Supporting Information For

Discovery of two ent-atisane diterpenoid lactones with AChE inhibitory activity

from the roots of Euphorbia fischeriana

Jiangchun Wei^{a,b,c†}, Zhiyue Li^{a,b†}, Min Shan^d, Fengzhi Wu^e, Limin Li^a, Yucui Ma^a, Junhong Wu^a, Xinping Li^a, Yaqian Liu^a, Zhengxi Hu^{c*}, Yonghui Zhang^{c*} and Zhengzhi Wu^{a,b*}

Euphorlactone A (**1**), a rare rearranged *ent*-atisane norditerpenoid with an undescribed 3-*nor*-2,4-olide-*ent*-atisane scaffold, together with euphorlactone B (**2**), a new *ent*-atisane diterpenoid with an unprecedented sevenmembered lactone ring C, were isolated from the roots of *Euphorbia fischeriana*. Their planar structures incorporating absolute configurations were extensively elucidated by analysis of the 1D and 2D NMR data, electronic circular dichroism (ECD) calculations, Rh₂(OCOCF₃)₄-induced ECD curve, and single-crystal X-ray diffraction. Euphorlactone A (ELA) showed a remarkable AChE (acetylcholinesterase) inhibitory activity (IC₅₀ = 2.13 ± 0.06 μ M, K_i = 0.058 μ M), which was five times stronger than the positive control (rivastigmine, IC₅₀ = 12.46 ± 0.82 μ M), and further *in vitro* enzyme inhibition kinetic analysis and molecular docking studies were performed to investigate the AChE inhibitory mechanism.

S1. General Experimental Procedures1
S2. X-ray crystallographic analysis of 1 1
Table S2-1 Crystal data and structure refinement for 11
Table S2-2 Fractional Atomic Coordinates (×104) and Equivalent Isotropic Displacement
Parameters ($Å2 \times 103$) for 1. Ueq is defined as 1/3 of of the trace of the orthogonalised
UIJ tensor2
Table S2-3 Anisotropic Displacement Parameters ($Å^2 \times 10^3$) for 1 . The Anisotropic
displacement factor exponent takes the form: $-2\pi^2[h^2a^{*2}U_{11}+2hka^*b^*U_{12}+]$
Table S2-4 Bond Lengths 13
Table S2-5 Bond Angles for 13
Table S2-6 Torsion Angles for 1. 4
Table S2-7 Hydrogen Atom Coordinates ($Å$ ×10 ⁴) and Isotropic Displacement Parameters
(Ų×10³) for 1.
S3. Calculation of ECD Spectra for 16
Figure S3. Experimental and calculated ECD spectra of 1 in MeOH.
Table S3. Energy Analysis for the Conformers of 1.
Figure S3. B3lyp/6-311g**/20 optimized low-energy conformers of 16
S4. Calculation of ECD Spectra for 26
Table S4. Energy Analysis for the Conformers of 2. 7
Figure S4. B3lyp/6-311g**/20 optimized low-energy conformers of 27
S5. IC ₅₀ Data of compound 17
Table S5-1. The residual activity of acetylcholinesterase was incubated with different
concentrations of 1 in an <i>in vitro</i> activity screening model ($\overline{X} \pm S$, n = 3)7
Table S5-2. Transform X of Table S11-2 ($\overline{X} \pm S$, n = 3)8
Table S5-3. The calculation interface of IC ₅₀ value of compound 1 8
S6. Inhibition kinetic data of compound 1 9
Table S6-1. Inhibition kinetics of ELA towards AChE ($\overline{X} \pm S$, n = 3)9
Table S6-2. The analysis results of inhibition kinetic data K_m and V_{max} of compound 1 9
S7. Spectroscopic data10

