H NMR analysis). Purification by column chromatography (50% CH₂Cl₂ in hexanes) afforded (*R*,*S*)-**3bA** (59.0 mg, 72% yield) as a colorless viscous oil and (*R*,*R*)-**3bB** (7.4 mg, 9% yield) as a white solid. According to the *Conditions B*, the reaction of **1** (58.1 mg, 0.20 mmol) with 4-methylbenzenethiol (28.4 mg, 0.22 mmol) gave a crude mixture of (*R*,*S*)-**3bA** and (*R*,*R*)-**3bB** (24:76 dr, ¹H NMR analysis). Purification by column chromatography (50% CH₂Cl₂ in hexanes) afforded (*R*,*S*)-**3bA** (18.4 mg, 23% yield) and (*R*,*R*)-**3bB** (59.0 mg, 72% yield).

(*R*,*S*)-**3bA**: R_f 0.30 (50% CH₂Cl₂ in hexanes); $[\alpha]_D^{25}$ -58.1 (*c* 1.9, CHCl₃). ¹H NMR (400 MHz, CDCl₃): δ 7.45 (d, *J* = 8.0 Hz, 2H, Ar*H*), 7.44–7.29 (m, 5H, Ar*H*), 7.12 (d, *J* = 8.0 Hz, 2H, Ar*H*), 5.50 (dd, *J* = 3.4, 8.6 Hz, 1H, CHN), 4.75 (dd, *J* = 8.6, 8.6 Hz, 1H, CHHO), 4.34 (dd, *J* = 3.4, 8.6 Hz, 1H, CHHO), 4.06–3.94 (m, 1H, CHCF₃), 3.61 (dd, *J* = 10.6, 18.4 Hz, 1H, CHH), 3.24 (dd, *J* = 3.1, 18.4 Hz, 1H, CHH), 2.33 (s, 3H, CH₃). ¹³C NMR (100 MHz, CDCl₃): δ 168.1

(CO), 153.4 (CO), 139.1 (C), 138.5 (C), 134.1 (2 × CH), 129.9 (2 × CH), 129.3 (2 × CH), 129.0 (CH), 128.7 (C), 126.4 (q, ${}^{1}J_{CF} = 277.4$ Hz, CF₃), 125.9 (2 × CH), 70.3 (CH₂), 57.7 (CH), 47.5 (q, ${}^{2}J_{CF} = 29.5$ Hz, CH), 35.1 (q, ${}^{3}J_{CF} = 1.8$ Hz, CH₂), 21.2 (CH₃). 19 F NMR (470 MHz, CDCl₃): δ – 70.6 (CF₃). IR (ATR): λ_{max} 1775s, 1711s, 1493m, 1385s, 1319s, 1244s, 1200s, 1151s, 1096s cm⁻¹. MS: m/z (%) relative intensity 410 [(M+ H)⁺, 97], 409 [M⁺, 100], 286 (12), 206 (48), 164 (12), 149 (14), 124 (46), 123 (26), 121 (19), 120 (21), 104 (21), 91 (19), 77 (10). HRMS (ESI-TOF) calcd for C₂₀H₁₈F₃NO₃SNa⁺ [M + Na]⁺: 432.0852, found: 432.0857.

Me

(*R*,*R*)-**3bB**: R_f 0.25 (50% CH₂Cl₂ in hexanes); mp 160–162 °C (50% CH₂Cl₂ in hexanes); $[\alpha]_D^{29}$ –115.1 (*c* 1.0, CHCl₃). ¹H NMR (400 MHz, CDCl₃): δ 7.45–7.32 (m, 5H, Ar*H*), 7.11 (d, *J* = 8.1 Hz, 2H, Ar*H*), 7.00 (d, *J* = 8.1 Hz, 2H, Ar*H*), 5.48 (dd, *J* = 4.2, 8.9 Hz, 1H, CHN), 4.72 (dd, *J* = 8.9, 8.9 Hz, 1H, CHHO), 4.32 (dd, *J* = 4.2, 8.9 Hz, 1H, CHHO), 3.95–3.82 (m, 1H, CHCF₃), 3.63 (dd, *J* = 10.4, 17.7 Hz, 1H, CHH), 3.24 (dd, *J* = 3.6, 17.7 Hz, 1H, CHH),

2.30 (s, *CH*₃). ¹³C NMR (100 MHz, CDCl₃): δ 168.4 (CO), 153.5 (CO), 139.1 (C), 138.3 (C), 134.5 (2 × CH), 129.8 (2 × CH), 129.2 (2 × CH), 128.9 (CH), 128.5 (C), 126.3 (q, ¹*J*_{CF} = 277.2 Hz, CF₃),

126.1 (2 × CH), 70.1 (CH₂), 57.9 (CH), 48.4 (q, ${}^{2}J_{CF}$ = 29.4 Hz, CH), 35.3 (q, ${}^{3}J_{CF}$ = 1.7 Hz, CH₂), 21.1 (CH₃). ¹⁹F NMR (470 MHz, CDCl₃): δ –70.6 (CF₃). IR (ATR): λ_{max} 1783*s*, 1709*s*, 1493*w*, 1411*m*, 1321*s*, 1203*s*, 1155*s*, 1076*s* cm⁻¹. MS: *m*/*z* (%) relative intensity 410 [(M+ H)⁺, 64], 409 [M⁺, 100], 389 (17), 206 (41), 164 (29), 104 (11), 91 (14), 77 (19). HRMS (ESI-TOF) calcd for C₂₀H₁₈F₃NO₃SNa⁺ [M + Na]⁺: 432.0852, found: 432.0847.

(R)-4-Phenyl-3-{(S)-4,4,4-trifluoro-3-[(4-methoxyphenyl)thio]butanoyl}oxazolidin-2-one [(R,S)-3cA] and (R)-4-Phenyl-3-{(R)-4,4,4-trifluoro-3-[(4-methoxyphenyl)thio]butanoyl}oxazolidin-2-one [(R,R)-3cB]

According to the *Conditions A*, the reaction of **1** (58.1 mg, 0.20 mmol) with 4methoxybenzenethiol (32 μ L, 0.22 mmol) gave a crude mixture of (*R*,*S*)-**3cA** and (*R*,*R*)-**3cB** (92:8 dr, ¹H NMR analysis). Purification by column chromatography (50% CH₂Cl₂ in hexanes) gave (*R*,*S*)-**3cA** (67.8 mg, 80% yield) as pale-yellow viscous oil and (*R*,*R*)-**3cB** (5.0 mg, 6% yield) as a white solid. According to the *Conditions B*, the reaction of **1** (58.2 mg, 0.20 mmol) with 4methoxybenzenethiol (32 μ L, 0.22 mmol) gave a crude mixture of (*R*,*S*)-**3cA** and (*R*,*R*)-**3cB** (38:62 dr, ¹H NMR analysis). Purification by column chromatography (50% CH₂Cl₂ in hexanes) afforded (*R*,*S*)-**3cA** (26.3 mg, 31% yield) and (*R*,*R*)-**3cB** (47.2 mg, 55% yield).

Scale-up synthesis: According to the Conditions A, the reaction of **1** (286 mg, 1.0 mmol) with 4methoxybenzenethiol (0.16 mL, 1.1 mmol) and *i*-Pr₂NEt (10 μ L, 0.05 mmol) in dry acetone (5 mL) gave (*R*,*S*)-**3cA** (350 mg, 82% yield) and (*R*,*R*)-**3cB** (17.4 mg, 4% yield). According to the Conditions B, the reaction of **1** (286 mg, 1.0 mmol) with 4-methoxybenzenethiol (0.16 mL, 1.1 mmol) and DABCO (11.2 mg, 0.10 mmol) in dry THF (5 mL) gave (*R*,*S*)-**3cA** (113 mg, 27% yield) and (*R*,*R*)-**3cB** (255 mg, 60% yield).

(*R*,*S*)-**3cA**: *R*^{*f*} 0.25 (50% CH₂Cl₂ in hexanes); $[\alpha]_D^{25}$ -68.8 (*c* 1.8, CHCl₃). ¹H NMR (400 MHz, CDCl₃): δ 7.51 (d, *J* = 8.3 Hz, 2H, Ar*H*), 7.45–7.29 (m, 5H, Ar*H*), 6.84 (d, *J* = 8.3 Hz, 2H, Ar*H*), 5.49 (dd, *J* = 3.2, 8.7 Hz, 1H, C*H*N), 4.75 (dd, *J* = 8.7, 8.7 Hz, 1H, C*H*HO), 4.33 (dd, *J* = 3.2, 8.7 Hz, 1H, CHHO), 3.99–3.84 (m, 1H, CHCF₃), 3.80 (s, 3H, OCH₃), 3.59 (dd, *J* = 11.2, 18.7 Hz, 1H, C*H*H), 3.20 (dd, *J* = 2.8, 18.7 Hz, 1H, CH*H*). ¹³C NMR (100 MHz,

CDCl₃): δ 168.2 (CO), 160.5 (C), 153.4 (CO), 138.5 (C), 136.6 (2 × CH), 129.3 (2 × CH), 129.0 (CH), 126.4 (q, ${}^{1}J_{CF}$ = 277.0 Hz, CF₃), 125.9 (2 × CH), 122.5 (C), 114.6 (2 × CH), 70.3 (CH₂), 57.8 (CH), 55.3 (OCH₃), 47.9 (q, ${}^{2}J_{CF}$ = 29.2 Hz, CH), 35.0 (q, ${}^{3}J_{CF}$ = 1.7 Hz, CH₂). ¹⁹F NMR (470 MHz, CDCl₃): δ –70.5 (CF₃). IR (ATR): λ_{max} 1775s, 1716s, 1589m, 1491m, 1385s, 1306s, 1238s, 1205m, 1146s, 1090s cm⁻¹. MS: *m/z* (%) relative intensity 426 [(M+ H)⁺, 77], 425 [M⁺, 100], 424(4), 242 (2), 140 (2), 105 (1). HRMS (DART) calcd for C₂₀H₁₉F₃NO₄S⁺ [M + H]⁺: 426.0981, found: 426.0983.

(*R*,*R*)-**3cB**: $R_f 0.18$ (50% CH₂Cl₂ in hexanes); mp 164–167 °C (50% CH₂Cl₂ in hexanes); $[\alpha]_D^{28}$ –85.7 (*c* 1.0, CHCl₃). ¹H NMR (400 MHz, CDCl₃): δ 7.46–7.34 (m, 5H, Ar*H*), 7.17–7.10 (m, 2H, Ar*H*), 6.75–6.68 (m, 2H, Ar*H*), 5.49 (dd, *J* = 4.2, 8.9 Hz, 1H, C*H*N), 4.74 (dd, *J* = 8.9, 8.9 Hz, 1H, C*H*HO), 4.34 (dd, *J* = 4.2, 8.9 Hz, 1H, CHHO), 3.85–3.74 (m, 4H, CHCF₃, OCH₃), 3.62 (dd, *J* = 10.5, 17.7 Hz, 1H, C*H*H), 3.21 (dd, *J* = 3.4, 17.7 Hz, 1H, CHH). ¹³C NMR

(100 MHz, CDCl₃): δ 168.5 (CO),160.4 (C), 153.4 (CO), 138.3 (C), 136.8 (2 × CH), 129.2 (2 × CH), 128.9 (CH), 126.4 (q, ${}^{1}J_{CF}$ = 277.2 Hz, CF₃), 126.2 (2 × CH), 122.4 (C), 114.5 (2 × CH), 70.1 (CH₂), 57.9 (CH), 55.3 (OCH₃), 48.6 (q, ${}^{2}J_{CF}$ = 29.2 Hz, CH), 35.2 (q, ${}^{3}J_{CF}$ = 1.7 Hz, CH₂). ¹⁹F NMR (470 MHz, CDCl₃): δ –70.6 (CF₃). IR (ATR): λ_{max} 1790s, 1696s, 1458m, 1443m, 1330s, 1242s, 1155s, 1075s, 1038s, 1026s cm⁻¹. MS: m/z (%) relative intensity 426 [(M+ H)⁺, 63], 425 [M⁺, 100], 286 (7), 242 (6), 140 (73), 139 (17), 121 (11), 120 (11), 95 (7). HRMS (ESI-TOF) calcd for C₂₀H₁₉F₃NO₄S⁺ [M + H]⁺: 426.0981, found: 426.0970.

$(R)-4-Phenyl-3-\{(S)-4,4,4-trifluoro-3-[(4-chlorophenyl)thio]butanoyl\}oxazolidin-2-one [(R,S)-3dA] and (R)-4-Phenyl-3-\{(R)-4,4,4-trifluoro-3-[(4-chlorophenyl)thio]butanoyl\}oxazolidin-2-one [(R,R)-3dB]$

According to the *Conditions A*, the reaction of **1** (58.2 mg, 0.20 mmol) with 4-chlorobenzenethiol (31.8 mg, 0.22 mmol) gave a crude mixture of (*R*,*S*)-**3dA** and (*R*,*R*)-**3dB** (71:29 dr, ¹H NMR analysis). Purification by column chromatography (50% CH₂Cl₂ in hexanes) gave (*R*,*S*)-**3dA** (49.3 mg, 58% yield) as a white semi-solid and (*R*,*R*)-**3dB** (20.8 mg, 24% yield) as a white solid. According to the *Conditions B*, the reaction of **1** (57.8 mg, 0.20 mmol) with 4-chlorobenzenethiol (31.8 mg, 0.22 mmol) gave a crude mixture of (*R*,*S*)-**3dA** and (*R*,*R*)-**3dB** (25:75 dr, ¹H NMR analysis). Purification by column chromatography (50% CH₂Cl₂ in hexanes) gave (*R*,*S*)-**3dA** (21.6 mg, 25% yield) and (*R*,*R*)-**3dB** (54.0 mg, 63% yield).

(*R*,*S*)-**3dA**: R_f 0.30 (50% CH₂Cl₂ in hexanes); $[\alpha]_D^{24}$ –51.9 (*c* 1.3, CHCl₃). ¹H NMR (400 MHz, CDCl₃): δ 7.55–7.48 (m, 2H, Ar*H*), 7.45–7.35 (m, 3H, Ar*H*), 7.35–7.27 (m, 4H, Ar*H*), 5.50 (dd, *J* = 3.4, 8.8 Hz, 1H, C*H*N), 4.77 (dd, *J* = 8.8, 8.8 Hz, 1H, C*H*HO), 4.35 (dd, *J* = 3.4, 8.8 Hz, 1H, CHHO), 4.06–3.94 (m, 1H, C*H*CF₃), 3.62 (dd, *J* = 10.8, 18.5 Hz, 1H, C*H*H), 3.26 (dd, *J* = 2.9, 18.5 Hz, 1H, CH*H*). ¹³C NMR (100 MHz, CDCl₃): δ 168.0 (CO), 153.5 (CO), 138.4 (C), 135.1

(C), 135.0 (2 × CH), 131.0 (C), 129.4 (2 ×CH), 129.3 (2 ×CH), 129.1 (CH), 126.3 (q, ${}^{1}J_{CF}$ = 276.6 Hz, CF₃), 125.9 (2 × CH), 70.3 (CH₂), 57.8 (CH), 47.7 (q, ${}^{2}J_{CF}$ = 29.7 Hz, CH), 35.2 (q, ${}^{3}J_{CF}$ = 1.7 Hz, CH₂). ¹⁹F NMR (470 MHz, CDCl₃): δ –70.7 (CF₃). IR (ATR): λ_{max} 1780s, 1706s, 1476m, 1382s, 1305s, 1276s, 1245s, 1202s, 1150s, 1097s cm⁻¹. MS: m/z (%) relative intensity 430 [(M+H)⁺, 76], 429 [M⁺, 100], 286 (7), 240 (4), 164 (13), 120 (20), 108 (14), 104 (15), 91 (7), 77 (4). HRMS (ESI-TOF) calcd for C₁₉H₁₅ClF₃NO₃SNa⁺ [M + Na]⁺: 452.0305, found: 452.0291.

(*R*,*R*)-**3dB**: $R_f 0.25$ (50% CH₂Cl₂ in hexanes); mp 164–166 °C (50% CH₂Cl₂ in hexanes); $[\alpha]_D^{26}$ –116.7 (*c* 1.1, CHCl₃). ¹H NMR (400 MHz, CDCl₃): δ 7.45–7.33 (m, 5H, Ar*H*), 7.18–7.10 (m, 4H, Ar*H*), 5.48 (dd, *J* = 4.3, 8.9 Hz, 1H, C*H*N), 4.75 (dd, *J* = 8.9, 8.9 Hz, 1H, C*H*HO), 4.34 (dd, *J* = 4.3, 8.9 Hz, 1H, CHHO), 3.95–3.82 (m, 1H, C*H*CF₃), 3.69 (dd, *J* = 10.7, 17.7 Hz, 1H, C*H*H), 3.23 (dd, *J* = 3.4, 17.7 Hz, 1H, CH*H*). ¹³C NMR (125 MHz, CDCl₃): δ 168.3 (CO), 153.4 (CO), 138.2

(C), 135.5 (2 × CH), 135.3 (C), 130.8 (C), 129.2 (4 ×CH), 128.9 (CH), 126.2 (q, ${}^{1}J_{CF} = 276.9$ Hz, CF₃), 126.1 (2 × CH), 70.1 (CH₂), 57.9 (CH), 48.6 (q, ${}^{2}J_{CF} = 29.7$ Hz, CH), 35.4 (CH₂). 19 F NMR (470 MHz, CDCl₃): δ –70.8 (CF₃). IR (ATR): λ_{max} 1792s, 1694s, 1452m, 1383s, 1312s, 1268m, 1245m, 1209m, 1148s, 1091s, 1039s cm⁻¹. MS: m/z (%) relative intensity 430 [(M+ H)⁺, 100], 429 [M⁺, 99], 286 (10), 164 (13), 120 (25), 108 (15), 104 (30), 91 (5), 77 (7). HRMS (ESI-TOF) calcd for C₁₉H₁₅ClF₃NO₃SNa⁺ [M + Na]⁺: 452.0305, found: 452.0293.

$(R)-4-Phenyl-3-\{(S)-4,4,4-trifluoro-3-[(4-fluorophenyl)thio]butanoyl\}oxazolidin-2-one [(R,S)-3eA] and (R)-4-Phenyl-3-\{(R)-4,4,4-trifluoro-3-[(4-fluorophenyl)thio]butanoyl\}oxazolidin-2-one [(R,R)-3eB]$

According to the *Conditions A*, the reaction of **1** (58.3 mg, 0.20 mmol) with 4-fluorobenzenethiol (24 μ L, 0.22 mmol) gave a crude mixture of (*R*,*S*)-**3eA** and (*R*,*R*)-**3eB** (85:15 dr, ¹H NMR analysis). Purification by column chromatography (50% CH₂Cl₂ in hexanes) afforded (*R*,*S*)-**3eA** (61.1 mg, 74% yield) as a white semi-solid and (*R*,*R*)-**3eB** (12.1 mg, 15% yield) as a white solid. According to the *Conditions B*, the reaction of **1** (57.9 mg, 0.20 mmol) with 4-fluorobenzenethiol (24 μ L, 0.22 mmol) gave a crude mixture of (*R*,*S*)-**3eA** and (*R*,*R*)-**3eB** (22:78 dr, ¹H NMR analysis). Purification by column chromatography (50% CH₂Cl₂ in hexane) afforded (*R*,*S*)-**3eA** (14.0 mg, 17% yield) and (*R*,*R*)-**3eB** (49.8 mg, 60% yield).

Scale-up synthesis: According to the *Conditions A*, the reaction of **1** (1.14 g, 4.0 mmol) with 4-fluorobenzenethiol (0.48 mL, 4.4 mmol) and *i*-Pr₂NEt (36 μ L, 0.20 mmol) in dry acetone (20 mL) gave (*R*,*S*)-**3eA** (1.25 g, 76% yield) and (*R*,*R*)-**3eB** (195 mg, 12% yield).

(*R*,*S*)-**3eA**: R_f 0.25 (50% CH₂Cl₂ in hexanes); $[\alpha]_D^{26}$ -61.0 (*c* 1.3, CHCl₃). ¹H NMR (400 MHz, CDCl₃): δ 7.57 (dd, *J* = 5.2, 8.7 Hz, 2H, Ar*H*), 7.45–7.30 (m, 5H, Ar*H*), 7.01 (dd, *J* = 8.7, 8.7 Hz, 2H, Ar*H*), 5.51 (dd, *J* = 3.4, 8.8 Hz, 1H, C*H*N), 4.76 (dd, *J* = 8.8, 8.8 Hz, 1H, C*H*HO), 4.35 (dd, *J* = 3.4, 8.8 Hz, 1H, C*H*HO), 4.02–3.89 (m, 1H, C*H*CF₃), 3.61 (dd, *J* = 10.8, 18.5 Hz, 1H, C*H*H), 3.25 (dd, *J* = 2.9, 18.5 Hz, 1H, CH*H*). ¹³C NMR (125 MHz, CDCl₃): δ 168.1 (CO), 163.2 (d,

 ${}^{1}J_{CF} = 248.3$ Hz, C), 153.4 (CO), 138.4 (C), 136.4 (d, ${}^{3}J_{CF} = 8.5$ Hz, 2 × CH), 129.3 (2 × CH), 129.0 (CH), 127.6 (d, ${}^{4}J_{CF} = 3.5$ Hz, C), 126.3 (q, ${}^{1}J_{CF} = 277.1$ Hz, CF₃), 125.9 (2 × CH), 116.3 (d, ${}^{2}J_{CF} = 21.9$ Hz, 2 × CH), 70.3 (CH₂), 57.8 (CH), 48.0 (q, ${}^{2}J_{CF} = 29.5$ Hz, CH), 35.2 (CH₂). 19 F NMR (470 MHz, CDCl₃): δ –70.6 (CF₃), –111.7 (F). IR (ATR): λ_{max} 1778s, 1704s, 1491w, 1384m, 1322*s*, 1307*s*, 1274*s*, 1215*s*, 1199*s*, 1148*s*, 1099*s* cm⁻¹. MS: m/z (%) relative intensity 414 [(M+H)⁺, 99], 413 [M⁺, 100], 286 (5), 164 (6), 127 (5), 120 (12), 104 (5), 91 (4). HRMS (ESI-TOF) calcd for C₁₉H₁₅F₄NO₃SNa⁺ [M + Na]⁺: 436.0601, found: 436.0595.

