Supporting Information for

Asymmetric Synthesis of Chiral

Pyrazolo[3,4-b]pyridin-6-ones under Carbene Catalysis

Qianqian Wu, a,† Jinna Han, a,† Jie Huang, a,† Hailong Zhang, a Min Ren, a Xiaoxiang Zhang, b and Zhenqian Fu* ac

I	General information
П	 a) Synthesis of 5-aminopyrazoles 1 b) General experimental procedure for the synthesis of enals 2 c) General procedure for the reactions of 1 with 2 to synthesize products 3 d) General experimental procedure for the synthesis of 4 or 5 e) Determination of absolute configuration
III	a) Characterizations of products b) References
IV	¹ H, ¹³ C, ¹⁹ F NMR spectra and HPLC data of products

^a Key Laboratory of Flexible Electronics & Institute of Advanced Materials, Nanjing Tech University, 30 South Puzhu Road, Nanjing 211816, China. E-mail:iamzqfu@njtech.edu.cn.

^b Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China.

^c Ningbo Institute, Chongqing Technology Innovation Center, Frontiers Science Center for Flexible Electronics (FSCFE), Northwestern Polytechnical University, Xi'an 710072, China.

I. General Information

Commercially available materials were purchased from Alfa Aesar and Sigma-Aldrich. THF was distilled over sodium. Other solvents were dried over 4Å molecular sieve prior use. Proton nuclear magnetic resonance (¹H NMR) spectra were recorded on a Bruker (400 MHz) spectrometer. Chemical shifts were recorded in parts per million (ppm, δ) relative to tetramethylsilane (δ 0.00) or chloroform (δ = 7.26, singlet). ¹H NMR splitting patterns are designated as singlet (s), doublet (d), triplet (t), quartet (q), doublet of doublets (dd), triplet of doublets (dt), triplet of triplets (tt), multiplets (m), and etc. All first-order splitting patterns were assigned on the basis of the appearance of the multiplet. Splitting patterns that could not be easily interpreted are designated as multiplet (m) or broad (br). Carbon nuclear magnetic resonance (¹³C NMR) spectra were recorded on a Bruker (400 MHz) (100 MHz) spectrometer. High resolution mass spectral analysis (HRMS) was performed on a Waters Q-TOF Permier Spectrometer. The determination of enantiomeric excess was performed via chiral HPLC analysis using Shimadzu LC-20AD HPLC workstation. X-ray crystallography analysis was performed on Bruker X8 APEX X-ray diffractionmeter. Optical rotations were measured using a 1 mL cell with a 1 dm path length on a Jasco P-1030 polarimeter and are reported as follows: $[\alpha]_D^{rt}$ (c is in gm per 100 mL solvent). Analytical thin-layer chromatography (TLC) was carried out on Merck 60 F254 pre-coated silica gel plate (0.2 mm thickness).

II. General procedure

a) General experimental procedure for the synthesis of 5-aminopyrazoles 1

Method 1

S1 (4.5 mmol, 0.9 equiv) was added to the suspension of S2 (5 mmol, 1.0 equiv.) in EtOH (15 ml), the reaction mixture then was stirred at 80 °C for 18 h. After completion of the reaction (monitored by TLC), EtOH was concentrated in vacuo and then was diluted with EtOAc (30.0 mL) and 15% NaOH (30.0 mL). Then the mixture was extracted with EtOAc (3 \times 20.0 mL), and the combined organic layers were washed with brine, dried over Na₂SO₄, and concentrated in vacuo. The crude residue was purified via column chromatography on silica gel (PE/Ea = 5 /1) to afford compounds S3.

Method 2.

To a suspension of NaH (10 mmol, 2.0 equiv.) in anhydrous THF (20 mL) at 0 $^{\circ}$ C was added acetonitrile (15 mmol, 3.0 equiv.) and ester **S0** (5 mmol, 1.0 equiv.) under

 N_2 atmosphere, the reaction mixture was stirred at 70 °C for 5 h. After completion of the reaction (monitored by TLC), the reaction mixture was cooled to 0 °C, pH of the solution was adjusted to neutral by 1M HCl (aq.) and extracted with ethyl acetate. The organic layer was dried with anhydrous Na_2SO_4 , and concentrated under reduced pressure. The crude product was purified by column chromatography on silica gel to afford compound S1 as a white solid.

According to **Method 1**,the reactions of **S1** with phenylhydrazine hydrochloride to synthesize of **11**.

b) General experimental procedure for the synthesis of enals 2

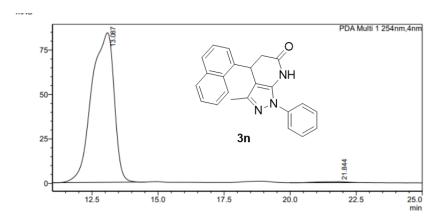
Enals were synthesized according to the literature [1-5]. To a dried 50 mL flask was added formylmethylene triphenylphosphorane (1.521 g, 5 mmol), aldehydes (7 mmol) and 25 mL toluene. The mixture was refluxed overnight (detected by TLC), and then the solvent was removed under reduced pressure. The residue was purified by silicacolumn chromatography to afford the product enals.

c) General procedure for the reactions of 1 with 2 to synthesize products 3

To a dried 10 mL Schlenk tube equipped with a tiny magnetic stir bar was added 1 (0.1 mmol, 1.0 equiv.), 2 (0.2 mmol, 2.0 equiv.), Cat.C (0.02 mmol, 0.2 equiv.), 4Å MS (50 mg), DQ (0.2 mmol, 2.0 equiv) and Cs_2CO_3 (0.2 mmol, 2.0 equiv.). To this mixture was added dry THF (1.0 mL), and then the reaction mixture was stirred at 30 °C for 18 hours. The reaction mixture was purified by flash column chromatography on silica gel to afford product 3.

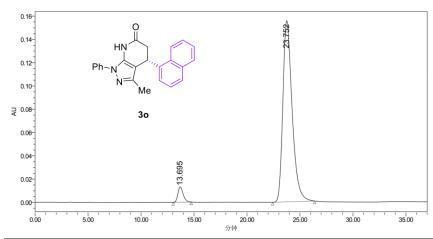
d) General experimental procedure for the synthesis of 4 or 5

Procedure for the synthesis of compound 4:


To a dried 10 mL Schlenk tube equipped with a tiny magnetic stir bar was added 3a (0.1 mmol) and anhydrous THF (1 mL). The reaction mixture was cooled to 0 °C and added LiAlH₄ (0.4 mmol, 4.0 equiv) in portions, then the reaction mixture was stirred at 30 oC for 5 h. After completion of the reaction (monitored by TLC), the reaction mixture was quenched by water (3.0 mL) and extracted with ethyl acetate (5.0 mL × 3), the combined organic phase washed with brine,dried over Na₂SO₄, and concentrated in vacuum. The crude product was purified by column chromatography on silica gel to afford to give 4 as white solid (87% yield, 97% ee).

Procedure for the synthesis of compound 5:

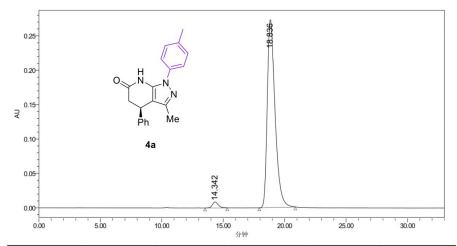
To a dried 10 mL Schlenk tube equipped with a tiny magnetic stir bar was added 3a (0.10 mmol), DMAP (0.01 mmol, 0.1 equiv) and anhydrous THF (1.0 ml). To the reaction mixture was added Di-tert-butyl (0.15 mmol, 1.5 equiv), then the reaction mixture was stirred at 30 °C for overnight. After completion of the reaction (monitored by TLC), the reaction mixture was diluted with saturated salt water (5.0 mL) and extracted with ethyl acetate (5.0 mL \times 3), the combined organic phase washed with brine, dried over Na₂SO₄, and concentrated in vacuum. The crude product was purified by column chromatography on silica gel to afford to give 5 as white solid (80% yield, 97% ee).


e) Determination of absolute configuration for the product 3.

e) Determin		Chromatographic ee(%) Ret. Time		Molecular	
		column			configuration
This work	3n	Chiralpak IC	98	$t_R \text{ (major)} = 13.1$ min, $t_R \text{ (minor)} =$ 21.8 min)	NH N-N 3n
	3s	Chiralpak IC	99	t _R (major) = 13.4 min, t _R (minor) = 17.4 min)	3s 3s
Wang group	30	Chiralpak IC	91	tR(major) = 23.752 min, tR(minor) = 13.695 min.)	Ph-N Me
	4a	Chiralpak IC	95	tR(major) = 18.836 min, tR(minor) = 14.342 min.)	O HN N N N Me 4a

<Peak Table>

PDA Cn1 254nm							
Peak#	Ret. Time	Area	Area%	Height			
1	13.087	4992892	99.117	84204			
2	21.844	44481	0.883	539			
Total		5037373	100.000	84743			



Peak	Ret.Time	Area	Height	Area%	Height%
1	13.695	459395	13267	4.63	7.85
2	23.752	9463916	155655	95.37	92.15
Total		9923311	168922	100.00	100.00

<Chromatogram> mAU

<Peak Table>

PDA C	h1 254nm			
Peak#	Ret. Time	Area	Area%	Height
1	13.419	12367851	99.817	216289
2	17.418	22701	0.183	376
Total		12390552	100.000	216665

Peak	Ret.Time	Area	Height	Area%	Height%
1	14.342	288443	8755	2.35	3.11
2	18.836	12010864	272974	97.65	96.89
Total		12299307	281729	100.00	100.00

S134

III. Characterizations of products, reference

Structures of known compounds were confirmed by NMR spectral comparison with literature data. The compound not reported before, ¹H NMR and ¹³C NMR characterization and the corresponding spectra are provided.

a) Characterizations of Products

(S)-3-methyl-1,4-diphenyl-1,4,5,7-tetrahydro-6H-pyrazolo[3,4-b]pyridin-6-one : 96% yield, 99% ee; $[\alpha]_D^{25} = -76.4$ (c=1.0 in CHCl₃).

HPLC condition: Chiralpak AZH (Hex/iPrOH = 90/10, 1.0 mL/min, t_R (major) = 16.0 min, t_R (minor) = 22.9 min).

¹**H NMR** (400 MHz, CDCl₃) δ 8.21 (s, 1H),7.46(d, J = 4.0 Hz, 4H), 7.35-7.31 (m, 3H),7.28-7.21 (m, 3H), 4.21 (t, J = 6.8 Hz 1H), 3.04 (dd, J = 8.8 Hz, J = 16.0 Hz, 1H), 3.04 (dd, J = 6.8 Hz, J = 16.4 Hz, 1H), 1.94 (s, 3H); ¹³**C NMR** (100 MHz, CDCl₃) δ 170.2, 147.0, 142.4, 137.5, 137.5, 129.9, 129.1, 127.8, 127.4, 127.3, 123.1, 102.8, 40.7, 35.5, 12.6.; **HRMS** (ESI) Calcd for $C_{19}H_{18}N_3O^+$ [M+H]⁺: 304.1444, found: 304.1448.

(S)-4-(4-fluorophenyl)-3-methyl-1-phenyl-1,4,5,7-tetrahydro-6H-pyrazolo[3,4-b]pyridin-6-on e: 85% yield, 98% ee; $[\alpha]_D^{25} = -24.0$ (c=1.0 in CHCl₃).

HPLC condition: Chiralpak AZH (Hex/iPrOH = 90/10, 1.0 mL/min, t_R (major) = 14.7 min, t_R (minor) = 22.3 min).

¹**H NMR** (400 MHz, CDCl3) δ 7.93 (s, 1H),7.51-7.45 (m, 4H), 7.39-7.35 (m,1H), 7.20-7.15 (m, 2H), 7.02 (t, J = 8.8 Hz 2H), 4.22 (t, J = 6.8 Hz, 1H), 3.04 (dd, J = 7.2 Hz, J = 16.4 Hz, 1H), 2.80 (dd, J = 6.4 Hz, J = 16.4 Hz, 1H), 1.95 (s, 3H); ¹³**C NMR** (100 MHz, CDCl3) δ 169.7, 163.3, 160.8, 146.9, 138.0, 137.4(d, J = 17.2 Hz), 137.4, 130.0, 128.8 (d, J = 8.0 Hz), 128.0, 123.0, 115.9 (d, J = 21.2 Hz), 102.7, 40.9, 34.8, 12.6.; ¹⁹**F NMR** (376 MHz, CDCl3) δ -125.2.; **HRMS** (ESI) Calcd for C₁₉H₁₇FN₃O⁺ [M+H]⁺: 322.1350, found: 322.1352.;

(S)-4-(4-bromophenyl)-3-methyl-1-phenyl-1,4,5,7-tetrahydro-6H-pyrazolo[3,4-b]pyridin-6-0 ne: 98% yield, 99% ee; $[\alpha]_D^{25} = -56.8$ (c=1.0 in CHCl₃).

HPLC condition: Chiralpak AZH (Hex/iPrOH = 90/10, 1.0 mL/min, t_R (major) = 17.1 min, t_R (minor) = 21.3 min).

¹**H NMR** (400 MHz, CDCl3) δ 8.23 (s, 1H),7.49-7.44 (m, 6H), 7.38-7.33 (m,1H), 7.09 (d, J = 8.4 Hz, 2H), 4.18 (t, J = 6.8 Hz 1H), 3.03 (dd, J = 7.2 Hz, J = 16.0 Hz, 1H), 2.76 (dd, J = 6.4 Hz, J = 16.4 Hz, 1H), 1.95 (s, 3H); ¹³**C NMR** (100 MHz, CDCl3) δ 169.8, 146.8, 141.4, 137.6, 137.4, 132.2, 129.9, 129.0, 127.9, 123.1, 121.2, 102.2, 40.6, 35.0, 12.6.; **HRMS** (ESI) Calcd for $C_{19}H_{17}BrN_3O^+$ [M+H]⁺: 382.0550, found: 382.0546.;

(S)-3-methyl-1-phenyl-4-(p-tolyl)-1,4,5,7-tetrahydro-6H-pyrazolo[3,4-b]pyridin-6-one: 97% yield, 99% ee; $[\alpha]_D^{25} = -110.8$ (c=1.0 in CHCl₃).

HPLC condition: Chiralpak AZH (Hex/iPrOH = 90/10, 1.0 mL/min, t_R (major) = 13.0 min, t_R (minor) = 19.6 min).

¹**H NMR** (400 MHz, CDCl3) δ 8.25 (s, 1H),7.47-7.43 (m, 4H), 7.36-7.32 (m,1H), 7.12 (dd, J = 8.4 Hz, J = 13.2 Hz, 4H), 4.17 (t, J = 7.2 Hz 1H), 3.01 (dd, J = 7.2 Hz, J = 16.0 Hz, 1H), 2.81 (dd, J = 6.4 Hz, J = 16.4 Hz, 1H), 2.33 (s, 3H), 1.95 (s, 3H); ¹³**C NMR** (100 MHz, CDCl3) δ 170.2, 147.0, 139.3, 137.5, 137.4, 137.0, 129.9, 129.7, 127.8, 127.1, 123.0, 103.1, 40.8, 35.1, 21.2, 12.6.; **HRMS** (ESI) Calcd for $C_{20}H_{20}N_3O^+[M+H]^+$: 318.1601, found: 318.1602.;

(S)-4-(4-methoxyphenyl)-3-methyl-1-phenyl-1,4,5,7-tetrahydro-6H-pyrazolo[3,4-b]pyridin-6-one: 93% yield, 99% ee; $[\alpha]_D^{25} = -63.8$ (c=1.0 in CHCl₃).

HPLC condition: Chiralpak AZH (Hex/iPrOH = 95/5, 1.0 mL/min, t_R (major) = 44.6 min, t_R (minor) = 52.3 min).

¹**H NMR** (400 MHz, CDCl3) δ 8.09 (s, 1H),7.49-7.44 (m, 4H), 7.37-7.32 (m,1H), 7.13 (d, J = 8.8 Hz, 2H), 6.86 (d, J = 8.8 Hz, 2H), 4.18 (t, J = 6.8 Hz, 1H), 3.79 (s, 3H), 3.00 (dd, J = 7.2 Hz, J = 16.4 Hz, 1H), 2.80 (dd, J = 6.8 Hz, J = 16.4 Hz, 1H), 1.95 (s, 3H); ¹³**C NMR** (100 MHz, CDCl3) δ 170.2, 158.8, 147.0, 137.5, 137.4, 134.3, 129.9, 128.3, 127.8, 123.0, 114.4, 103.2, 55.4, 40.9, 34.7, 12.6.; **HRMS** (ESI) Calcd for $C_{20}H_{20}N_3O_2^+[M+H]^+$: 334.1550, found: 334.1555.;

(S)-3-methyl-1-phenyl-4-(4-(trifluoromethyl)phenyl)-1,4,5,7-tetrahydro-6H-pyrazolo[3,4-b]p yridin-6-one: 95% yield, 99% ee; $[\alpha]_D^{25} = -83.8$ (c=1.0 in CHCl₃).

HPLC condition: Chiralpak IC (Hex/iPrOH = 95/5, 1.0 mL/min, t_R (major) = 26.8 min, t_R (minor) = 36.7 min).