	Figure S7-1. The HR-ESIMS Spectrum of compound 1	10
	Figure S7-2. CD Spectra of compound 1	11
	Figure S7-3. The ¹ H-NMR Spectrum of compound 1 in CDCl ₃ (400MHz)	11
	Figure S7-4. The ¹³ C-NMR Spectrum of compound 1 in CDCl ₃ (100MHz)	12
	Figure S7-5. The HSQC Spectrum of compound 1 in CDCl₃ (400MHz)	13
	Figure S7-6. The HMBC Spectrum of compound 1 in CDCl ₃ (400MHz)	14
	Figure S7-7. The COSY Spectrum of compound 1 in CDCl ₃ (400MHz)	15
	Figure S7-8. The NOESY Spectrum of compound 1 in CDCl ₃ (400MHz)	16
	Figure S7-9. The HR-ESIMS Spectrum of compound 2	16
	Figure S7-10. CD Spectra of compound 2	17
	Figure S7-11. The ¹ H-NMR Spectrum of compound 2 in CDCl ₃ (600MHz)	17
	Figure S7-12. The ¹³ C-NMR Spectrum of compound 2 in CDCl ₃ (150MHz)	18
	Figure S7-13. The HSQC Spectrum of compound 2 in CDCl ₃ (600MHz)	19
	Figure S7-14. The HMBC Spectrum of compound 2 in CDCl ₃ (600MHz)	20
	Figure S7-15. The COSY Spectrum of compound 2 in CDCl ₃ (600MHz)	21
	Figure S7-16. The NOESY Spectrum of compound 2 in CDCl ₃ (600MHz)	22
S8. F	References	22

S1. General Experimental Procedures

UV spectra were recorded on a JASCO V-650 UV spectrophotometer. MP was determined by A BUCHI B-540 melting point apparatus. Optical rotations were measured with on a JASCO P2000 automatic polarimeter. ¹D- and ²D-NMR spectra were recorded on a Bruker Avance 600/400 spectrometer with solvent peaks as references. HRESIMS data were obtained with an Agilent 1290 Infinity liquid chromatography system and an Agilent 6540 UHD Accurate-Mass Q-TOF mass spectrometer. Highperformance liquid chromatography (HPLC) data were recorded on an Agilent 1260 instrument equipped with a photo-diode array (PDA) and a YMC C₁₈ column (250 × 4.6 mm, 5 µm). Preparative HPLC was a performed on Sanotac instrument China with a UV detector and a YMC C₁₈ column (250 × 20 mm, 5 µm). Column chromatographic separations were carried out with silica gel (200-300 mesh, Qingdao Marine Chemical Group Corporation, Qingdao, China), MCI gel CHP20P (75-150 um, Mitsubishi Chemical Co., Japan) and ODS (50 µm, YMC, Kyoto, Japan). TLC was conducted with glass precoated with silica gel GF254 (Yantai Chemical Industrial Institute, Yantai, China). Chromatographic grade methanol and acetonitrile were purchased from Fisher. All other solvents were of chemical grade (Da Mao Chemical Co. Ltd, Tianjin, China).

S2. X-ray crystallographic analysis of **1**

Colorless columnar crystals of **1** were grown by slow evaporation in MeOH/DCM (1:1, v/v) solution. Crystal data were obtained on an Xcalibur Eos Gemini diffractometer with graphite-monochromated Cu-K α radiation (λ = 1.54184Å).

Crystal data of **1**: $C_{19}H_{26}O_3$ (*M* =302.40 g/mol): orthorhombic, space group $P2_12_12_1$ (no. 19), *a* = 6.22994(11) Å, *b* = 10.47670(16) Å, *c* = 24.3448(4) Å, *V* = 1588.96(4) Å³, *Z* = 4, *T* = 150.00(10) K, μ (Cu K α) = 0.664 mm⁻¹, *Dcalc* = 1.264 g/cm³, 6671 reflections measured (7.262° ≤ 2 Θ ≤ 147.604°), 2997 unique (R_{int} = 0.0163, R_{sigma} = 0.0188) which were used in all calculations. The final R_1 was 0.0281 (I > 2 σ (I)) and wR_2 was 0.0744 (all data), Flack parameter = 0.04(7).

The X-ray crystallographic data of compounds **1** have been deposited at the Cambridge Crystallographic Data Center with deposition numbers CCDC 2096385, which can be obtained free of charge from the <u>www.ccdc.cam.ac.uk</u>.