(*R*,*R*)-**3eB**: R_f 0.20 (50% CH₂Cl₂ in hexanes); mp 154–156 °C (50% CH₂Cl₂ in hexanes); $[\alpha]_D^{26}$ –104.0 (*c* 1.2, CHCl₃). ¹H NMR (400 MHz, CDCl₃): δ 7.45–7.34 (m, 5H, Ar*H*), 7.21–7.14 (m, 2H, Ar*H*), 6.91–6.84 (m, 2H, Ar*H*), 5.49 (dd, *J* = 4.3, 8.9 Hz, 1H, C*H*N), 4.75 (dd, *J* = 8.9, 8.9 Hz, 1H, C*H*HO), 4.34 (dd, *J* = 4.3, 8.9 Hz, 1H, CHHO), 3.90–3.77 (m, 1H, CHCF₃), 3.67 (dd, *J* = 10.7, 17.7 Hz, 1H, C*H*H), 3.21 (dd, *J* = 3.3, 17.7 Hz, 1H, CH*H*). ¹³C NMR (100 MHz, CDCl₃): δ 168.4 (CO), 163.3

(d, ${}^{1}J_{CF}$ = 248.6 Hz, C), 153.4 (CO), 138.3 (C), 136.8 (d, ${}^{3}J_{CF}$ = 8.5 Hz, 2 × CH), 129.2 (2 × CH), 128.9 (CH), 127.3 (d, ${}^{4}J_{CF}$ = 3.4 Hz, C), 126.3 (q, ${}^{1}J_{CF}$ = 276.7 Hz, CF₃), 126.2 (2 × CH), 116.1 (d, ${}^{2}J_{CF}$ = 21.8 Hz, 2 × CH), 70.1 (CH₂), 57.9 (CH), 48.8 (q, ${}^{2}J_{CF}$ = 29.8 Hz, CH), 35.3 (q, ${}^{3}J_{CF}$ = 1.8 Hz, CH₂). ¹⁹F NMR (470 MHz, CDCl₃): δ –70.7 (CF₃), –111.6 (F). IR (ATR): λ_{max} 1792s, 1697s, 1589m, 1489m, 1384s, 1310s, 1210s, 1146s, 1118s, 1095s cm⁻¹. MS: m/z (%) relative intensity 414 [(M+H)⁺, 98], 413 [M⁺, 100], 393 (3), 210 (3), 164 (6), 120 (15), 91 (3). HRMS (ESI-TOF) calcd for C₁₉H₁₅F₄NO₃SNa⁺ [M + Na]⁺: 436.0601, found: 436.0602.

$(R)-4-Phenyl-3-\{(S)-4,4,4-trifluoro-3-[(3-methoxyphenyl)thio]butanoyl\}oxazolidin-2-one \ [(R,S)-3fA] \ and \ (R)-4-Phenyl-3-\{(R)-4,4,4-trifluoro-3-[(3-methoxyphenyl)thio]butanoyl\}oxazolidin-2-one \ [(R,R)-3fB]$

According to the *Conditions A*, the reaction of **1** (57.7 mg, 0.20 mmol) with 3methoxybenzenethiol (32 μ L, 0.22 mmol) gave a crude mixture of (*R*,*S*)-**3fA** and (*R*,*R*)-**3fB** (85:15 dr, ¹H NMR analysis). Purification by column chromatography (50% CH₂Cl₂ in hexanes) afforded (*R*,*S*)-**3fA** (63.1 mg, 75% yield) as a colorless viscous oil and (*R*,*R*)-**3fB** (10.4 mg, 12% yield) as a white solid. According to the *Conditions B*, the reaction of **1** (57.6 mg, 0.20 mmol) with 3methoxybenzenethiol (32 μ L, 0.22 mmol) gave a crude mixture of (*R*,*S*)-**3fA** and (*R*,*R*)-**3fB** (36:64 dr, ¹H NMR analysis). Purification by column chromatography (50% CH₂Cl₂ in hexanes) afforded (*R*,*S*)-**3fA** (28.0 mg, 33%) and (*R*,*R*)-**3fB** (49.1 mg, 60%).

(*R*,*S*)-**3fA**: R_f 0.20 (50% CH₂Cl₂ in hexanes); $[\alpha]_D^{24}$ -50.8 (*c* 1.2, CHCl₃). ¹H NMR (400 MHz, CDCl₃): δ 7.45–7.33 (m, 3H, Ar*H*), 7.33–7.29 (m, 2H, Ar*H*), 7.23 (dd, *J* = 8.0, 8.0 Hz, 1H, Ar*H*), 7.15 (ddd, *J* = 0.9, 2.0, 8.0 Hz, 1H, Ar*H*), 7.11 (dd, *J* = 2.0, 2.0 Hz, 1H, Ar*H*), 6.86 (ddd, *J* = 0.9, 2.0, 8.0 Hz, 1H, Ar*H*), 5.48 (dd, *J* = 3.4, 8.8 Hz, 1H, CHN), 4.74 (dd, *J* = 8.8, 8.8 Hz, 1H, CHHO), 4.34 (dd, *J* = 3.4, 8.8 Hz, 1H, CHHO), 4.16–4.05 (m, 1H, CHCF₃), 3.80 (s,

3H, OC*H*₃), 3.63 (dd, J = 10.6, 18.4 Hz, 1H, C*H*H), 3.27 (dd, J = 3.2, 18.4 Hz, 1H, CH*H*). ¹³C NMR (100 MHz, CDCl₃): δ 168.0 (CO), 159.7 (C), 153.4 (CO), 138.5 (C), 133.5 (C), 130.0 (CH),

129.3 (2 × CH), 129.0 (CH), 126.3 (q, ${}^{1}J_{CF}$ = 277.3 Hz, CF₃), 125.9 (2 × CH), 125.5 (CH), 118.5 (CH), 114.5 (CH), 70.3 (CH₂), 57.4 (CH), 55.3 (OCH₃), 47.1 (q, ${}^{2}J_{CF}$ = 29.7 Hz, CH), 35.2 (q, ${}^{3}J_{CF}$ = 1.7 Hz, CH₂). 19 F NMR (376 MHz, CDCl₃): δ –70.7 (CF₃). IR (ATR): λ_{max} 1776s, 1704s, 1589m, 1478m, 1386s, 1311s, 1245s, 1154s, 1097s, 1037s cm⁻¹. MS: m/z (%) relative intensity 426 [(M+H)⁺, 85], 425 [M⁺, 100], 424 (18), 407 (6), 263 (5), 222 (66), 195 (4), 120 (4). HRMS (ESI-TOF) calcd for C₂₀H₁₉F₃NO₄S⁺ [M + H]⁺: 426.0981, found: 426.0987.

(*R*,*R*)-**3fB**: $R_f 0.15$ (50% CH₂Cl₂ in hexanes); mp 113–115 °C (50% CH₂Cl₂ in hexanes); $[\alpha]_D^{23}$ –106.1 (*c* 1.2, CHCl₃). ¹H NMR (400 MHz, CDCl₃): δ 7.42–7.30 (m, 5H, Ar*H*), 7.11 (dd, *J* = 8.0, 8.0 Hz, 1H, Ar*H*), 6.89–6.78 (m, 3H, Ar*H*), 5.48 (dd, *J* = 4.3, 8.9 Hz, 1H, C*H*N), 4.73 (dd, *J* = 8.9, 8.9 Hz, 1H, C*H*HO), 4.30 (dd, *J* = 4.3, 8.9 Hz, 1H, CHHO), 4.05–3.94 (m, 1H, CHCF₃), 3.73–3.62 (m, 4H, OCH₃, C*H*H), 3.29 (dd, *J* = 3.7, 17.8 Hz, 1H, CHH). ¹³C NMR (100

MHz, CDCl₃): δ 168.0 (CO), 159.7 (C), 153.5 (CO), 138.3 (C), 133.4 (C), 129.8 (CH), 129.2 (2 × CH), 128.8 (CH), 126.3 (q, ${}^{1}J_{CF}$ = 277.2 Hz, CF₃), 125.9 (2 × CH), 125.8 (CH), 118.5 (CH), 115.1 (CH), 70.1 (CH₂), 57.9 (CH), 55.2 (OCH₃), 48.1 (q, ${}^{2}J_{CF}$ = 29.8 Hz, CH), 35.5 (q, ${}^{3}J_{CF}$ = 1.6 Hz, CH₂). ¹⁹F NMR (376 MHz, CDCl₃): δ –70.7 (CF₃). IR (ATR): λ_{max} 1782*s*, 1706*s*, 1590*m*, 1483*m*, 1379*s*, 1300*s*, 1245*s*, 1155*s*, 1076*s*, 1033*s* cm⁻¹. MS: *m*/*z* (%) relative intensity 426 [(M+H)⁺, 77], 425 [M⁺, 98], 384 (15), 223 (12), 222 (100), 164 (10), 140 (28), 120 (13), 95 (6). HRMS (ESI-TOF) calcd for C₂₀H₁₉F₃NO₄S⁺ [M + H]⁺: 426.0981, found: 426.0984.

$\label{eq:constraint} $$ (R)-4-Phenyl-3-{(S)-4,4,4-trifluoro-3-[(3-chlorophenyl)thio]butanoyl}oxazolidin-2-one $$ [(R,S)-3gA] and (R)-4-Phenyl-3-{(R)-4,4,4-trifluoro-3-[(3-chlorophenyl)thio]butanoyl}oxazolidin-2-one $$ [(R,R)-3gB] $$]$

According to the *Conditions A*, the reaction of **1** (58.1 mg, 0.20 mmol) with 3-chlorobenzenethiol (26 μ L, 0.22 mmol) gave a crude mixture of (*R*,*S*)-**3gA** and (*R*,*R*)-**3gB** (75:25 dr, ¹H NMR analysis). Purification by column chromatography (50% CH₂Cl₂ in hexanes) afforded (*R*,*S*)-**3gA**(53.1 mg, 62% yield) as a colorless viscous oil and (*R*,*R*)-**3gB** (19.3 mg, 23% yield) as a white solid. According to the *Conditions B*, the reaction of **1** (58.1 mg, 0.20 mmol) with 3-chlorobenzenethiol (26 μ L, 0.22 mmol) gave a crude mixture of (*R*,*S*)-**3gA** and (*R*,*R*)-**3gB** (46:54 dr, ¹H NMR analysis). Purification by column chromatography (50% CH₂Cl₂ in hexanes) afforded (*R*,*S*)-**3gA** (32.7 mg, 38% yield) and (*R*,*R*)-**3gB** (36.4 mg, 43% yield).

(*R*,*S*)-**3gA**: R_f 0.33 (50% CH₂Cl₂ in hexanes); $[\alpha]_D^{27}$ -53.1 (*c* 1.0, CHCl₃). ¹H NMR (400 MHz, CDCl₃): δ 7.57–7.54 (m, 1H, Ar*H*), 7.48–7.35 (m, 4H, Ar*H*), 7.35–7.24 (m, 4H, Ar*H*), 5.50 (dd, *J* = 3.4, 8.8 Hz, 1H, C*H*N), 4.77 (dd, *J* = 8.8, 8.8 Hz, 1H, C*H*HO), 4.35 (dd, *J* = 3.4, 8.8 Hz, 1H, C*H*HO), 4.15–4.00 (m, 1H, C*H*CF₃), 3.62 (dd, *J* = 10.8, 18.6 Hz, 1H, C*H*H), 3.28 (dd, *J* = 3.0, 18.6 Hz, 1H, CH*H*). ¹³C NMR

(100 MHz, CDCl₃): δ 167.9 (CO), 153.4 (CO), 138.4 (C), 134.6 (C), 134.5 (C), 132.8 (CH), 131.3 (CH), 130.2 (CH), 129.3 (2 ×CH), 129.0 (CH), 128.9 (CH), 126.2 (q, ${}^{1}J_{CF}$ = 277.2 Hz, CF₃), 125.9 (2 × CH), 70.4 (CH₂), 57.8 (CH), 47.2 (q, ${}^{2}J_{CF}$ = 30.0 Hz, CH), 35.1 (q, ${}^{3}J_{CF}$ = 1.7 Hz, CH₂). ¹⁹F NMR (470 MHz, CDCl₃): δ -70.7 (CF₃). IR (ATR): λ_{max} 1779s, 1698s, 1605w, 1576w, 1459m, 1363s, 1311s, 1290s, 1257s, 1210s, 1156s, 1102s, 1046s, 1013s cm⁻¹. MS: *m/z* (%) relative intensity 430 [(M+ H)⁺, 100], 429 [M⁺, 83], 409 (11), 226 (12), 183 (11), 164 (13), 120 (20), 108 (22), 104 (18). HRMS (ESI-TOF) calcd for C₁₉H₁₅ClF₃NO₃SNa⁺ [M + Na]⁺: 452.0305, found: 452.0293.

(*R*,*R*)-**3gB**: $R_f 0.25$ (50% CH₂Cl₂ in hexanes); mp 127–130 °C (50% CH₂Cl₂ in hexanes); $[\alpha]_D^{24}$ –113.4 (*c* 1.1, CHCl₃). ¹H NMR (400 MHz, CDCl₃): δ 7.45–7.32 (m, 5H, Ar*H*), 7.25–7.20 (m, 2H, Ar*H*), 7.16–7.09 (m, 2H, Ar*H*), 5.49 (dd, *J* = 4.3, 8.9 Hz, 1H, C*H*N), 4.75 (dd, *J* = 8.9, 8.9 Hz, 1H, C*H*HO), 4.34 (dd, *J* = 4.3, 8.9 Hz, 1H, CHHO), 4.00–3.89 (m, 1H, CHCF₃), 3.69 (dd, *J* = 10.7, 17.7 Hz, 1H, C*H*H), 3.24 (dd, *J* = 3.4, 17.7 Hz, 1H, CH*H*). ¹³C NMR (125 MHz, CDCl₃): δ 168.2

(CO), 153.5 (CO), 138.2 (C), 134.5 (C), 134.3 (C), 133.4 (CH), 131.8 (CH), 130.0 (CH), 129.2 (2 ×CH), 129.0 (CH), 128.9 (CH), 126.2 (q, ${}^{1}J_{CF} = 276.8$ Hz, CF₃), 126.1 (2 × CH), 70.2 (CH₂), 57.9 (CH), 48.4 (q, ${}^{2}J_{CF} = 30.0$ Hz, CH), 35.4 (CH₂). 19 F NMR (470 MHz, CDCl₃): δ –70.8 (CF₃). IR (ATR): λ_{max} 1791*s*, 1690*s*, 1573*w*, 1563*w*, 1472*m*, 1386*s*, 1324*s*, 1268*s*, 1247*s*, 1211*s*, 1151*s*, 1100*s*, 1073*s* cm⁻¹. MS: *m*/*z* (%) relative intensity 430 [(M+ H)⁺, 100], 429 [M⁺, 79], 409 (32), 389 (18), 286 (17), 226 (19), 211 (12), 183 (15), 121 (10), 120 (23), 108 (13), 104 (69), 91 (7), 77 (6). HRMS (ESI-TOF) calcd for C₁₉H₁₅ClF₃NO₃SNa⁺ [M + Na]⁺: 452.0305, found: 452.0301.

(*R*)-4-Phenyl-3-{(*S*)-4,4,4-trifluoro-3-[(2-methoxyphenyl)thio]butanoyl}oxazolidin-2-one [(*R*,*S*)-3hA] and (*R*)-4-Phenyl-3-{(*R*)-4,4,4-trifluoro-3-[(2-methoxyphenyl)thio]butanoyl}oxazolidin-2-one [(*R*,*R*)-3hB]

According to the *Conditions A*, the reaction of **1** (57.8 mg, 0.20 mmol) with 2methoxybenzenethiol (32 μ L, 0.22 mmol) gave a crude mixture of (*R*,*S*)-**3hA** and (*R*,*R*)-**3hB** (84:16 dr, ¹H NMR analysis). Purification by column chromatography (30% EtOAc in hexanes) afforded (*R*,*S*)-**3hA** (59.7 mg, 70% yield) as a colorless viscous oil and (*R*,*R*)-**3hB** (13.0 mg, 15% yield) as a white solid. According to the *Conditions B*, the reaction of **1** (57.5 mg, 0.20 mmol) with 2-methoxybenzenethiol (32 μ L, 0.22 mmol) gave a crude mixture of (*R*,*S*)-**3hA** and (*R*,*R*)-**3hB** (65:35 dr, ¹H NMR analysis). Purification by column chromatography (30% EtOAc in hexanes) afforded (*R*,*S*)-**3hA** (51.4 mg, 60% yield) and (*R*,*R*)-**3hB** (29.4 mg, 35% yield).

(*R*,*S*)-**3hA**: R_f 0.18 (30% EtOAc in hexanes); $[\alpha]_D^{23}$ -62.9 (*c* 1.2, CHCl₃). ¹H NMR (400 MHz, CDCl₃): δ 7.51 (dd, J = 1.6, 7.6 Hz, 1H, Ar*H*), 7.42– 7.27 (m, 6H, Ar*H*), 6.95–6.86 (m, 2H, Ar*H*), 5.43 (dd, J = 3.6, 8.8 Hz, 1H, C*H*N), 4.70 (dd, J = 8.8, 8.8 Hz, 1H, C*H*HO), 4.40–4.28 (m, 2H, C*H*HO, C*H*CF₃), 3.89 (s, 3H, OC*H*₃), 3.60 (dd, J = 8.9, 18.2 Hz, 1H, C*H*H), 3.32 (dd, J = 4.3, 18.2 Hz, 1H, CH*H*). ¹³C NMR (100 MHz, CDCl₃): δ 168.2 (CO), 159.3 (C), 153.4 (CO), 138.5 (C), 135.3 (CH),

CDCl₃). *b* 108.2 (CO), 139.3 (C), 139.4 (CO), 138.5 (C), 135.3 (CI), 130.5 (CI), 130.5 (CI), 120.2 (2 × CH), 128.9 (CH), 126.3 (q, ${}^{1}J_{CF} = 277.9$ Hz, CF₃), 125.9 (2 × CH), 121.0 (CH), 119.5 (C), 111.0 (CH), 70.2 (CH₂), 57.8 (CH), 55.8 (OCH₃), 44.1 (q, ${}^{2}J_{CF} = 29.5$ Hz, CH), 35.1 (q, ${}^{3}J_{CF} = 1.8$ Hz, CH₂). 19 F NMR (376 MHz, CDCl₃): δ –70.2 (CF₃). IR (ATR): λ_{max} 1777s, 1706s, 1582m, 1476m, 1385s, 1318s, 1242s, 1154s, 1099s, 1066s, 1040s, 1022s cm⁻¹. MS: *m/z* (%) relative intensity 426 [(M+ H)⁺, 89], 425 [M⁺, 100], 265 (11), 222 (9), 120 (5), 110 (3), 91 (1). HRMS (ESI-TOF) calcd for C₂₀H₁₉F₃NO₄S⁺ [M + H]⁺: 426.0981, found: 426.0989.

(*R*,*R*)-**3hB**: $R_f 0.20$ (30% EtOAc in hexanes); mp 132–134 °C (30% EtOAc in hexanes); $[\alpha]_D^{24}$ –78.3 (*c* 1.2, CHCl₃). ¹H NMR (400 MHz, CDCl₃): δ 7.42–7.27 (m, 7H, Ar*H*), 6.87–6.77 (m, 2H, Ar*H*), 5.43 (dd, *J* = 3.8, 8.8 Hz, 1H, C*H*N), 4.70 (dd, *J* = 8.8, 8.8 Hz, 1H, C*H*HO), 4.33–4.20 (m, 2H, C*H*HO, C*H*CF₃), 3.62–3.53 (m, 4H, OC*H*₃, C*H*H), 3.45 (dd, *J* = 5.6, 17.6 Hz, 1H, CH*H*). ¹³C NMR (100 MHz, CDCl₃): δ 168.3 (CO), 159.2 (C), 153.8 (CO), 138.5 (C), 135.4 (CH), 130.5 (CH), 129.2 (2 × CH), 128.8

(CH), 126.4 (q, ${}^{1}J_{CF}$ = 277.9 Hz, CF₃), 126.0 (2 × CH), 120.8 (CH), 119.8 (C), 111.0 (CH), 70.2 (CH₂), 57.8 (CH), 55.4 (OCH₃), 44.6 (q, ${}^{2}J_{CF}$ = 29.4 Hz, CH), 35.7 (q, ${}^{3}J_{CF}$ = 1.7 Hz, CH₂). 19 F NMR (376 MHz, CDCl₃): δ –70.5 (d, *J* = 11.1 Hz, CF₃). IR (ATR): λ_{max} 1784*s*, 1713*s*, 1585*m*, 1475*m*, 1407*m*, 1317*s*, 1298*s*, 1243*s*, 1183*s*, 1156*s*, 1076*s*, 1057*s*, 1023*s* cm⁻¹. MS: *m*/*z* (%) relative intensity 426 [(M+ H)⁺, 91], 425 [M⁺, 100], 286 (6), 265 (28), 222 (23), 164 (8), 140 (41), 120 (13), 104 (10), 77 (10). HRMS (ESI-TOF) calcd for C₂₀H₁₈F₃NO₄SNa⁺ [M + H]⁺: 426.0981, found: 426.0978.

$(R)-4-Phenyl-3-\{(S)-4,4,4-trifluoro-3-[(2-chlorophenyl)thio]butanoyl\}oxazolidin-2-one [(R,S)-3iA] and (R)-4-Phenyl-3-\{(R)-4,4,4-trifluoro-3-[(2-chlorophenyl)thio]butanoyl\}oxazolidin-2-one [(R,R)-3iB]$

According to the *Conditions A*, the reaction of **1** (57.9 mg, 0.20 mmol) with 2-chlorobenzenethiol (26 μ L, 0.22 mmol) gave a crude mixture of (*R*,*S*)-**3iA** and (*R*,*R*)-**3iB** (78:22 dr, ¹H NMR analysis). Purification by column chromatography (50% CH₂Cl₂ in hexanes) afforded (*R*,*S*)-**3iA** (61.1 mg, 71% yield) and (*R*,*R*)-**3iB** (17.2 mg, 20% yield) each as a white solid. According to the *Conditions B*, the reaction of **1** (57.9 mg, 0.20 mmol) with 2-chlorobenzenethiol (26 μ L, 0.22 mmol) gave a crude mixture of (*R*,*S*)-**3iA** and (*R*,*R*)-**3iB** (55:45 dr, ¹H NMR analysis). Purification by column chromatography (50% CH₂Cl₂ in hexanes) afforded (*R*,*S*)-**3iA** and (*R*,*R*)-**3iB** (17.2 mg, 10.20 mmol) with 2-chlorobenzenethiol (26 μ L, 0.22 mmol) gave a crude mixture of (*R*,*S*)-**3iA** and (*R*,*R*)-**3iB** (55:45 dr, ¹H NMR analysis). Purification by column chromatography (50% CH₂Cl₂ in hexanes) afforded (*R*,*S*)-**3iA** (38.4 mg, 45% yield) and (*R*,*R*)-**3iB** (31.2 mg, 37% yield).