¹**H NMR** (400 MHz, CDCl3) δ 8.21 (s, 1H),7.59 (d, J = 8.8 Hz, 2H), 7.48-7.45 (m, 4H), 7.39-7.32 (m, 3H), 4.29 (t, J = 6.0 Hz, 1H), 3.07 (dd, J = 7.2 Hz, J = 16.0 Hz, 1H), 2.80 (dd, J = 6.0 Hz, J = 16.4 Hz, 1H), 1.96 (s, 3H); ¹³**C NMR** (100 MHz, CDCl3) δ 169.5, 146.8, 146.5, 137.5 (d, J = 30.0 Hz), 123.0, 128.0, 127.6, 126.1 (q, J = 3.8 Hz), 125.5, 123.1, 122.8, 101.9, 40.4, 35.3, 12.6. ¹⁹**F NMR** (376 MHz, CDCl3) δ -62.31.; **HRMS** (ESI) Calcd for $C_{20}H_{17}F_3N_3O^+$ [M+H]⁺: 372.1318, found: 372.1320.;

(*R*)-4-(2-fluorophenyl)-3-methyl-1-phenyl-1,4,5,7-tetrahydro-6H-pyrazolo[3,4-b] pyridin-6-one: 96% yield, 97% ee; $[\alpha]_D^{25} = -112.4$ (c=1.0 in CHCl₃).

HPLC condition: Chiralpak AZH (Hex/iPrOH = 90/10, 1.0 mL/min, t_R (major) = 15.3 min, t_R (minor) = 40.0 min).

¹**H NMR** (400 MHz, CDCl3) δ 8.29 (s, 1H),7.46 (d, J = 4.4 Hz, 4H), 7.38-7.33 (m, 1H), 7.26-7.21 (m, 1H), 7.10-7.02 (m, 3H), 4.60-4.52 (m, 1H), 3.06 (dd, J = 8.0 Hz, J = 16.4 Hz, 1H), 2.83 (dd, J = 4.8 Hz, J = 16.4 Hz, 1H), 2.00 (s, 3H); ¹³**C NMR** (100 MHz, CDCl3) δ 169.9, 161.8, 159.3, 146.9, 137.9, 137.4, 129.9, 129.1 (d, J = 8.7 Hz), 128.6 (d, J = 4.2 Hz), 128.0, 124.6 (d, J = 3.6 Hz), 123.1, 115.9 (d, J = 21.9 Hz),

101.2, 38.9, 28.6, 12.3. ¹⁹**F NMR** (376 MHz, CDCl3) δ -118.08.; **HRMS** (ESI) Calcd for C₁₉H₁₇FN₃O⁺ [M+H]⁺: 322.1350, found: 322.1355.;

(S)-3-methyl-4-(2-nitrophenyl)-1-phenyl-1,4,5,7-tetrahydro-6H-pyrazolo[3,4-b]py ridin-6-one: 95% yield, 98% ee; $[\alpha]_D^{25} = -117.8$ (c=1.0 in CHCl₃).

HPLC condition: Chiralpak IA (Hex/iPrOH = 90/10, 1.0 mL/min, t_R (major) = 17.4 min, t_R (minor) = 27.3 min).

¹H NMR (400 MHz, CDCl3) δ 8.30 (s, 1H), 7.94 (d, J =8.4 Hz, 1H), 7.53 (t, J =7.2 Hz, 1H), 7.49-7.46 (m, 4H), 7.45-7.42 (m, 1H), 7.41-7.35 (m, 1H), 7.28-7.27 (m, 1H), 4.88-4.84 (m, 1H), 3.23 (dd, J =8.0 Hz, J =16.8 Hz, 1H), 2.83 (dd, J =5.6 Hz, J =16.8 Hz, 1H), 1.89 (s, 3H); ¹³C NMR (100 MHz, CDCl3) δ 169.3, 149.0, 146.8, 138.4, 137.3, 137.0, 133.7, 123.0, 129.6, 128.4, 128.1, 125.1, 123.1, 101.2, 39.8, 30.4, 12.4.; HRMS (ESI) Calcd for $C_{19}H_{16}N_4NaO_3^+$ [M+Na]*: 371.1115, found: 371.1112.;

(*R*)-4-(2-methoxyphenyl)-3-methyl-1-phenyl-1,4,5,7-tetrahydro-6H-pyrazolo[3,4-b]pyridin-6-one: 70% yield, 98% ee; $[\alpha]_D^{25} = -39.0$ (c=1.0 in CHCl₃).

HPLC condition: Chiralpak IA (Hex/iPrOH = 95/5, 1.0 mL/min, t_R (major) = 19.6 min, t_R (minor) = 24..4 min).

¹**H NMR** (400 MHz, CDCl3) δ 7.81 (s, 1H), 7.49-7.46 (m, 4H), 7.39-7.34 (m, 1H), 7.23 (t, J = 7.6 Hz, 1H), 6.98 (d, J = 7.6 Hz, 1H), 7.90-7.84 (m, 2H), 4.53 (q, J = 4.4 Hz, 1H), 3.83 (s, 3H), 3.04 (dd, J = 8.0 Hz, J = 16.4 Hz, 1H), 2.85 (dd, J = 3.6 Hz, J = 16.4 Hz, 1H), 2.02 (s, 3H); ¹³**C NMR** (100 MHz, CDCl3) δ 170.5, 156.9, 147.1, 137.9, 137.6, 130.1, 123.0, 128.4, 128.1, 127.7, 122.9, 120.7, 110.8, 101.9, 55.1, 38.5, 29.8, 12.4.; **HRMS** (ESI) Calcd for $C_{20}H_{20}N_3O_2^+$ [M+H]⁺: 334.1550, found: 334.1555.;

(S)-4-(3-fluorophenyl)-3-methyl-1-phenyl-1,4,5,7-tetrahydro-6H-pyrazolo[3,4-b]p yridin-6-one: 89% yield, 98% ee; $[\alpha]_D^{25} = -48.0$ (c=1.0 in CHCl₃).

HPLC condition: Chiralpak IB (Hex/iPrOH = 95/5, 1.0 mL/min, t_R (major) = 24.5 min, t_R (minor) = 31.5 min).

¹**H NMR** (400 MHz, CDCl3) δ 8.09 (s, 1H), 7.50-7.45 (m, 4H), 7.39-7.34 (m, 1H), 7.33-7.27 (m, 1H), 7.02-6.88 (m, 3H), 4.22 (t, J =7.2 Hz, 1H), 3.06 (dd, J = 7.6 Hz, J = 16.0 Hz, 1H), 2.81 (dd, J = 6.0 Hz, J = 16.4 Hz, 1H), 1.98 (s, 3H); ¹³**C NMR** (100 MHz, CDCl3) δ 169.6, 164.5, 162.1, 146.9, 145.0 (d, J =6.5 Hz), 137.6, 137.4, 130.7 (d, J =8.2 Hz), 123.0, 128.0, 123.1, 122.9 (d, J =2.8 Hz), 114.5, 114.3 (d, J =6.6 Hz), 114.1, 102.2, 40.5, 35.2, 12.6. ¹⁹**F NMR** (376 MHz, CDCl3) δ -112.09.; **HRMS** (ESI) Calcd for C₁₉H₁₇FN₃O⁺ [M+H]⁺: 322.1350, found: 322.1353.;

(S)-3-methyl-1-phenyl-4-(m-tolyl)-1,4,5,7-tetrahydro-6H-pyrazolo[3,4-b]pyridin-6-one: 83% yield, 98% ee; $[\alpha]_D^{25} = -50.4$ (c=1.0 in CHCl₃).

HPLC condition: Chiralpak IC (Hex/iPrOH = 90/10, 1.0 mL/min, t_R (major) = 19.2 min, t_R (minor) = 27.0 min).

¹**H NMR** (400 MHz, CDCl3) δ 7.95 (s, 1H), 7.48-7.47 (m, 4H), 7.38-7.34 (m, 1H), 7.21 (t, J = 3.2 Hz, 1H), 7.08-7.00 (m, 3H), 4.18 (t, J = 6.8 Hz, 1H), 3.04 (dd, J = 7.2 Hz, J = 16.0 Hz, 1H), 2.84 (dd, J = 6.4 Hz, J = 16.4 Hz, 1H), 2.34 (s, 3H), 1.95 (s, 3H); ¹³**C NMR** (100 MHz, CDCl3) δ 170.1, 147.0, 142.3, 138.7, 137.5, 137.4, 123.0, 128.9, 128.1, 127.9, 127.9, 124.3, 123.0, 102.9, 40.7, 35.5, 21.6, 12.6. **HRMS** (ESI) Calcd for $C_{20}H_{19}N_3NaO^+[M+Na]^+$: 340.1420, found: 340.1424.;

S13

31

(*R*)-4-(furan-2-yl)-3-methyl-1-phenyl-1,4,5,7-tetrahydro-6H-pyrazolo[3,4-b]pyrid in-6-one: 93% yield, 98% ee; $[\alpha]_D^{25} = -46.6$ (c=1.0 in CHCl₃).

HPLC condition: Chiralpak AZH (Hex/iPrOH = 95/5, 1.0 mL/min, t_R (major) = 45.0min, t_R (minor) = 56.8 min).

¹**H NMR** (400 MHz, CDCl3) δ 7.95 (s, 1H), 7.49-7.42 (m, 4H), 7.38-7.33 (m, 2H), 6.28-6.26 (m, 1H), 6.03 (d, J = 3.2 Hz, 1H), 4.29-4.26 (m, 1H), 3.05-2.94 (m, 2H), 2.17 (s, 3H); ¹³**C NMR** (100 MHz, CDCl3) δ 169.6, 154.6, 146.8, 142.3, 137.4, 137.4, 129.9, 127.9, 123.0, 110.3, 105.8, 100.9, 37.0, 28.9, 12.1. **HRMS** (ESI) Calcd for $C_{17}H_{16}N_3O_2^+[M+H]^+$: 294.1237, found: 294.1240.;

(*R*)-3-methyl-1-phenyl-4-(thiophen-2-yl)-1,4,5,7-tetrahydro-6H-pyrazolo[3,4-b]py ridin-6-one: 91% yield, 99% ee; $[\alpha]_D^{25} = -42.8$ (c=1.0 in CHCl₃).

HPLC condition: Chiralpak AZH (Hex/iPrOH = 90/10, 1.0 mL/min, t_R (major) = 19.3 min, t_R (minor) = 33.8 min).

¹**H NMR** (400 MHz, CDCl3) δ 8.07 (s, 1H), 7.49-7.42 (m, 4H), 7.38-7.33 (m, 1H), 7.19-7.17 (m, 1H), 6.94-6.91 (m, 1H), 6.85-6.83 (m, 1H), 4.51-4.47 (m, 1H), 3.09 (dd, J = 7.2 Hz, J = 16.4 Hz, 1H), 2.95 (dd, J = 4.8 Hz, J = 16.4 Hz, 1H), 2.14 (s, 3H); ¹³**C NMR** (100 MHz, CDCl3) δ 169.5, 146.6, 146.4, 137.4, 137.2, 123.0, 128.0, 127.1, 124.5, 124.3, 123.1, 103.3, 41.0, 30.5, 12.4. **HRMS** (ESI) Calcd for C₁₇H₁₆N₃OS⁺ [M+H]⁺: 310.1009, found: 310.1010.;

(S)-3-methyl-4-(naphthalen-1-yl)-1-phenyl-1,4,5,7-tetrahydro-6H-pyrazolo[3,4-b] pyridin-6-one: 89% yield, 98% ee; $[\alpha]D^{25} = -69.2$ (c=1.0 in CHCl3).

HPLC condition: Chiralpak IC (Hex/iPrOH = 80/20, 1.0 mL/min, t_R (major) = 13.1 min, t_R (minor) = 21.8 min).

¹**H NMR** (400 MHz, CDCl3) δ 8.13 (d, J = 8.4 Hz, 1H), 8.02 (s, 1H), 7.93 (d, J = 9.6 Hz, 1H), 7.78 (d, J = 8.4 Hz, 1H), 7.62-7.58 (m, 1H), 7.57-7.50 (m, 3H), 7.50-7.45 (m, 2H), 7.40-7.34 (m, 2H), 7.15 (d, J = 8.4 Hz, 1H), 5.08-7.05 (m, 1H), 3.23 (dd, J = 7.6 Hz, J = 16.0 Hz, 1H), 3.00 (dd, J = 5.2 Hz, J = 16.4 Hz, 1H), 1.92 (s, 3H); ¹³**C NMR** (100 MHz, CDCl3) δ 169.8, 147.2, 138.3, 137.5, 137.2, 134.4, 130.9, 123.0, 129.5, 128.2, 127.9, 126.6, 125.9, 125.7, 124.7, 123.0, 122.7, 102.2, 39.8, 31.0, 12.5.; **HRMS** (ESI) Calcd for C₂₃H₁₉N₃NaO⁺ [M+Na]⁺: 376.1420, found: 376.1417.;

(*S,E*)-3-methyl-1-phenyl-4-styryl-1,4,5,7-tetrahydro-6H-pyrazolo[3,4-b]pyridin-6 -one: 90% yield, 98% ee; $[\alpha]_D^{25} = -45.8$ (c=1.0 in CHCl₃).

HPLC condition: Chiralpak AZH (Hex/iPrOH = 95/5, 1.0 mL/min, t_R (major) = 27.9 min, t_R (minor) = 36.1 min).

¹**H NMR** (400 MHz, CDCl3) δ 7.87 (s, 1H), 7.51-7.45 (m, 4H), 7.39-7.34 (m, 3H), 7.33-7.28 (m, 2H), 7.25-7.21 (m, 1H), 6.43 (d, J = 14.4 Hz, 1H), 6.2 (dd, J = 6.4 Hz, J = 16.0 Hz, 1H), 3.82 (q, J = 7.2 Hz, 1H), 2.93 (dd, J = 7.2 Hz, J = 16.0 Hz, 1H), 2.75 (dd, J = 5.2 Hz, J = 16.4 Hz, 1H), 2.25 (s, 3H); ¹³**C NMR** (100 MHz, CDCl3) δ 167.0, 147.0, 137.5, 137.1, 136.6, 130.6, 123.0, 129.8, 128.7, 127.9, 127.8, 126.5, 123.0, 101.8, 38.3, 33.0, 12.6.; **HRMS** (ESI) Calcd for $C_{21}H_{20}N_3O^+$ [M+H]⁺: 330.1601, found: 330.1600.;

3p

(*R*)-3,4-dimethyl-1-phenyl-1,4,5,7-tetrahydro-6H-pyrazolo[3,4-b]pyridin-6-one : 65% yield, 98% ee; $[\alpha]_D^{25} = -11.6(c=1.0 \text{ in CHCl}_3)$.

HPLC condition: Chiralpak IC (Hex/iPrOH = 90/10, 1.0 mL/min, t_R (major) = 17.4 min, t_R (minor) = 20.1 min).

¹**H NMR** (400 MHz, CDCl3) δ 7.73 (s, 1H), 7.47 (t, J = 8.4 Hz, 2H), 7.44-7.41 (m, 2H), 7.37-7.33 (m, 1H), 3.11 (t, J = 6.8 Hz, 1H), 2.81 (dd, J = 6.8 Hz, J = 16.0 Hz, 1H), 2.48 (dd, J = 5.2 Hz, J = 16.0 Hz, 1H), 2.28 (s, 3H), 1.25 (s, 3H); ¹³**C NMR** (100 MHz, CDCl3) δ 170.6, 146.2, 137.5, 136.6, 129.9, 127.8, 122.9, 105.1, 40.0, 24.4, 20.8, 12.7. **HRMS** (ESI) Calcd for $C_{14}H_{16}N_3O^+[M+H]^+$: 242.1288, found: 242.1295.;

(S)-1-(4-fluorophenyl)-3-methyl-4-phenyl-1,4,5,7-tetrahydro-6H-pyrazolo[3,4-b]p yridin-6-one: 95% yield, 99% ee; $[\alpha]_D^{25} = -100.8$ (c=1.0 in CHCl₃).

HPLC condition: Chiralpak AZH (Hex/iPrOH = 95/5, 1.0 mL/min, t_R (major) = 23.9 min, t_R (minor) = 33.1 min).

¹**H NMR** (400 MHz, CDCl3) δ 7.8 (s, 1H), 7.47-7.43 (m, 2H), 7.34 (t, J = 6.8 Hz, 2H), 7.29-7.25 (m, 1H), 7.29-7.25 (m, 4H), 4.23 (t, J = 7.2 Hz, 1H), 3.06 (dd, J = 7.2 Hz, J = 16.0 Hz, 1H), 2.86 (dd, J = 6.4 Hz, J = 16.0 Hz, 1H), 1.94 (s, 3H); ¹³**C NMR** (100 MHz, CDCl3) δ 170.0, 147.1, 142.2, 137.6, 133.5, 129.1, 127.4, 127.2, 125.2 (d, J = 23.0 Hz), 116.9 (d, J = 8.6 Hz), 102.8, 40.7, 35.5, 12.6. ¹⁹**F NMR** (376 MHz, CDCl3) δ -112.8.; **HRMS** (ESI) Calcd for C₁₉H₁₇FN₃O⁺[M+H]⁺: 322.1350, found: 322.1353.;

(S)-1-(4-chlorophenyl)-3-methyl-4-phenyl-1,4,5,7-tetrahydro-6H-pyrazolo[3,4-b] **pyridin-6-one:** 94% yield, 99% ee; $[\alpha]_D^{25} = -65.6$ (c=1.0 in CHCl₃).