Table S2-1 Crystal data and structure refinement for	1.
--	----

Identification code	1
Empirical formula	C ₁₉ H ₂₆ O ₃
Formula weight	302.40
Temperature/K	150.00(10)
Crystal system	orthorhombic
Space group	P212121
a/Å	6.22994(11)
b/Å	10.47670(16)
c/Å	24.3448(4)
α/°	90
β/°	90
γ/°	90

Volume/Å ³	1588.96(4)
Z	4
ρ _{calc} g/cm ³	1.264
µ/mm ⁻¹	0.664
F(000)	656.0
Crystal size/mm ³	$0.14 \times 0.11 \times 0.09$
Radiation	Cu Kα (λ = 1.54184)
20 range for data collection/°	7.262 to 147.604
Index ranges	$-4 \le h \le 7, -12 \le k \le 12, -29 \le l \le 29$
Reflections collected	6671
Independent reflections	2997 [R _{int} = 0.0163, R _{sigma} = 0.0188]
Data/restraints/parameters	2997/0/210
Goodness-of-fit on F ²	1.089
Final R indexes [I>=2σ (I)]	$R_1 = 0.0281$, $wR_2 = 0.0739$
Final R indexes [all data]	$R_1 = 0.0285$, $wR_2 = 0.0744$
Largest diff. peak/hole / e Å ⁻³	0.11/-0.19
Flack/Hooft parameter	0.04(7)/0.07(6)

Table S2-2 Fractional Atomic Coordinates (×104) and Equivalent Isotropic Displacement Parameters (Å2×103) for 1. Ueq is defined as 1/3 of of the trace of the orthogonalised UIJ tensor.

Atom	X	у	Z	U(eq)
01	9488(2)	2579.9(11)	7872.4(5)	37.7(3)
02	1549.3(18)	3996.3(12)	5637.4(5)	32.6(3)
03	8576(3)	1389.0(11)	7176.0(5)	40.3(3)
C1	8197(3)	3715.1(14)	7090.9(6)	24.6(3)
C2	8782(3)	2537.3(16)	7410.2(6)	27.7(3)
C4	7714(3)	1133.1(16)	6618.6(6)	29.0(4)
C5	7287(2)	2372.0(14)	6293.1(6)	22.4(3)
C6	5850(3)	2154.5(14)	5788.9(6)	24.8(3)
C7	5886(3)	3327.8(13)	5418.7(6)	23.2(3)
C8	5303(2)	4561.8(14)	5716.9(6)	20.3(3)
C9	6558(2)	4712.1(13)	6264.7(6)	20.2(3)
C10	6503(2)	3513.9(14)	6641.9(6)	21.3(3)
C11	5956(3)	5989.9(14)	6553.6(6)	24.4(3)
C12	4374(2)	6754.7(14)	6198.2(6)	23.5(3)
C13	2346(2)	5941.3(15)	6119.7(6)	24.5(3)
C14	2903(2)	4724.6(15)	5811.9(6)	22.8(3)
C15	5918(3)	5728.2(14)	5356.7(6)	24.4(3)
C16	5360(3)	6972.3(15)	5638.9(6)	24.5(3)
C17	5646(3)	8104.2(16)	5412.9(7)	34.9(4)
C18	9468(3)	361.9(16)	6338.8(8)	38.7(4)
C19	5766(3)	289.0(16)	6722.3(7)	36.7(4)
C20	4299(3)	3296.5(15)	6910.5(6)	25.3(3)