(*R*,*S*)-**3iA**: $R_f 0.30$ (50% CH₂Cl₂ in hexanes); mp 136–138 °C (50% CH₂Cl₂ in hexanes); $[\alpha]_D^{27}$ –64.0 (*c* 1.2, CHCl₃). ¹H NMR (400 MHz, CDCl₃): δ 7.66–7.60 (m, 1H, Ar*H*), 7.45–7.32 (m, 4H, Ar*H*), 7.32–7.28 (m, 2H, Ar*H*), 7.28–7.19 (m, 2H, Ar*H*), 5.46 (dd, *J* = 3.5, 8.8 Hz, 1H, C*H*N), 4.75 (dd, *J* = 8.8, 8.8 Hz, 1H, C*H*HO), 4.33 (dd, *J* = 3.5, 8.8 Hz, 1H, CHHO), 4.31–4.21 (m, 1H, CHCF₃), 3.65 (dd, *J* = 9.5, 18.3 Hz, 1H, CHH), 3.37 (dd, *J* = 3.8, 10.4 Hz, 10.4 Hz,

(*R*,S)-**3**iA 18.3 Hz, 1H, CH*H*). ¹³C NMR (100 MHz, CDCl₃): δ 167.9 (CO), 153.5 (CO), 138.4 (C), 136.8 (C), 134.1 (CH), 131.7 (C), 130.1 (CH), 129.5 (CH), 129.3 (2 × CH), 129.0 (CH), 127.5 (CH), 126.0 (2 × CH), 126.1 (q, ${}^{1}J_{CF} = 277.7$ Hz, CF₃), 70.3 (CH₂), 57.8 (CH), 45.7 (q, ${}^{2}J_{CF} = 29.9$ Hz, CH), 35.1 (q, ${}^{3}J_{CF} = 1.8$ Hz, CH₂). ¹⁹F NMR (470 MHz, CDCl₃): δ –70.4 (CF₃). IR (ATR): λ_{max} 1788*s*, 1701*s*, 1389*s*, 1301*s*, 1254*s*, 1195*s*, 1139*s*, 1103*s*, 1056*s*, 1033*s*, 1023*s* cm⁻¹. MS: *m*/*z* (%) relative intensity 430 [(M+ H)⁺, 100], 429 [M⁺, 74], 426 (10), 425 (19), 409 (16), 286 (11), 183 (11), 120 (26), 108 (21), 104 (54), 91 (8), 77 (6). HRMS (ESI-TOF) calcd for C₁₉H₁₅ClF₃NO₃SNa⁺ [M + Na]⁺: 452.0305, found: 452.0317.

1H, CH*H*). ¹³C NMR (100 MHz, CDCl₃): δ 168.0 (CO), 153.5 (CO), 138.2 (C), 137.3 (C), 134.8 (d, J = 0.6 Hz, CH), 131.4 (C), 130.0 (CH), 129.7 (CH), 129.2 (2 × CH), 128.9 (CH), 127.4 (CH), 126.1 (q, ¹ $_{J_{CF}} = 277.8$ Hz, CF₃), 125.9 (2 × CH), 70.2 (CH₂), 57.8 (CH), 46.1 (q, ² $_{J_{CF}} = 30.0$ Hz, CH), 35.4 (q, ³ $_{J_{CF}} = 1.7$ Hz, CH₂). ¹⁹F NMR (470 MHz, CDCl₃): δ –70.4 (CF₃). IR (ATR): λ_{max} 1796s, 1687s, 1493*m*, 1384*s*, 1328*s*, 1268*s*, 1148*s*, 1083*s*, 1071*s*, 1036*s* cm⁻¹. MS: *m*/*z* (%) relative intensity 430 [(M+ H)⁺, 100], 429 [M⁺, 76], 409 (12), 286 (6), 120 (12), 108 (18), 104 (14), 91 (4). HRMS (ESI-TOF) calcd for C₁₉H₁₅ClF₃NO₃SNa⁺ [M + Na]⁺: 452.0305, found: 452.0293.

$(R)-4-Phenyl-3-\{(S)-4,4,4-trifluoro-3-\{[4-(tert-butyl)-2-methylphenyl]thio\}butanoyl\}oxazolidin-2-one [(R,S)-3jA] and (R)-4-Phenyl-3-\{(R)-4,4,4-trifluoro-3-\{[4-(tert-butyl)-2-methylphenyl]thio\}butanoyl\}oxazolidin-2-one [(R,R)-3jB]$

According to the *Conditions A*, the reaction of **1** (59.7 mg, 0.21 mmol) with 4-(*tert*-butyl)-2methylbenzenethiol (42 μ L, 0.23 mmol) gave a crude mixture of (*R*,*S*)-**3jA** and (*R*,*R*)-**3jB** (88:12 dr, ¹H NMR analysis). Purification by column chromatography (50% CH₂Cl₂ in hexanes) afforded (*R*,*S*)-**3jA** (83.8 mg, 86% yield) as a colorless viscous oil and (*R*,*R*)-**3jB** (5.9 mg, 6% yield) as a white solid. According to the *Conditions B*, the reaction of **1** (57.8 mg, 0.20 mmol) with 4-(*tert*butyl)-2-methylbenzenethiol (40 μ L, 0.22 mmol) gave a crude mixture of (*R*,*S*)-**3jA** and (*R*,*R*)-**3jB** (73:27 dr, ¹H NMR analysis). Purification by column chromatography (50% CH₂Cl₂ in hexane) afforded (*R*,*S*)-**3jA** (55.8 mg, 60% yield) and (*R*,*R*)-**3jB** (21.1 mg, 23% yield).

(*R*,*S*)-**3jA**: *R_f* 0.38 (50% CH₂Cl₂ in hexanes); $[\alpha]_D^{25}$ -46.3 (*c* 1.1, CHCl₃). ¹H NMR (400 MHz, acetone-*d*₆): δ 7.72 (d, *J* = 2.1 Hz, 1H, Ar*H*), 7.40–7.30 (m, 6H, Ar*H*), 7.21 (d, *J* = 8.0 Hz, 1H, Ar*H*), 5.62 (dd, *J* = 3.5, 8.8 Hz, 1H, C*H*N), 4.88 (dd, *J* = 8.8, 8.8 Hz, 1H, C*H*HO), 4.31 (dd, *J* = 3.5, 8.8 Hz, 1H, CHHO), 4.30–4.19 (m, 1H, C*H*CF₃), 3.62 (dd, *J* = 9.4, 18.2 Hz, 1H, C*H*H), 3.48 (dd, *J* = 4.0, 18.2 Hz, 1H, CH*H*), 2.40 (s, 3H, C*H*₃), 1.30 (s, 9H, 3 × C*H*₃). ¹³C

NMR (100 MHz, acetone- d_6): δ 168.7 (CO), 154.8 (CO), 150.7 (C), 140.7 (C), 138.8 (C), 132.3 (C), 132.0 (CH), 131.2 (CH), 129.8 (2 × CH), 129.2 (CH), 127.8 (q, ${}^{1}J_{CF}$ = 276.8 Hz, CF₃), 127.0 (CH), 126.9 (2 × CH), 71.6 (CH₂), 58.6 (CH), 47.4 (q, ${}^{2}J_{CF}$ = 29.0 Hz, CH), 35.9 (q, ${}^{3}J_{CF}$ = 1.7 Hz, CH₂), 35.1 (C), 31.5 (3 × CH₃), 20.3 (CH₃). ¹⁹F NMR (470 MHz, acetone- d_6): δ –71.1 (CF₃). IR (ATR): λ_{max} 1779*s*, 1706*s*, 1384*m*, 1311*m*, 1199*m*, 1154*s*, 1099*s* cm⁻¹. MS: *m*/*z* (%) relative intensity 466 [(M+H)⁺, 100], 465 [M⁺, 74], 262 (11), 165 (6), 120 (14). HRMS (ESI-TOF) calcd for C₂₄H₂₆F₃NO₃SNa⁺ [M + Na]⁺: 488.1478, found: 488.1482.

(*R*,*R*)-**3jB**: $R_f 0.20$ (50% CH₂Cl₂ in hexanes); mp 134–137 °C (50% CH₂Cl₂ in hexanes; $[\alpha]_D^{23}$ –108.9 (*c* 1.1, CHCl₃). ¹H NMR (400 MHz, acetone-*d*₆): δ 7.54 (d, *J* = 2.0 Hz, 1H, Ar*H*), 7.45–7.29 (m, 5H, Ar*H*), 7.27 (dd, *J* = 2.0, 8.0 Hz, 1H, Ar*H*), 7.13 (d, *J* = 8.0 Hz, 1H, Ar*H*), 5.64 (dd, *J* = 4.0, 8.8 Hz, 1H, C*H*N), 4.87 (dd, *J* = 8.8, 8.8 Hz, 1H, C*H*HO), 4.31 (dd, *J* = 4.0, 8.8 Hz, 1H, CH*H*O), 4.20–4.06 (m, 1H, C*H*CF₃), 3.76 (dd, *J* = 10.0, 17.8 Hz, 1H, C*H*H), 3.34

(dd, J = 3.5, 17.8 Hz, 1H, CH*H*), 2.23 (s, 3H, C*H*₃), 1.21 (s, 9H, 3 × C*H*₃). ¹³C NMR (100 MHz, acetone-*d*₆): δ 169.0 (CO), 154.9 (CO), 150.7 (C), 140.6 (C), 138.9 (C), 132.6 (C), 132.1 (CH), 131.1 (CH), 129.8 (2 × CH), 129.1 (CH), 127.9 (q, ¹*J*_{CF} = 276.4 Hz, CF₃), 127.0 (CH), 126.9 (2 × CH), 71.4 (CH₂), 58.7 (CH), 48.5 (q, ²*J*_{CF} = 29.1 Hz, CH), 35.9 (s, CH₂), 35.0 (C), 31.5 (3 × CH₃), 20.2 (CH₃). ¹⁹F NMR (376 MHz, acetone-*d*₆): δ –71.3 (d, *J* = 10.9 Hz, CF₃). IR (ATR): λ_{max} 1789*s*, 1697*s*, 1488*w*, 1442*w*, 1380*s*, 1324*s*, 1263*s*, 1176*s*, 1148*s*, 1105*s* cm⁻¹. MS: *m*/*z* (%) relative intensity 466 [(M+ H)⁺, 100], 465 [M⁺, 71], 464 (18), 262 (7), 165 (7), 120 (12). HRMS (ESI-TOF) calcd for C₂₄H₂₆F₃NO₃SNa⁺ [M + Na]⁺: 488.1478, found: 488.1481.

According to the *Conditions A*, the reaction of **1** (57.7 mg, 0.20 mmol) with 2-aminobenzenethiol (24 μ L 0.22 mmol) followed by the *N*-acetylation of the obtained crude mixture with acetic anhydride (58 μ L, 0.6 mmol) in CH₂Cl₂(1 mL) gave a crude mixture of (*R*,*S*)-**3kA** and (*R*,*R*)-**3kB**

(84:16 dr, ¹H NMR analysis). Purification by column chromatography (30% EtOAc in hexanes) afforded (*R*,*S*)-**3kA** (67.9 mg, 75% yield) and (*R*,*R*)-**3kB** (9.8 mg, 11% yield) each as a light-brown solid. According to the *Conditions B*, the reaction of **1** (57.6 mg, 0.20 mmol) with 2-aminobenzenethiol (24 μ L, 0.22 mmol) followed by the *N*-acetylation of the obtained crude mixture with acetic anhydride (58 μ L, 0.6 mmol) in CH₂Cl₂(1 mL) gave a crude mixture of (*R*,*S*)-**3kA** and (*R*,*R*)-**3kB** (60:40 dr, ¹H NMR analysis). Purification by column chromatography (30% EtOAc in hexanes) afforded (*R*,*S*)-**3kA** (45.5 mg, 50% yield) and (*R*,*R*)-**3kB** (33.9 mg, 38% yield).

(*R*,*S*)-**3kA**: $R_f 0.13$ (30% EtOAc in hexanes); mp 141–144 °C (30% EtOAc in hexane); $[\alpha]_D^{23}$ –111.0 (*c* 1.3, CH₂Cl₂). ¹H NMR (400 MHz, acetone-*d*₆): δ 9.22 (brs, 1H, NH), 8.45 (dd, *J* = 1.0, 7.9 Hz, 1H, ArH), 7.62 (d, *J* = 7.9 Hz, 1H, ArH), 7.48–7.31 (m, 6H, ArH), 7.05 (ddd, *J* = 1.0, 7.9, 7.9 Hz, 1H, ArH), 5.71 (dd, *J* = 4.0, 8.8 Hz, 1H, CHN), 4.93 (dd, *J* = 8.8, 8.8 Hz, 1H, CHHO), 4.34 (dd, *J* = 4.0, 8.8 Hz, 1H, CHHO), 4.07–3.94 (m, 1H, CHCF₃), 3.59 (dd, *J* = 2.6, 19.1 Hz, 1H, CHH), 3.47 (dd, *J* = 11.3, 19.1 Hz, 1H,

CH*H*), 2.12 (s, 3H, C*H*₃). ¹³C NMR (100 MHz, acetone-*d*₆): δ 170.2 (CO), 169.7 (CO), 154.7 (CO), 142.8 (C), 140.6 (C), 138.7 (C), 132.0 (CH), 129.8 (2 × CH), 129.2 (CH), 127.8 (q, ¹*J*_{CF} = 277.7 Hz, CF₃), 127.1 (2 × CH), 124.2 (CH), 121.5 (CH), 119.5 (C), 71.7 (CH₂), 59.0 (CH), 46.4 (q, ²*J*_{CF} = 28.7 Hz, CH), 34.9 (q, ³*J*_{CF} = 2.1 Hz, CH₂), 24.8 (CH₃). ¹⁹F NMR (376 MHz, acetone-*d*₆): δ –70.5 (CF₃). IR (ATR): λ_{max} 3307*m*, 1779*s*, 1707*m*, 1682*s*, 1579*m*, 1520*m*, 1400*m*, 1329*s*, 1223*s*, 1181*s*, 1129*s*, 1063*s* cm⁻¹. MS: *m*/*z* (%) relative intensity 453 [(M+ H)⁺, 100], 452 [M⁺, 6], 290 (6), 167 (9), 134 (39), 125 (35), 120 (6), 80 (10). HRMS (ESI-TOF) calcd for C₂₁H₂₀F₃N₂O₄S⁺ [M + H]⁺: 453.1090, found: 453.1088.

(*R*,*R*)-**3kB**: $R_f 0.10$ (30% EtOAc in hexanes); mp 156–159 °C (30% EtOAc in hexane); $[\alpha]_D^{23}$ –85.2 (*c* 1.2, CH₂Cl₂). ¹H NMR (400 MHz, acetone- d_6): δ 8.86 (brs, 1H, NH), 8.41 (dd, J = 1.1, 7.9 Hz, 1H, ArH), 7.55 (d, J = 7.9 Hz, 1H, ArH), 7.50–7.33 (m, 6H, ArH), 7.01 (ddd, J = 1.1, 7.9, 7.9 Hz, 1H, ArH), 5.72 (dd, J = 4.5, 8.8 Hz, 1H, CHN), 4.92 (dd, J = 8.8, 8.8 Hz, 1H, CHHO), 4.30 (dd, J = 4.5, 8.8 Hz, 1H, CHHO), 4.07–3.95 (m, 1H, CHCF₃), 3.61 (dd, J = 10.9, 18.9 Hz, 1H, CHH), 3.52 (dd, J = 3.0, 18.9

Hz, 1H, CH*H*), 1.75 (s, 3H, C*H*₃). ¹³C NMR (100 MHz, acetone-*d*₆): δ 170.5 (CO), 169.6 (CO), 154.8 (CO), 142.7 (C), 140.4 (C), 138.9 (CH), 132.2 (CH), 130.0 (2 × CH), 129.3 (CH), 127.9 (q, ¹*J*_{CF} = 277.1 Hz, CF₃), 126.7 (2 × CH), 124.1 (CH), 121.4 (CH), 119.3 (C), 71.6 (CH₂), 58.9 (CH), 46.6 (q, ²*J*_{CF} = 28.9 Hz, CH), 35.1 (q, ³*J*_{CF} = 2.2 Hz, CH₂), 24.4 (CH₃). ¹⁹F NMR (376 MHz, acetone-*d*₆): δ –70.5 (d, *J* = 8.8 Hz, CF₃). IR (ATR): λ_{max} 3324*m*, 1781*s*, 1687*s*, 1577*m*, 1517*m*, 1434*m*, 1391*s*, 1249*s*, 1213*s*, 1147*s*, 1098*s* cm⁻¹. MS: *m*/*z* (%) relative intensity intensity 453 [(M+H)⁺, 100], 452 [M⁺, 5], 290 (7), 167 (8), 134 (43), 125 (32), 120 (3), 80 (7).HRMS (ESI-TOF) calcd for C₂₁H₂₀F₃N₂O₄S⁺ [M + H]⁺: 453.1090, found: 453.1091.

(*R*)-4-Phenyl-3-[(*S*)-4,4,4-trifluoro-3-(cyclohexylthio)butanoyl]oxazolidin-2-one [(*R*,*S*)-3lA] and (*R*)-4-Phenyl-3-[(*R*)-4,4,4-trifluoro-3-(cyclohexylthio)butanoyl]oxazolidin-2-one [(*R*,*R*)-3lB]

Conditions C: A flame-dried round bottom flask equipped with a magnetic stirring bar, an argon inlet, and a rubber septum was charged with 1 (57.5 mg, 0.20 mmol) and dry THF (1 mL). The resulting solution was cooled at -78 °C then cyclohexanethiol (26 mg, 0.22 mmol) and a solution of P₂-*t*-Bu (2.0 M in THF, 10 µL, 10 mol%) were added. After stirring at -78 °C for 30 min., the reaction mixture was quenched with H₂O (5 mL) and extracted with EtOAc (3 × 10 mL). The combined organic layer was washed with a saturated aqueous NaCl solution (20 mL) and dried over anhydrous Na₂SO₄. After removal of the solvent *in vacuo*, the crude mixture (63:37 dr, ¹⁹F NMR analysis) was purified by column chromatography (50% CH₂Cl₂ in hexanes) to afford (*R*,*S*)-**3lA** (43.1 mg, 55% yield) as a white semi-solid and (*R*,*R*)-**3lB** (26.1 mg, 33% yield) as a white solid. According to the *Conditions B*, the reaction of **1** (57.3 mg, 0.20 mmol) with cyclohexanethiol (26 mg, 0.22 mmol) gave a crude mixture of (*R*,*S*)-**3lA** and (*R*,*R*)-**3lB** (7:93 dr, ¹⁹F NMR analysis). Purification by column chromatography (50% CH₂Cl₂ in hexanes) afforded (*R*,*S*)-**3lA** (4.3 mg, 6% yield) and (*R*,*R*)-**3lB** (67.6 mg, 85% yield).

(*R*,*S*)-**31A**: $R_f 0.30$ (50% CH₂Cl₂ in hexanes); $[\alpha]_D^{27}$ –79.7 (*c* 1.5, CHCl₃). ¹H NMR (500 MHz, CDCl₃): δ 7.45–7.28 (m, 5H, Ar*H*), 5.47 (dd, *J* = 3.4, 8.8 Hz, 1H, C*H*N), 4.74 (dd, *J* = 8.8, 8.8 Hz, 1H, C*H*HO), 4.32 (dd, *J* = 3.4, 8.8 Hz, 1H, CH*H*O), 3.84–3.72 (m, 1H, C*H*CF₃), 3.54 (dd, *J* = 10.5, 18.2 Hz, 1H, C*H*H), 3.24 (dd, *J* = 3.1, 18.2 Hz, 1H, CH*H*), 2.95–2.85 (m, 1H, CH), 2.09–2.00 (m, 1H, C*H*H), 1.95–1.87 (m, 1H, CH*H*), 1.80–1.70 (m, 2H, CH₂), 1.35–1.15 (m, 6H, 3 × CH₂). ¹³C NMR (125 MHz, CDCl₃):

δ168.3 (CO), 153.5 (CO), 138.6 (C), 129.3 (2 × CH), 128.9 (CH), 125.8 (2 × CH), 126.7 (q, ¹J_{CF} = 276.3 Hz, CF₃), 70.2 (CH₂), 57.7 (CH), 45.4 (CH), 41.1 (q, ²J_{CF} = 29.7 Hz, CH), 36.2 (CH₂), 33.4 (CH₂), 33.3 (CH₂), 25.8 (CH₂), 25.7 (CH₂), 25.6 (CH₂). ¹⁹F NMR (470 MHz, CDCl₃): <math>δ – 72.3 (CF₃). IR (ATR): $λ_{max}$ 1785s, 1702s, 1403m, 1385m, 1317s, 1257m, 1210m, 1153s, 1094s, 1065s cm⁻¹. MS: *m*/*z* (%) relative intensity 402 [(M+ H)⁺, 100], 401 [M⁺, 10], 381 (7), 120 (7), 81 (5). HRMS (ESI-TOF) calcd for C₁₉H₂₂F₃NO₃SNa⁺ [M + Na]⁺: 424.1165, found: 424.1162.

(*R*,*R*)-**31B**: R_f 0.25 (50% CH₂Cl₂ in hexanes); mp 130–133 °C (50% CH₂Cl₂ in hexanes); $[\alpha]_D^{27}$ –77.2 (*c* 1.4, CHCl₃). ¹H NMR (400 MHz, CDCl₃): δ 7.42–7.30 (m, 5H, Ar*H*), 5.47 (dd, *J* = 4.3, 8.8 Hz, 1H, C*H*N), 4.72 (dd, *J* = 8.8, 8.8 Hz, 1H, C*H*HO), 4.30 (dd, *J* = 4.3, 8.8 Hz, 1H, C*H*HO), 3.78–3.62 (m, 2H, C*H*CF₃, C*H*H), 3.24–3.14 (m, 1H, C*H*H),

(*R*,*R*)-**3IB** 2.72–2.62 (m, 1H, CH), 1.87–1.77 (m, 1H, C*H*H), 1.70–1.60 (m, 2H, CH₂), 1.55–1.45 (m, 2H, CH₂), 1.28–1.15 (m, 2H, CH₂), 1.15–1.01 (m, 2H, CH₂), 0.97–0.85 (m, 1H, CH*H*). ¹³C NMR (125 MHz, CDCl₃): δ 168.8 (CO), 153.4 (CO), 138.3 (C), 129.1 (2 × CH), 128.7 (CH), 126.4 (q, ¹*J*_{CF} = 276.6 Hz, CF₃), 126.1 (2 × CH), 70.1 (CH₂), 57.9 (CH), 45.3 (CH), 41.8 (q, ²*J*_{CF} = 30.2 Hz, CH), 36.1 (CH₂), 33.3 (CH₂), 32.7 (CH₂), 25.6 (CH₂), 25.5 (CH₂), 25.4

(CH₂). ¹⁹F NMR (376 MHz, CDCl₃): δ –72.4 (CF₃). IR (ATR): λ_{max} 1780*s*, 1700*s*, 1412*m*, 1328*s*, 1265*s*, 1212*s*, 1160*s*, 1088*s*, 1073*s* cm⁻¹. MS: *m/z* (%) relative intensity 402 [(M+H)⁺, 100], 401 [M⁺, 17], 400 (9), 381 (8), 120 (8), 81 (7). HRMS (ESI-TOF) calcd for C₁₉H₂₂F₃NO₃SNa⁺ [M + Na]⁺: 424.1165, found: 424.1163.

