Electronic Supplementary Material (ESI) for Organic & Biomolecular Chemistry. This journal is © The Royal Society of Chemistry 2023

Supporting information

N-Functionalized fluorophores: Detecting Urinary Albumin and Imaging Lipid Droplets

Mohini Ghorpade, Ramprasad Regar, Virupakshi Soppina* and Sriram Kanvah*

^aDepartment of Chemistry, Indian Institute of Technology Gandhinagar, Palaj, Gandhinagar -

382055

^cDepartment of Biological Engineering, Indian Institute of Technology Gandhinagar, Palaj,

Gandhinagar - 382055

sriram@iitgn.ac.in; vsoppina@iitgn.ac.in; vsoppina@gmail.com

	Characterization details of M1 to M4			
S1	Absorption spectrum of M1 to M3 compound			
S2	Emission Spectra of M1 to M3			
S3	BSA interaction study of M1, M2, M4			
Table S1	Conformational changes of the protein upon addition of the ligands			
S4	Isothermal titration graph profile of M1, M2, M4			
Table S2	ITC calculation.			
S5	The limit of detection plots for the M1 to M4			
S6	Competitive assay of M1, M2 & M4 with Warfarin and Ibuprofen			
S7	BSA sensing in artificial urine using M1, M2, M3			
S8	Cellular imaging of M2 in Cos-7 Cells			
S9	Cellular imaging of M3 in Cos-7 Cells			
S10	MTT Assay and Colocalization Line Profile of M4 in Cos-7 Cells			
S11	Molecular docking: Ligand interaction diagram of M3 and M4			
	¹ H, ¹³ C NMR and Mass data of compound M1 , M2 , M3 , M4			

Characterization details of M1 to M4

M1: (Z)-4-(1-cyano-2-(4-(dimethylamino)phenyl)vinyl)-1-tosylpyridin-1-ium chloride.

¹**H NMR** (**500 MHz**, **DMSO-d6**) δ 8.80 (d, *J* = 6.9 Hz, 2H), 8.45 (s, 1H), 8.13 (d, *J* = 7.0 Hz, 2H), 8.06 (d, *J* = 9.1 Hz, 2H), 7.48 (d, *J* = 8.0 Hz, 2H), 7.12 (d, *J* = 7.8 Hz, 2H), 6.92 (d, *J* = 9.2 Hz, 2H), 3.13 (s, 6H), 2.29 (s, 3H). ¹³**C NMR** (**126 MHz**, **DMSO-d6**) δ 154.11, 150.44, 143.22, 138.03, 134.16, 128.51, 125.96, 120.93, 120.11, 118.60, 112.47, 40.58, 40.49, 40.41, 40.32, 40.24, 40.15, 40.08, 39.99, 39.82, 39.65, 39.48, 21.25; [M, HRMS=230.1350] (mass found), 230.1339 (actual mass), m/z=0.0011.

M2: (Z)-4-(1-cyano-2-(4-(dibutylamino)phenyl)vinyl)-1-tosylpyridin-1-ium chloride

¹**H NMR** (**500 MHz, DMSO-d6**) δ 8.79 (d, *J* = 6.9 Hz, 2H), 8.42 (s, 2H), 8.13 (d, *J* = 6.9 Hz, 2H), 8.04 (d, *J* = 9.1 Hz, 2H), 7.48 (d, *J* = 8.0 Hz, 2H), 7.12 (d, *J* = 7.9 Hz, 2H), 6.89 (d, *J* = 9.2 Hz, 1H), 3.53 – 3.35 (m, 3H), 2.29 (s, 3H), 1.55 (d, *J* = 6.9 Hz, 4H), 1.45 – 1.23 (m, 4H), 0.94 (t, *J* = 7.4 Hz, 3H). ¹³**C NMR** (**126 MHz, DMSO-d6**) δ 157.32, 155.05, 150.99, 147.61, 142.80, 139.35, 133.27, 130.72, 125.57, 124.44, 123.45, 117.08, 100.08, 55.24, 34.28, 26.00, 24.77, 19.05. [M, HRMS=334.2283] (mass found), 334.2278 (actual mass), m/z=0.0005

M3: 4-((1Z,3E)-1-cyano-4-(4-(dimethylamino)phenyl)buta-1,3-dien-1-yl)-1-tosylpyridin-1-ium chloride.