U₃₃ U_{23} U_{13} **U**₁₂ Atom U_{11} U₂₂ 01 49.5(8) 37.4(6) 26.1(6) 4.9(5) -12.1(5) -2.3(6)37.0(6) 37.9(6) 02 22.7(5) -9.3(5) -1.5(5) -6.6(5) 03 64.9(9) 27.1(6) 28.9(6) 2.6(5) -17.1(6) 0.2(6) C1 25.7(7) 26.0(7) 22.1(7) -0.4(6) -3.4(6)-3.2(6) C2 29.7(7) 28.6(8) 24.6(7) 2.1(6) -1.8(6)-4.2(7) C4 39.3(9) 25.0(7) 22.8(7) 0.3(6) -2.6(6) -3.2(7) C5 24.8(7) 22.5(7) 20.0(6) -0.6(5) 1.4(6) -2.9(6) C6 28.7(8) 24.4(7) 21.3(7) -3.8(5)1.1(6) -3.8(6)C7 -1.9(6) 24.6(7) 27.5(7) 17.4(6) -2.5(6)0.5(6) C8 20.4(7) 23.7(7) 16.8(6) -0.3(5) 0.4(5) -2.8(5)C9 18.8(6) 23.2(7) 18.6(6) -0.9(5) -0.3(6) -3.8(6) C10 22.1(7) 23.5(7) 18.2(6) -0.2(5) -0.7(6) -3.1(6) C11 27.8(8) 25.3(7) 20.1(6) -2.5(6) -1.7(6) -4.5(6) C12 25.1(7) 23.0(7) 22.3(6) -1.7(5) 1.4(6) -2.6(6) C13 20.7(7) 27.9(7) 1.4(6) 24.8(7) 0.6(6) -1.6(6)C14 22.1(7) 27.1(7) 19.1(6) 0.2(6) 0.2(6) -3.0(6)C15 24.8(7) 28.7(7) 19.7(6) 1.7(6) 1.9(6) -2.5(6)C16 23.3(7) 27.9(7) 22.4(6) 0.5(6) -2.4(6) -4.0(6) C17 45.9(10) 30.5(8) 28.3(8) 1.3(8) -8.2(8) 1.8(7) C18 43.9(10) 29.7(8) 42.4(9) 2.5(7) 0.2(8) 7.4(8) C19 53.5(11) 27.7(8) 28.9(8) 1.5(6) 4.0(8) -11.1(8) C20 25.1(8) 29.5(7) 21.3(6) -5.0(6) 0.5(6) 2.6(6)

Table S2-3 Anisotropic Displacement Parameters (Å²×10³) for **1**. The Anisotropic displacement factor exponent takes the form: $-2\pi^{2}[h^{2}a^{*2}U_{11}+2hka^{*}b^{*}U_{12}+...]$.

Table S2-4 Bond Lengths 1.

Atom	Atom	Length/Å	Atom	Atom	Length/Å
01	C2	1.209(2)	C8	C9	1.5538(18)
02	C14	1.214(2)	C8	C14	1.523(2)
03	C2	1.3374(19)	C8	C15	1.5519(19)
03	C4	1.4839(19)	C9	C10	1.5558(19)
C1	C2	1.503(2)	C9	C11	1.558(2)
C1	C10	1.534(2)	C10	C20	1.538(2)
C4	C5	1.544(2)	C11	C12	1.537(2)
C4	C18	1.520(3)	C12	C13	1.536(2)
C4	C19	1.523(2)	C12	C16	1.511(2)
C5	C6	1.536(2)	C13	C14	1.519(2)
C5	C10	1.5461(19)	C15	C16	1.514(2)
C6	C7	1.524(2)	C16	C17	1.319(2)
C7	C8	1.5265(19)			

Table S2-5 Bond Angles for 1.

Atom	Atom	Atom	Angle/°	Atom	Atom	Atom	Angle/°
C2	03	C4	125.95(12)	C8	C9	C10	114.45(11)
C2	C1	C10	114.99(12)	C8	C9	C11	110.71(12)
01	C2	03	117.70(14)	C10	C9	C11	114.93(11)
01	C2	C1	122.63(15)	C1	C10	C5	106.30(12)
03	C2	C1	119.65(13)	C1	C10	C9	107.15(11)
03	C4	C5	112.33(12)	C1	C10	C20	109.37(12)
03	C4	C18	104.22(14)	C5	C10	C9	107.05(11)
03	C4	C19	104.00(13)	C20	C10	C5	113.62(12)
C18	C4	C5	109.93(13)	C20	C10	C9	112.95(12)
C18	C4	C19	109.79(14)	C12	C11	C9	110.36(11)
C19	C4	C5	115.84(15)	C13	C12	C11	107.96(12)
C4	C5	C10	115.03(12)	C16	C12	C11	108.98(12)
C6	C5	C4	112.71(12)	C16	C12	C13	107.82(11)
C6	C5	C10	111.71(12)	C14	C13	C12	109.81(12)
C7	C6	C5	110.15(12)	02	C14	C8	123.95(14)
C6	C7	C8	113.48(11)	02	C14	C13	122.78(14)
C7	C8	C9	111.99(12)	C13	C14	C8	113.17(13)
C7	C8	C15	109.85(11)	C16	C15	C8	111.40(12)
C14	C8	C7	113.62(12)	C12	C16	C15	111.86(12)
C14	C8	C9	110.62(11)	C17	C16	C12	124.49(14)
C14	C8	C15	103.89(12)	C17	C16	C15	123.62(14)
C15	C8	C9	106.32(11)				