(*R*)-4-Phenyl-3-[(*S*)-4,4,4-trifluoro-3-(propylthio)butanoyl]oxazolidin-2-one [(*R*,*S*)-3mA] and (*R*)-4-Phenyl-3-[(*R*)-4,4,4-trifluoro-3-(propylthio)butanoyl]oxazolidin-2-one [(*R*,*R*)-3mB]

According to the *Conditions C*, the reaction of **1** (57.5 mg, 0.20 mmol) with 1-propanethiol (18 μ L, 0.22 mmol) gave a crude mixture of (*R*,*S*)-**3mA**:(*R*,*R*)-**3mB** (64:36 dr, ¹⁹F NMR analysis). Purification by column chromatography (50% CH₂Cl₂ in hexanes) afforded (*R*,*S*)-**3mA** (43.4 mg, 60% yield) as a white semi-solid and (*R*,*R*)-**3mB** (23.5 mg, 33% yield) as a white solid. According to the *Conditions B*, the reaction of **1** (57.0 mg, 0.20 mmol) with 1-propanethiol (18 μ L, 0.22 mmol) gave a crude mixture of (*R*,*S*)-**3mA** and (*R*,*R*)-**3mB** (3:97 dr, ¹⁹F NMR analysis). Purification by column chromatography (50% CH₂Cl₂ in hexanes) afforded (*R*,*S*)-**3mA** (2.1 mg, 3% yield) and (*R*,*R*)-**3mB** (63.4 mg, 90% yield).

(*R*,*S*)-**3mA**: $R_f 0.30$ (50% CH₂Cl₂ in hexanes); $[\alpha]_D^{26}$ –91.9 (*c* 1.3, CHCl₃). ¹H NMR (400 MHz, acetone-*d*₆): δ 7.44–7.31 (m, 5H, Ar*H*), 5.62 (dd, *J* = 3.7, 8.7 Hz, 1H, CHN), 4.89 (dd, *J* = 8.7, 8.7 Hz, 1H, CHHO), 4.29 (dd, *J* = 3.7, 8.7 Hz, 1H, CHHO), 3.90–3.77 (m, 1H, CHCF₃), 3.49–3.38 (m, 2H, CH₂), 2.71 (t, *J* = 7.3, 2H, CH₂), 1.65–1.54 (m, 2H, CH₂), 0.95 (t, *J* = 7.3, 3H, CH₃). ¹³C NMR (100 MHz, CDCl₃): δ 168.3 (CO), 153.5 (CO), 138.5

(C), 129.3 (2 × CH), 129.0 (CH), 126.7 (q, ${}^{1}J_{CF} = 277.0$ Hz, CF₃), 125.9 (2 × CH), 70.3 (CH₂), 57.8 (CH), 42.9 (q, ${}^{2}J_{CF} = 30.0$ Hz, CH), 35.9 (q, ${}^{3}J_{CF} = 2.0$ Hz, CH₂), 35.4 (CH₂), 22.5 (CH₂), 13.2 (CH₃). 19 F NMR (470 MHz, CDCl₃): δ –72.1 (CF₃). IR (ATR): λ_{max} 1794*s*, 1697*s*, 1392*s*, 1340*s*, 1258*s*, 1217*s*, 1153*s*, 1103*s* cm⁻¹. MS: m/z (%) relative intensity 362 [(M+H)⁺, 100], 361 [M⁺, 6], 343(19), 341(9), 226 (6), 228 (5), 164 (48), 146 (8), 120 (27), 104 (37). HRMS (DART) calcd for C₁₆H₁₉F₃NO₃⁺ [M +H]⁺: 362.1032, found: 362.1029.

(*R*,*R*)-**3mB**: R_f 0.25 (50% CH₂Cl₂ in hexanes); mp 116–118 °C (50% CH₂Cl₂ in hexanes); $[\alpha]_D^{26}$ –73.1 (*c* 1.0, CHCl₃). ¹H NMR (400 MHz, CDCl₃): δ 7.43–7.29 (m, 5H, Ar*H*), 5.47 (dd, *J* = 4.2, 8.9 Hz, 1H, C*H*N), 4.73 (dd, *J* = 8.9, 8.9 Hz, 1H, C*H*HO), 4.29 (dd, *J* = 4.2, 8.9 Hz, 1H, CHHO), 3.74–3.55 (m, 2H, CHCF₃, C*H*H), 3.25 (dd, *J* = 3.2, 16.9 Hz, 1H, CH*H*), 2.51 (t, *J* = 7.3, 2H, CH₂), 1.52–1.35 (m, 2H, CH₂), 0.81 (t, *J* = 7.3,

3H, CH₃). ¹³C NMR (100 MHz, CDCl₃): δ 168.5 (CO), 153.5 (CO), 138.3 (C), 129.1 (2 × CH), 128.8 (CH), 126.7 (q, ¹J_{CF} = 276.9 Hz, CF₃), 125.8 (2 × CH), 70.1 (CH₂), 57.8 (CH), 43.2 (q, ²J_{CF} = 30.0 Hz, CH), 35.8 (q, ³J_{CF} = 1.8 Hz, CH₂), 35.3 (CH₂), 22.3 (CH₂), 13.0 (CH₃). ¹⁹F NMR (470 MHz, CDCl₃): δ –72.2 (CF₃). IR (ATR): λ_{max} 1789*s*, 1696*s*, 1384*s*, 1313*s*, 1210*s*, 1147*s*, 1120*s*, 1097*s*, 1071*s* cm⁻¹. MS: *m*/*z* (%) relative intensity 362 [(M+ H)⁺, 100], 361 [M⁺, 6], 343 (17), 266

(3), 164 (4), 120 (13). HRMS (ESI-TOF) calcd for $C_{16}H_{19}F_3NO_3^+$ [M +H]⁺: 362.1032, found: 362.1032.

(R)-4-Phenyl-3-[(S)-4,4,4-trifluoro-3-(benzylthio)butanoyl]oxazolidin-2-one [(R,S)-3nA] and (R)-4-Phenyl-3-[(R)-4,4,4-trifluoro-3-(benzylthio)butanoyl]oxazolidin-2-one [(R,R)-3nB]

According to the *Conditions C*, the reaction of **1** (57.5 mg, 0.20 mmol) with benzylthiol (26 μ L, 0.22 mmol) gave a crude mixture of (*R*,*S*)-**3nA**:(*R*,*R*)-**3nB** (65:35 dr, ¹⁹F NMR analysis). Purification by column chromatography (50% CH₂Cl₂ in hexanes) afforded (*R*,*S*)-**3nA** (41.3 mg, 50% yield) as a white semi-solid and (*R*,*R*)-**3nB** (14.1 mg, 17% yield) as a white solid. According to the *Conditions B*, the reaction of **1** (57.3 mg, 0.20 mmol) with benzylthiol (26 μ L, 0.22 mmol) gave a crude mixture of (*R*,*S*)-**3nA** and (*R*,*R*)-**3nB** (8:92 dr, ¹⁹F NMR analysis). Purification by column chromatography (50% CH₂Cl₂ in hexanes) afforded (*R*,*S*)-**3nA** (6.0 mg, 8% yield) and (*R*,*R*)-**3nB** (72.4 mg, 90% yield).

(*R*,*S*)-**3nA**: R_f 0.25 (50% CH₂Cl₂ in hexanes); $[\alpha]_D^{26}$ –86.6 (*c* 1.7, CHCl₃). ¹H NMR (400 MHz, CDCl₃): δ 7.42–7.32 (m, 3H, Ar*H*), 7.32–7.24 (m, 7H, Ar*H*), 5.41 (dd, *J* = 3.5, 8.9 Hz, 1H, C*H*N), 4.71 (dd, *J* = 8.9, 8.9 Hz, 1H, C*H*HO), 4.30 (dd, *J* = 3.5, 8.9 Hz, 1H, C*H*HO), 3.93 (ABq, *J* = 12.5 Hz, 2H, C*H*₂), 3.76–3.67 (m, 1H, C*H*CF₃), 3.52 (dd, *J* = 10.3, 18.2 Hz, 1H,

C*H*H), 3.26 (dd, J = 3.5, 18.2 Hz, 1H, CH*H*). ¹³C NMR (125 MHz, CDCl₃): δ 168.0 (CO), 153.4 (CO), 138.5 (C), 136.5 (C), 129.3 (2 × CH), 129.1 (2 × CH), 128.9 (CH), 128.6 (2 × CH), 127.5 (CH), 126.6 (q, ¹*J_{CF}* = 276.9 Hz, CF₃), 125.9 (2 × CH), 70.2 (CH₂), 57.7 (CH), 42.7 (q, ²*J_{CF}* = 30.0 Hz, CH), 37.5 (CH₂), 35.6 (CH₂). ¹⁹F NMR (470 MHz, CDCl₃): δ –71.8 (CF₃). IR (ATR): λ_{max} 1792*s*, 1694*s*, 1390*m*, 1318*m*, 1263*s*, 1151*s*, 1070*s*, 1026*s* cm⁻¹. MS: *m*/*z* (%) relative intensity 410 [(M+ H)⁺, 100], 409 [M⁺, 2], 391 (7), 181 (7), 164 (7), 120 (19), 91 (35). HRMS (ESI-TOF) calcd for C₂₀H₁₈F₃NO₃SNa⁺ [M + Na]⁺: 432.0852, found: 432.0851.

(*R*,*R*)-**3nB**: R_f 0.20 (50% CH₂Cl₂ in hexanes); mp 132–134 °C (50% CH₂Cl₂ in hexanes); $[\alpha]_D^{25}$ –58.4 (*c* 0.9, CHCl₃). ¹H NMR (400 MHz, CDCl₃): δ 7.45–7.36 (m, 3H, Ar*H*), 7.35–7.29 (m, 2H, Ar*H*), 7.24–7.16 (m, 3H, Ar*H*), 7.09–7.03 (m, 2H, Ar*H*), 5.41 (dd, *J* = 4.2, 8.9 Hz, 1H, C*H*N), 4.69 (dd, *J* = 8.9, 8.9 Hz, 1H, C*H*HO), 4.27 (dd, *J* = 4.2, 8.9 Hz,

1H, CHHO), 3.74 (ABq, J = 13.2 Hz, 2H, CH₂), 3.67–3.49 (m, 2H, CHCF₃, CHH), 3.23 (dd, J = 3.2, 16.6 Hz, 1H, CHH). ¹³C NMR (100 MHz, CDCl₃): $\delta 168.2$ (CO), 153.4 (CO), 138.4 (C), 136.1 (C), 129.2 (2 × CH), 129.1 (2 × CH), 128.8 (CH), 128.4 (2 × CH), 127.4 (CH), 126.7 (q, ¹ $J_{CF} = 277.2$ Hz, CF₃), 126.0 (2 × CH), 70.1 (CH₂), 57.8 (CH), 42.5 (q, ² $J_{CF} = 30.1$ Hz, CH), 37.4 (CH₂), 35.5 (q, ³ $J_{CF} = 1.7$ Hz, CH₂). ¹⁹F NMR (470 MHz, CDCl₃): δ –72.0 (CF₃). IR (ATR): λ_{max} 1794s, 1694s, 1493w, 1454w, 1391s, 1318s, 1260s, 1149s, 1104s, 1070s cm⁻¹. MS: m/z (%) relative intensity 410 [(M+ H)⁺, 100], 409 [M⁺, 2], 391 (14), 228 (6), 164 (15), 120 (25), 91 (27). HRMS (ESI-TOF) calcd for C₂₀H₁₈F₃NO₃SNa⁺ [M + Na]⁺: 432.0852, found: 432.0851.

(R)-4-Phenyl-3-{(S)-4,4,4-trifluoro-3-[(furan-2-ylmethyl)thio]butanoyl}oxazolidin-2-one [(R,S)-3oA] and (R)-4-Phenyl-3-{(R)-4,4,4-trifluoro-3-[(furan-2-ylmethyl)thio]butanoyl}oxazolidin-2-one [(R,R)-3oB]

According to the *Conditions C*, the reaction of **1** (57.8 mg, 0.20 mmol) with furan-2-ylethanethiol (24 μ L, 0.22 mmol) gave a crude mixture of (*R*,*S*)-**30A**:(*R*,*R*)-**30B** (60:40 dr, ¹H NMR analysis). Purification by column chromatography (30% EtOAc in hexanes) afforded (*R*,*S*)-**30A** (31.1 mg, 39% yield) as a brown viscous oil and (*R*,*R*)-**30B** (17.6 mg, 22% yield) as a white solid. According to the *Conditions B*, the reaction of **1** (57.6 mg, 0.20 mmol) with furan-2-ylethanethiol (24 μ L, 0.22 mmol) gave a crude mixture of (*R*,*S*)-**30A** and (*R*,*R*)-**30B** (7:93 dr, ¹H NMR analysis). Purification by column chromatography (50% CH₂Cl₂ in hexanes) afforded (*R*,*S*)-**30A** (5.3 mg, 7% yield) and (*R*,*R*)-**30B** (67.9 mg, 85% yield).

(*R*,*S*)-**30A**: R_f 0.38 (30% EtOAc in hexanes); $[\alpha]_D^{24}$ -70.8 (*c* 1.3, CH₂Cl₂). ¹H NMR (400 MHz, acetone-*d*₆): δ 7.49 (dd, *J* = 0.8, 1.9 Hz, 1H, Ar*H*), 7.44–7.30 (m, 5H, Ar*H*), 6.36 (dd, *J* = 1.9, 3.2 Hz, 1H, Ar*H*), 6.32 (dd, *J* = 0.8, 3.2 Hz, 1H, Ar*H*), 5.60 (dd, *J* = 3.7, 8.8 Hz, 1H, C*H*N), 4.88 (dd, *J* = 8.8, 8.8 Hz, 1H, C*H*HO), 4.28 (dd, *J* = 3.7, 8.8 Hz, 1H, CHHO), 4.02 (s, 2H, CH₂), 4.00–3.90 (m, 1H, CHCF₃), 3.55–3.39 (m,

2H, CH₂). ¹³C NMR (100 MHz, acetone- d_6): δ 168.7 (CO), 154.8 (CO), 151.3 (C), 143.7 (CH), 140.7 (C), 129.4 (2 × CH), 129.1 (CH), 128.0 (q, ${}^{1}J_{CF}$ = 277.6 Hz, CF₃), 126.9 (2 × CH), 111.4 (CH), 109.4 (CH), 71.5 (CH₂), 58.6 (CH), 43.2 (q, ${}^{2}J_{CF}$ = 29.6 Hz, CH), 36.6 (q, ${}^{3}J_{CF}$ = 1.8 Hz, CH₂), 29.7 (CH₂). ¹⁹F NMR (470 MHz, acetone- d_6): δ –71.8 (CF₃). IR (ATR): λ_{max} 1776s, 1704s, 1495m, 1478m, 1457m, 1387s, 1316s, 1254s, 1200s, 1151s, 1099s, 1068s cm⁻¹. MS: m/z (%) relative intensity 400 [(M+ H)⁺, 48], 399 [M⁺, 5], 397 (3), 382 (6), 242 (18), 241 (100), 237 (3), 161 (23), 81 (11). HRMS (ESI-TOF) calcd for C₁₈H₁₆F₃NO₄SNa⁺ [M + Na]⁺: 422.0644, found: 422.0642.

(*R*,*R*)-**30B**: R_f 0.35 (30% EtOAc in hexanes); mp 122–124 °C (30% EtOAc in hexanes); $[\alpha]_D^{24}$ –79.6 (*c* 1.0, CH₂Cl₂). ¹H NMR (400 MHz, acetone-*d*₆): δ 7.45–7.32 (m, 6H, Ar*H*), 6.29 (dd, *J* = 1.9, 3.2 Hz, 1H, Ar*H*), 6.20 (dd, *J* = 0.6, 3.2 Hz, 1H, Ar*H*), 5.61 (dd, *J* = 3.9, 8.9 Hz, 1H, C*H*N), 4.86 (dd, *J* = 8.9, 8.9 Hz, 1H, C*H*HO), 4.29 (dd, *J* = 3.9, 8.9 Hz, 1H, CHHO), 3.94–3.82 (m, 3H, C*H*₂, C*H*CF₃), 3.60 (dd, *J* = 9.7, 17.4

Hz, 1H, C*H*H), 3.35 (dd, J = 4.1, 17.4 Hz, 1H, CH*H*). ¹³C NMR (100 MHz, acetone- d_6): δ 168.9 (CO), 154.8 (CO), 151.1 (C), 143.7 (CH), 140.6 (C), 129.8 (2 × CH), 129.0 (CH), 128.0 (q, ¹ J_{CF} = 276.2 Hz, CF₃), 126.9 (2 × CH), 111.4 (CH), 109.3 (CH), 71.4 (CH₂), 58.7 (CH), 43.5 (q, ² J_{CF} = 29.7 Hz, CH), 36.5 (q, ³ J_{CF} = 1.9 Hz, CH₂), 30.0 (CH₂). ¹⁹F NMR (470 MHz, acetone- d_6): δ –71.8 (CF₃). IR (ATR): λ_{max} 1782s, 1705s, 1558m, 1541m, 1520m, 1474m, 1407m, 1273s, 1245s, 1154s, 1142s, 1093s, 1038s cm⁻¹. MS: m/z (%) relative intensity 400 [(M+ H)⁺, 67], 381 (18), 242 (15),

241 (100), 164 (17), 161 (80), 112 (7), 80 (91), 52 (20). HRMS (ESI-TOF) calcd for

(*R*)-4-Phenyl-3-[(*S*)-4,4,4-trifluoro-3-(*tert*-butylthio)butanoyl]oxazolidin-2-one [(*R*,*S*)-3pA] and (*R*)-4-Phenyl-3-[(*R*)-4,4,4-trifluoro-3-(*tert*-butylthio)butanoyl]oxazolidin-2-one [(*R*,*R*)-3pB]

 $C_{18}H_{16}F_{3}NO_{4}SNa^{+}[M + Na]^{+}: 422.0644$, found: 422.0638.

According to the *Conditions C*, the reaction of **1** (57.1 mg, 0.20 mmol) with *tert*-butylthiol (26 μ L, 0.22 mmol) gave a crude mixture of (*R*,*S*)-**3pA**:(*R*,*R*)-**3pB** (60:40 dr, ¹H NMR analysis). Purification by column chromatography (50% CH₂Cl₂ in hexanes) afforded (*R*,*S*)-**3pA** (39.0 mg, 52% yield) as a white semi-solid and (*R*,*R*)-**3pB** (21.1 mg, 28% yield) as a white solid.

(*R*,*S*)-**3pA**: $R_f 0.30$ (50% CH₂Cl₂ in hexanes); $[\alpha]_D^{25}$ –92.7 (*c* 1.1, CHCl₃). ¹H NMR (400 MHz, CDCl₃): δ 7.44–7.33 (m, 3H, Ar*H*), 7.33–7.27 (m, 2H, Ar*H*), 5.44 (dd, *J* = 3.6, 8.8 Hz, 1H, C*H*N), 4.73 (dd, *J* = 8.8, 8.8 Hz, 1H, C*H*HO), 4.31 (dd, *J* = 3.6, 8.8 Hz, 1H, CHHO), 3.88–3.79 (m, 1H, C*H*CF₃), 3.53 (dd, *J* = 7.7, 18.0 Hz, 1H, C*H*H), 3.43 (dd, *J* = 5.5, 18.0 Hz, 1H, C*H*H), 1.33 (s, 9H, 3 × C*H*₃). ¹³C NMR (125 MHz, CDCl₃): δ 168.5 (CO), 153.5

(CO), 138.5 (C), 129.3 (2 × CH), 128.9 (CH), 126.4 (q, ${}^{1}J_{CF} = 277.0$ Hz, CF₃), 125.8 (2 × CH), 70.2 (CH₂), 57.8 (CH), 44.9 (C), 40.0 (q, ${}^{2}J_{CF} = 29.7$ Hz, CH), 37.6 (q, ${}^{3}J_{CF} = 2.0$ Hz, CH₂), 31.1 (3 × CH₃). 19 F NMR (376 MHz, CDCl₃): δ -70.6 (d, J = 11.2 Hz, CF₃). IR (ATR): λ_{max} 1787*s*, 1697*s*, 1455*w*, 1405*s*, 1366*m*, 1300*m*, 1269*m*, 1212*m*, 1180*s*, 1114*s* cm⁻¹. MS: *m*/*z* (%) relative intensity 376 [(M+ H)⁺, 100], 375 [M⁺, 58], 320 (27), 275 (14), 242 (10), 151 (9), 120 (33), 119 (27), 104 (9). HRMS (ESI-TOF) calcd for C₁₇H₂₀F₃NO₃SNa⁺ [M + Na]⁺: 398.1008, found: 398.1005.