HPLC condition: Chiralpak IA (Hex/iPrOH = 98/2, 0.8 mL/min, t_R (major) = 72.4 min, t_R (minor) = 80.1 min).

¹**H NMR** (400 MHz, CDCl3) δ 8.67 (s, 1H), 7.43-7.39 (m, 4H), 7.34 (t, J = 6.8 Hz, 2H), 7.29-7.26 (m, 1H), 7.21 (d, J = 6.8 Hz, 2H), 4.21 (t, J = 6.8 Hz, 1H), 3.02 (dd, J = 8.4 Hz, J = 17.2 Hz, 1H), 2.81 (dd, J = 10.0 Hz, J = 16.4 Hz, 1H), 1.93 (s, 3H); ¹³**C NMR** (100 MHz, CDCl3) δ 170.5, 147.3, 142.1, 137.7, 136.1, 133.3, 129.9, 129.1, 127.4, 127.2, 124.2, 103.2, 40.7, 35.4, 12.6. **HRMS** (ESI) Calcd for C₁₉H₁₇ClN₃O⁺ [M+H]⁺: 338.1055, found: 338.1064.;

(S)-3-methyl-4-phenyl-1-(p-tolyl)-1,4,5,7-tetrahydro-6H-pyrazolo[3,4-b]pyridin-6 -one: 96% yield, 99% ee; $[\alpha]_D^{25} = -99.0$ (c=1.0 in CHCl₃).

HPLC condition: Chiralpak IC (Hex/iPrOH = 80/20,1.0 mL/min, t_R (major) = 13.4 min, t_R (minor) = 17.4 min).

¹**H NMR** (400 MHz, CDCl3) δ 8.05 (s, 1H),7.35-7.31 (m, 4H), 7.28-7.21 (m, 5H), 4.21 (t, J = 6.8 Hz, 1H), 3.03 (dd, J = 7.6 Hz, J = 16.4 Hz, 1H), 2.83 (dd, J = 6.4 Hz, J = 16.0 Hz, 1H), 2.38 (s, 3H), 1.93 (s, 3H); ¹³**C NMR** (100 MHz, CDCl3) δ 170.0, 146.6, 142.4, 137.9, 137.5, 135.0, 130.4, 129.0, 127.3, 127.3, 123.0, 102.6, 40.7, 35.6, 21.2, 12.6. **HRMS** (ESI) Calcd for C₂₀H₂₀N₃O⁺ [M+H]⁺: 318.1601, found: 318.1606.;

(S)-1-(4-methoxyphenyl)-3-methyl-4-phenyl-1,4,5,7-tetrahydro-6H-pyrazolo[3,4-b]pyridin-6-one: 97% yield, 99% ee; $[\alpha]_D^{25} = -104.6$ (c=1.0 in CHCl₃).

HPLC condition: Chiralpak IC (Hex/iPrOH = 80/20, 1.0 mL/min, t_R (major) = 24.4 min, t_R (minor) = 28.8 min).

¹**H NMR** (400 MHz, CDCl3) δ 8.05 (s, 1H),7.34 (d, J = 7.6 Hz, 4H), 7.27-7.20 (m, 3H), 6.96 (d, J = 8.8 Hz, 2H), 4.21 (t, J = 6.8 Hz, 1H), 3.83 (s, 3H), 3.02 (dd, J = 9.2 Hz, J = 16.4 Hz, 1H), 2.82 (dd, J = 6.4 Hz, J = 16.0 Hz, 1H), 1.93 (s, 3H); ¹³**C NMR** (100 MHz, CDCl3) δ 170.1, 159.3, 146.4, 142.5, 137.6, 130.4, 129.0, 127.3, 127.3, 125.0, 115.0, 102.3, 55.7, 40.8, 35.6, 12.6. **HRMS** (ESI) Calcd for C₂₀H₂₀N₃O₂⁺ [M+H]⁺: 334.1550, found: 334.1550.;

(S)-3-methyl-4-phenyl-1-(4-(trifluoromethyl)phenyl)-1,4,5,7-tetrahydro-6H-pyraz olo[3,4-b]pyridin-6-one: 92% yield, 99% ee; $[\alpha]_D^{25} = -282.2$ (c=1.0 in CHCl₃).

HPLC condition: Chiralpak IB (Hex/iPrOH = 95/5, 1.0 mL/min, t_R (major) = 14.4 min, t_R (minor) = 18.7 min).

¹**H NMR** (400 MHz, CDCl3) δ 9.09 (s, 1H),7.64 (d, J = 8.8 Hz, 2H), 734 (t, J = 7.2 Hz, 2H), 7.30-7.26 (m, 1H), 7.22-7.20 (m, 2H), 4.21 (t, J = 6.8 Hz, 1H), 3.02 (dd, J = 7.2 Hz, J = 16.0 Hz, 1H), 2.81 (dd, J = 6.4 Hz, J = 16.0 Hz, 1H), 1.94 (s, 3H); ¹³**C NMR** (100 MHz, CDCl3) δ 170.8, 148.0, 142.0, 140.5, 137.9, 129.1, 127.5, 127.2, 127.0 (q, J = 3.9 Hz), 122.6, 103.9, 40.6, 35.3, 12.6. ¹⁹**F NMR** (376 MHz, CDCl3) δ -62.23.; **HRMS** (ESI) Calcd for $C_{20}H_{17}F_3N_3O^+$ [M+H]⁺: 372.1318, found: 372.1316.;

(S)-3-methyl-1-(4-nitrophenyl)-4-phenyl-1,4,5,7-tetrahydro-6H-pyrazolo[3,4-b]py ridin-6-one: 92% yield, 95% ee; $[\alpha]_D^{25} = -68.0$ (c=1.0 in CHCl₃).

HPLC condition: Chiralpak AZH (Hex/iPrOH = 90/10, 1.0 mL/min, t_R (major) = 10.0 min, t_R (minor) = 15.3 min).

¹**H NMR** (400 MHz, CDCl3) δ 8.54 (s, 1H), 7.45-7.41 (m, 2H), 7.33 (t, J = 14.4 Hz, 2H), 7.28-7.24 (m, 1H), 7.22-7.20 (m, 2H), 7.15-7.09 (m, 2H), 4.20 (t, J = 6.8 Hz, 1H), 3.01 (dd, J = 8.8 Hz, J = 18.0 Hz, 1H), 2.81 (dd, J = 4.4 Hz, J = 14.4 Hz, 1H), 1.93 (s, 3H); ¹³**C NMR** (100 MHz, CDCl3) δ 170.6, 163.1, 160.6, 147.0, 142.3, 137.8, 133.6, 129.1, 127.4, 127.2, 125.3, 125.2, 116.8, 116.6, 102.8, 40.7, 35.5, 12.5.; **HRMS** (ESI) Calcd for $C_{19}H_{16}N_4NaO_3^+$ [M+Na]⁺: 371.1115, found: 371.1112.;

3w

(S)-3-methyl-4-phenyl-1-(o-tolyl)-1,4,5,7-tetrahydro-6H-pyrazolo[3,4-b]pyridin-6 -one: 98% yield, 99% ee; $[\alpha]_{D}^{25} = -64.0$ (c=1.0 in CHCl₃).

HPLC condition: Chiralpak IA (Hex/iPrOH = 95/5,1.0 mL/min, t_R (major) = 17.5 min, t_R (minor) = 21.9 min).

¹**H NMR** (400 MHz, CDCl3) δ 7.78 (s, 1H), 7.36-7.31 (m, 4H), 7.30-7.25 (m, 3H), 7.23-7.19 (m, 2H), 4.23 (t, J = 6.4 Hz, 1H), 3.01 (dd, J = 7.6 Hz, J = 16.4 Hz, 1H), 2.78 (dd, J = 6.4 Hz, J = 16.4 Hz, 1H), 2.17 (s, 3H), 1.94 (s, 3H); ¹³**C NMR** (100 MHz, CDCl3) δ 169.9, 146.4, 142.7, 138.7, 136.2, 135.6, 131.6, 129.8, 129.0, 127.6, 127.3, 127.2, 127.1, 100.9, 40.9, 35.6, 17.6, 12.6.; **HRMS** (ESI) Calcd for $C_{20}H_{20}N_3O^+[M+H]^+$: 318.1601, found: 318.1606.;

(S)-1-(3,5-dimethylphenyl)-3-methyl-4-phenyl-1,4,5,7-tetrahydro-6H-pyrazolo[3, 4-b]pyridin-6-one: 95% yield, 99% ee; $[\alpha]_D^{25} = -105.0$ (c=1.0 in CHCl₃).

HPLC condition: Chiralpak ID (Hex/iPrOH = 96/4, 0.8 mL/min, t_R (major) = 43.2 min, t_R (minor) = 53.8 min).

¹**H NMR** (400 MHz, CDCl3) δ 8.41 (s, 1H),7.33 (t, J = 6.8 Hz, 2H), 7.27-7.25 (m, 1H), 7.24-7.20 (m, 2H), 7.09 (s, 2H), 6.98 (s, 1H), 4.2 (t, J = 6.8 Hz, 1H), 3.03 (dd, J = 7.2 Hz, J = 16.0 Hz, 1H), 2.83 (dd, J = 6.4 Hz, J = 9.6 Hz, 1H), 2.34 (s, 6H), 1.94 (s, 3H); ¹³**C NMR** (100 MHz, CDCl3) δ 170.2, 146.6, 142.4, 139.8, 137.5, 137.3, 129.5, 129.0, 127.3, 127.3, 120.7, 102.6, 40.8, 35.5, 21.4, 12.6.; **HRMS** (ESI) Calcd for $C_{21}H_{22}N_3O^+[M+H]^+$: 332.1757, found: 332.1760.;

(S)-3-methyl-1-(naphthalen-2-yl)-4-phenyl-1,4,5,7-tetrahydro-6H-pyrazolo[3,4-b] pyridin-6-one: 95% yield, 99% ee; $[\alpha]_{D}^{25} = -128.2$ (c=1.0 in CHCl₃).

HPLC condition: Chiralpak IB (Hex/iPrOH = 95/5,1.0 mL/min, t_R (major) = 32.1 min, t_R (minor) = 40.4 min).

¹**H NMR** (400 MHz, CDCl3) δ 8.57 (s, 1H),7.93 (d, J = 8.8 Hz, 1H), 7.88-7.82 (m, 3H), 7.67-7.64 (m, 1H), 7.55-7.50 (m, 2H), 7.37-7.33 (m, 2H), 7.29-7.27 (m, 1H), 7.24-7.22 (m, 2H), 4.19 (t, J = 6.8 Hz, 1H), 3.00 (dd, J = 7.2 Hz, J = 16.4 Hz, 1H), 2.81 (dd, J = 6.4 Hz, J = 16.0 Hz, 1H), 1.97 (s, 3H); ¹³**C NMR** (100 MHz, CDCl3) δ 170.3, 147.2, 142.3, 137.8, 135.0, 133.4, 132.3, 130.1, 129.1, 128.2, 128.0, 127.4, 127.3, 127.2, 126.7, 121.6, 120.4, 103.0, 40.6, 35.5, 12.6.; **HRMS** (ESI) Calcd for $C_{23}H_{20}N_3O^+[M+H]^+$: 354.1601, found: 354.1605.;

3z

(S)-1,3,4-triphenyl-1,4,5,7-tetrahydro-6H-pyrazolo[3,4-b]pyridin-6-one: 90% yield, 99% ee; $[\alpha]_{\mathbf{D}}^{25} = -19.8$ (c=1.0 in CHCl₃).

HPLC condition: Chiralpak IB (Hex/iPrOH = 90/10,1.0 mL/min, t_R (major) = 13.8 min, t_R (minor) = 21.0 min).

¹**H NMR** (400 MHz, CDCl3) δ 8.18 (s, 1H), 7.60-7.49 (m, 6H), 7.42 (t, J = 7.6 Hz, 1H), 7.33-7.28 (m, 5H), 7.26-7.19 (m, 3H) 4.51 (d, J = 5.6 Hz, 1H), 3.18 (dd, J = 8.0 Hz, J = 16.0 Hz, 1H), 2.86 (dd, J = 2.4 Hz, J = 16 Hz, 1H); ¹³**C NMR** (100 MHz, CDCl3)δ 169.7, 148.9, 142.2, 138.7, 137.5, 132.7, 130.0, 129.2, 128.7, 128.3, 128.3, 127.4, 127.1, 127.1, 123.5, 101.9, 41.1, 35.5.; **HRMS** (ESI) Calcd for $C_{24}H_{20}N_3O^+$ [M+H]⁺: 366.1601, found: 366.1611.;

3aa

(S)-3-(4-chlorophenyl)-1,4-diphenyl-1,4,5,7-tetrahydro-6H-pyrazolo[3,4-b]pyridi **n-6-one:** 98% yield, 99% ee; $[\alpha]_D^{25} = +10.4$ (c=1.0 in CHCl₃).

HPLC condition: Chiralpak IB (Hex/iPrOH = 95/5,1.0 mL/min, t_R (major) = 26.2 min, t_R (minor) = 29.2 min).

¹**H NMR** (400 MHz, CDCl3) δ 8.57 (s, 1H),7.58-7.55 (m, 2H), 7.51-7.46 (m, 4H), 7.43-7.38 (m, 1H), 7.22-7.33 (m, 5H), 7.19-7.17 (m, 2H), 4.45 (d, J = 5.2 Hz, 1H), 3.16 (dd, J = 7.6 Hz, J = 15.6 Hz, 1H), 2.83 (d, J = 13.6 Hz 1H); ¹³**C NMR** (100 MHz, CDCl3) δ 169.8, 147.7, 142.0, 139.0, 137.4, 134.1, 131.2, 123.0, 129.3, 128.8, 128.4, 128.4, 127.6, 127.0, 123.6, 101.9, 41.1, 35.5.; **HRMS** (ESI) Calcd for C₂₄H₁₉ClN₃O⁺ [M+H]⁺: 400.1211, found: 400.1211.;

3ab

(S)-1,4-diphenyl-3-(4-(trifluoromethyl)phenyl)-1,4,5,7-tetrahydro-6H-pyrazolo[3, 4-b]pyridin-6-one: 97% yield, 99% ee; $[\alpha]_D^{25} = -32.2$ (c=1.0 in CHCl₃).

HPLC condition: Chiralpak IA (Hex/iPrOH = 90/10,1.0 mL/min, t_R (major) = 10.9 min, t_R (minor) = 15.8 min).

¹**H NMR** (400 MHz, CDCl3) δ 8.49 (s, 1H), 7.67 (d, J = 8.4 Hz, 2H), 7.60-7.50 (m, 6H), 7.44 (t, J = 7.2 Hz, 1H), 7.33-7.29 (m, 2H), 7.27-7.23 (m, 1H), 7.19 (d, J = 8.0 Hz, 2H), 4.51-4.48 (m, 1H), 3.18 (dd, J = 8.0 Hz, J = 16.4 Hz, 1H), 2.88-2.83 (m, 1H); ¹³**C NMR** (100 MHz, CDCl3) δ 169.7, 147.4, 141.9, 139.2, 137.3, 136.2, 130.0, 129.8, 129.4, 128.6, 127.6, 127.2, 127.0, 125.6 (q, J = 3.7 Hz), 123.6, 122.9, 102.2, 77.4, 41.1, 35.5. ¹⁹**F NMR** (376 MHz, CDCl3) δ -62.47; **HRMS** (ESI) Calcd for $C_{25}H_{19}F_3N_3O^+[M+H]^+$: 434.1475, found: 434.1480.;

3ac

(*R*)-4-(furan-2-yl)-1-phenyl-3-(4-(trifluoromethyl)phenyl)-1,4,5,7-tetrahydro-6H-pyrazolo[3,4-b]pyridin-6-one: 67% yield, 96% ee; $[\alpha]_D^{25} = +35.00$ (c=1.0 in CHCl₃).

HPLC condition: Chiralpak IA (Hex/iPrOH = 90/10,1.0 mL/min, t_R (major) = 10.6 min, t_R (minor) = 15.2 min).

¹**H NMR** (400 MHz, CDCl3) δ 8.06 (s, 1H), 7.87 (d, J = 4.0 Hz, 2H), 7.64 (d, J = 8.4Hz, 2H), 7.57-7.51 (m, 4H), 7.46-7.42 (m, 1H), 7.35(s, 1H), 6.27-6.25 (m, 1H), 6.04-6.03 (m, 1H), 4.56-4.54 (m, 1H), 3.08-3.06 (m, 2H); ¹³**C NMR** (100 MHz, CDCl3) δ 169.3, 154.2, 147.2, 142.7, 138.9, 137.2, 1362, 130.1, 128.7, 127.2, 125.8 (d, J = 4.0 Hz), 123.5, 110.5, 106.7, 100.4, 37.5, 29.7. ¹⁹**F NMR** (376 MHz, CDCl3)

 δ -60.77; **HRMS** (ESI) Calcd for $C_{23}H_{17}F_3N_3O_2^+$ [M+H]⁺: 424.1267, found: 424.1272.:

(S)-3-methyl-1,4-diphenyl-4,5,6,7-tetrahydro-1H-pyrazolo[3,4-b]pyridine: 87% yield, 97% ee; $[\alpha]_D^{25} = -10.4$ (c=1.0 in CHCl₃).