Table S2-6 Torsion Angles for 1.

Α	В	С	D	Angle/°	Α	В	С	D	Angle/°
03	C4	C5	C6	-164.40(13)	C9	C8	C14	02	-131.74(15)
03	C4	C5	C10	-34.8(2)	C9	C8	C14	C13	51.80(16)
C2	03	C4	C5	6.6(2)	C9	C8	C15	C16	-58.74(15)
C2	03	C4	C18	125.55(18)	C9	C11	C12	C13	60.28(15)
C2	03	C4	C19	-119.42(18)	C9	C11	C12	C16	-56.58(15)
C2	C1	C10	C5	-51.10(17)	C10	C1	C2	01	-154.86(16)
C2	C1	C10	C9	-165.31(13)	C10	C1	C2	03	26.9(2)
C2	C1	C10	C20	71.95(17)	C10	C5	C6	C7	61.05(16)
C4	03	C2	01	178.96(17)	C10	C9	C11	C12	-134.16(13)
C4	03	C2	C1	-2.7(3)	C11	C9	C10	C1	-62.61(16)
C4	C5	C6	C7	-167.63(13)	C11	C9	C10	C5	-176.31(12)
C4	C5	C10	C1	55.89(17)	C11	C9	C10	C20	57.89(16)
C4	C5	C10	C9	170.16(12)	C11	C12	C13	C14	-62.67(14)
C4	C5	C10	C20	-64.44(17)	C11	C12	C16	C15	58.25(16)
C5	C6	C7	C8	-54.14(17)	C11	C12	C16	C17	-123.70(17)
C 6	C5	C10	C1	-173.99(12)	C12	C13	C14	02	-170.48(14)
C6	C5	C10	C9	-59.72(15)	C12	C13	C14	C8	6.02(16)

Α	В	С	D	Ang	le/°	Α	В	С	D	Angle/°
C6	C5	C10	C20		65.68(15)	C13	C12	C16	C15	-58.70(16)
C6	C7	C8	C9		48.13(16)	C13	C12	C16	C17	119.36(18)
C6	C7	C8	C14		-78.10(16)	C14	C8	C9	C10	78.73(15)
C6	C7	C8	C15		166.03(13)	C14	C8	C9	C11	-53.10(16)
C7	C8	C9	C10		-49.12(16)	C14	C8	C15	C16	58.02(15)
C7	C8	C9	C11		179.06(12)	C15	C8	C9	C10	-169.10(12)
C7	C8	C14	02		-4.8(2)	C15	C8	C9	C11	59.07(14)
C7	C8	C14	C13		178.75(11)	C15	C8	C14	02	114.54(16)
C7	C8	C15	C16		179.89(13)	C15	C8	C14	C13	-61.92(14)
C8	C9	C10	C1		167.62(12)	C16	C12	C13	C14	54.94(15)
C8	C9	C10	C5		53.93(16)	C18	C4	C5	C6	80.05(17)
C8	C9	C10	C20		-71.88(15)	C18	C4	C5	C10	-150.32(14)
C8	C9	C11	C12		-2.58(16)	C19	C4	C5	C6	-45.10(18)
C8	C15	C16	C12		0.59(18)	C19	C4	C5	C10	84.54(16)
C8	C15	C16	C17		-177.49(16)					
Table	e S2-7 ⊦	lydrogei	n Atom	Coordinates (Å×1	0 ⁴) and Isotropi	c Displa	cement	Parame	eters (Ų×10	³) for 1.
At	om		x		у			z		U(eq)
H1A				9487.28	40	052.43			6921.78	30
H1B				7669.13	43	353.86			7345.81	30
H5				8684.68	26	530.91			6146.09	27
H6A				6357.46	14	417.35			5585.7	30
H6B				4390.89	19	985.76			5907.1	30
H7A				4884.52	32	198.61			5118.62	28
H7B				7308.77	34	416.59			5261.66	28
Н9				8064.58	48	308.97			6156.86	24
H11/	4			5309.67	58	310.87			6907.84	29
H11I	3			7243.53	64	490.59			6614.96	29
H12				4020.24	75	569.77			6373.7	28
H13/	4			1737.93	57	729.52			6475.06	29
H13I	3			1283.86	64	421.82			5914.37	29
H15/	4			7446.22	57	706.94			5281.19	29
H15I	3			5163.62	56	578.24			5008.82	29
H17/	4			6340(40)	81	80(20)			5052(9)	43(6)
H17I	3			5210(40)	89	00(20)			5608(9)	46(6)
H18/	4			10731.14	8	878.82			6300.2	58
H18I	3			8983.11		95.58			5982.47	58
H180	2			9796.71	-3	375.77			6557.08	58
H19/	4			6206.33	-4	470.57			6911.89	55
H19I	3			5120.83		61.04			6377.88	55
H190	2			4742.46	7	744.44			6942.5	55
H20/	4			3770	40	089.59			7054.37	38