¹**H NMR** (**500 MHz**, **DMSO-d6**) δ 8.79 (d, *J* = 6.7 Hz, 2H), 8.51 (d, *J* = 11.5 Hz, 1H), 8.04 (d, *J* = 6.7 Hz, 2H), 7.62 (d, *J* = 8.8 Hz, 2H), 7.53 (d, *J* = 14.7 Hz, 1H), 7.48 (d, *J* = 8.0 Hz, 2H), 7.19 – 7.13 (m, 1H), 7.12 (d, *J* = 7.8 Hz, 2H), 6.80 (d, *J* = 8.9 Hz, 2H), 3.07 (s, 6H), 2.29 (s, 3H). ¹³**C NMR** (**126 MHz**, **DMSO-d6**) δ 153.13, 152.80, 151.42, 146.27, 143.56, 138.03, 131.75, 128.52, 125.97, 122.72, 120.98, 119.21, 116.54, 112.63, 101.72, 40.58, 40.49, 40.42, 40.33, 40.25, 40.16, 40.08, 39.99, 39.82, 39.66, 39.49, 21. [M, HRMS=274.1493] (mass found), 274.1495 (actual mass), m/z=0.0002

M4: (Z)-4-(1-cyano-2-(7-(diethylamino)-2-oxo-2H-chromen-3-yl)vinyl)-1-tosylpyridin-1ium chloride

¹**H NMR** (**500 MHz**, **DMSO-d6**) δ 8.85 (d, *J* = 6.7 Hz, 2H), 8.81 (s, 1H), 8.29 (s, 1H), 8.11 (d, *J* = 6.4 Hz, 2H), 7.66 (d, *J* = 9.1 Hz, 1H), 7.48 (d, *J* = 8.0 Hz, 2H), 7.12 (d, *J* = 7.9 Hz, 2H), 6.87 (dd, *J* = 9.1, 2.3 Hz, 1H), 6.68 (d, *J* = 2.1 Hz, 1H), 3.55 (d, *J* = 7.1 Hz, 4H), 2.29 (s, 3H), 1.17 (t, *J* = 7.0 Hz, 6H). ¹³**C NMR** (**126 MHz**, **DMSO-d6**) δ 160.62, 157.85, 153.78, 146.24, 145.02, 144.30, 138.05, 132.69, 128.52, 125.96, 121.80, 117.17, 111.55, 111.29, 108.58, 97.17, 45.15, 40.57, 40.48, 40.41, 40.32, 40.24, 40.15, 40.07, 39.98, 39.82, 39.65, 39.48, 21.25, 12.91. [M, HRMS=346.1558] (mass found), 346.1539 (actual mass), m/z=0.0019.

S1: (A-C) Absorption spectra of M1-M3 in different solvents

Fig S2: (D-F) The emission spectra of M1-M3 in different solvents.

Fig S3: BSA interaction study: The emission spectral changes of the (A-C) showing BSA interaction with M1, M2 and M4 respectively.

	BSA	M1	M2	M3	M4
a-Helix	37.9	0	0	0	0
Antiparallel β-sheets	24.9	41.9	33.2	63.9	30.7

 Table S1: Protein conformational changes upon binding of the ligands

FigS4: Isothermal titration profile M1, M2 & M4 respectively.

Table S2:

	M1	M2	M3	M4
Kb1	7.88e ⁻⁰⁷	5.58e ⁻⁰⁷	1.08e ⁻⁰⁴	3.38e ⁻⁰⁶
Δ G1	-8.33	-8.53	-5.41	-7.46

Fig S5: The limit of detection plots for the M1 to M4

FigS6: Competitive assay of **M1** with Warfarin (A) and Ibuprofen (A2) and **M2** with Warfarin (B) and Ibuprofen (B2) **M4** (Warfarin C and Ibuprofen C2).

Fig S7: Molecular docking: Ligand interaction diagrams of M3 and M4

Fig S9: Cellular imaging with **M2** in Cos-7 cells. (Scale: 10 μm): A: **M2**-alone, B: Nile red (20 nM); C: merged image; D: **M2** with bright field images of the droplets.

Fig S10: Cellular imaging of M3 in Cos-7 cells A: M3 alone, B M3 overlapped with bright field image of the cells: Overlap noted with lipid droplets is weak and the dye is scattered at other places: Scale (10 μ m).

Fig S11: MTT Assay of M4 and colocalization line profile (below) plot of M4 with Nile Red.

Characterization Spectral data