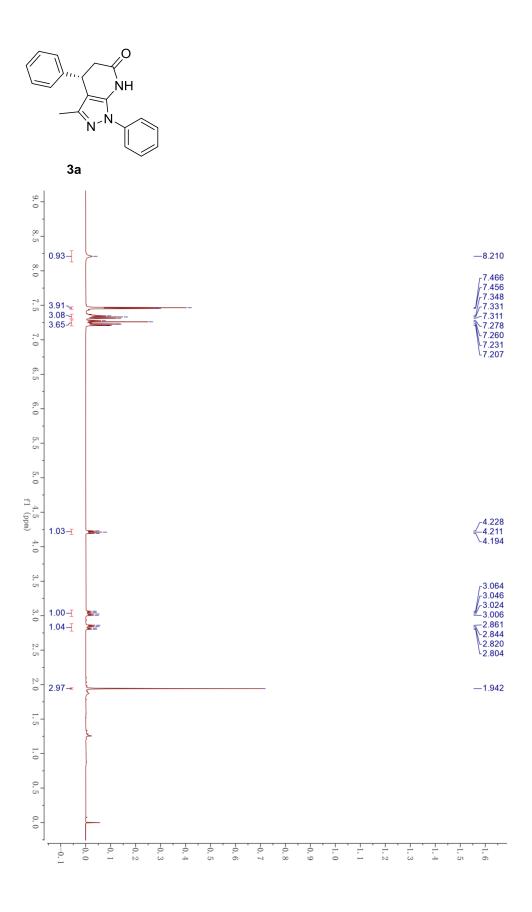
HPLC condition: Chiralpak ASH (Hex/iPrOH = 95/5,1.0 mL/min, t_R (major) = 13.3 min, t_R (minor) = 25.9 min).

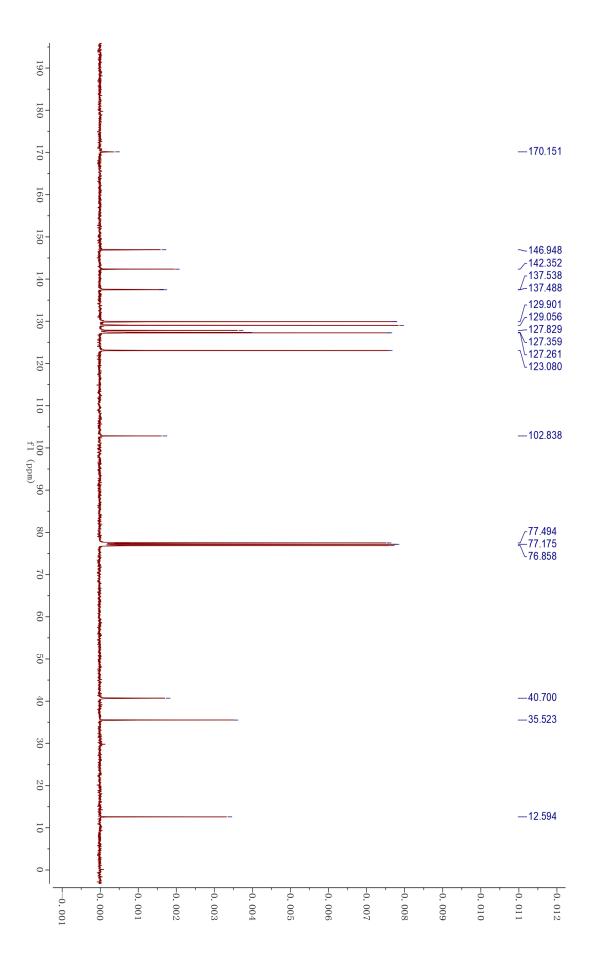
¹**H NMR** (400 MHz, CDCl3) δ 7.65-7.62 (m, 2H), 7.45 (t, J = 7.6 Hz, 2H), 7.33-7.19 (m, 6H), 4.04 (t, J = 5.6 Hz, 1H), 3.92 (s, 1H), 3.26-3.13(m, 2H), 2.26-2.18 (m, 1H), 1.97-1.90 (m, 1H), 1.86 (s, 3H); ¹³**C NMR** (100 MHz, CDCl3) δ 148.1, 145.5, 144.8, 139.3, 129.5, 128.4, 128.1, 126.4, 126.1, 122.0, 101.1, 40.4, 36.6, 33.1, 12.7.; **HRMS** (ESI) Calcd for $C_{19}H_{20}N_3^+$ [M+H]⁺: 290.1652, found: 290.1655.;

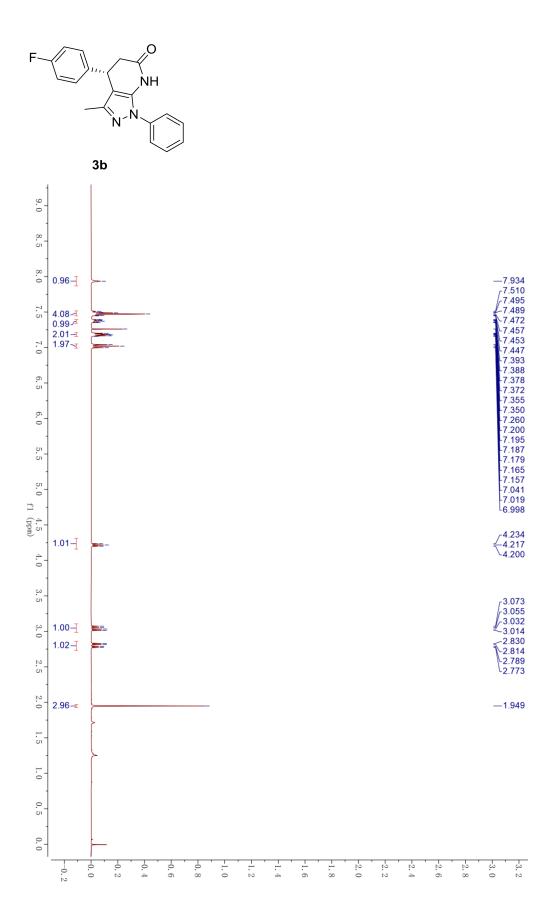
5

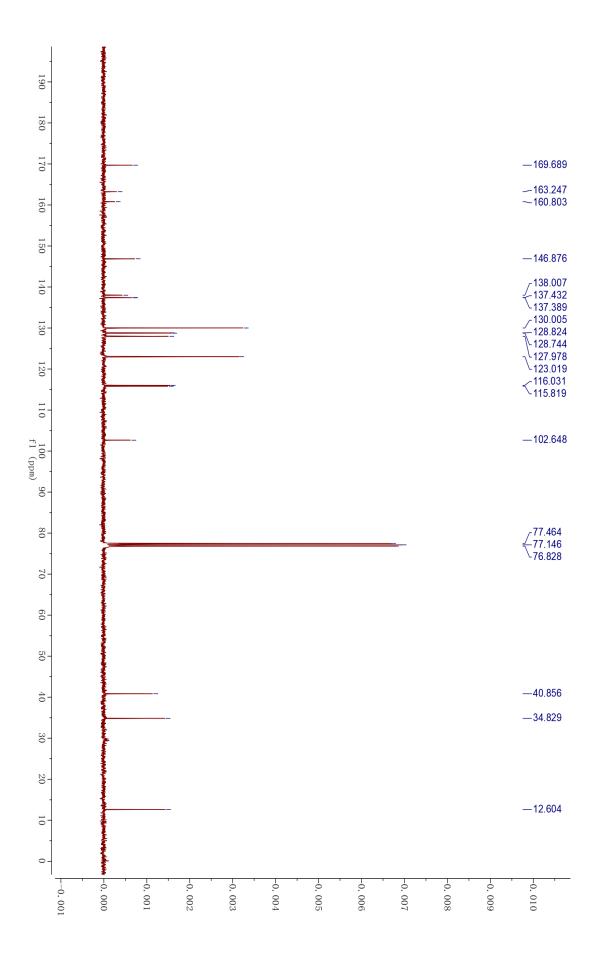
tert-butyl(*S*)-3-methyl-6-oxo-1,4-diphenyl-1,4,5,6-tetrahydro-7H-pyrazolo[3,4-b] pyridine-7-carboxylate: 80% yield, 97% ee; $[\alpha]_D^{25} = -156.4$ (c=1.0 in CHCl₃). HPLC condition: Chiralpak IA (Hex/iPrOH = 95/5,1.0 mL/min, t_R (major) = 12.1 min, t_R (minor) = 16.2 min).

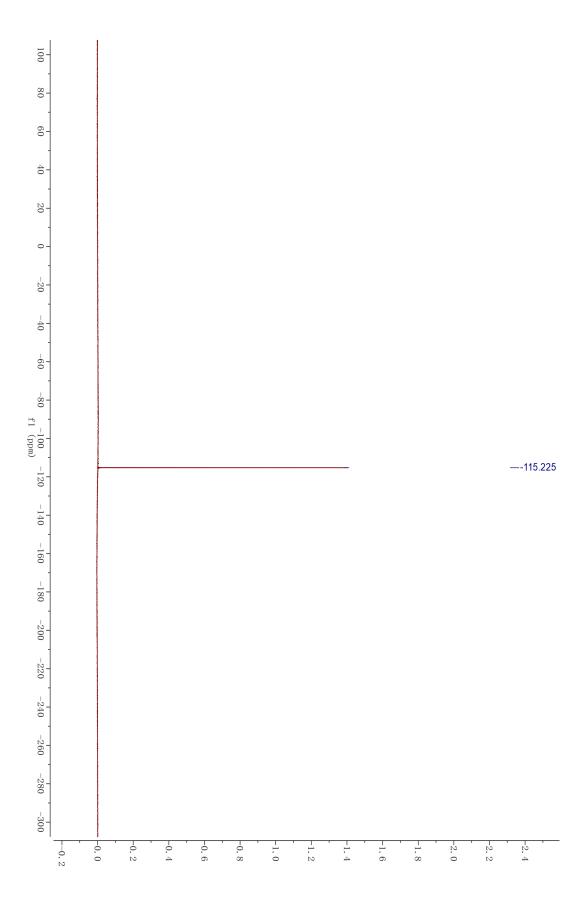
¹**H NMR** (400 MHz, CDCl3) δ 7.54-7.50 (m, 2H), 7.45 (t, J = 7.6 Hz, 2H), 7.34-7.29 (m, 3H), 7.25-7.19 (m, 3H), 4.21 (t, J = 5.2 Hz, 1H), 3.14 (dd, J = 6.0 Hz, J = 15.2 Hz, 1H), 3.00 (dd, J = 4.9 Hz, J = 14.8 Hz, 1H), 2.06 (s, 3H), 1.09 (s, 9H); ¹³**C NMR** (100 MHz, CDCl3) δ 169.1, 147.8, 145.8, 140.4, 139.4, 137.0, 129.7, 129.0, 127.5, 127.3, 122.6, 108.9, 85.3, 43.9, 34.8, 27.2, 12.3.; **HRMS** (ESI) Calcd for $C_{24}H_{26}N_3O_3^+[M+H]^+$: 404.1969, found: 404.1972.;

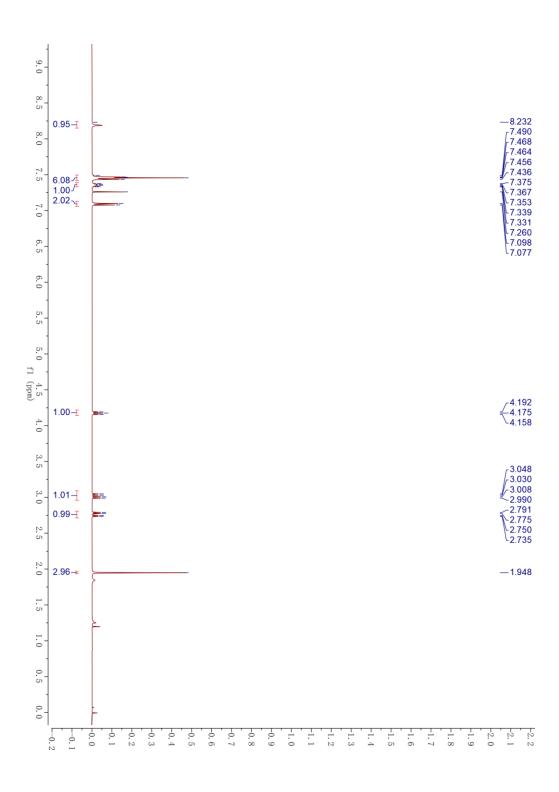

b) References

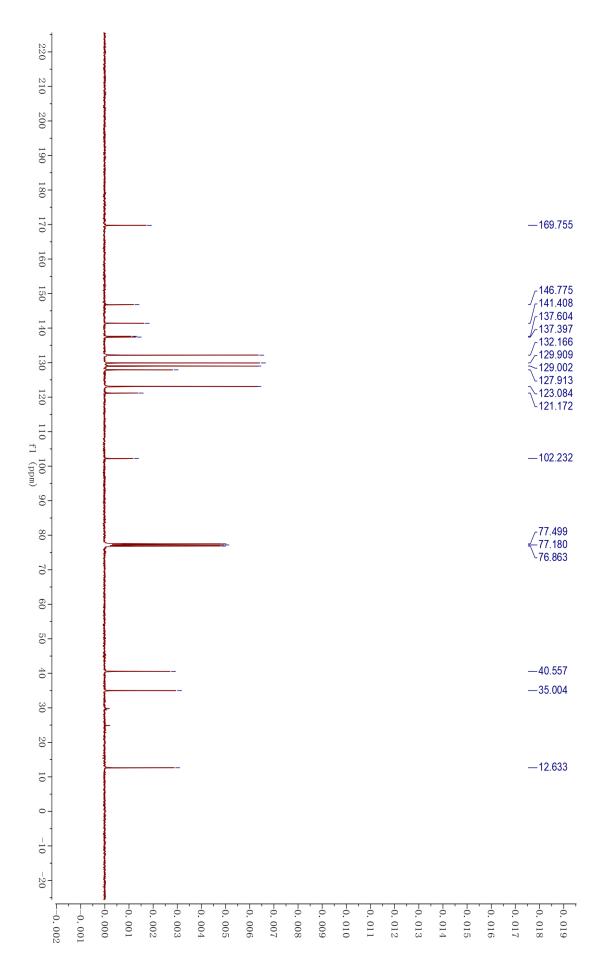

- (1) L. D. Hawkins, Preparation of Trisubstituted Benzene Compounds for Treating Congestive Heart Failure, US 4971959 [A] 1990.
- (2) D. H. Liu, Z. L. Hu, Y. X. Zhang, Z. Q. Fu and Huang, W, Access to Enantioenriched Spiro-ε-Lactam Oxindoles by an N-Heterocyclic Carbene-Catalyzed [4+3] Annulation of Flexible Oxotryptamines with Enals, Chem. Eur. J., 2019, 25, 11223.
- (3) J. Sabbatani and N. Maulide, Temporary Generation of a Cyclopropyl Oxocarbenium Ion Enables Highly Diastereoselective Donor-Acceptor Cyclopropane Cycloaddition, Angew. Chem.

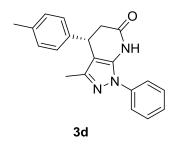

Int. Ed., 2016, 55, 6780.