Atom	x	у	Z	U(eq)
H20B	4438.05	2689.23	7203.59	38
H20C	3311.97	2975.04	6641.01	38

S3. Calculation of ECD Spectra for **1**.

In general, conformational analyses were carried out via random searching in the Sybyl-X 2.0 using the MMFF94S force field with an energy cutoff of 2.5 kcal/mol (Sybyl Software, 2013). The results showed two lowest energy conformer for both compounds. Subsequently, the conformers were re-optimized using DFT at the PBE0-D3(BJ)/def2-SVP level in MeOH using the polarizable conductor calculation model (SMD) by the ORCA4.2.1 program (Stephens and Harada, 2010; Neese, 2012). The energies, oscillator strengths, and rotational strengths (velocity) of the first 100 electronic excitations were calculated using the TDDFT methodology at the DSD-PBEP86/def2-TZVP level in MeOH. The ECD spectra were simulated by the overlapping Gaussian function (half the bandwidth at 1/e peak height, sigma = 0.30 for all) (Neese, 2017). To get the final spectra, the simulated spectra of the conformers were averaged according to the Boltzmann distribution theory and their relative Gibbs free energy (Δ G). By comparing the experiment spectra with the calculated model molecules, the absolute configuration of the only chiral center was determined to be.

Figure S3. Experimental and calculated ECD spectra of 1 in MeOH.

Table S3. E	Energy Ana	lysis for	the Confo	ormers of 1 .
-------------	------------	-----------	-----------	----------------------

Conformers	ΔG	P(%)/100	Single point energy(a.u.)
1-1_tddft_	0.00000	52.27	-1041.8189217343
1-2_tddft_	0.00009	47.73	-1041.8188361719
	1-1	1-2	

Figure S3. B3lyp/6-311g**/20 optimized low-energy conformers of 1.

S4. Calculation of ECD Spectra for 2.

In general, conformational analyses were carried out via random searching in the Sybyl-X 2.0 using the MMFF94S force field with an energy cutoff of 2.5 kcal/mol (Sybyl Software, 2013). The results showed six lowest energy conformer for both compounds. Subsequently, the conformers were re-optimized using DFT at the PBE0-D3(BJ)/def2-SVP level in MeOH using the polarizable conductor calculation model (SMD) by the ORCA4.2.1 program (Stephens and Harada, 2010; Neese, 2012). The energies, oscillator strengths, and rotational strengths (velocity) of the first 30 electronic excitations were calculated using the TDDFT methodology at the PBE0-D3(BJ)/def2-TZVP level in MeOH. The ECD spectra were simulated by the overlapping Gaussian function (half the bandwidth at 1/e peak height, sigma = 0.30 for all) (Neese, 2017). To get the final spectra, the simulated spectra of the conformers were averaged according to the Boltzmann distribution theory and their relative Gibbs free energy (Δ G). By comparing the experiment spectra with the calculated model molecules, the absolute configuration of the only chiral center was determined to be.