(*R*,*R*)-**3pB**: $R_f 0.20$ (50% CH₂Cl₂ in hexanes); mp 142–145 °C (50% CH₂Cl₂ in hexanes); $[\alpha]_D^{25}$ –105.3 (*c* 0.6, CHCl₃). ¹H NMR (400 MHz, CDCl₃): δ 7.41–7.30 (m, 5H, Ar*H*), 5.46 (dd, *J* = 4.2, 8.8 Hz, 1H, C*H*N), 4.72 (dd, *J* = 8.8, 8.8 Hz, 1H, C*H*HO), 4.29 (dd, *J* = 4.2, 8.8 Hz, 1H, CHHO), 3.80–3.70 (m, 1H, C*H*CF₃), 3.64 (dd, *J* = 9.0, 17.2 Hz, 1H, C*H*H), 3.31 (dd, *J* = 4.7, 17.2 Hz, 1H, CHH), 1.11 (s, 9H, 3 × CH₃). ¹³C NMR (125 MHz, CDCl₃): δ

168.7 (CO), 153.4 (CO), 138.5 (C), 129.1 (2 × CH), 128.8 (CH), 126.4 (q, ${}^{1}J_{CF}$ = 276.1 Hz, CF₃), 126.3 (2 × CH), 70.0 (CH₂), 57.8 (CH), 44.7 (C), 40.5 (q, ${}^{2}J_{CF}$ = 30.1 Hz, CH), 37.0 (CH₂), 30.8 (3 × CH₃). 19 F NMR (376 MHz, CDCl₃): δ -70.6 (d, J = 11.1 Hz, CF₃). IR (ATR): λ_{max} 1778s, 1703s, 1465m, 1379s, 1310s, 1259s, 1246s, 1210s, 1177s, 1156s, 1116s, 1091s, 1072s cm⁻¹. MS: m/z (%) relative intensity 376 [(M+ H)⁺, 100], 375 [M⁺, 57], 320 (19), 275 (16), 242 (11), 120 (25), 119 (20), 104 (7), 57 (6). HRMS (ESI-TOF) calcd for C₁₇H₂₀F₃NO₃SNa⁺ [M + Na]⁺: 398.1008, found: 398.1003.

2. Synthesis of acids 4 (S)-4,4,4-Trifluoro-3-(phenylthio)butanoic acid [(S)-4a]^[2]

A solution of (*R*,*S*)-**3aA** (298 mg, 0.75 mmol) in THF (8 mL) cooled at 0 °C was treated with an aqueous solution of H_2O_2 (30% v/v, 0.44 mL, 3.8 mmol) followed by a dropwise addition of a cooled solution of LiOH·H₂O (51 mg, 1.5 mmol) dissolved in water (4 mL). After stirring at 0 °C for 1 h, two phases of the reaction mixture were separated. To recover the chiral auxiliary, the aqueous phase was further extracted with CH₂Cl₂ (3 × 20 mL) then the combined organic

phase was washed with a saturated aqueous NaHCO₃ solution (2 × 25 mL), dried over anhydrous Na₂SO₄, and concentrated *in vacuo*. To collect the acid product, the previously obtained aqueous phase was acidified with 10% HCl and extracted with CH₂Cl₂ (3 × 20 mL). The combined CH₂Cl₂ phase was dried over anhydrous Na₂SO₄ and concentrated *in vacuo* to provide the crude carboxylic acid which was further purified by column chromatography (20% EtOAc in CH₂Cl₂) to give (*S*)-**4a** (130 mg, 69% yield) as a yellow liquid. R_f 0.25 (20% EtOAc in CH₂Cl₂); $[\alpha]_D^{24}$ +7.6 (*c* 1.1, CH₂Cl₂); $[\alpha]_D^{26}$ +7.6 (*c* 1.02, CHCl₃) [lit. $[\alpha]_D^{25}$ +8.9 (*c* 1.02, CHCl₃)].^{[2] 1}H NMR (400 MHz, CDCl₃): δ 7.62–7.54 (m, 2H, ArH), 7.40–7.31 (m, 3H, ArH), 3.97–3.85 (m, 1H, CHCF₃), 2.98 (dd, *J* = 3.9, 17.1 Hz, 1H, CHH), 2.72 (dd, *J* = 10.5, 17.1 Hz, 1H, CHH). ¹³C NMR (100 MHz, CDCl₃): δ 175.2 (CO), 134.3 (2 × CH), 131.6 (C), 129.3 (2 × CH), 129.1 (CH), 126.0 (q, ¹*J_{CF}* = 277.2 Hz, CF₃), 48.2 (q, ²*J_{CF}* = 29.8 Hz, CH), 34.2 (CH₂). ¹⁹F NMR (376 MHz, CDCl₃): δ –70.9 (CF₃). IR (ATR): λ_{max} 3058*brm*, 1715*s*, 1477*m*, 1439*m*, 1416*m*, 1303*s*, 1247*s*, 1149*s*, 1100*s* cm⁻¹. MS: *m/z* (%) relative intensity 250 [M⁺, 100], 249 [(M–H)⁻, 2], 233 (27), 229 (45), 209 (29), 165 (77), 135 (25), 109 (21), 65 (11). HRMS (ESI-TOF) calcd for C₁₀H₈F₃O₂S⁻ [M – H]⁻: 249.0203, found: 249.0204.

HO₂C (R)-**4b** (*R*)-4,4,4-Trifluoro-3-(phenylthio)butanoic acid [(*R*)-4b] (55.6 mg, 71% yield) was synthesized from (*R*,*R*)-3aB (122 mg, 0.31 mmol). $[\alpha]_D^{25}$ -13.3 (*c* 1.1, CH₂Cl₂).

(S)-4,4,4-Trifluoro-3-(4-methoxyphenylthio)butanoic acid [(S)-4c]^[2]

According to the synthesis of (*S*)-**4a**, hydrolysis of (*R*,*S*)-**3cA** (346 mg, 0.81 mmol) and purification by column chromatography (20% EtOAc in CH₂Cl₂) afforded (*S*)-**4c** (152 mg, 67% yield) as a yellow liquid. R_f 0.25 (20% EtOAc in CH₂Cl₂); $[\alpha]_D^{25}$ +7.1 (*c* 1.24, CHCl₃) [lit. $[\alpha]_D^{25}$ +7.2 (*c* 1.24, CHCl₃)].^{[2] 1}H NMR (400 MHz, CDCl₃): δ 7.55–7.49 (m, 2H, Ar*H*), 6.90–6.84 (m, 2H, Ar*H*), 3.81 (s, 3H, OC*H₃*), 3.80–3.70 (m,

1H, CHCF₃), 2.93 (dd, J = 3.9, 17.1 Hz, 1H, CHH), 2.68 (dd, J = 10.6, 17.1 Hz, 1H, CHH). ¹³C NMR (100 MHz, CDCl₃): δ 174.8 (q, ⁴ $J_{CF} = 2.9$ Hz, CO), 160.7 (C), 137.1 (2 × CH), 126.1 (q, ¹ $J_{CF} = 277.4$ Hz, CF₃), 121.6 (C), 114.7 (2 × CH), 55.3 (OCH₃), 48.5 (q, ² $J_{CF} = 29.8$ Hz, CH), 33.9 (q, ³ $J_{CF} = 1.9$ Hz, CH₂). ¹⁹F NMR (376 MHz, CDCl₃): δ –70.6 (CF₃). IR (ATR): λ_{max} 3218*brm*, 1729*s*, 1590*m*, 1493*m*, 1354*m*, 1288*s*, 1239*s*, 1222*s*, 1172*s*, 1141*s*, 1096*s*, 1014*s* cm⁻¹. MS: *m*/*z*

(%) relative intensity 280 [M⁺, 100], 260 (19), 195 (16), 157 (14), 139 (84), 108 (10), 95 (19), 66 (5). HRMS (ESI-TOF) calcd for $C_{11}H_{10}F_3O_3S^-$ [M – H]⁻: 279.0308, found: 279.0313.

(*R*)-4,4,4-Trifluoro-3-(4–methoxyphenylthio)butanoic acid [(*R*)-4d]^[3] (90.8 mg, 68% yield) was synthesized from (*R*,*R*)-3cB (198 mg, 0.47 mmol). $[\alpha]_D^{25}$ –3.8. (*c* 1.05, CHCl₃) [lit. $[\alpha]_D^{25}$ –5.5 (*c* 1.24, CHCl₃)].^[3]

(S)-4,4,4-Trifluoro-3-(4–fluorophenylthio)butanoic acid [(S)-4e]

According to the synthesis of (*S*)-**4a**, hydrolysis of (*R*,*S*)-**3eA** (1.25 g, 3.0 mmol) and purification by column chromatography (20% EtOAc in CH₂Cl₂) afforded (*S*)-**4e** (533 mg, 66% yield) as a yellow liquid. R_f 0.25 (20% EtOAc in CH₂Cl₂); $[\alpha]_D^{23} + 2.2$ (*c* 1.0, CH₂Cl₂). ¹H NMR (400 MHz, CDCl₃): δ 7.63–7.54 (m, 2H, Ar*H*), 7.10–7.00 (m, 2H, Ar*H*), 3.87–3.74 (m, 1H, CHCF₃), 2.97 (dd, *J* = 3.7, 17.1 Hz, 1H, CHH), 2.70 (dd, *J* = 10.8,

17.1 Hz, 1H, CH*H*). ¹³C NMR (100 MHz, CDCl₃): δ 174.7 (CO), 163.5 (d, ¹*J*_{CF} = 248.9 Hz, C), 137.1 (d, ³*J*_{CF} = 8.5 Hz, 2 × CH), 126.6 (d, ⁴*J*_{CF} = 3.4 Hz, C), 126.0 (q, ¹*J*_{CF} = 277.2 Hz, CF₃), 116.5 (d, ²*J*_{CF} = 21.8 Hz, 2 × CH), 48.6 (q, ²*J*_{CF} = 29.7 Hz, CH), 34.0 (CH₂). ¹⁹F NMR (376 MHz, CDCl₃): -70.8 (CF₃), -111.1 (F). IR (ATR): λ_{max} 2932*brm*, 1715*s*, 1590*m*, 1490*m*, 1417*m*, 1356*s*, 1228*s*, 1153*s*, 1101*s*, 1014*s* cm⁻¹. MS: *m*/*z* (%) relative intensity 268 [M⁺, 100], 251 (25), 248 (30), 223 (7), 183 (44), 153 (23), 127 (10). HRMS (ESI-TOF) calcd for C₁₀H₇F₄O₂S⁻ [M – H]⁻: 267.0108, found: 267.0112.

(*R*)-4,4,4-Trifluoro-3-(4-fluorophenylthio)butanoic acid [(*R*)-4f] (65.9 mg, 64% yield) was synthesized from (*R*,*R*)-3eB (159 mg, 0.39 mmol). $[\alpha]_D^{23}$ -1.2 (*c* 1.1, CH₂Cl₂).

(S)-4,4,4-Trifluoro-3-[(2-acetamidophenyl)thio]butanoic acid [(S)-4g]

According to the synthesis of (*S*)-**4a**, hydrolysis of (*R*,*S*)-**3kA** (392 mg, 0.87 mmol) gave (*S*)-**4g** (176 mg, 66% yield) as a white solid. R_f 0.13 (5% MeOH in CH₂Cl₂); mp 145–148 °C (5% MeOH in CH₂Cl₂); $[\alpha]_D^{21}$ –72.3 (*c* 1.1, acetone). ¹H NMR (400 MHz, acetone- d_6): δ 9.12 (brs, 1H, NH), 8.43 (d, *J* = 8.1 Hz, 1H, ArH), 7.64 (d, *J* = 8.1 Hz, 1H, ArH), 7.43 (ddd, *J* = 1.3, 8.1, 8.1 Hz, 1H, ArH), 7.08 (ddd, *J* = 1.3, 8.1, 8.1 Hz, 1H, ArH), 4.10–3.90 (m, 1H,

CHCF₃), 3.10 (dd, J = 2.9, 17.9 Hz, 1H, CHH), 2.71 (dd, J = 11.5, 17.9 Hz, 1H, CHH), 2.21 (s, 3H, CH₃). ¹³C NMR (100 MHz, acetone- d_6): δ 172.2 (CO), 169.7 (CO), 142.6 (C), 138.6 (CH), 132.0 (CH), 127.6 (q, ¹ $J_{CF} = 277.0$ Hz, CF₃), 124.4 (CH), 121.8 (CH), 119.8 (C), 47.6 (q, ² $J_{CF} = 29.2$ Hz, CH), 33.1 (q, ³ $J_{CF} = 2.1$ Hz, CH₂), 24.6 (CH₃). ¹⁹F NMR (376 MHz, acetone- d_6): δ –70.8 (d, J = 10.3 Hz, CF₃). IR (ATR): λ_{max} 3298*brm*, 2706*brm*, 2507*brm*, 2345*brm*, 1721*s*, 1637*s*,

1580*s*, 1534*s*, 1438*m*, 1302*s*, 1240*s*, 1149*s*, 1092*s* cm⁻¹. MS: m/z (%) relative intensity 308 [(M+H)⁺, 100], 307 [M⁺, 1], 306 [(M–H)⁻, 1], 290 (4), 266 (16), 248 (11), 164 (7). HRMS (DART) calcd for C₁₂H₁₃F₃NO₃S⁺ [M + H]⁺: 308.0563, found: 308.0567.

(*R*)-4,4,4-Trifluoro-3--[(2-acetamidophenyl)thio]butanoic acid [(*R*)-4h] (111 mg, 57% yield) was synthesized from (*R*,*R*)-3kB (284 mg, 0.63 mmol). $[\alpha]_D^{24}$ +71.1 (*c* 1.0, acetone).

3. Synthesis of 5

(S)-2-(Trifluoromethyl)thiochroman-4-one [(S)-5a]^[2]

O S CF₃ (S)-5a

A flame-dried round bottom flask equipped with a magnetic stirring bar, an argon inlet, and a rubber septum was charged with (*S*)-**4a** (46.8 mg, 0.19 mmol) and dry CH₂Cl₂ (0.5 mL) followed by the slow addition of thionyl chloride (42 μ L, 0.57 mmol). After stirring at room temperature for 3 h, the reaction mixture

was concentrated in vacuo to give the crude acid chloride which was further dissolved in dry CH₂Cl₂ (0.5 mL) under a positive pressure of argon. To a solution was slowly added AlCl₃ (76.1 mg, 0.57 mmol) and the reaction mixture was allowed to stir at room temperature for 1 h. The reaction mixture was quenched with H_2O (5 mL) and extracted with CH_2Cl_2 (3 × 10 mL). The combined organic phase was washed with a saturated aqueous NaCl solution (10 mL), dried over anhydrous Na₂SO₄ and concentrated in vacuo. Purification by column chromatography (40% CH₂Cl₂ in hexanes) afforded (S)-5a (33.9 mg, 79% yield) as a white solid. R_f 0.35 (40% CH₂Cl₂ in hexanes); mp 60–63 °C (40% CH₂Cl₂ in hexanes); $[\alpha]_D^{24}$ +175.5 (c 0.58, CHCl₃) [lit. $[\alpha]_D^{25}$ +159.4 (c 0.58, CHCl₃)].^{[2] 1}H NMR (400 MHz, acetone-d₆): δ 8.02 (dd, J = 1.1, 8.0 Hz, 1H, ArH), 7.55 (ddd, J = 1.1, 8.0, 8.0 Hz, 1H, ArH), 7.40 (dd, J = 1.1, 8.0 Hz, 1H, ArH), 7.30 (ddd, J = 1.1, 8.0, 8.0 Hz, 1H, ArH), 4.61–4.50 (m, 1H, CHCF₃), 3.42 (dd, J = 5.3, 17.0 Hz, 1H, CHH), 3.18 (dd, J = 5.3, 17.0 Hz, 1H, CHH). ¹³C NMR (100 MHz, acetone- d_6): δ 191.1 (CO), 138.6 (C), 135.0 (CH), 131.2 (C), 129.1 (CH), 127.9 (CH), 127.2 (q, ${}^{1}J_{CF}$ = 277.9 Hz, CF₃), 126.7 (CH), 42.9 (q, ${}^{2}J_{CF} = 30.6$ Hz, CH), 38.4 (CH₂). ${}^{19}F$ NMR (376 MHz, acetone- d_6): -71.9 (d, J =9.7 Hz, CF₃). IR (ATR): λ_{max} 1682s, 1591m, 1437m, 1349m, 1288s, 1180s, 1153s, 1107s cm⁻¹. MS: m/z (%) relative intensity 233 [(M+H)⁺, 12], 232 [M⁺, 4], 183 (16), 165 (75), 149 (23), 136 (18), 134 (21), 131 (41), 127 (25), 123 (54), 121 (52), 109 (100), 108 (25), 103 (10). HRMS (DART) calcd for $C_{10}H_8F_3OS^+$ [M + H]⁺: 233.0242, found: 233.0250.

(*R*)-2-(Trifluoromethyl)thiochroman-4-one [(*R*)-5b] (41.7 mg, 82% yield) was synthesized from (*R*)-4b (55.6 mg, 0.22 mmol) $[\alpha]_D^{24}$ –162.4 (*c* 0.58, CHCl₃).

(S)-6-Methoxy-2-(trifluoromethyl)thiochroman-4-one [(S)-5c]^[2]

According to the synthesis of (*S*)-**5a**, the reaction of (*S*)-**4c** (61.6 mg, 0.22 mmol) and purification by column chromatography (40% CH₂Cl₂ in hexanes) afforded (*S*)-**5c** (44.5 mg, 77% yield) as bright yellow liquid. R_f $_3$ 0.25 (40% CH₂Cl₂ in hexanes); $[\alpha]_D^{26}$ +139.6 (*c* 0.6, CHCl₃) [lit. $[\alpha]_D^{25}$ +120.4 (*c* 0.6, CHCl₃)].^{[2] 1}H NMR (400 MHz, CDCl₃): δ 7.60 (d, *J* = 2.9

Hz, 1H, Ar*H*), 7.19 (d, J = 8.7 Hz, 1H, Ar*H*), 7.06 (dd, J = 2.9, 8.7 Hz, 1H, Ar*H*), 3.98–3.88 (m, 1H, C*H*CF₃), 3.83 (s, 3H, OC*H*₃), 3.27–3.13 (m, 2H, C*H*₂). ¹³C NMR (100 MHz, CDCl₃): δ 190.7 (CO), 157.9 (C), 130.8 (C), 128.7 (C), 128.4 (CH), 125.3 (q, ¹*J*_{CF} = 278.5 Hz, CF₃), 122.8 (CH), 111.3 (CH), 55.6 (OCH₃), 42.9 (q, ²*J*_{CF} = 31.1 Hz, CH), 38.2 (CH₂). ¹⁹F NMR (376 MHz, CDCl₃): –71.1 (d, J = 8.3 Hz, CF₃). IR (ATR): λ_{max} 1680*s*, 1599*m*, 1474*m*, 1404*m*, 1324*m*, 1252*s*, 1219*s*, 1154*s*, 1104*s*, 1024*s* cm⁻¹. MS: *m*/*z* (%) relative intensity 263 [(M+ H)⁺, 15], 262 [M⁺, 34], 218 (26), 193 (10), 166 (55), 150 (10), 140 (12), 139 (100), 138 (53), 124 (16), 123 (58). HRMS (ESI-TOF) calcd for C₁₁H₁₀F₃O₂S⁺ [M + H]⁺: 263.0348, found: 263.0356.

(*R*)-6-Methoxy-2-(trifluoromethyl)thiochroman-4-one [(R)-5d]^[3] (26.3 mg, 83% yield) was synthesized from (*R*)-4d (34.9 mg, 0.12 mmol). $[\alpha]_D^{25}$ -121.1 (*c* 0.6, CHCl₃) [lit. $[\alpha]_D^{25}$ -116.4 (*c* 0.6, CHCl₃)].

4. Synthesis of 6 (*S*)-*N*-(Benzyloxy)-4,4,4-trifluoro-3-[(4-methoxyphenyl)sulfonyl]butanamide [(*S*)-6a]

To a flame-dried round bottom flask equipped with a magnetic stirring bar, an argon inlet, and a rubber septum charged with acid (*S*)-**4c** (166 mg, 0.59 mmol) and dry CH₂Cl₂ (1.5 mL) was added SOCl₂ (0.2 mL, 1.8 mmol). The reaction mixture was stirred at room temperature for 3 h then the resulting acid chloride product was concentrated *in vacuo* and used in the next step without purification. A

separated flame-dried round bottom flask equipped with a magnetic stirring bar, an argon inlet, and a rubber septum was charged with *o*-benzylhydroxylamine hydrochloride (284 mg, 1.8 mmol) and dry CH₂Cl₂ (1.8 mL). After stirring for a few minutes at 0 °C, Et₃N (0.25 mL, 1.8 mmol) was added and the reaction was allowed to stir at 0 °C for 1 h. To the resulting mixture, a solution of crude acid chloride in dry CHCl₂ (1.5 mL) was slowly added. After stirring at 0 °C for 2 h, the reaction mixture was quenched with H₂O (10 mL) and extracted with CH₂Cl₂ (3 × 10 mL). The combined organic phase was washed with 20% aqueous citric acid solution (2 × 20 mL) and a saturated aqueous NaHCO₃ solution (2 × 20 mL), dried over anhydrous Na₂SO₄, and concentrated *in vacuo*. The obtained crude product was dissolved in dry CH₂Cl₂ (2 mL), cooled at 0 °C, and treated with

a solution of *m*-CPBA (256 mg, 1.5 mmol) in dry CH₂Cl₂ (1.5 mL) under a positive pressure of argon. After stirring at 0 °C for 1 h, the reaction mixture was quenched with H_2O (10 mL) and extracted with CH_2Cl_2 (3 × 10 mL). The combined organic phase was washed with a saturated aqueous NaHCO3 solution, dried over anhydrous Na2SO4, and concentrated in vacuo. Purification by column chromatography (40% EtOAc in hexanes) gave (S)-6a (167 mg, 68% yield) as a white semi-solid. R_f 0.25 (40% EtOAc in hexanes); $[\alpha]_{D}^{22}$ 26.9 (c 1.0, acetone). ¹H NMR (400 MHz, acetone-d₆): δ 10.49 (s, 1H, NH), 7.96–7.86 (m, 2H, ArH), 7.51–7.31 (m, 5H, ArH), 7.22 (d, J = 8.8 Hz, 2H, ArH), 4.98–4.82 (m, 2H, CH₂), 4.78–4.65 (m, 1H, CHCF₃), 3.95 (s, 3H, OCH₃), 2.96 (dd, J = 6.4, 16.5 Hz, 1H, CHH), 2.71 (dd, J = 5.7, 16.5 Hz, 1H, CHH). ¹³C NMR (100 MHz, acetone- d_6): δ 165.7 (C), 165.5 (CO), 137.0 (C), 132.3 (2 × CH), 130.4 (C), 130.0 (2 × CH), 129.3 (CH), 129.2 $(2 \times CH)$, 124.5 (q, ${}^{1}J_{CF} = 278.2$ Hz, CF₃), 115.7 (2 × CH), 78.5 (CH₂), 63.6 (q, ${}^{2}J_{CF} = 27.6$ Hz, CH), 56.4 (OCH₃), 28.6 (CH₂). ¹⁹F NMR (376 MHz, acetone-d₆): -65.8 (CF₃). IR (ATR): λ_{max} 3230m, 1658s, 1593s, 1578m, 1520m, 1496m, 1455m, 1419m, 1344s, 1248s, 1194s, 1142s, 1048s, 1028s cm⁻¹. MS: m/z (%) relative intensity 418 [(M+H)⁺, 50], 375 (19), 295 (29), 246 (23), 203 (8), 181 (9), 155 (100), 124 (9). HRMS (DART) calcd for $C_{18}H_{19}F_3NO_5S^+$ [M + H]⁺: 418.0931, found: 418.0921.