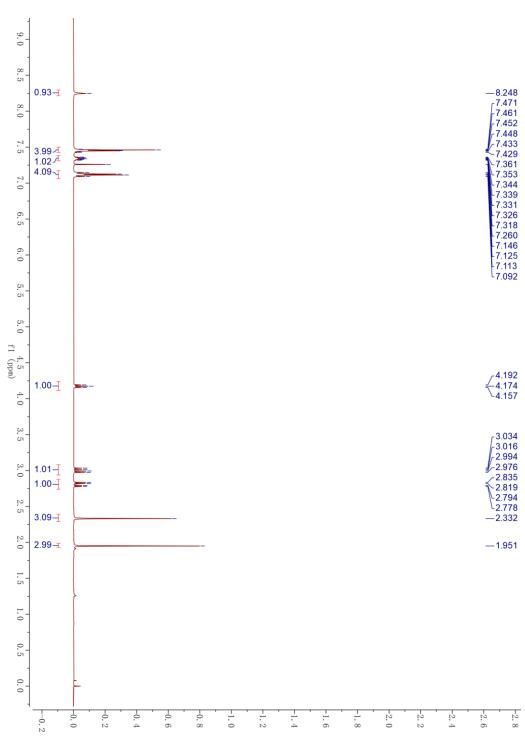

- (4) C. Guo, M. Saifuddin, T. Saravanan, M. Sharifi and G. J. Poelarends, Biocatalytic Asymmetric Michael Additions of Nitromethane to α , β -Unsaturated Aldehydes via Enzyme-bound Iminium Ion Intermediates, ACS Catal., 2019, 9, 4369.
- (5) A. Bouisseau, M. Gao and M. C. Willis, Traceless Rhodium-Catalyzed Hydroacylation using Alkyl Aldehydes: the Enantioselective Synthesis of β -aryl Ketones, Chem. Eur. J., 2016, 22, 15624