Conformers	ΔG	P(%)/100	Single point energy(a.u.)
2-1_tddft_	0.00000	42.41	-1005.1598274396
2-2_tddft_	0.00005	40.29	-1005.1597789402
2-3_tddft_	0.00085	17.3	-1005.1589813893
2-4_tddft_	0.01250	0.0	-1005.1473287906
2-5_tddft_	0.01345	0.0	-1005.1463754076
2-6_tddft_	0.01327	0.0	-1005.1465567074

Table S4. Energy Analysis for the Conformers of 2.

2-4

Figure S4. B3lyp/6-311g**/20 optimized low-energy conformers of 2.

S5. IC₅₀ Data of compound **1**

Table S5-1. The residual activity of acetylcholinesterase was incubated with different concentrations of **1** in an *in vitro* activity screening model ($\bar{x} \pm s$, n = 3).

2-5

2-6

*		Х	Group A	Group B	Group C	Group D	
		concentration	residual activity-A	sidual activity-	sidual activity-	Title	
	×	Х	Y	Y	Y	Y	
1	Title	0.5	92.49012	93.84010	92.40838		
2	Title	1.0	73.51779	67.62779	72.90576		
3	Title	2.0	41.63373	48.36173	45.68063		
4	Title	4.0	30.83004	32.89646	34.55497		
5	Title	6.0	23.58366	21.23198	24.21466		
6	Title	8.0	16.86430	16.38270	16.75393		
7	Title	10.0	14.75626	14.80996	15.31414		
8	Title						
9	Title						

Table S5-2. Transform X of Table S11-2 ($\overline{X} \pm S, n = 3$).

1		Х	А	В	С	
		concentration	residual activity-A	residual activity-B	residual activity-C	
	x	Х				
1		-0.301	92.490	93.840	92.408	
2		0.000	73.518	67.628	72.906	
3		0.301	41.634	48.362	45.681	
4		0.602	30.830	32.896	34.555	
5		0.778	23.584	21.232	24.215	
6		0.903	16.864	16.383	16.754	
7		1.000	14.756	14.810	15.314	
8						

Table S5-3. The calculation interface of IC_{50} value of compound **1**.

n Nonlin fit		A	В	С	
	Table of results	residual activity-A	residual activity-B	residual activity-C	
1	log(inhibitor) vs. normalized response Variable slope				
2	Best-fit values				
3	LogIC50	0.3153	0.3246	0.3426	
4	HillSlope	-1.269	-1.251	-1.239	
5	IC50	2.067	2.112	2.201	
6	95% CI (profile likelihood)				
7	LogIC50	0.2050 to 0.4201	0.2352 to 0.4098	0.2526 to 0.4284	
8	HillSlope	-1.694 to -0.9445	-1.571 to -0.9905	-1.559 to -0.9775	
9	IC50	1.603 to 2.631	1.719 to 2.569	1.789 to 2.681	
10	Goodness of Fit				
11	Degrees of Freedom	5	5	5	
12	R squared	0.9708	0.9808	0.9802	
13	Sum of Squares	157.3	101.7	103.5	
14	Sy.x	5.609	4.510	4.550	
15					
16	Number of points				
17	# of X values	7	7	7	
18	# Y values analyzed	7	7	7	

S6. Inhibition kinetic data of compound 1

Table S6-1. Inhibition kinetics of ELA towards AChE ($\overline{X} \pm S$, n = 3).