(*R*)-*N*-(Benzyloxy)-4,4,4-trifluoro-3-[(4-methoxyphenyl)sul fonyl]butanamide [(*R*)-6b] (89.8 mg, 71% yield) was synthesized from (*R*)-4d (88.0 mg, 0.31 mmol). $[\alpha]_D^{22}$ –27.3 (*c* 1.0, acetone).

(S)-N-(Benzyloxy)-4,4,4-trifluoro-3-[(4-fluorophenyl)sulfonyl] butanamide [(S)-6c]

According to the synthesis of (*S*)-**6a**, the reaction of (*S*)-**4e** (229 mg, 0.86 mmol) and purification by column chromatography (40% EtOAc in hexanes) afforded (*S*)-**6c** (143 mg, 41% yield) as a white solid. R_f 0.38 (40% EtOAc in hexanes); mp 115–118 °C (40% EtOAc in hexanes); $[\alpha]_D^{22}$ +20.8 (*c* 1.0, acetone). ¹H NMR (400 MHz, acetone- d_6): δ 10.51 (s, 1H, NH), 8.15–8.02 (m, 2H,

Ar*H*), 7.52 (dd, J = 8.7, 8.7 Hz, 2H, Ar*H*), 7.47–7.32 (m, 5H, Ar*H*), 5.02–4.77 (m, 3H, C*H*₂, C*H*CF₃), 3.00 (dd, J = 6.8, 16.6 Hz, 1H, C*H*H), 2.76 (dd, J = 5.4, 16.6 Hz, 1H, CH*H*). ¹³C NMR (100 MHz, acetone- d_6): $\delta 167.4$ (d, ¹ $J_{CF} = 253.8$ Hz, C), 165.3 (CO), 136.9 (C), 135.5 (C), 133.3 (d, ³ $J_{CF} = 10.1$ Hz, 2 × CH), 130.0 (2 × CH), 129.3 (CH), 129.2 (2 × CH), 124.4 (q, ¹ $J_{CF} = 278.2$ Hz, CF₃), 117.8 (d, ² $J_{CF} = 23.0$ Hz, 2 × CH), 78.5 (CH₂), 63.6 (q, ² $J_{CF} = 27.8$ Hz, CH), 28.4 (CH₂). ¹⁹F NMR (376 MHz, acetone- d_6): –65.8 (CF₃), –104.1 (F). IR (ATR): λ_{max} 3229*m*, 1661*s*, 1590*s*, 1518*m*, 1493*s*, 1424*m*, 1408*m*, 1345*s*, 1239*s*, 1191*s*, 1144*s*, 1102*s*, 1081*s* cm⁻¹. MS: *m*/*z* (%) relative intensity 406 [(M+ H)⁺, 100], 386 (13), 363 (38), 283 (8), 203 (19), 181 (33), 143 (13), 124 (10). HRMS (DART) calcd for C₁₇H₁₆F₄NO₄S⁺ [M + H]⁺: 406.0731, found: 406.0738.

(*R*)-*N*-(Benzyloxy)-4,4,4-trifluoro-3-[(4-fluorophenyl)sulfon yl]butanamide [(*R*)-6d] (164 mg, 41% yield) was synthesized from (*R*)-4f (263 mg, 0.98 mmol). $[\alpha]_D^{22}$ –20.0 (*c* 1.0, acetone).

(S)-4,4,4-Trifluoro-N-hydroxy-3-[(4-methoxyphenyl)sulfonyl]butanamide [(S)-7a]^[4]

5. Synthesis of 7

A flame-dried round bottom flask equipped with a magnetic stirring bar, an argon inlet, and a rubber septum was charged with (*S*)-**6a** (59.7 mg, 0.14 mmol), Pd(OH)₂/C (20% wt , 19.7 mg, 0.14 mmol), dry MeOH (2.4 mL), and dry EtOAc (0.6 mL). The argon inlet was replaced by a H₂ balloon, and the reaction mixture was stirred at room temperature for 1 h. The resulting mixture was filtered

through a celite pad, and the residue was eluted with MeOH (15 mL). After removal of the solvent *in vacuo*, the crude product was purified by column chromatography (5% MeOH in CH₂Cl₂) to afford (*S*)-**7a** (32.8 mg, 71% yield) as a white semi-solid. R_f 0.23 (5% MeOH in CH₂Cl₂); mp 131–134 °C (5% MeOH in CH₂Cl₂); $[\alpha]_D^{25}$ +5.2 (*c* 1.0, EtOH) [lit. $[\alpha]_D^{23}$ +16.1 (*c* 1.1, EtOH)].^[4] ¹H NMR (400 MHz, CD₃OD): δ 7.89 (d, *J* = 10.0 Hz, 2H, Ar*H*), 7.17 (d, *J* = 10.0 Hz, 2H, Ar*H*), 4.70–4.58 (m, 1H, CHCF₃), 3.92 (s, 3H, OCH₃), 2.94 (dd, *J* = 6.2, 16.2 Hz, 1H, CHH), 2.65 (dd, *J* = 6.2, 16.2 Hz, 1H, CHH). ¹³C NMR (100 MHz, CD₃OD): δ 167.1 (CO), 166.5 (C), 132.6 (2 × CH), 130.4 (C), 124.8 (q, ¹*J*_{CF} = 278.2 Hz, CF₃), 115.9 (2 × CH), 64.2 (q, ²*J*_{CF} = 27.7 Hz, CH), 56.6 (OCH₃), 28.7 (CH₂). ¹⁹F NMR (376 MHz, CD₃OD): –66.7 (d, *J* = 10.6 Hz, CF₃). IR (ATR): λ_{max} 3312*brm*, 1659*s*, 1593*s*, 1497*s*, 1345*s*, 1320*m*, 1251*s*, 1194*s*, 1143*s*, 1082*s*, 1014*s* cm⁻¹. MS: *m*/*z* (%) relative intensity 328 [(M+H)⁺, 14], 327 (M⁺, 3), 312 (18), 310 (5), 295 (18), 284 (9), 278 (26), 247 (18), 246 (100), 189 (8), 171 (11), 155 (26). HRMS (DART) calcd for C₁₁H₁₃F₃NO₅S⁺ [M + H]⁺: 328.0461, found: 328.0470.

(*R*)-**7b**

(*R*)-4,4,4-Trifluoro-*N*-hydroxy-3-[(4-methoxyphenyl)sulfonyl] butanamide [(*R*)-7b]^[4] (40.4 mg, 71% yield) was synthesized from (*R*)-6b (70.9 mg, 0.17 mmol). $[\alpha]_D^{25}$ -3.3 (*c* 0.88, EtOH) [lit. $[\alpha]_D^{23}$ -16.9 (*c* 0.88, EtOH)].

(S)-4,4,4-Trifluoro-N-hydroxy-3-[(4-fluorophenyl)sulfonyl]butanamide [(S)-7c]

According to the synthesis of (*S*)-**7a**, the reaction of (*R*)-**6c** (154 mg, 0.38 mmol) and purification by column chromatography (60% EtOAc in hexanes) gave (*R*)-**7c** (85.4 mg, 71% yield) as a white solid. R_f 0.25 (60% EtOAc in hexanes); $[\alpha]_D^{24}$ +3.9 (*c* 1.1, EtOH). ¹H NMR (400 MHz, CD₃OD): δ 8.09–8.01 (m, 2H, Ar*H*), 7.46–7.38 (m, 2H, Ar*H*),

4.82–4.71 (m, 1H, CHCF₃), 2.97 (dd, J = 6.2, 16.3 Hz, 1H, CHH), 2.69 (dd, J = 6.2, 16.3 Hz, 1H, CHH). ¹³C NMR (100 MHz, CD₃OD): δ 168.1 (d, ¹ $J_{CF} = 254.6$ Hz, C), 166.9 (CO), 135.7 (C), 133.6 (d, ³ $J_{CF} = 10.1$ Hz, 2 × CH), 124.7 (q, ¹ $J_{CF} = 278.2$ Hz, CF₃), 118.0 (d, ² $J_{CF} = 23.1$ Hz, 2 × CH), 64.1 (q, ² $J_{CF} = 28.0$ Hz, CH), 28.5 (CH₂). ¹⁹F NMR (376 MHz, CD₃OD): –66.6 (d, J = 10.2 Hz, CF₃), –104.1 (F). IR (ATR): λ_{max} 3365*brm*, 3151*brm*, 1672*s*, 1590*s*, 1494*s*, 1344*s*, 1240*s*, 1147*s*, 1081*s* cm⁻¹. MS: *m*/*z* (%) relative intensity 316 [(M+ H)⁺, 91], 315 (M⁺, 3), 313 (3), 302 (4), 300 (56), 298 (91), 284 (12), 283 (100), 256 (7), 177 (39), 158 (16). HRMS (DART) calcd for C₁₀H₁₀F₄NO₄S⁺ [M + H]⁺: 316.0261, found: 316.0254.

(*R*)-4,4,4-Trifluoro-*N*-hydroxy-3-[(4-fluorophenyl)sulfonyl]butan amide [(*R*)-7d] (86.5 mg, 69% yield) was synthesized from (*R*)-6d (159 mg, 0.39 mmol). $[\alpha]_D^{24}$ –3.2 (*c* 1.1, EtOH).

References:

- Racochote, S.; Pohmakotr, M.; Kuhakarn, C.; Leowanawat, P.; Reutrakul, V.; Soorukram, D. *Eur. J. Org. Chem.* 2019, *12*, 2212–2223
- [2] Dong, X-O.; Fang, X.; Tao, H-Y.; Zhou, X.; Wang, C-J. Adv. Synth. Catal. 2012, 354, 1141– 1147
- [3] Dong, X-O.; Fang, X.; Wang, C-J. Org. Lett. 2011, 13, 4426–4429
- [4] Sani, M.; Candiani, G.; Pecker, F.; Malpezzia, L.; Zanda, M. Tetrahedron Letters 2005, 46, 2393–2396.

· T · T · т т т т т T т т т Т Т 190 180 170 160 150 . 140 130 110 100 90 80 70 60 50 40 30 20 10 120 0 ppm

SI-28

-15 -20 -25 -30 -35 -40 -45 -50 -55 -60 -65 -70 -75 -80 -85 -90 -95 -100 -105 -110 -115 -120 -125 -130 ppm

SI-29

HRMS (ESI-TOF) and Specific rotation of (*R*,*S*)-**3aA**

Comment	CHCI3	
Mode	Specific O.R.	
Light	Na	
Wavelength	589nm	
Cell path	10.00 mm	
Concentration	0.8300 w/v%	
Factor	1,0000	
Blank	-0.0018 deg	
Interval	1 sec	
Integration	1 sec	
Average	-61.3735	
S.D.	1.6533	
C.V.	-2.6938 %	
No. Sample No	Data	Temp
1 624(1/ 5)	-62 651	25.0
2 624(2/ 5)	-59 639	25.0
3 624(3/ 5)	-59 639	25.0
4 624(4/ 5)	-63 133	25.0
5 624(5/ 5)	-61.807	25.0

ppm

SI-32

(R,R)-3aB

¹⁹F NMR Spectrum of (*R*,*R*)-**3aB** (470 MHz, CDCl₃)

																								1
-15	-20	-25	-30	-35	-40	-45	-50	-55	-60	-65	-70	-75	-80	-85	-90	-95	-100	-105	-110	-115	-120	-125	-130	ррт

HRMS (ESI-TOF) and Specific rotation of (*R*,*R*)-**3aB**

No	Sample No	Data	Temp.
1	625/ 1/ 5)	-110 845	24.6
2	625(2/ 5)	-109 577	24.6
2	625(2/ 5)	-110 986	24.6
3	625(3/5)	-110.141	24.6
4	625(5/ 5)	-108.873	24.6
D	023(5/ 5)	-100.010	

SI-36

¹³C NMR Spectrum of (*R*,*S*)-**3bA** (100 MHz, CDCl₃) 139.0836 138.5179 134.0682 134.0682 130.5615 129.9124 128.9860 128.9860 128.9860 128.8961 128.9860 125.8961 125.8961 125.8961 125.8961 122.2408 - 153.4404 - 168.1355 77.3150 76.9970 76.6790 70.3009 -47.9755 -47.6820 -47.6820 -47.0932 -47.0932 -35.1552 -35.1371 -35.1371 -35.1194 -35.1011 - 21.1734 57.7521 ,Me 0 0 CF_3 ν̈́Ph (R,S)-**3bA**

20 190 180 170 160 150 140 130 120 1**1**0 100 90 80 70 60 50 40 30 10 0 ppm

HRMS (ESI-TOF) and Specific rotation of (*R*,*S*)-**3bA**

¹³C NMR Spectrum of (*R*,*R*)-**3bB** (100 MHz, CDCl₃) .1898 .8716 .5344 .7509 .7509 .1228 .1228 .2074 1538 3187 - 168.4157 - 153.4594 249 77.3167 76.9987 76.6808 70.1182 48.8051 48.5104 48.2162 47.9209 - 21.1495 -57.8699 35.3683 35.3504 35.3332 35.3332 35.3194 138.1 138.1 138.1 138.1 138.1 138.1 138.1 128.1 ,Me 0 Ο CF_3 [~]Ph (R,R)-**3bB**

..... 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 ppm

HRMS (ESI-TOF) and Specific rotation of (*R*,*R*)-**3bB**

SI-43

0 ppm

HRMS (DART) and Specific rotation of (*R*,*S*)-**3cA**

Comment		CHCI3	
Mode Light Wavelength Cell path Concentration Factor Blank Interval Interval Integration		Specific O.R. Na 589nm 10.00 mm 1.7700 w/v% 1.0000 -0.0001 deg 1 sec 1 sec	
Average S.D. C.V.		-68.8023 0.5276 -0.7668 %	
No. 1 2 3 4 5	Sample No 117(1/ 5) 117(2/ 5) 117(3/ 5) 117(4/ 5) 117(5/ 5)	Data -68.362 -68.814 -69.040 -68.249 -69.548	Temp. 25.4 25.4 25.4 25.3 25.3

¹³C NMR Spectrum of (R,R)-**3cB** (100 MHz, CDCl₃) 138.3452 136.7542 130.5718 130.5718 123.1916 128.1926 128.8922 126.1822 125.2578 112.4954 - 168.4753 160.4485 153.4459 77.3148 76.9970 76.6789 70.1028 35.2216 35.2021 35.1852 35.1676 .OMe 0 0 CF₃ 0 ″Ph (R,R)-**3cB**

····· ••• •••• ·т Ч • · • • ··· T 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 ppm

¹⁹F NMR Spectrum of (*R*,*R*)-**3cB** (470 MHz, CDCl₃)

(R,R)-**3cB**

Ϋ́Ph

-15 -20 -25 -30 -35 -40 -45 50 55 -60 -65 -70 -75 -80 85 -90 -95 100 105 110 115 120 125 130 ppm

HRMS (ESI-TOF) and Specific rotation of (*R*,*R*)-3cB

SI-51

------..... ······ T ò ррт

¹³C NMR Spectrum of (*R*,*R*)-**3dB** (125 MHz, CDCl₃) .9366 2957 1612 .0807 .8637 7623 5126 76.9956 76.9956 76.7410 70.1394 48.9985 48.7608 48.5213 48.5213 48.2847 - 168.3394 - 153.4347 2607 4974 2603 57.8911 - 35.3606 138. 125. 28 83 8 2 33 С Ω CF₃ \cap ″Ph (R,R)-**3dB**

170 140 130 90 80 70 30 190 180 160 150 120 100 60 50 40 20 10 110 0 ppm

HRMS (ESI-TOF) and Specific rotation of (*R*,*R*)-3dB

¹³C NMR Spectrum of (R,S)-**3eA** (125 MHz, CDCl₃) - 153.4440 4445 0046 3890 2140 106 8 369 201 76.9975 76.9975 76.7440 70.3393 48.4035 48.1670 47.9313 47.6953 35.1882 57.7725 136. - 1127 - 127 - 125 59 11 0 Ο CF₃ \cap ʹPh (R,S)-**3eA**

..... Т · T • • · · • т 40 · T · T ... 190 170 150 140 130 120 100 80 70 60 50 30 20 180 160 110 90 10 0 ррт

HRMS (ESI-TOF) and Specific rotation of (*R*,*S*)-3eA

ppm

HRMS (ESI-TOF) and Specific rotation of (*R*,*R*)-**3eB**

¹³C NMR Spectrum of (*R*,*S*)-**3fA** (100 MHz, CDCl₃) 138.4785
133.4785
133.4814
133.4814
133.4814
133.4814
133.4814
123.9353
129.9353
129.9353
129.9353
129.9353
129.9353
129.437
125.14912
125.4126
121.282
121.282
121.282
121.282
121.282
121.282
121.282
121.282
121.282
121.282
121.282
121.282
121.282
121.282
121.282
121.282
121.282
121.282
121.282
121.282
121.282
121.282
121.282
121.282
121.282
121.282
121.282
121.282
121.282
121.282
121.282
121.282
121.282
121.282
121.282
121.282
121.282
121.282
121.282
121.282
121.282
121.282
121.282
121.282
121.282
121.282
121.282
121.282
121.282
121.282
121.282
121.282
121.282
121.282
121.282
121.282
121.282
121.282
121.282
121.282
121.282
121.282
121.282
121.282
121.282
121
121
121
121
121
121
121
121
121
121
121
121
121
121
121
121
121
121
121
121
121
121
121
121
121
121
121
121
121
121
121
121
121
121
121
121
121
121
121
121
121
121
121
121
121
121
121
121
121
121
121
121
121
121
121
121
121
121
121
121
121
121
121
121
121
121
121
121
121
121
121
121
121
121
121
121
121
121
121
121
121
121
121
121
121
121
121
121
121
121
121
121
121
121
121
121
121
121
121
121
121
121
121
121
121
121
121
121
121
121
121
121
121
121
121
121
121
121
121
121
121
121
121
121
121
121
121
121
121
121
121
1 - 168.0408 159.7365 153.4416 77.3159 76.9981 76.6799 70.3109 `OMe Ο S \cap CF₃ C . ́Рh (R,S)-**3fA**

190 170 150 130 90 80 70 60 50 40 30 20 10 180 160 140 120 110 100 Ó ppm

HRMS (ESI-TOF) and Specific rotation of (*R*,*S*)-**3fA**

...... 40 Ó ppm

-15 -20 -25 -30 -65 -70 -75 -85 -95 -100 -105 -110 -115 -120 -125 -130 -35 -40 -45 -50 -55 -60 -80 -90 ppm

-15 -20 -25 -30 -35 -40 -45 -50 -55 -60 -65 -70 -75 -80 -85 -90 -95 -100 -105 -110 -115 -120 -125 -130 ppm

HRMS (ESI-TOF) and Specific rotation of (*R*,*S*)-3gA

														1										
-15	-20	-25	-30	-35	-40	-45	-50	-55	-60	-65	-70	-75	-80	-85	-90	-95	-100	-105	-1 1 0	- 1 15	-120	-125	-130	ppm

HRMS (ESI-TOF) and Specific rotation of (*R*,*R*)-3gB

¹³C NMR Spectrum of (*R*,*S*)-**3hA** (100 MHz, CDCl₃) 138.4916 135.2918 130.4682 130.4682 130.4682 129.2345 129.2345 129.2345 129.2345 129.2345 122.8844 122.8844 122.8844 122.1076 121.0259 119.5445 111.0428 - 168.1681 - 153.4409 159.2520 - 77.3160 - 76.9980 - 76.6803 - 70.2037 - 57.7753 - 55.7637 -44.5447 -44.5447 -43.95497 -43.9610 -43.6610 -35.1526 -35.1338 -35.1338 -35.1158 -35.1158 \mathbb{V} 11 MeO、 0 S Ő CF₃ Ó . ́Рһ (R,S)-**3hA**

190 180 150 140 130 100 90 80 60 40 30 170 160 120 110 70 50 20 10 0 ppm

-15 -20 -25 -40 -45 -50 -55 -60 -65 -70 -75 -80 -85 -90 -95 -100 -105 -110 -115 -120 -125 -130 -30 -35 ppm

HRMS (ESI-TOF) and Specific rotation of (*R*,*S*)-**3hA**

-15 -20 -25 -30 -35 -45 -50 -55 -60 -65 -70 -75 -80 -85 -90 -95 -100 -105 -110 -115 -120 -125 -130 -40 ppm

HRMS (ESI-TOF) and Specific rotation of (*R*,*R*)-**3hB**

-15 -20 -25 -30 -35 -40 -45 -50 -55 -60 -65 -70 -75 -80 -85 -90 -95 -100 -105 -110 -115 -120 -125 -130 ppm

2+ 672.5302

700

600

1+ 881.0705

900

ˈm/z

800

SI-94

500

Intens. ____x10⁶

1.0

0.5-

0.0

1+ 164.0709

200

100

1+ 286.0689

300

400

Comment	CHCI3								
Mode Light Wavelength Cell path Concentration Factor Blank Interval Integration	Specific O.R. Na 589nm 10.00 mm 1.1600 w/v% 1.0000 0.0006 deg 1 sec 1 sec								
Average S.D. C.V.	<mark>-63.9828</mark> 0.4413 -0.6897 %								
No. Sample No 1 45(1/5) 2 45(2/5) 3 45(3/5) 4 45(4/5) 5 45(5/5)	Data -64.310 -63.362 -63.793 -64.483 -63.966	Temp 26.8 26.8 26.8 26.8 26.8							

SI-95

190	180	170	160	150	140	130	120	110	100	90	80	70	60	50	40	30	20	10	Ó	ppm

-15 -20 -25 -30 -35 -40 -45 -50 -55 -60 -65 -70 -75 -80 -85 -90 -95 -100 -105 -110 -115 -120 -125 -130 ppm

HRMS (ESI-TOF) and Specific rotation of (*R*,*R*)-3iB

-25 -20 -70 -15 -65 -75 -100 -105 -110 -115 -120 -125 -130 -30 -35 -40 -45 -50 -55 -60 -80 -85 -90 -95 ppm

HRMS (ESI-TOF) and Specific rotation of (*R*,*S*)-3jA

-15 -20 -25 -30 -65 -80 -95 -100 -105 -110 -115 -120 -125 -130 -35 -50 -60 -65 -70 -75 -85 -90 -40 -45 ppm