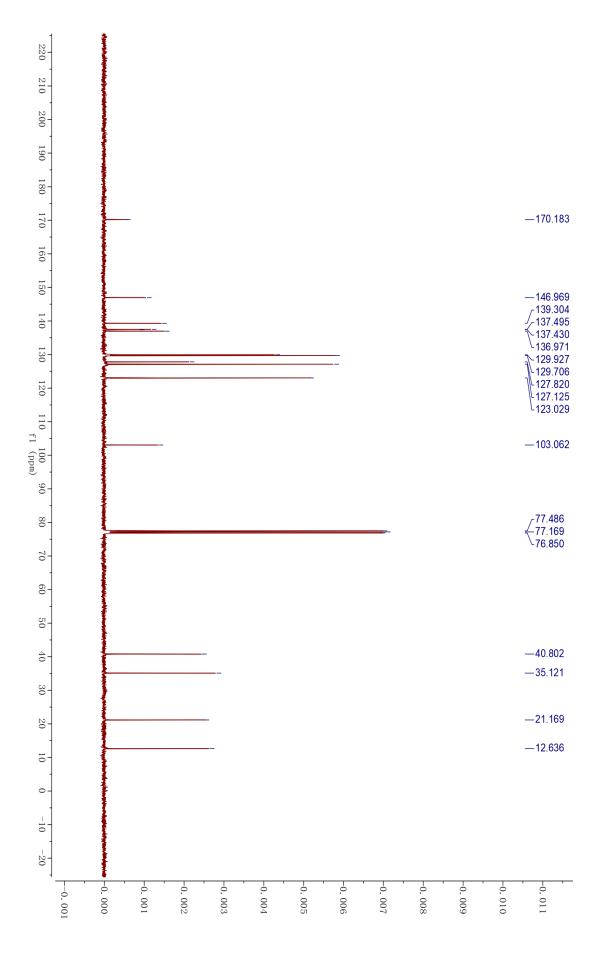

IV: ¹H, ¹³C, ¹⁹F NMR and HPLC data of products

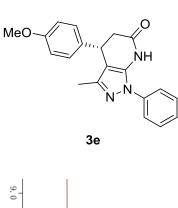


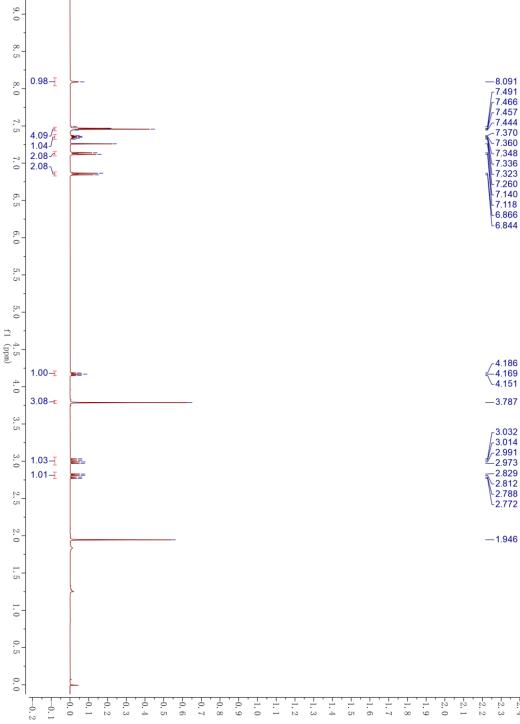


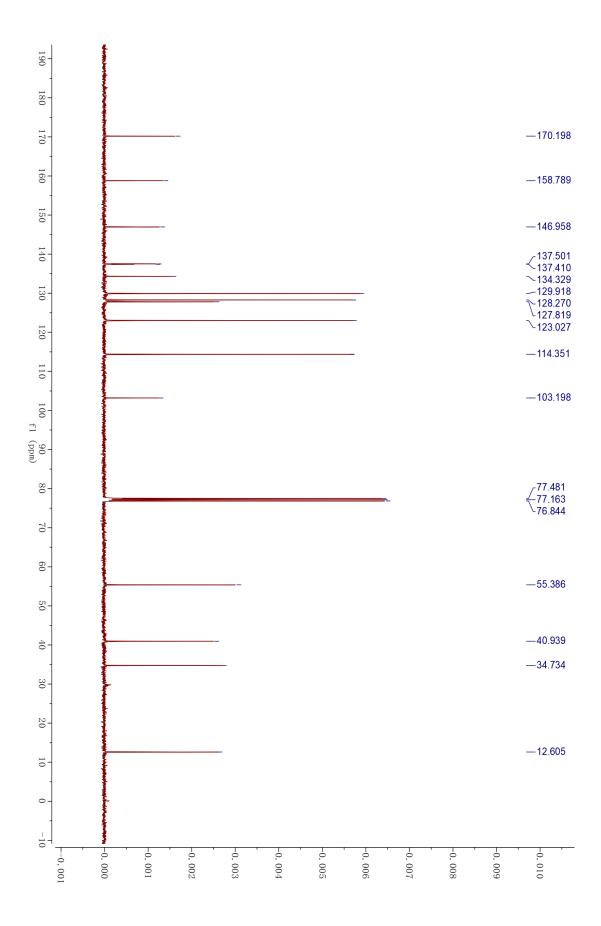


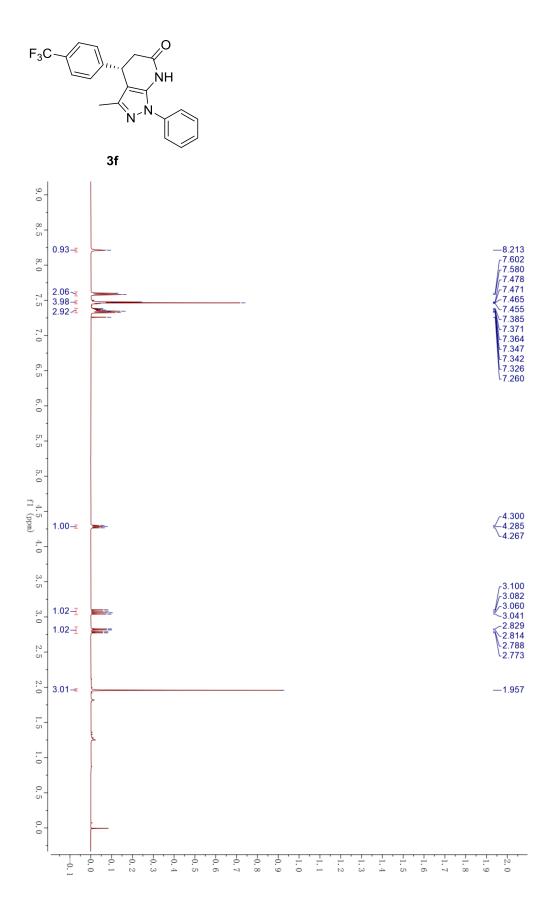


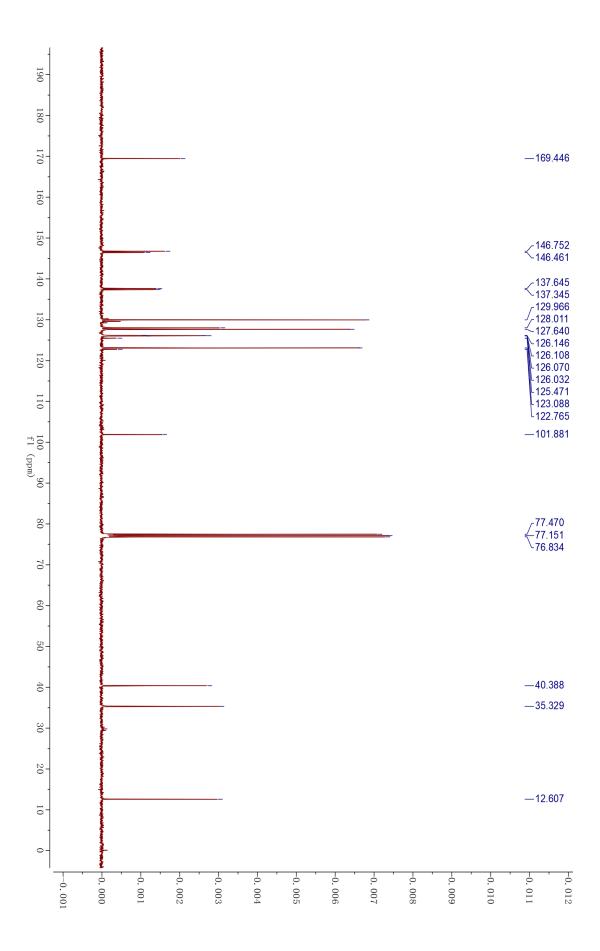


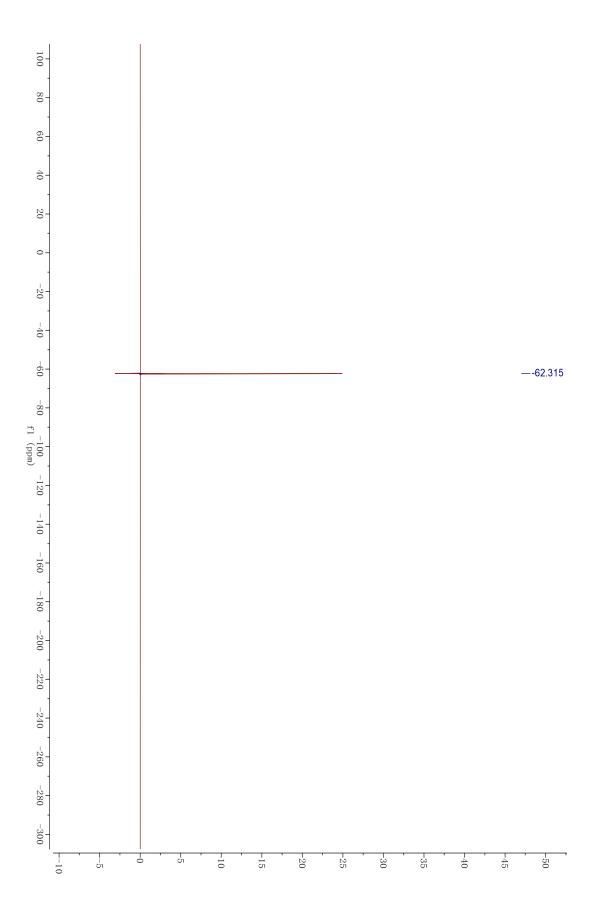


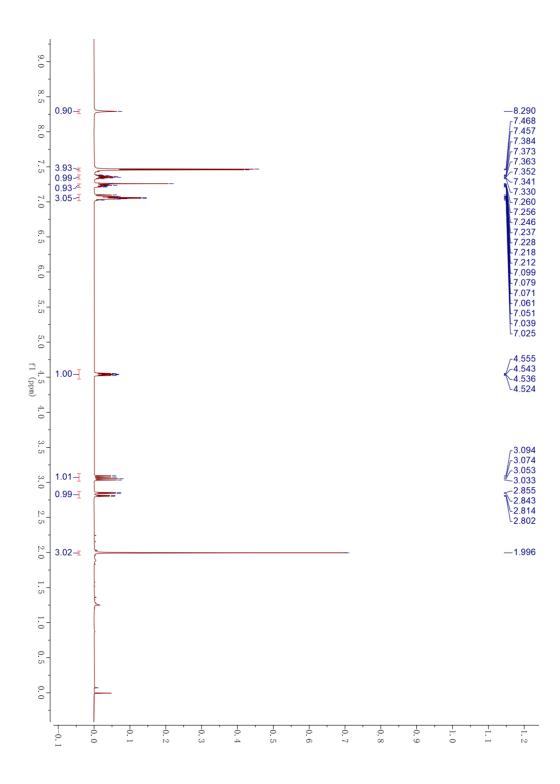


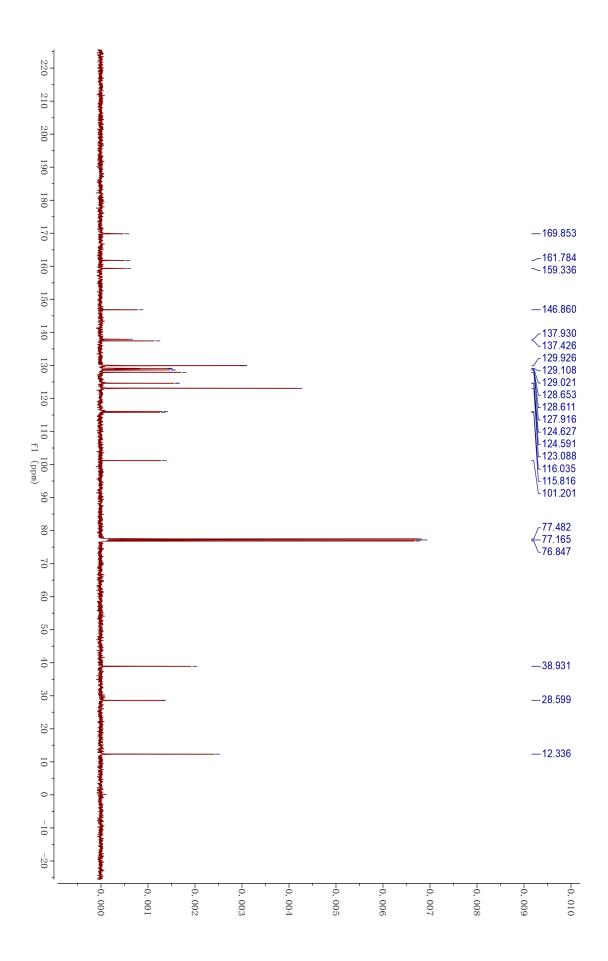


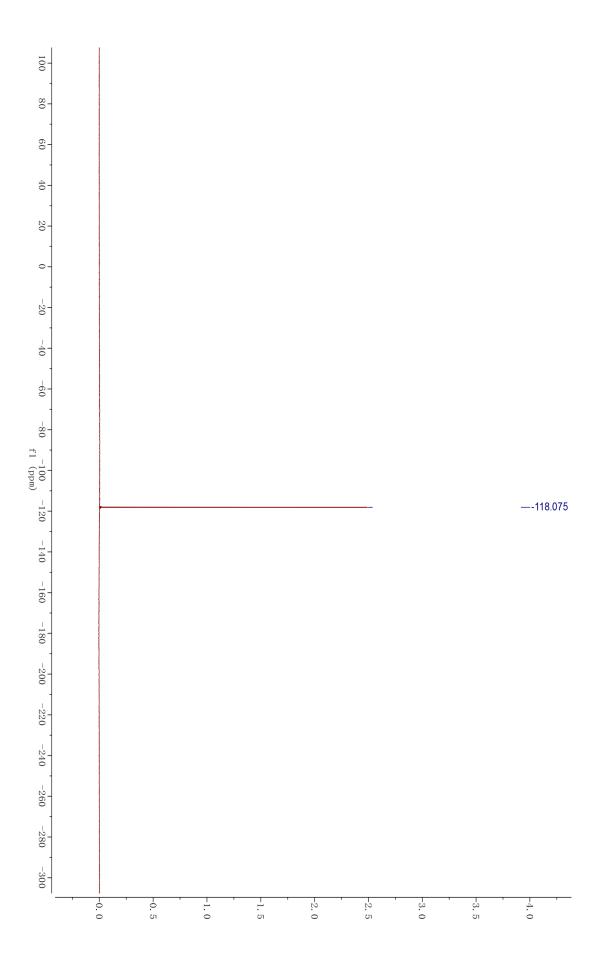


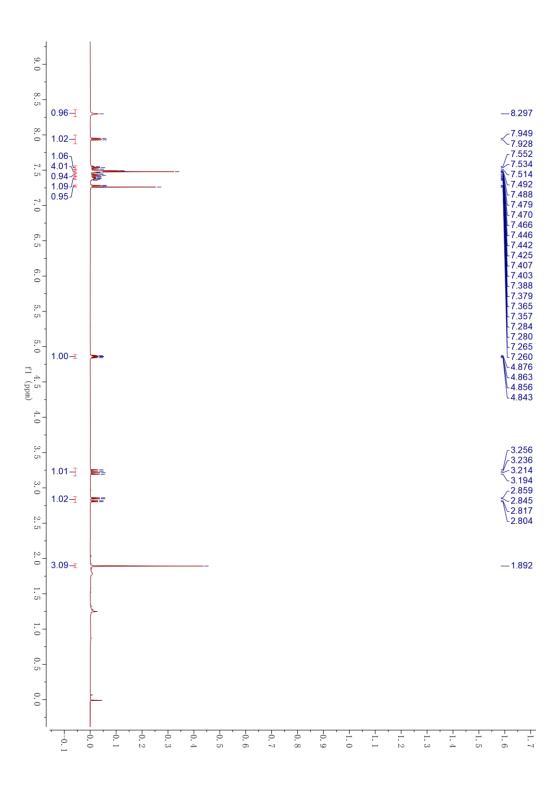


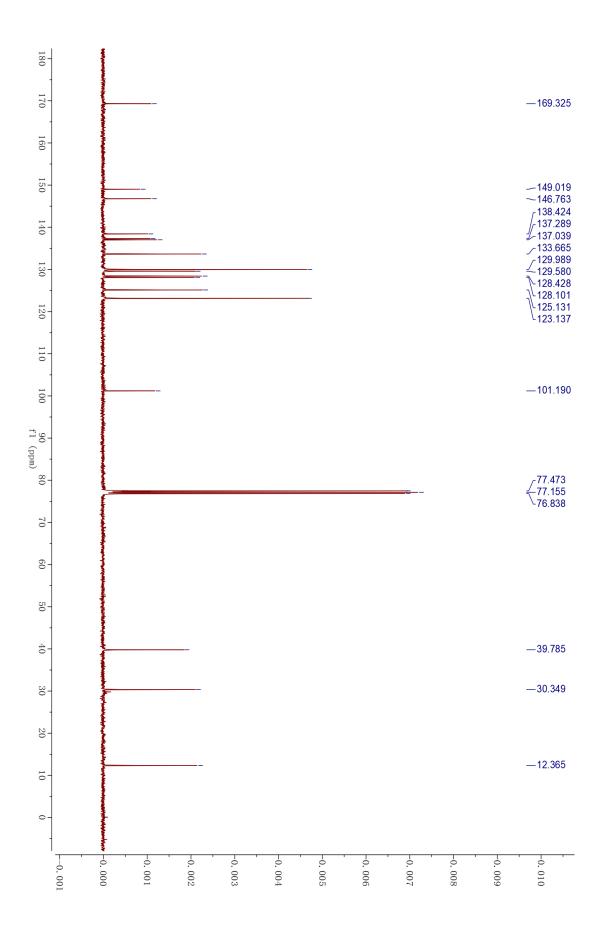


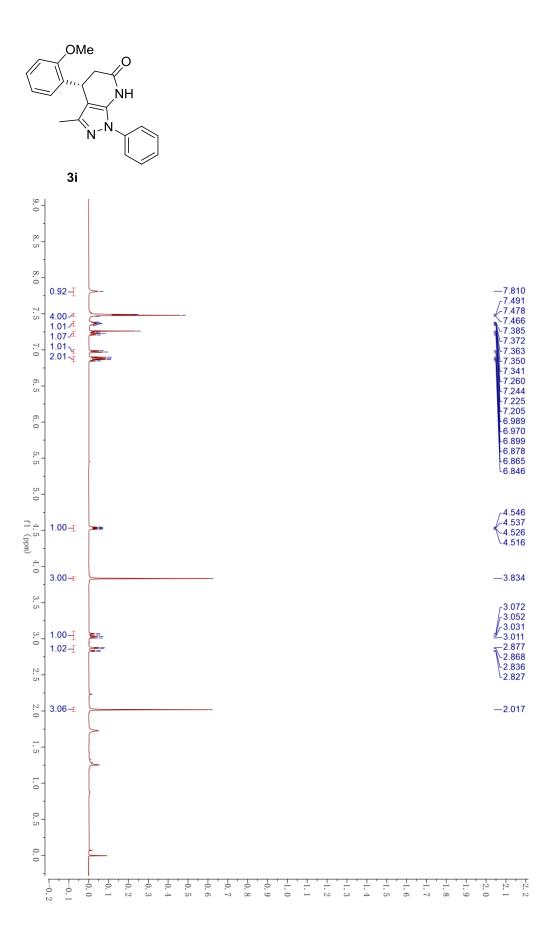