Table f	ormat:	X	Group A	Group B	Group C	Group D	Group E	Group F	Γ
×	Y	concentration of substrate	0μM	0.5µM	1.0µM	2.0µM	4µM	6µM	Γ
	×	Х	Y	Y	Y	Y	Y	Y	
1	Title	0.1	0.680000	0.634000	0.474000	0.284000	0.209000	0.134000	Γ
2	Title	0.2	1.016000	0.944000	0.738000	0.508000	0.382000	0.256000	
3	Title	0.4	1.360000	1.242000	1.054000	0.808000	0.645000	0.482000	Γ
4	Title	0.6	1.532000	1.394000	1.226000	0.986000	0.819000	0.652000	
5	Title	0.8	1.628000	1.472000	1.333200	1.128000	0.965000	0.802000	Γ
6	Title	1.0	1.696000	1.522000	1.382000	1.198000	1.043000	0.888000	
7	Title	1.2	1.740000	1.556000	1.429200	1.242800	1.091400	0.940000	
0	÷	Î	1	1	1	1			

Table S6-2. The analysis results of inhibition kinetic data K_m and V_{max} of compound **1**.

No.	Manlin Gt	Α	В	С	D	E	F	
===	NORIN IK	0µM	0.5µM	1.0µM	2.0µM	4µM	6µM	Ē
		Y	Y	Y	Y	Y	Y	
1	Michaelis-Menten							Ē
2	Best-fit values							
3	Vmax	2.033	1.802	1.768	1.783	1.756	1.924	
4	Km	0.1988	0.1814	0.2724	0.4908	0.6926	1.190	ſ
5	Std. Error							ſ
6	Vmax	0.004029	0.008078	0.01640	0.04341	0.06034	0.1522	ſ
7	Km	0.001447	0.003117	0.008024	0.02902	0.04977	0.1594	ſ
8	95% Confidence Intervals							ſ
9	Vmax	2.023 to 2.043	1.781 to 1.822	1.725 to 1.810	1.672 to 1.895	1.601 to 1.912	1.533 to 2.315	ſ
10	Km	0.1951 to 0.2026	0.1734 to 0.1894	0.2517 to 0.2930	0.4162 to 0.5654	0.5646 to 0.8206	0.7797 to 1.599	ſ
11	Goodness of Fit							ſ
12	Degrees of Freedom	5	5	5	5	5	5	ſ
13	R square	0.9999	0.9996	0.9992	0.9981	0.9980	0.9961	ſ
14	Absolute Sum of Squares	5.780e-005	0.0002605	0.0006143	0.001509	0.001390	0.002299	ſ
15	Sy.x	0.003400	0.007218	0.01108	0.01737	0.01667	0.02144	ſ
16	Constraints							ſ
17	Km	Km > 0.0	Km > 0.0	ſ				
18								ſ
19	Number of points							ſ
20	Analyzed	7	7	7	7	7	7	ſ
								<u>_</u>

S7. Spectroscopic data

Figure S7-1. The HR-ESIMS Spectrum of compound 1

Figure S7-2. CD Spectra of compound 1

Figure S7-3. The ¹H-NMR Spectrum of compound 1 in CDCl₃ (400MHz)

Figure S7-4. The ¹³C-NMR Spectrum of compound 1 in CDCl₃ (100MHz)

Figure S7-5. The HSQC Spectrum of compound 1 in CDCI₃ (400MHz)

Figure S7-6. The HMBC Spectrum of compound 1 in CDCl₃ (400MHz)

Figure S7-7. The COSY Spectrum of compound $\mathbf{1}$ in CDCl₃ (400MHz)

Qualitative Analysis Report

User Spectra

Figure S7-9. The HR-ESIMS Spectrum of compound 2

Figure S7-11. The ¹H-NMR Spectrum of compound 2 in CDCl₃ (600MHz)

Figure S7-12. The ¹³C-NMR Spectrum of compound 2 in CDCl₃ (150MHz)

Figure S7-13. The HSQC Spectrum of compound 2 in $CDCI_3$ (600MHz)

Figure S7-14. The HMBC Spectrum of compound 2 in CDCl₃ (600MHz)

Figure S7-15. The COSY Spectrum of compound 2 in CDCl₃ (600MHz)

S8. References

Neese, F. (2012) Wires. Comput. Mol. Sci. 2, 73-78. Neese, F. (2017) Wires. Comput. Mol. Sci. 8, e1327. Stephens, P.J., Harada, N. (2010) Chirality 22, 229–233. Sybyl Software, version X 2.0; Tripos Associates Inc.: St. Louis, MO, 2013.