HRMS (ESI-TOF) and Specific rotation of (*R*,*R*)-**3jB**

-35

-40

-45

-50

-55

-65

-75

-80

-85

-90

-95

ppm

¹⁹F NMR Spectrum of (R,S)-**3kA** (376 MHz, acetone- d_6)

CI	1	1	C
21-	T	T	U

HRMS (ESI-TOF) and Specific rotation of (*R*,*S*)-**3kA**

0 ppm

HRMS (ESI-TOF) and Specific rotation of (*R*,*R*)-3kB

¹³C NMR Spectrum of (R,S)-**3**IA (125 MHz, CDCl₃)

-15 -20 -25 -30 -35 -75 -80 -100 -105 -110 -115 -120 -125 -130 -40 -45 -50 -55 -60 -65 -70 -85 -90 -95 ppm

· T . · T · Т -15 -20 -25 -30 -35 -40 -45 -50 -55 -60 -65 -70 -75 -80 -85 -90 -95 -100 -105 -110 -115 -120 -125 -130 ppm

HRMS (ESI-TOF) and Specific rotation of (R,R)-**3IB**

¹³C NMR Spectrum of (R,S)-**3mA** (100 MHz, CDCl₃)

0 ppm

-15 -20 -25 -30 -35 -40 -45 -50 -55 -60 -65 -70 -75 -80 -85 -90 -95 -100 -105 -110 -115 -120 -125 -130 p**p**m

0.00

150 200

250

300

350 400

m/z

450

500

550

HRMS (DART) and Specific rotation of (*R*,*S*)-3mA

1			1			1	1			1		1	1	1		1	1	1		
190	180	170	160	150	140	130	120	110	100	90	80	70	60	50	40	30	20	10	Û	ppm

-15 -20 -25 -30 -35 -40 -45 -50 -55 -60 -65 -70 -75 -80 -85 -90 -95 -100 -105 -110 -115 -120 -125 -130 ppm

HRMS (ESI-TOF) and Specific rotation of (*R*,*R*)-**3mB**

-100 -105 -110 -115 -120 -125 -130 -35 -15 -20 -25 -30 -40 -45 -50 -55 -60 -65 -70 -75 -80 -95 -85 -90 ppm

CI	1	2	Λ
<u>91-</u>	٠I	J	4

HRMS (ESI-TOF) and Specific rotation of (*R*,*S*)-**3nA**

Comment	CHCI3	
Mode	Specific O.R.	
Light	Na	
Wavelength	589nm	
Cell path	10.00 mm	
Concentration	1.7100 w/v%	
Factor	1.0000	
Blank	-0.0001 deg	
Interval	1 sec	
Integration	1 sec	
Average	-86.5614	
S.D.	0.5984	
C.V.	-0.6913 %	
No. Sample No	Data	Temp.
1 33(1/5)	-86.842	25.9
2 33(2/5)	-86.316	25.9
3 33(3/5)	-86.374	25.9
4 33(4/5)	-87.427	25.9
5 33(5/5)	-85.848	25.9

¹³C NMR Spectrum of (R,R)-**3nB** (100 MHz, CDCl₃) - 168.1556 - 153.4242 138.4004 136.1435 136.1435 136.1435 136.1435 129.1650 129.1478 129.1478 128.4441 128.0455 127.348 125.9748 125.2738 125.2738 - 77.3145 - 76.9968 - 76.6787 - 70.0870 57.8220 .9708 .6695 .0665 4197 5656 5656 5294 5108 3680 35 35 37 42517 ¥ 0 S `Ph `CF₃ ν̈́Ph (*R*,*R*)-**3nB**

30 70 120 100 50 140 130 110 60 40 20 190 180 170 160 150 90 80 10 0 ppm

¹⁹F NMR Spectrum of (R,R)-**3nB** (470 MHz, CDCl₃)

-15 -20 -25 -30 -35 -40 -45 -50 -55 -60 -65 -70 -75 -80 -85 -90 -95 -100 -105 -110 -115 -120 -125 -130 ppm

CI	1	2	C
21-	T	J	С

HRMS (ESI-TOF) and Specific rotation of (*R*,*R*)-**3nB**

Comment	CHCI3					
Mode Light Wavelength Cell path Concentration Factor Blank Interval Integration	Specific O.R. Na 589nm 10.00 mm 0.8700 w/v% 1.0000 -0.0001 deg 1 sec 1 sec					
Average S.D. C.V.	-58.3908 0.7493 -1.2833 %					
No. Sample No 1 38(1/5) 2 38(2/5) 3 38(3/5) 4 38(4/5) 5 38(5/5)	Data -58.736 -57.471 -59.080 -57.701 -58.966	Temp 25.4 25.4 25.4 25.4 25.4 25.4				

¹⁹F NMR Spectrum of (R,S)-**30A** (470 MHz, acetone- d_6)

-15 -20 -25 -60 65 -90 -30 -50 -55 -95 -100 -105 -110 -115 -120 -125 -130 -70 -35 -40 -45 -75 -80 -85 ppm

HRMS (ESI-TOF) and Specific rotation of (*R*,*S*)-**30A**

¹⁹F NMR Spectrum of (R,R)-**30B** (470 MHz, acetone- d_6)

-15 -20 -25 -60 -65 -70 -95 -100 -105 -110 -115 -120 -125 -130 -30 -35 -50 -55 -75 -80 -85 -90 -40 -45 ррт

SI-	146
-----	-----

HRMS (ESI-TOF) and Specific rotation of (*R*,*R*)-**30B**

¹⁹F NMR Spectrum of (R,S)-**3pA** (376 MHz, CDCl₃)

-15 -20 -25 -60 -65 -70 -75 -95 -100 -105 -110 -115 -120 -125 -130 -30 -35 -40 -45 -50 -55 -80 -85 -90 ppm

HRMS (ESI-TOF) and Specific rotation of (*R*,*S*)-**3**pA

-15	-20	-25	-30	-35	-40	-45	-50	-55	-60	-65	-70	-75	-80	-85	-90	-95	-100	-105	-110	-115	-120	-125	-130	ppm

SI-	1	5	4
~	-	~	

-105.3000

-1.2127 %

Data -105.833 -106.833 -105.333 -103.333 -105.167

Temp.

25.2

25.2

25.2 25.2 25.2

1.2769

Average

Sample No 83(1/5) 83(2/5) 83(3/5) 83(4/5) 83(5/5)

S.D.

C.V.

No.

1

2345

HRMS (ESI-TOF) and Specific rotation of (*R*,*R*)-**3pB**

ppm

-	15	-20	-25	-30	-35	-40	-45	-50	-55	-60	-65	-70	-75	-80	-85	-90	-95	-100	-105	-110	- 1 15	-120	-125	-130	ppm

Specific rotations of (*S*)-4a and (*R*)-4b

Comr	nent	CH2Cl2		Comm	ent	CHCI3	
Mode Light Wave Cell p Conce Facto Blank Interv Integr	elength ath entration r al ation	Specific O.R. Na 589nm 10.00 mm 1.0900 w/v% 1.0000 -0.0001 deg 1 sec 1 sec 1 sec		Mode Light Wavel Cell pa Conce Factor Blank Interva Integra	ength ath intration al ation	Specific O.R. Na 589nm 10.00 mm 1.0167 w/v% 1.0000 0.0001 deg 1 sec 1 sec	
Avera S.D. C.V.	ge	7.5596 0.7908 10.4609 %		Avera S.D. C.V.	ge	7.5539 0.5752 7.6147 %	
No. 1 2 3 4 5	Sample No 38(1/5) 38(2/5) 38(3/5) 38(4/5) 38(5/5)	Data 7.339 6.789 7.982 8.716 6.972	Temp. 24.1 24.1 24.1 24.1 24.1 24.1	No. 1 2 3 4 5	Sample No 5(1/ 5) 5(2/ 5) 5(3/ 5) 5(4/ 5) 5(5/ 5)	Data 7.377 8.164 7.967 6.688 7.574	Temp. 25.9 25.9 26.0 26.0 26.0

HO ₂ C CF ₃
(<i>R</i>)- 4b

Comm	ent	CH2Cl2					
Mode Light Wavel Cell pa Conce Factor Blank Interva Integra	ength ath ntration al ation	Specific O.R. Na 589nm 10.00 mm 1.0727 w/v% 1.0000 -0.0001 deg 1 sec 1 sec					
Averag S.D. C.V.	ge	-13.3122 0.8630 -6.4828 %					
No. 1 2 3 4 5	Sample No 10(1/5) 10(2/5) 10(3/5) 10(4/5) 10(5/5)	Data -13.051 -11.933 -14.077 -13.611 -13.890	Temp. 25.2 25.2 25.2 25.2 25.2 25.2				

0 ppm

-15 -20 -25 -30 -35 -40 -45 -50 -55 -60 -65 -70 -75 -80 -85 -90 -95 -100 -105 -110 -115 -120 -125 -130 ppm

Specific rotations of (S)-4c and (R)-4d

Comm	nent	CHCI3	
Mode		Specific O.R.	
Light		Na	
Wave	lenath	589nm	
Cell p	ath	10.00 mm	
Conce	entration	1 2385 w/v%	
Facto	r	1.0000	
Blank	16 -	0.0001 deg	
Interv	al	1 sec	
Integr	ation	1 sec	
Avera	ae	7.1377	
S.D.	3-	0.4295	
C.V.		6.0178 %	
No.	Sample No	Data	Temp.
1	26(1/5)	7.105	25.1
2	26(2/5)	7.832	25.1
3	26(3/5)	6.782	25.1
4	26(4/5)	7.186	25.1
5	26(5/ 5)	6.782	25.1

Comm	nent	CHCI3	
Mode Light Wave Cell p Conce Factor Blank Interva	length ath entration r al ation	Specific O.R. Na 589nm 10.00 mm 1.0500 w/v% 1.0000 -0.0004 deg 1 sec 1 sec	
Avera S.D. C.V.	ge	-3.8286 1.3759 -35.9364 %	
No. 1 2 3 4 5	Sample No 72(1/5) 72(2/5) 72(3/5) 72(4/5) 72(5/5)	Data -5.143 -2.000 -2.952 -5.143 -3.905	Temp. 25.2 25.3 25.3 25.2 25.2

¹³C NMR Spectrum of (*S*)-4e (100 MHz, CDCl₃)

-95 -100 -105 -110 -115 -120 -125 -130

ppm

SI-167

-15 -20 -25 -30

-35

-40

-45

-50

-55

-60 -65

-70 -75

-80

-85

-90

Specific rotations of (*S*)-4e and (*R*)-4f

HO₂C CF₃

(S)-**4e**

Comment	CH2CI2						
Mode Light Wavelength Cell path Concentration Factor Blank Interval Integration	Specific O.R. Na 589nm 10.00 mm 1.0167 w/v% 1.0000 -0.0001 deg 1 sec 1 sec						
Average S.D. C.V.	2.2032 0.5044 22.8944 %						
No. Sample No 1 100(1/5) 2 100(2/5) 3 100(3/5) 4 100(4/5) 5 100(5/5)	Data 2.459 1.672 2.951 1.967 1.967	Temp. 22.9 22.9 22.9 22.9 22.9 22.9					

HO₂C CF₃

(R)-**4f**

Com	ment	CH2CI2					
Mode Light Wave Cell p Conc Facto Blank Interv Integr	elength path entration pr s val ration	Specific O.R. Na 589nm 10.00 mm 1.0923 w/v% 1.0000 -0.0001 deg 1 sec 1 sec					
Avera S.D. C.V.	ige	-1.2451 0.7482 -60.0965 %					
No. 1 2 3 4 5	Sample No 135(1/ 5) 135(2/ 5) 135(3/ 5) 135(4/ 5) 135(5/ 5)	Data -1.556 -1.556 0.092 -1.648 -1.556	Temp. 23.4 23.3 23.4 23.4 23.4 23.4				

10

0 ppm

-25 -30 -35 -60 -65 -70 -45 -50 -55 -75 -80 -85 -95 -100 -105 -110 -115 -120 -125 -130 -40

HRMS (DART) of (S)-4g

Specific rotations of (S)-4g and (R)-4h

(S)-**4g**

Comm	nent	Acetone	
Mode Light Wave Cell pa Conce Factor Blank Interva Integra	length ath entration r al ation	Specific O.R. Na 589nm 10.00 mm 1.0538 w/v% 1.0000 -0.0005 deg 1 sec 1 sec	
Avera S.D. C.V.	ge	-72.2718 0.3712 -0.5136 %	
No. 1 2 3 4 5	Sample No 56(1/5) 56(2/5) 56(3/5) 56(4/5) 56(5/5)	Data -72.310 -72.310 -72.784 -72.215 -71.740	Temp. 21.0 21.0 21.0 21.0 21.0

AcHN	
s	
HO ₂ C	CF_3

(*R*)-**4h**

Comn	nent	Acetone	
Mode Light Wave Cell p Conce Facto Blank Interv Integr	elength ath entration r al ation	Specific O.R. Na 589nm 10.00 mm 1.0000 w/v% 1.0000 -0.0002 deg 1 sec 1 sec	
Avera S.D. C.V.	ge	71.0600 0.7369 1.0370 %	
No. 1 2 3 4 5	Sample No 66(1/5) 66(2/5) 66(3/5) 66(4/5) 66(5/5)	Data 70.500 71.700 71.900 70.200 71.000	Temp 24.2 24.2 24.2 24.2 24.2 24.2

210 200 190 180 0 ppm

-15 -20 -25 -30 -35 -40 -45 -50 -55 -60 -65 -70 -75 -80 -85 -90 -95 -100 -105 -110 -115 -120 -125 -130 ppm

Specific rotations of (*S*)-**5a** and (*R*)-**5b**

(S)-**5a**

(*R*)-**5b**

Comm	ent	CHCI3	
Mode Light Wavel Cell pa Conce Factor Blank Interva Integr	ength ath entration al al	Specific O.R. Na 589nm 10.00 mm 0.5800 w/v% 1.0000 -0.0007 deg 1 sec 1 sec	
Avera S.D. C.V.	ge	175.5172 1.0416 0.5935 %	
No. 1 2 3 4 5	Sample No 56(1/5) 56(2/5) 56(3/5) 56(4/5) 56(5/5)	Data 174.655 175.690 177.241 174.828 175.172	Temp. 23.8 23.8 23.8 23.8 23.8 23.8

Comment	CHCI3	
Mode	Specific O.R.	
Light	Na	
Wavelength	589nm	
Cell path	10.00 mm	
Concentration	0.5800 w/v%	
Factor	1.0000	
Blank	-0.0007 deg	
Interval	1 sec	
Integration	1 sec	
Average	-162.3793	
S.D.	0.7653	
C.V.	-0.4713 %	
No. Sample No	Data	Temp.
1 93(1/5)	-162.069	24.0
2 93(2/5)	-161.552	24.0
3 93(3/5)	-163.103	24.0
4 93(4/5)	-161.897	24.0
5 93(5/5)	-163.276	24.0

-15 -20 -25 -35 -55 -65 -30 -70 -95 -100 -105 -110 -115 -120 -125 -130 -50 -60 -75 -40 -45 -80 -85 -90 ppm

Specific rotations of (*S*)-**5c** and (*R*)-**5d**

(S)-**5c**

Comment		CHCI3	
Mode		Specific O.R.	
Light		Na	
Wavelength		589nm	
Cell path		10.00 mm	
Concentration		0.6300 w/v%	
Factor		1.0000	
Blank		-0.0004 deg	
Interval		1 sec	
Integration		1 sec	
Avera S.D. C.V.	ge	139.5873 0.6002 0.4300 %	
No.	Sample No	Data	Temp.
1	27(1/5)	140.159	25.8
2	27(2/5)	140.159	25.8
3	27(3/5)	138.730	25.8
4	27(4/5)	139.524	25.7
5	27(5/5)	139.365	25.8

(*R*)-**5d**

Comment		CHCI3	
Mode Light Wavelength Cell path Concentration Factor Blank Interval Integration		Specific O.R. Na 589nm 10.00 mm 0.6100 w/v% 1.0000 -0.0025 deg 1 sec 1 sec	
Avera S.D. C.V.	ge	-121.0492 0.8487 -0.7011 %	
No. 1 2 3 4 5	Sample No 157(1/5) 157(2/5) 157(3/5) 157(4/5) 157(5/5)	Data -121.803 -122.131 -120.328 -120.492 -120.492	Temp. 25.4 25.4 25.4 25.4 25.4

220 210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 ppm

¹⁹F NMR Spectrum of (S)-**6a** (376 MHz, acetone- d_6)

-15 -20 -25 -30 -35 -40 -45 -50 -55 -60 -65 -70 -75 -80 -85 -90 -95 -100 -105 -110 -115 -120 -125 -130 ppm

Specific rotations of (S)-6a and (R)-6b

Comment	Acetone	
Mode Light Wavelength Cell nath	Specific O.R. Na 589nm 10.00 mm	
Concentration	1.0455 w/v%	
Factor	1.0000	
Blank	-0.0005 deg	
Interval	1 sec	
Integration	1 sec	
Average	26.8580	
S.D. C.V.	2.1129 %	
No. Sample	No Data	Temp
1 4(1/	5) 26.495	21.9
2 4(2/	5) 26.208	21.9
3 4(3/	5) 27.451	21.9
4 4(4/	5) 26.686	21.9
5 4(5/	5) 27.451	21.9

Comment		Acelone	
Mode Light Wave Cell p Conce Factor Blank Interva	length ath entration r al ation	Specific O.R. Na 589nm 10.00 mm 1.0063 w/v% 1.0000 -0.0005 deg 1 sec 1 sec	
Avera S.D. C.V.	ge	-27.3278 0.5067 -1.8542 %	
No. 1 2 3 4 5	Sample No 7(1/5) 7(2/5) 7(3/5) 7(4/5) 7(5/5)	Data -27.030 -27.626 -26.732 -28.023 -27.228	Temp. 22.0 22.0 22.0 22.0 22.0 22.0

Anatas

0----

-100 -105 -110 -115 -120 -125 -130 -15 -65 -70 -90 -95 -20 -25 -30 -35 -40 -45 -50 -55 -60 -75 -80 -85 ppm

HRMS (DART) of (S)-6c

Specific rotations of (*S*)-6c and (*R*)-6d

Comment		Acetone	
Mode Light Wavelength Cell path Concentration Factor Blank Interval Integration		Specific O.R. Na 589nm 10.00 mm 1.0333 w/v% 1.0000 -0.0005 deg 1 sec 1 sec	
Avera S.D. C.V.	ge	20.7684 0.8672 4.1757 %	
No. 1 2 3 4 5	Sample No 17(1/ 5) 17(2/ 5) 17(3/ 5) 17(4/ 5) 17(5/ 5)	Data 21.388 20.904 21.291 19.259 21.001	Temp. 22.3 22.3 22.3 22.3 22.3 22.3

Comment		Acetone	
Mode Light Wavelength Cell path Concentration Factor Blank Interval Integration		Specific O.R. Na 589nm 10.00 mm 1.0308 w/v% 1.0000 -0.0005 deg 1 sec 1 sec	
Avera S.D. C.V.	ge	-20.0427 0.3471 -1.7317 %	
No. 1 2 3 4 5	Sample No 46(1/5) 46(2/5) 46(3/5) 46(4/5) 46(5/5)	Data -20.081 -19.596 -20.373 -19.790 -20.373	Temp. 21.9 21.9 21.9 21.9 21.9

Û ppm

-15 -20 -25 -30 -35 -40 -45 -50 -55 -60 -65 -70 -75 -80 -85 -90 -95 -100 -105 -110 -115 -120 -125 -130 ppm

HRMS (DART) of (S)-7a

Specific rotations of (S)-7a and (R)-7b

Comm	ient	EtOH	
Mode Light Wavelength Cell path Concentration Factor Blank Interval Interval Integration		Specific O.R. Na 589nm 10.00 mm 1.0500 w/v% 1.0000 -0.0024 deg 1 sec 1 sec	
Avera S.D. C.V.	ge	5.2000 0.7842 15.0807 %	
No. 1 2 3 4 5	Sample No 89(1/5) 89(2/5) 89(3/5) 89(4/5) 89(5/5)	Data 4.571 4.190 5.905 5.429 5.905	Temp. 25.0 25.1 25.1 25.1 25.1

(R)-**7b**

Comment		EtOH	
Mode Light Wavelength Cell path Concentration Factor Blank Interval Interval		Specific O.R. Na 589nm 10.00 mm 0.8800 w/v% 1.0000 -0.0024 deg 1 sec 1 sec	
Average S.D. C.V.		-3.2955 0.4754 -14.4252 %	
No. 1 2 3 4 5	Sample No 107(1/5) 107(2/5) 107(3/5) 107(4/5) 107(5/5)	Data -3.523 -3.295 -3.750 -3.409 -2.500	Temp. 24.7 24.7 24.7 24.7 24.7 24.7

-15 -25 -60 -65 -70 -75 -100 -105 -110 -115 -120 -125 -130 -20 -30 -35 -40 -45 -50 -55 -80 -85 -90 -95 ppm

Specific rotations of (*S*)-7c and (*R*)-7d

Comment		EtOH	
Mode Light Wavel Cell pa Conce Factor Blank Interva Integra	ength ath al ation	Specific O.R. Na 589nm 10.00 mm 1.0900 w/v% 1.0000 -0.0003 deg 1 sec 1 sec	
Avera S.D. C.V.	ge	3.9266 0.7929 20.1937 %	
No. 1 2 3 4 5	Sample No 225(1/5) 225(2/5) 225(3/5) 225(4/5) 225(5/5)	Data 4.220 2.569 4.312 3.945 4.587	Temp. 23.6 23.6 23.6 23.6 23.6 23.6

(*R*)-**7d**

Comment		EtOH	
Mode		Specific O.R.	
Light		Na	
Wavelength		589nm	
Cell path		10.00 mm	
Concentration		1.0800 w/v%	
Factor		1.0000	
Blank		-0.0003 deg	
Interval		1 sec	
Integration		1 sec	
Average S.D. C.V.		-3.2037 0.7220 -22.5359 %	
No.	Sample No	Data	Temp.
1	202(1/ 5)	-2.407	24.4
2	202(2/ 5)	-3.889	24.5
3	202(3/ 5)	-3.148	24.5
4	202(4/ 5)	-3.981	24.4
5	202(5/ 5)	-2.593	24.5

The information of the crystal measurement

Crystallographic data of (R,R)-**3aB** and (R,R)-**3pB** (CCDC: 2257377 and 2257378) were collected on D8 VENTURE Bruker diffractometer. The crystals were kept at 273.15 K during data collection. Using Olex2^[1], Both structures were solved with the olex2.solve^[2] structure program using Charge Flipping and refine with the XL^[3] refinement package using Least Squares minimization.