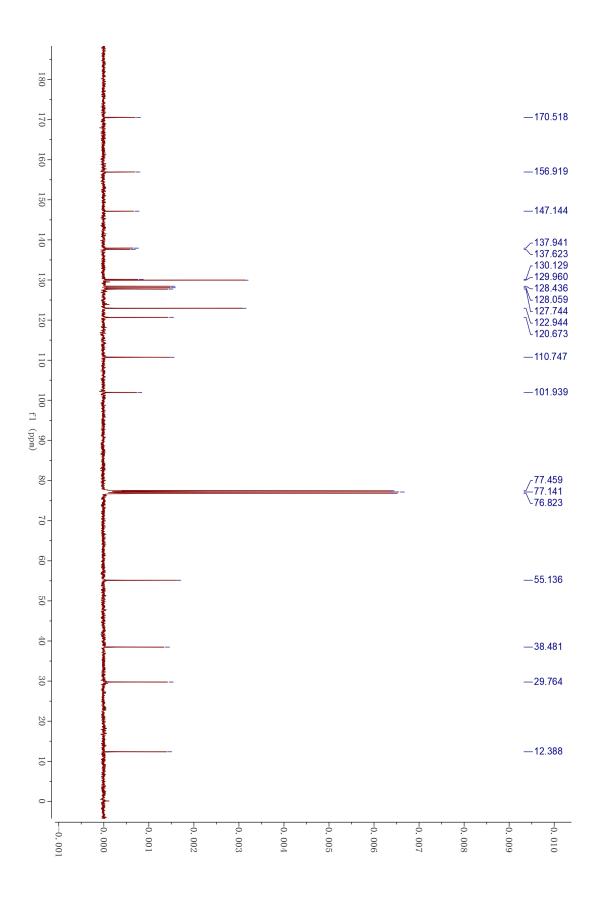


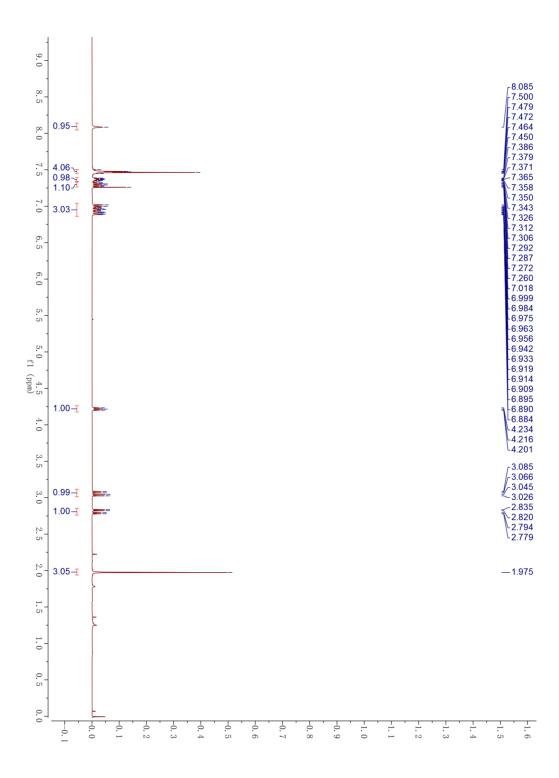


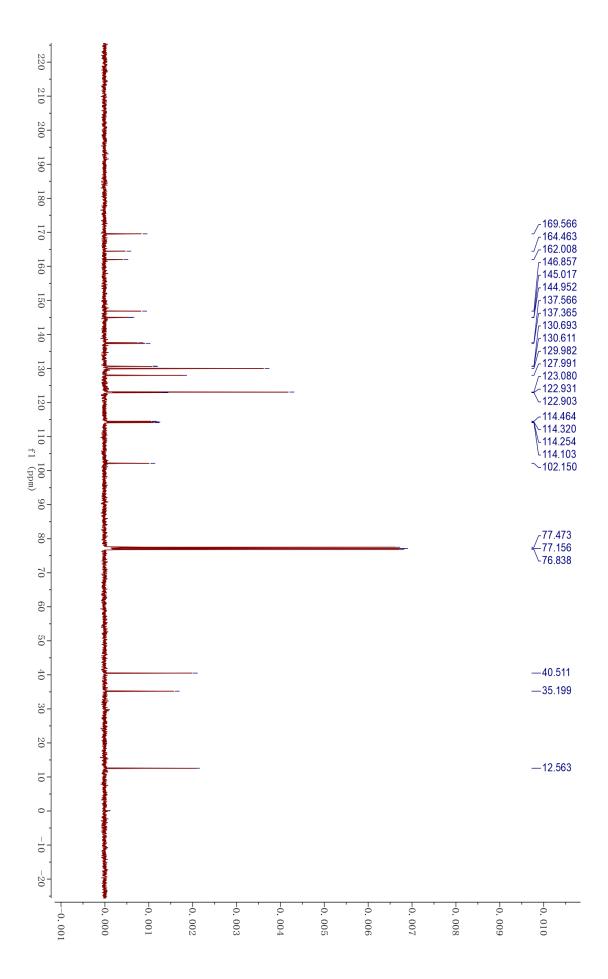


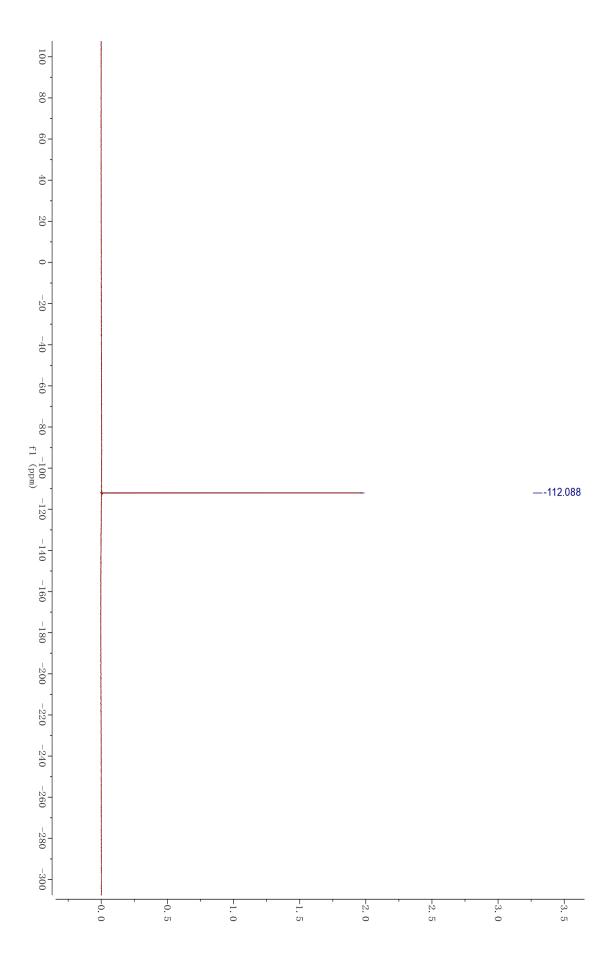


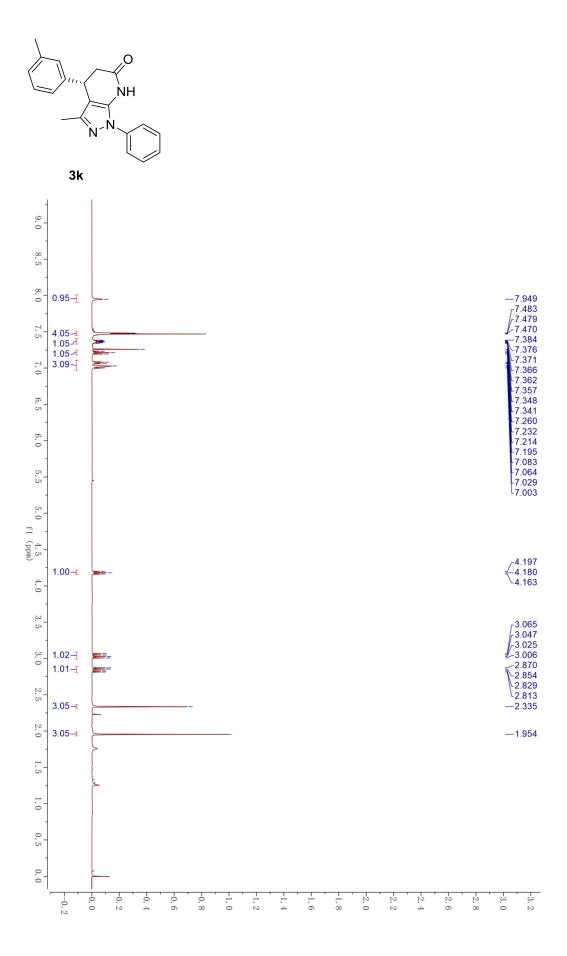


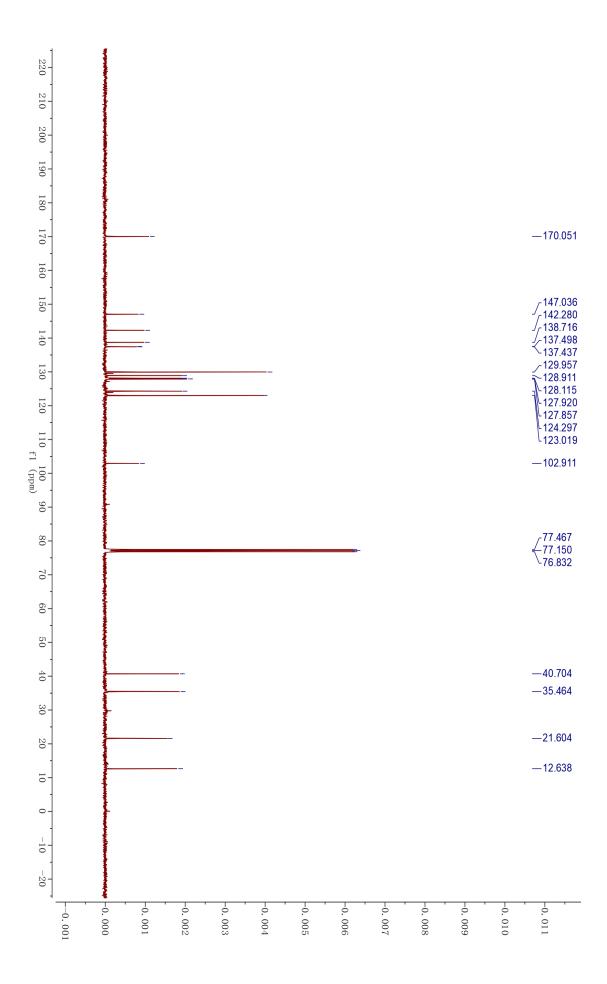


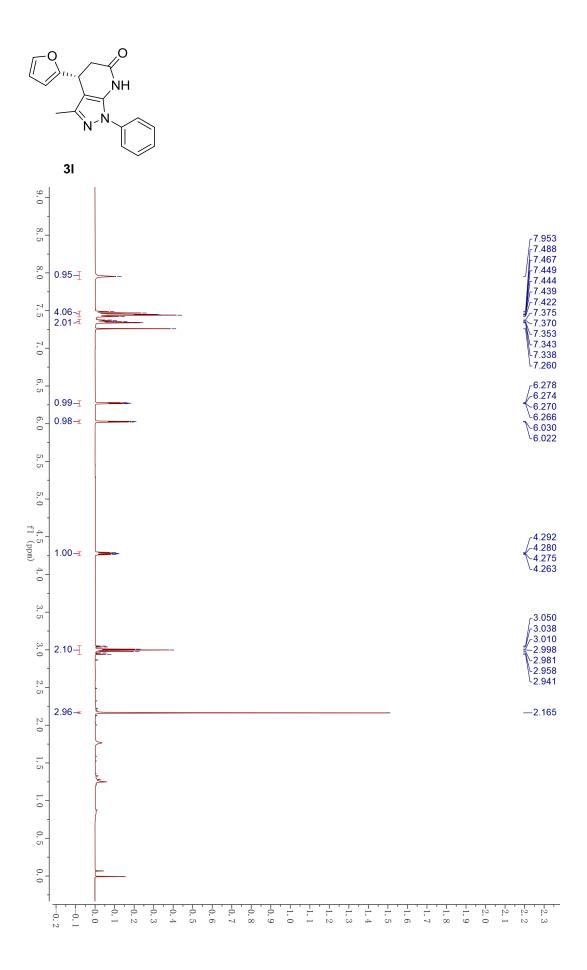


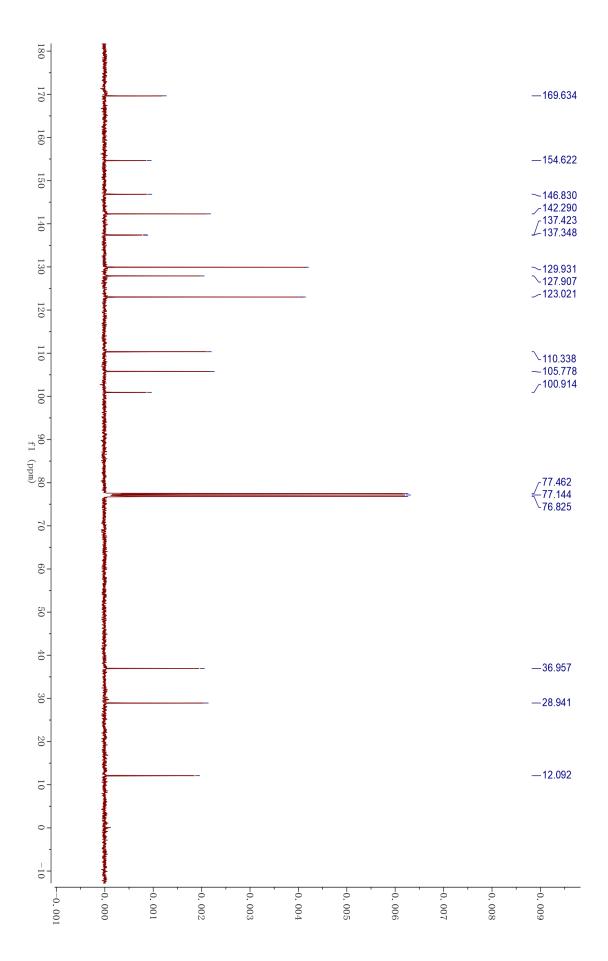


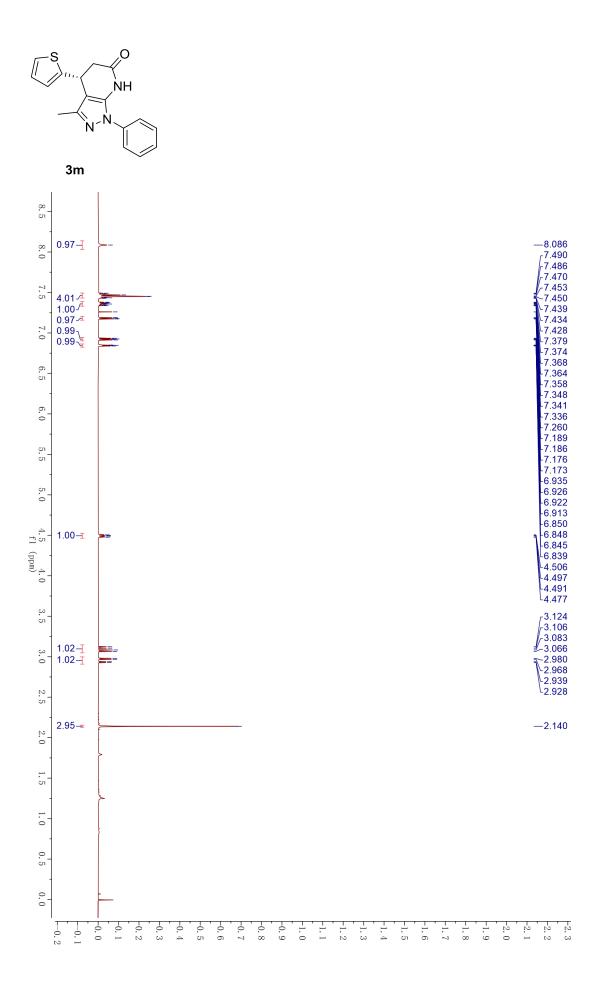


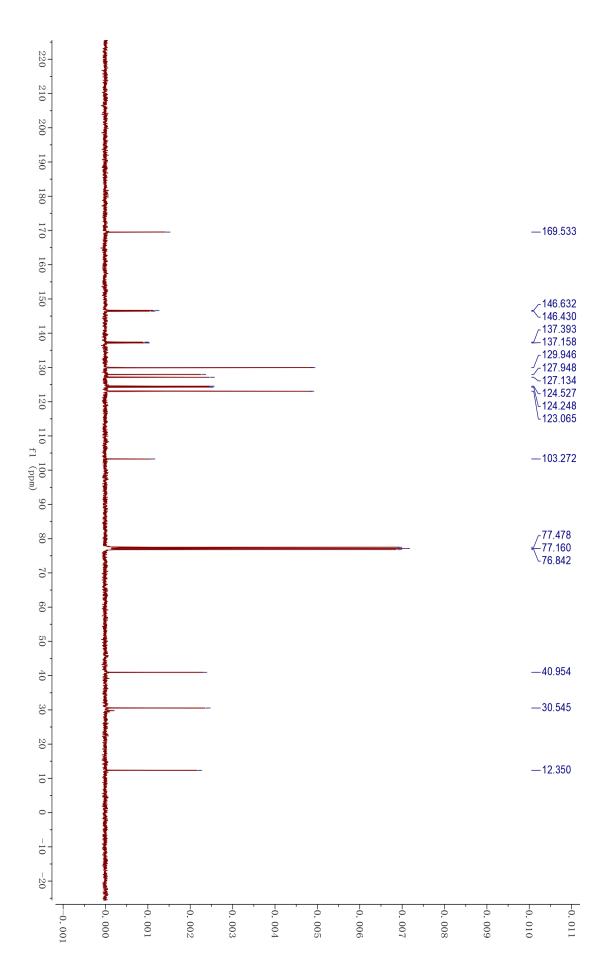


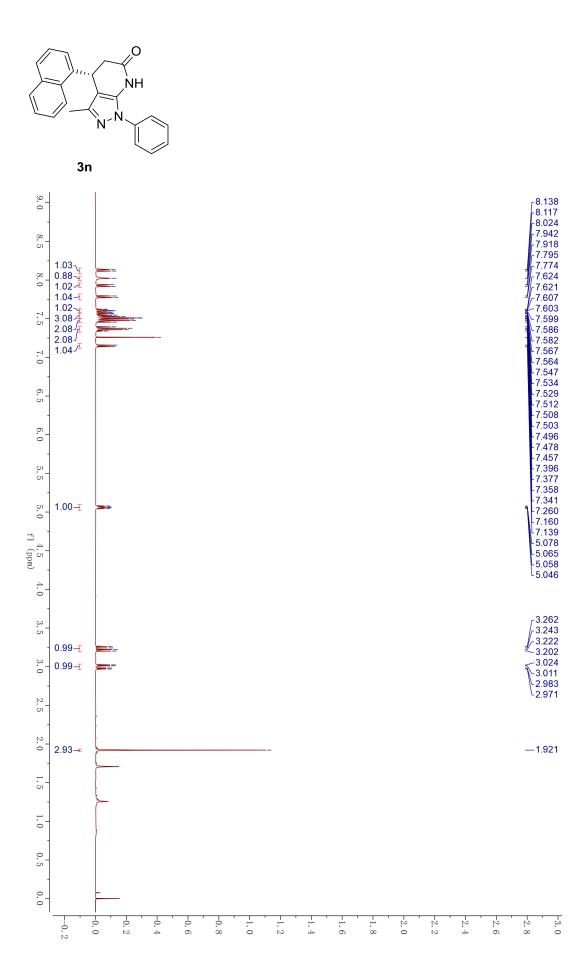


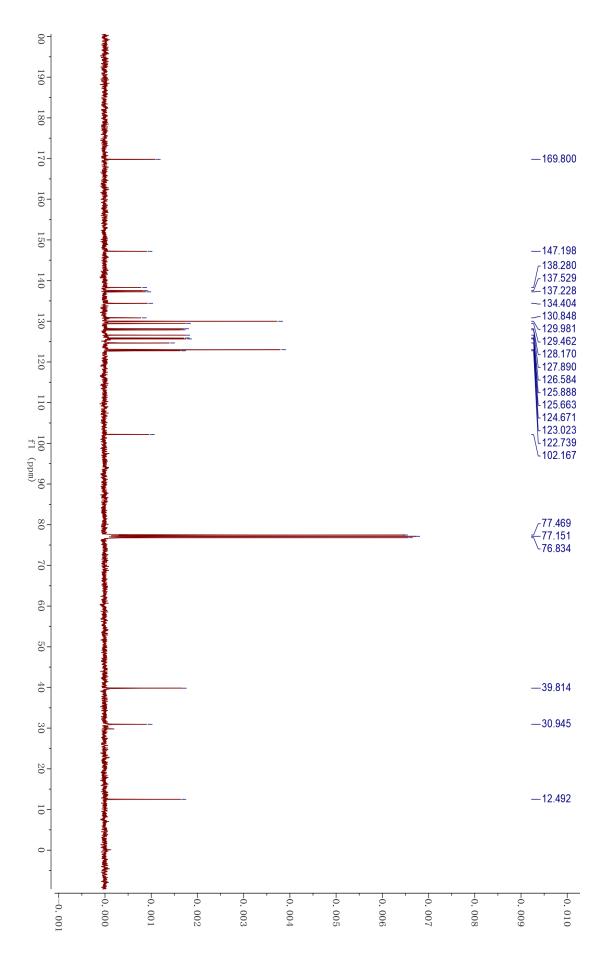


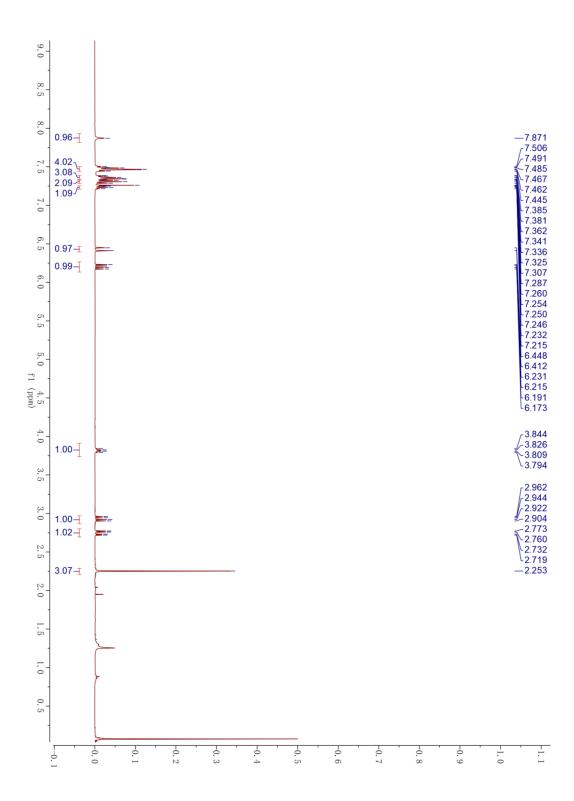