 [1] Dolomanov, O. V.; Bourhis, L. J.; Gildea, R. J.; Howard, J. A. K.; Puschmann, H. J. Appl. Cryst. 2009, 42, 339-341.
 [2] Bourhis, L. J.;Dolomanov, O. V.;Gildea, R. J.;Howard, J. A. K.;Puschmann, H. Acta Cryst. 2015, A71, 59-75.
 [3] Sheldrick, G. M. Acta Cryst. 2008, A64, 112-122.

The description of the sample preparation

The crystals used in X-ray diffraction data collection were obtained by slow evaporation technique, for (R,R)-**3aB** using total 25% CH₂Cl₂ in hexanes and for (R,R)-**3pB** using total 10% CH₂Cl₂ in methanol, in vials. Each compound was dissolved using the minimum amount of CH₂Cl₂ then hexanes [for (R,R)-**3aB**] or methanol [for (R,R)-**3pB**] was added dropwise until the clear solution turned cloudy. CH₂Cl₂ was then added dropwise to the cloudy solution until it appeared as a clear solution again. Each vial was let stand undisturbed at room temperature (35 °C).

X-ray diffraction analysis of compound (*R*,*R*)-3aB (CCDC 2257377)

Crystal data	
Chemical formula	$C_{19}H_{16}F_{3}NO_{3}S$
$M_{ m r}$	395.39
Crystal system, space group	Monoclinic, C2
Temperature (K)	273
<i>a</i> , <i>b</i> , <i>c</i> (Å)	21.0440 (12), 5.1578 (3), 19.5025 (11)
β (°)	119.164 (2)
$V(Å^3)$	1848.46 (19)
Ζ	4
Radiation type	Cu Ka
$\mu \text{ (mm}^{-1})$	2.01
Crystal size (mm ³)	0.3 imes 0.1 imes 0.1
Data collection	
Diffractometer	BRUKER D8 VENTURE
Absorption correction	_
No. of measured, independent and	10969, 3389, 3082
observed $[I > 2\sigma(I)]$ reflections	
R _{int}	0.035
$(\sin \theta / \lambda)_{\max} (\text{\AA}^{-1})$	0.619
Refinement	
$R[F^2 > 2\sigma(F^2)], wR(F^2), S$	0.042, 0.120, 1.05
No. of reflections	3389
No. of parameters	244
No. of restraints	1
H-atom treatment	H-atom parameters constrained
$\Delta \rho_{\rm max}, \Delta \rho_{\rm min} \ ({\rm e} \ {\rm \AA}^{-3})$	0.14, -0.29
Absolute structure	Flack x determined using 1155 quotients
	[(I+)-(I-)]/[(I+)+(I-)] [Parsons, Flack and
	Wagner, Acta Cryst. B69 (2013) 249-259].
Absolute structure parameter Computer programs: SAINT V8.40B (2016), olex2.solve 1.3 (Bourh	0.124 (11) his <i>et al.</i> , 2015), XL (Sheldrick, 2008), Olex2 1.3 (Dolomanov <i>et al.</i> , 2009).

References

1. Bourhis, L. J.; Dolomanov, O. V.; Gildea, R. J.; Howard, J. A. K.; Puschmann, H. Acta Cryst. **2015**, *A71*, 59-75.

2. Dolomanov, O. V.; Bourhis, L. J.; Gildea, R. J.; Howard, J. A. K.; Puschmann, H. J. Appl. Cryst. **2009**, *42*, 339-341.

3. Sheldrick, G. M. Acta Cryst. 2008, A64, 112-122.

checkCIF/PLATON report

Structure factors have been supplied for datablock(s) iisrx02rt3_0m_a

THIS REPORT IS FOR GUIDANCE ONLY. IF USED AS PART OF A REVIEW PROCEDURE FOR PUBLICATION, IT SHOULD NOT REPLACE THE EXPERTISE OF AN EXPERIENCED CRYSTALLOGRAPHIC REFEREE.

No syntax errors found. CIF dictionary Interpreting this report

Datablock: iisrx02rt3_0m_a

Bond precision:	C-C = 0.0067 A	Wavelength=	1.54178
Cell:	a=21.0440(12) alpha=90	b=5.1578(3) beta=119.164(2)	c=19.5025(11) gamma=90
Temperature:	273 K		
	Calculated	Reported	
Volume	1848.46(19)	1848.46(19))
Space group	C 2	C 1 2 1	
Hall group	C 2y	C 2y	
Moiety formula	C19 H16 F3 N O3 S	C19 H16 F3	N 03 S
Sum formula	C19 H16 F3 N O3 S	C19 H16 F3	N 03 S
Mr	395.39	395.39	
Dx,g cm-3	1.421	1.421	
Z	4	4	
Mu (mm-1)	2.005	2.005	
F000	816.0	816.0	
F000'	820.20		
h,k,lmax	26,6,24	25,6,24	
Nref	3681[2056]	3389	
Tmin,Tmax	0.786,0.818	0.555,0.75	3
Tmin'	0.548		
Correction metho AbsCorr = NONE	d= # Reported T Li	mits: Tmin=0.555 Tma	ax=0.753
Data completenes	s= 1.65/0.92	Theta(max)= 72.527	
R(reflections)=	0.0417(3082)		wR2(reflections) = 0.1197(3389)
S = 1.047	Npar= 2	44	

The following ALERTS were generated. Each ALERT has the format test-name_ALERT_alert-type_alert-level. Click on the hyperlinks for more details of the test.

Alert level	c		
PLAT029_ALERT_3_C	_diffrn_measured_fraction_theta_full value Low .	0.973	Why?
PLAT241_ALERT_2_C	High 'MainMol' Ueq as Compared to Neighbors of	S001	Check
PLAT241_ALERT_2_C	High 'MainMol' Ueq as Compared to Neighbors of	C9	Check
PLAT241_ALERT_2_C	High 'MainMol' Ueq as Compared to Neighbors of	C15	Check
PLAT242_ALERT_2_C	Low 'MainMol' Ueq as Compared to Neighbors of	C3	Check
PLAT242_ALERT_2_C	Low 'MainMol' Ueq as Compared to Neighbors of	C5	Check
PLAT242_ALERT_2_C	Low 'MainMol' Ueq as Compared to Neighbors of	C11	Check
PLAT340_ALERT_3_C	Low Bond Precision on C-C Bonds 0	.00671	Ang.
PLAT911_ALERT_3_C	Missing FCF Refl Between Thmin & STh/L= 0.600	49	Report
PLAT913_ALERT_3_C	Missing # of Very Strong Reflections in FCF	8	Note
PLAT987_ALERT_1_C	The Flack x is >> 0 - Do a BASF/TWIN Refinement	Please	Check

Alert level G

PLAT033_ALERT_4_G	Flack x Value Deviates > 3.0 * sigma from Zero .	0.124 Note
PLAT128_ALERT_4_G	Alternate Setting for Input Space Group C2	I2 Note
PLAT199_ALERT_1_G	Reported _cell_measurement_temperature (K)	273 Check
PLAT200_ALERT_1_G	Reporteddiffrn_ambient_temperature (K)	273 Check
PLAT242_ALERT_2_G	Low 'MainMol' Ueq as Compared to Neighbors of	C4 Check
PLAT432_ALERT_2_G	Short Inter XY Contact 01'C2'	2.96 Ang.
	3/2-x, -1/2+y, 1-z =	4_646 Check
PLAT720_ALERT_4_G	Number of Unusual/Non-Standard Labels	3 Note
PLAT791_ALERT_4_G	Model has Chirality at C3 (Sohnke SpGr)	R Verify
PLAT791_ALERT_4_G	Model has Chirality at C4' (Sohnke SpGr)	R Verify
PLAT910_ALERT_3_G	Missing # of FCF Reflection(s) Below Theta(Min).	1 Note
PLAT912_ALERT_4_G	Missing # of FCF Reflections Above STh/L= 0.600	22 Note
PLAT933_ALERT_2_G	Number of OMIT Records in Embedded .res File	1 Note
PLAT978_ALERT_2_G	Number C-C Bonds with Positive Residual Density.	1 Info

0 ALERT level A = Most likely a serious problem - resolve or explain 0 ALERT level B = A potentially serious problem, consider carefully 11 ALERT level C = Check. Ensure it is not caused by an omission or oversight 13 ALERT level G = General information/check it is not something unexpected 3 ALERT type 1 CIF construction/syntax error, inconsistent or missing data 10 ALERT type 2 Indicator that the structure model may be wrong or deficient 5 ALERT type 3 Indicator that the structure quality may be low 6 ALERT type 4 Improvement, methodology, query or suggestion 0 ALERT type 5 Informative message, check It is advisable to attempt to resolve as many as possible of the alerts in all categories. Often the minor alerts point to easily fixed oversights, errors and omissions in your CIF or refinement strategy, so attention to these fine details can be worthwhile. In order to resolve some of the more serious problems it may be necessary to carry out additional measurements or structure refinements. However, the purpose of your study may justify the reported deviations and the more serious of these should normally be commented upon in the discussion or experimental section of a paper or in the "special_details" fields of the CIF. checkCIF was carefully designed to identify outliers and unusual parameters, but every test has its limitations and alerts that are not important in a particular case may appear. Conversely, the absence of alerts does not guarantee there are no aspects of the results needing attention. It is up to the individual to critically assess their own results and, if necessary, seek expert advice.

Publication of your CIF in IUCr journals

A basic structural check has been run on your CIF. These basic checks will be run on all CIFs submitted for publication in IUCr journals (*Acta Crystallographica, Journal of Applied Crystallography, Journal of Synchrotron Radiation*); however, if you intend to submit to *Acta Crystallographica Section C* or *E* or *IUCrData*, you should make sure that full publication checks are run on the final version of your CIF prior to submission.

Publication of your CIF in other journals

Please refer to the *Notes for Authors* of the relevant journal for any special instructions relating to CIF submission.

PLATON version of 13/07/2021; check.def file version of 13/07/2021

NOMOVE FORCED F2 Prob = 50 Temp = 273 ≻ 16 02 F3 C4 C2' 01' C2 СЗ - (130721) S001 C1 N3' C5 01 PLATON-Dec 23 07:05:45 2021 C4 ' С5 C6 C11 C12 C10 С7 C16 C13 C9 63 C15 C14 Z 153 llsrx02rt3_0m_a C 1 2 1 R = 0.04RES= 0 -72 X

ORTEP plot of (*R*,*R*)-3aB (CCDC 2257377)

X-ray diffraction analysis of compound (*R*,*R*)-3pB (CCDC 2257378)

Crystal data	
Chemical formula	$C_{17}H_{20}F_3NO_3S$
Mr	375.40
Crystal system, space group	Orthorhombic, $P2_12_12_1$
Temperature (K)	273
<i>a</i> , <i>b</i> , <i>c</i> (Å)	5.4848 (3), 11.8755 (7), 32.4602 (19)
$V(Å^3)$	2114.3 (2)
Ζ	4
Radiation type	Cu Kα
$\mu \text{ (mm}^{-1})$	1.72
Crystal size (mm ³)	0.1 imes 0.1 imes 0.1
Data collection	
Diffractometer	BRUKER D8 VENTURE
Absorption correction	_
No. of measured, independent and	19206, 3668, 3356
observed $[I > 2\sigma(I)]$ reflections	
R _{int}	0.054
$(\sin \theta / \lambda)_{\text{max}}$ (Å ⁻¹)	0.603
Refinement	
$R[F^2 > 2\sigma(F^2)], wR(F^2), S$	0.073, 0.214, 1.09
No. of reflections	3668
No. of parameters	229
H-atom treatment	H-atom parameters constrained
$\Delta \rho_{\rm max}, \Delta \rho_{\rm min} ({\rm e} {\rm \AA}^{-3})$	0.95, -0.28
Absolute structure	Flack x determined using 1279 quotients
	[(I+)-(I-)]/[(I+)+(I-)] [Parsons, Flack and
	Wagner, Acta Cryst. B69 (2013) 249-259].
Absolute structure parameter	0.092 (8)

Computer programs: SAINT V8.40B (2016), olex2.solve 1.3 (Bourhis et al., 2015), XL (Sheldrick, 2008), Olex2 1.3 (Dolomanov et al., 2009).

References

Bourhis, L. J.; Dolomanov, O. V.; Gildea, R. J.; Howard, J. A. K.; Puschmann, H. *Acta Cryst.* Dolomanov, O. V.; Bourhis, L. J.; Gildea, R. J.; Howard, J. A. K.; Puschmann, H. *J. Appl. Cryst.* 2009, 42, 339-341.
 Sheldrick G. M. Acta Cryst. 2008, A64, 112, 122.

3. Sheldrick, G. M. Acta Cryst. 2008, A64, 112-122.

checkCIF/PLATON report

Structure factors have been supplied for datablock(s) ii_sr_xrd_03_rt_2_0m_a

THIS REPORT IS FOR GUIDANCE ONLY. IF USED AS PART OF A REVIEW PROCEDURE FOR PUBLICATION, IT SHOULD NOT REPLACE THE EXPERTISE OF AN EXPERIENCED CRYSTALLOGRAPHIC REFEREE.

No syntax errors found. CIF dictionary Interpreting this report

Datablock: ii_sr_xrd_03_rt_2_0m_a

Bond precision:	C-C = 0.0076 A	Wavelength=1.54178	gth=1.54178		
Cell:	a=5.4848(3) alpha=90	b=11.8755(7) c=32.4602(19) beta=90 gamma=90))		
Temperature:	273 К	,			
	Calculated	Reported			
Volume	2114.3(2)	2114.3(2)			
Space group	P 21 21 21	P 21 21 21			
Hall group	P 2ac 2ab	P 2ac 2ab			
Moiety formula	C17 H20 F3 N O3 S	C17 H20 F3 N O3 S			
Sum formula	C17 H20 F3 N O3 S	C17 H20 F3 N O3 S			
Mr	375.40	375.40			
Dx,g cm-3	1.179	1.179			
Z	4	4			
Mu (mm-1)	1.720	1.720			
F000	784.0	784.0			
F000'	788.06				
h,k,lmax	6,14,39	6,14,39			
Nref	3899[2295]	3668			
Tmin, Tmax	0.842,0.842	0.519,0.753			
Tmin'	0.842				
Correction metho AbsCorr = NONE	od= # Reported T Li	mits: Tmin=0.519 Tmax=0.753			
Data completenes	ss= 1.60/0.94	Theta(max)= 68.294			
R(reflections)=	0.0726(3356)	wR2(reflec	tions)=		
S = 1.091	Npar= 22	29			

The following ALERTS were generated. Each ALERT has the format test-name_ALERT_alert-type_alert-level. Click on the hyperlinks for more details of the test.

🍳 Alert level B

PLAT029_ALERT_3_B	_diffrn_m	easured_fra	action_theta_	full value	Low .	0.945 Why?
PLAT601_ALERT_2_B	Unit Cell	Contains S	Solvent Acces	sible VOIDS	of .	179 Ang**3

Alert level C

PLAT094_ALERT_2_C Ratio of Maximum / Minimum Residual Density	3.44	Report
PLAT242_ALERT_2_C Low 'MainMol' Ueq as Compared to Neighbors of	C3	Check
PLAT242_ALERT_2_C Low 'MainMol' Ueq as Compared to Neighbors of	C14	Check
PLAT340_ALERT_3_C Low Bond Precision on C-C Bonds	0.00764	Ang.
PLAT906_ALERT_3_C Large K Value in the Analysis of Variance	2.393	Check
PLAT911_ALERT_3_C Missing FCF Refl Between Thmin & STh/L= 0.600	124	Report
PLAT918_ALERT_3_C Reflection(s) with I(obs) much Smaller I(calc) .	2	Check
PLAT939_ALERT_3_C Large Value of Not (SHELXL) Weight Optimized S .	12.39	Check
PLAT987_ALERT_1_C The Flack x is >> 0 - Do a BASF/TWIN Refinement	Please	Check

Alert level G

PLAT033_ALERT_4_G	Flack x Value Deviates > 3.0 * sigma from Zero .	0.092 Note
PLAT072_ALERT_2_G	SHELXL First Parameter in WGHT Unusually Large	0.18 Report
PLAT199_ALERT_1_G	Reported _cell_measurement_temperature (K)	273 Check
PLAT200_ALERT_1_G	Reporteddiffrn_ambient_temperature (K)	273 Check
PLAT242_ALERT_2_G	Low 'MainMol' Ueq as Compared to Neighbors of	C4 Check
PLAT432_ALERT_2_G	Short Inter XY Contact 02	2.98 Ang.
	-1/2+x, 3/2-y, 1-z =	4_466 Check
PLAT720_ALERT_4_G	Number of Unusual/Non-Standard Labels	1 Note
PLAT791_ALERT_4_G	Model has Chirality at C3 (Sohnke SpGr)	R Verify
PLAT791_ALERT_4_G	Model has Chirality at C7 (Sohnke SpGr)	R Verify
PLAT912_ALERT_4_G	Missing # of FCF Reflections Above STh/L= 0.600	3 Note
PLAT913_ALERT_3_G	Missing # of Very Strong Reflections in FCF	3 Note
PLAT933_ALERT_2_G	Number of HKL-OMIT Records in Embedded .res File	3 Note
PLAT978_ALERT_2_G	Number C-C Bonds with Positive Residual Density.	1 Info

```
0 ALERT level A = Most likely a serious problem - resolve or explain
2 ALERT level B = A potentially serious problem, consider carefully
9 ALERT level C = Check. Ensure it is not caused by an omission or oversight
13 ALERT level G = General information/check it is not something unexpected
3 ALERT type 1 CIF construction/syntax error, inconsistent or missing data
9 ALERT type 2 Indicator that the structure model may be wrong or deficient
7 ALERT type 3 Indicator that the structure quality may be low
5 ALERT type 4 Improvement, methodology, query or suggestion
0 ALERT type 5 Informative message, check
```

It is advisable to attempt to resolve as many as possible of the alerts in all categories. Often the minor alerts point to easily fixed oversights, errors and omissions in your CIF or refinement strategy, so attention to these fine details can be worthwhile. In order to resolve some of the more serious problems it may be necessary to carry out additional measurements or structure refinements. However, the purpose of your study may justify the reported deviations and the more serious of these should normally be commented upon in the discussion or experimental section of a paper or in the "special_details" fields of the CIF. checkCIF was carefully designed to identify outliers and unusual parameters, but every test has its limitations and alerts that are not important in a particular case may appear. Conversely, the absence of alerts does not guarantee there are no aspects of the results needing attention. It is up to the individual to critically assess their own results and, if necessary, seek expert advice.

Publication of your CIF in IUCr journals

A basic structural check has been run on your CIF. These basic checks will be run on all CIFs submitted for publication in IUCr journals (*Acta Crystallographica, Journal of Applied Crystallography, Journal of Synchrotron Radiation*); however, if you intend to submit to *Acta Crystallographica Section C* or *E* or *IUCrData*, you should make sure that full publication checks are run on the final version of your CIF prior to submission.

Publication of your CIF in other journals

Please refer to the *Notes for Authors* of the relevant journal for any special instructions relating to CIF submission.

PLATON version of 12/09/2022; check.def file version of 09/08/2022

NOMOVE FORCED Prob = 50 Temp = 273 ≻ 03 73 F1 F2 C6 02 C2 C4 F3 N005 СЗ 、C5 - (120922) C1 V **S1 C**7 01 PLATON-Oct 21 06:03:18 2022 C8 C15 C13 C9 C14 C17 C12 C16 C10 C11 Z 11 li_sr_xrd_03_rt_2P 21 21 21 R = 0.07RES= 0 29 X

ORTEP plot of (*R*,*R*)**-3pB (CCDC 2257378)**

Attempts to record ¹H and ¹⁹F NMR spectra of the intermediate G

¹H NMR (400 MHz, CDCl₃)

(7 sections/ 10 min per section)

the starting material 1 (marked as a red *) and DABCO (marked as a blue *)

SI-217

0 min																		
-20 10 mir	-30 1	-40	-50	-60	-70	-80	-90	-100	-110	-120	-130	-140	-150	-160	-170	-180	-190	ppm
-20 20 mir	-30 N	-40	-50	-60	-70	-80	-90	-100	-110	-120	-130	-140	-150	-160	-170	-180	-190	ppm
-20 30 mir	 -30	-40	-50	-60	-70	-80	-90	-100	-110	-120	-130	-140	-150	-160	-170	-180	-190	ppm
-20 40 min	 -30	-40	-50	-60	-70	-80	-90	-100	-110	-120	-130	-140	-150	-160	-170	-180	-190	ppm
-20 50 mi	-30 n	-40	-50	-60	-70	-80	-90	-100	-110	-120	-130	-140	-150	-160	-170	-180	-190	ppm
-20 60 mir	-30 1	-40	-50	-60	-70	-80	-90	-100	-110	-120	-130	-140	-150	-160	-170	-180	-190	ppm
-20	-30	-40	-50	-60	-70	-80	-90	-100	-110	-120	-130	-140	-150	-160	-170	-180	-190	ppm

¹⁹**F NMR** (470 MHz, CDCl₃ with C₆F₆ as an int. standard) (7 sections/ 10 min per section)

¹**H NMR** (400 MHz, CDCl₃) (7 sections/ 10 min per section)

SI-219

					72.0085 *	* 22.0095								162.9992					
0 min					İ														
-20 10 min	-30	-40	-50	-60	-70	-80	-90	-100	-110	-120	-130	-140	-150	-160	-170	-180	-190	ррт	
-20 20 min	-30	-40	-50	-60	-70	-80	-90	-100	-110	-120	-130	-140	-150	-160	-170	-180	-190	ppm	
-20 30 min	-30	-40	-50	-60	-70	-80	-90	-100	-110	-120	-130	-140	-150	-160	-170	-180	-190	ppm	
-20 40 min	-30	-40	-50	-60	-70	-80	-90	-100	-110	-120	-130	-140	-150	-160	-170	-180	-190	ppm	
-20 50 mir	-30)	-40	-50	-60	-70	-80	-90	-100	-110	-120	-130	-140	-150	-160	-170	-180	-190	ppm	
-20 60 mir	-30 1	-40	-50	-60	-70	-80	-90	-100	-110	-120	-130	-140	-150	-160	-170	-180	-190	ppm	
-20	-30	-40	-50	-60	-70	-80	-90	-100	-110	-120	-130	-140	-150	-160	-170	-180	-190	ppm	

¹⁹**F NMR** (470 MHz, CDCl₃ with C₆F₆ as an int. standard) (7 sections/ 10 min per section)