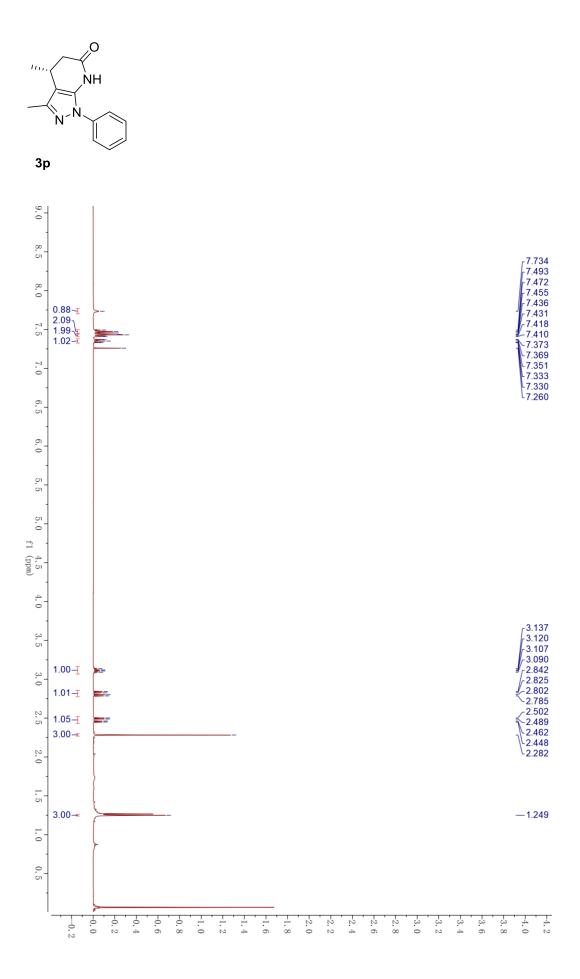


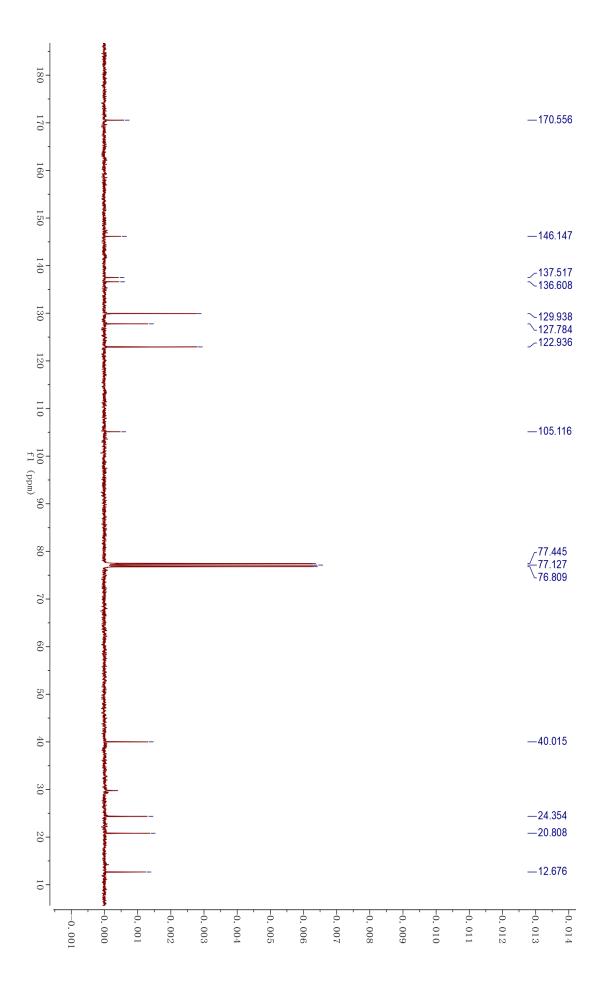


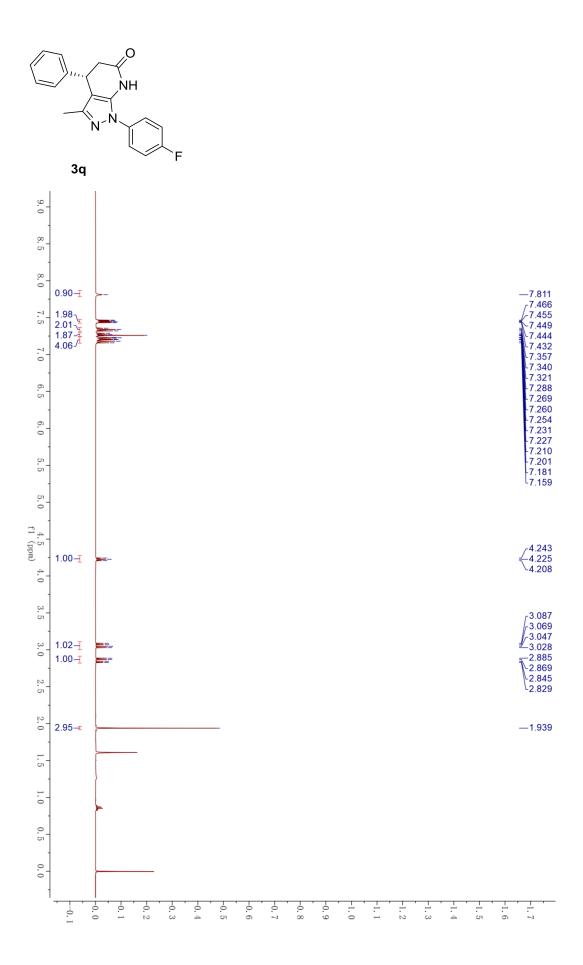


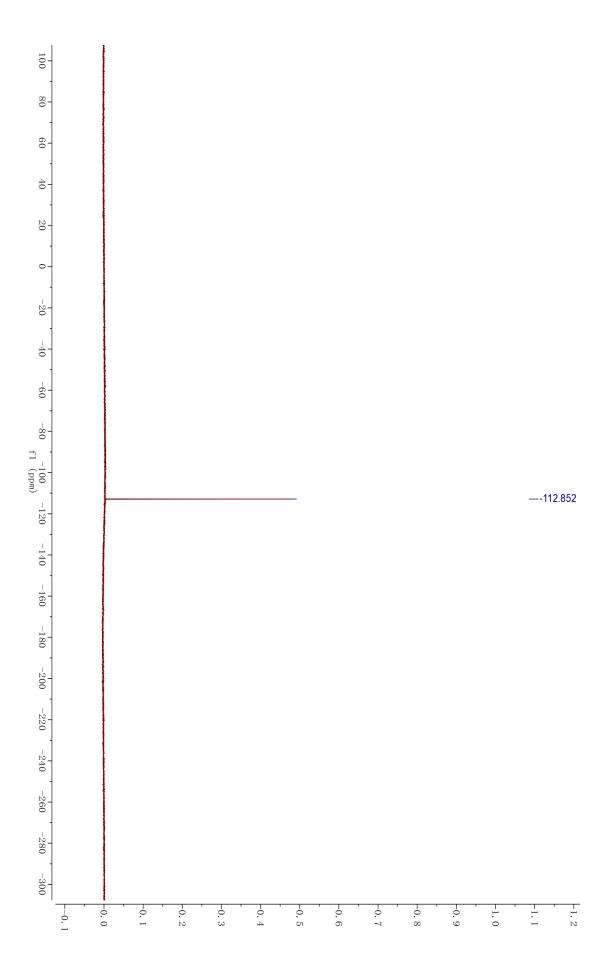


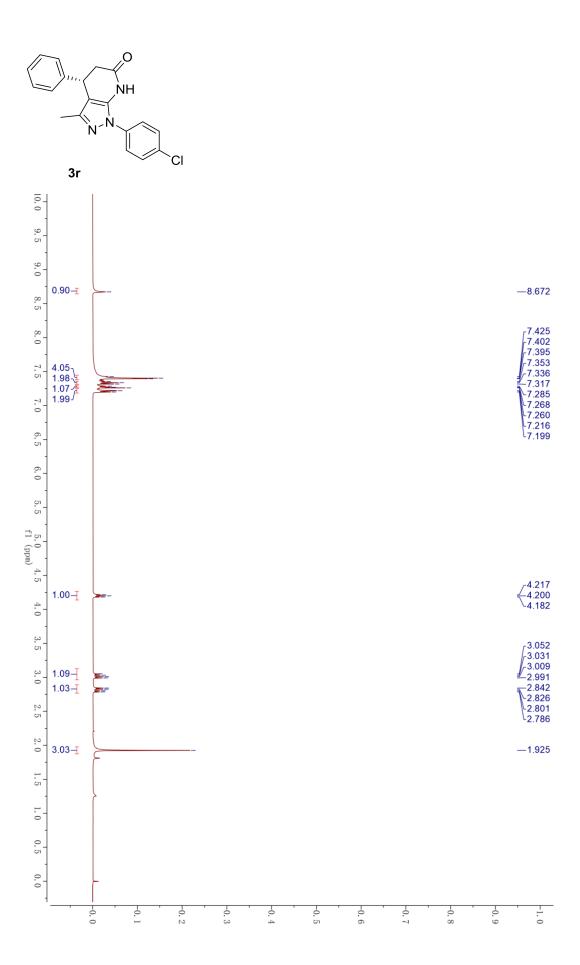


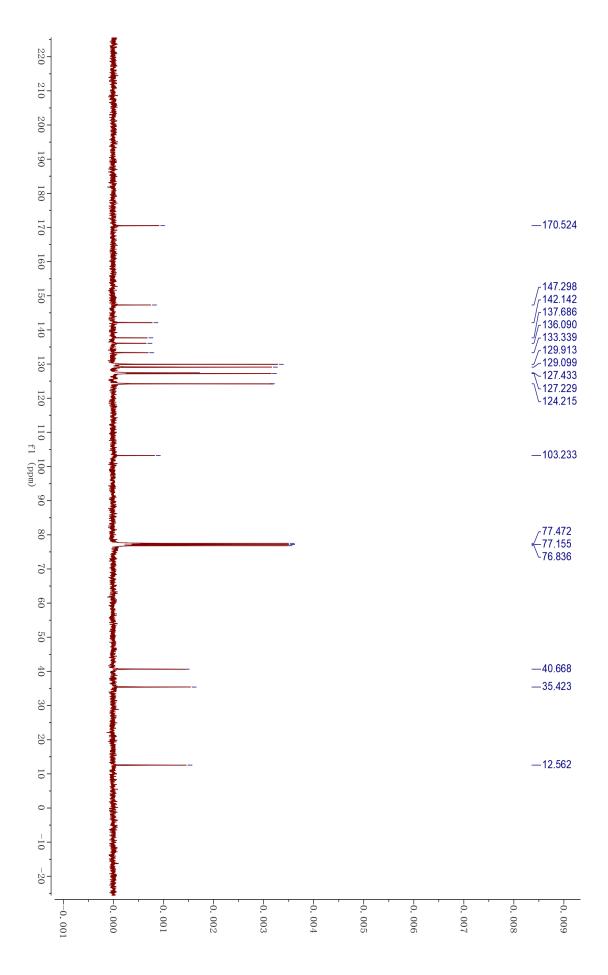


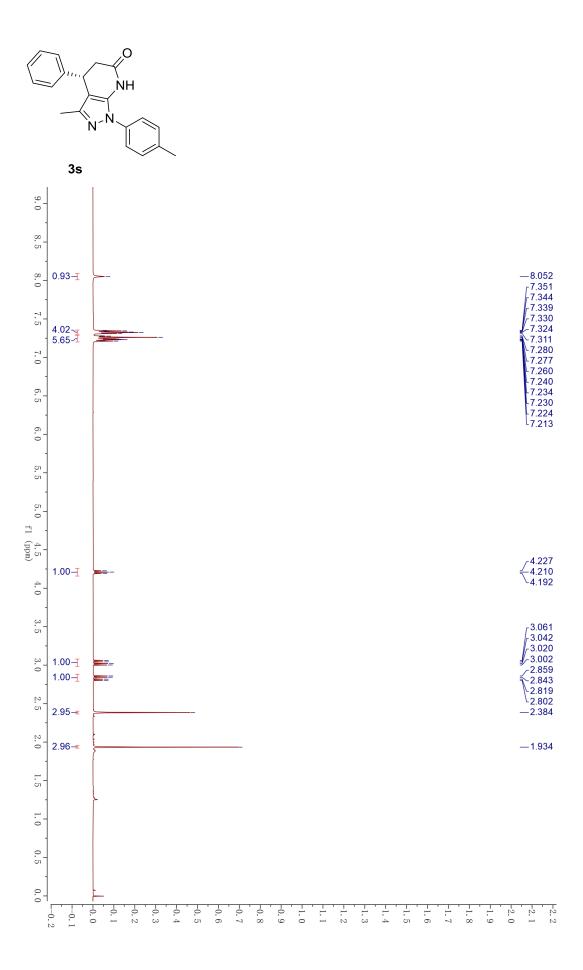


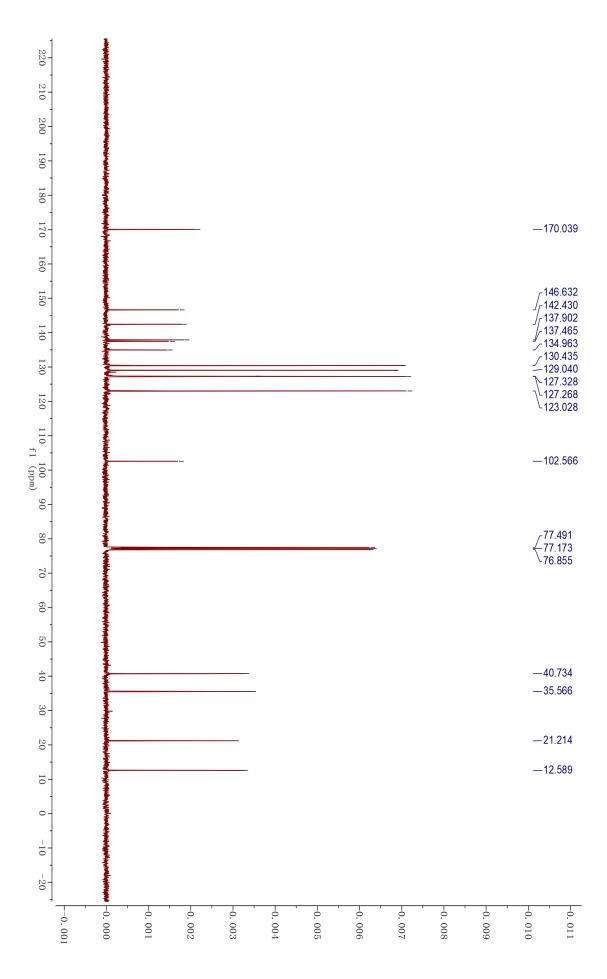


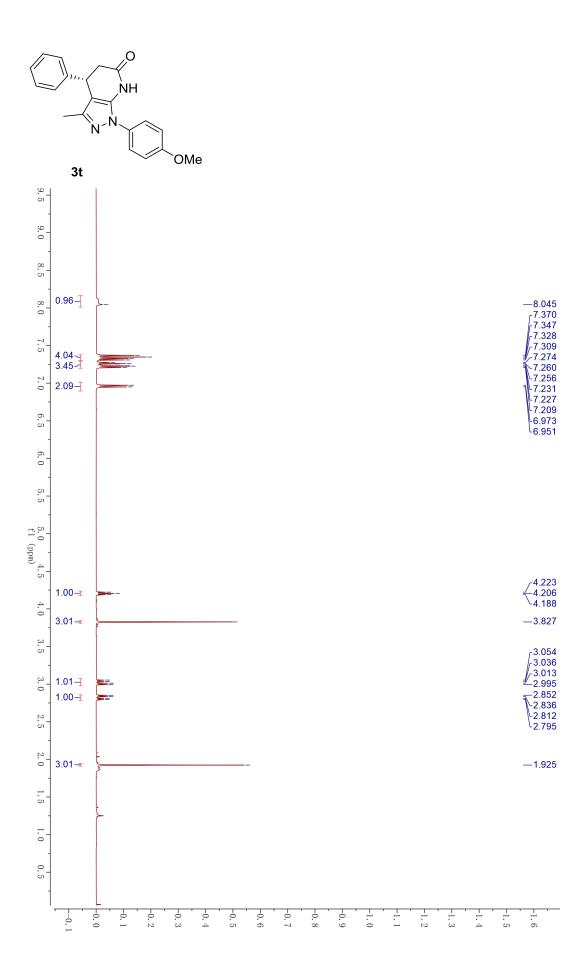


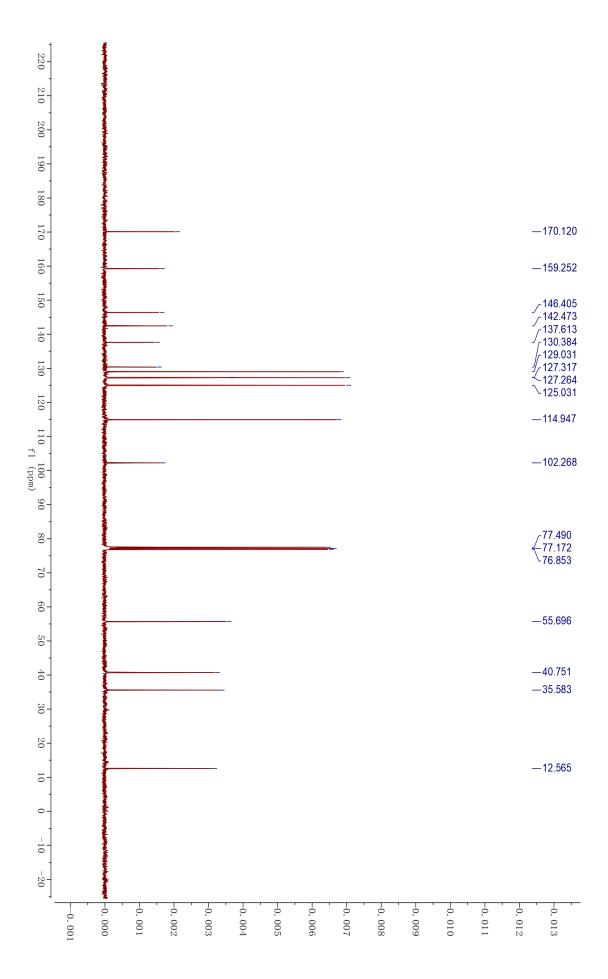


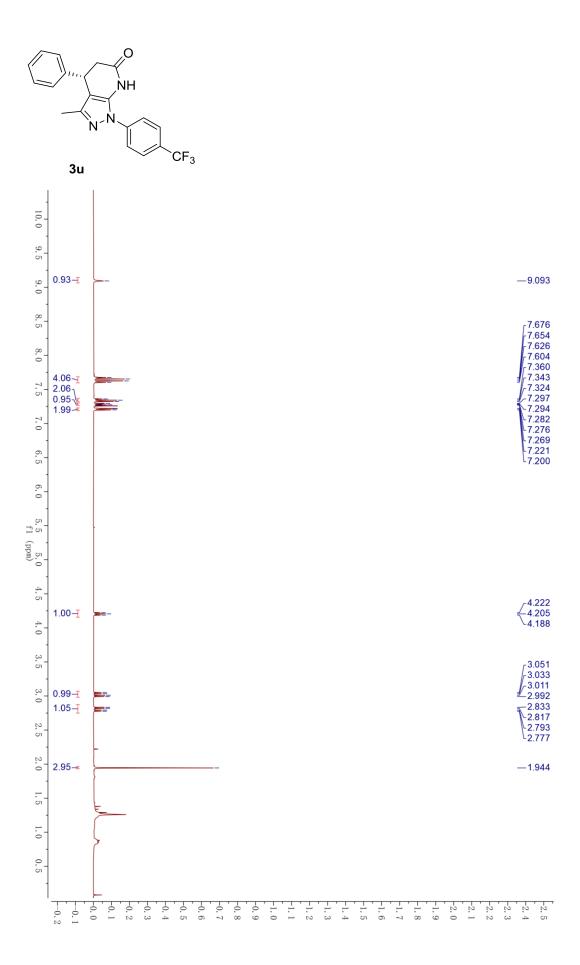


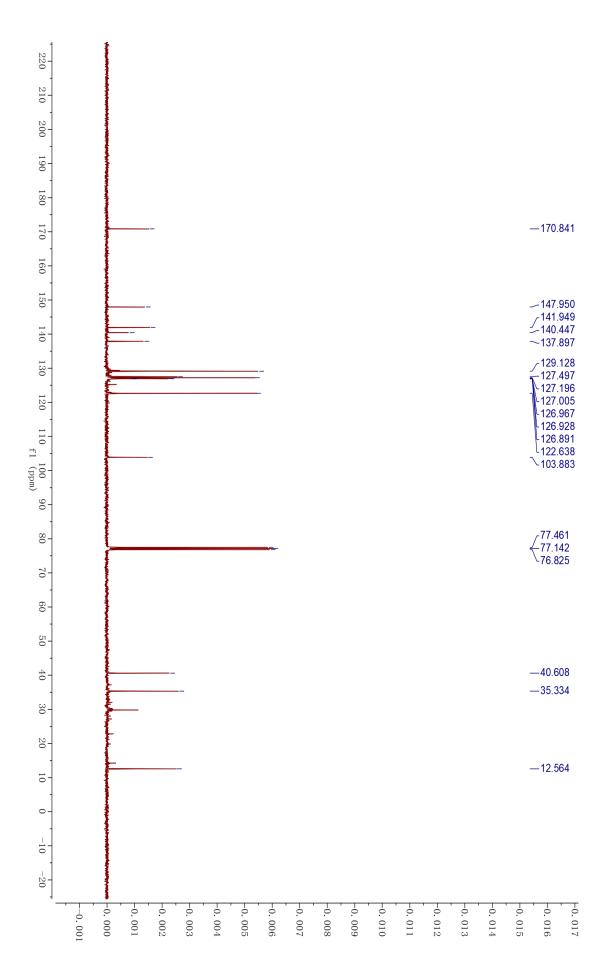


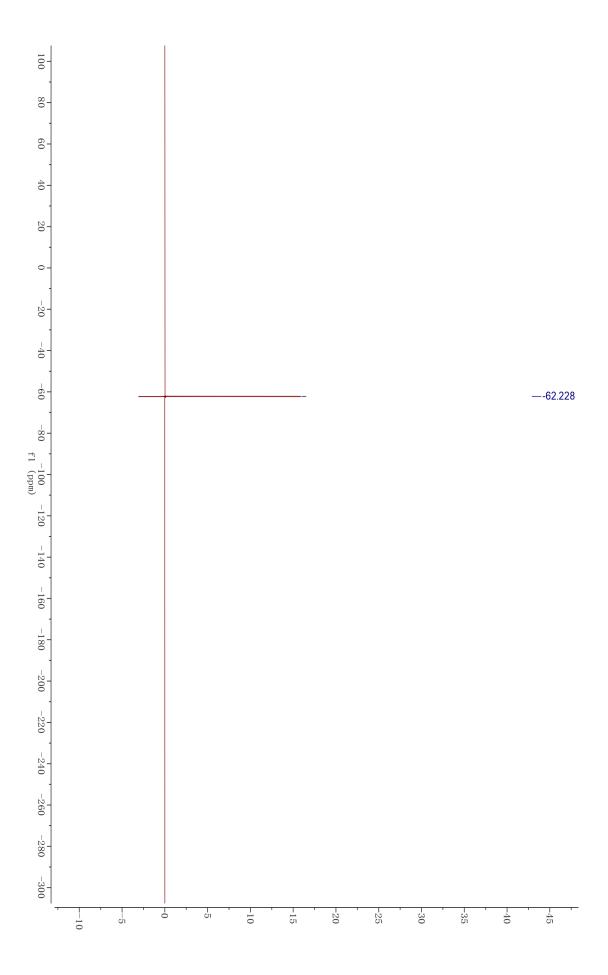


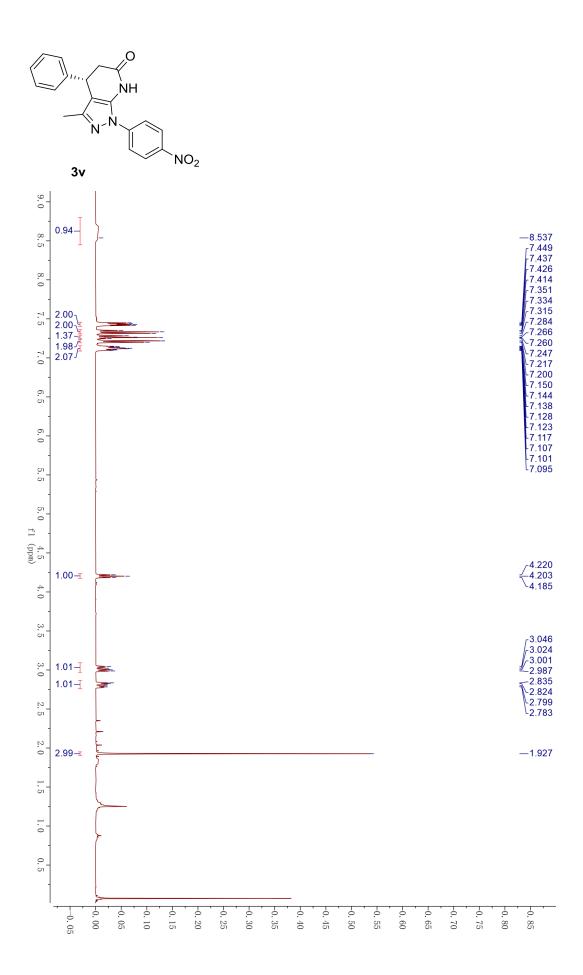


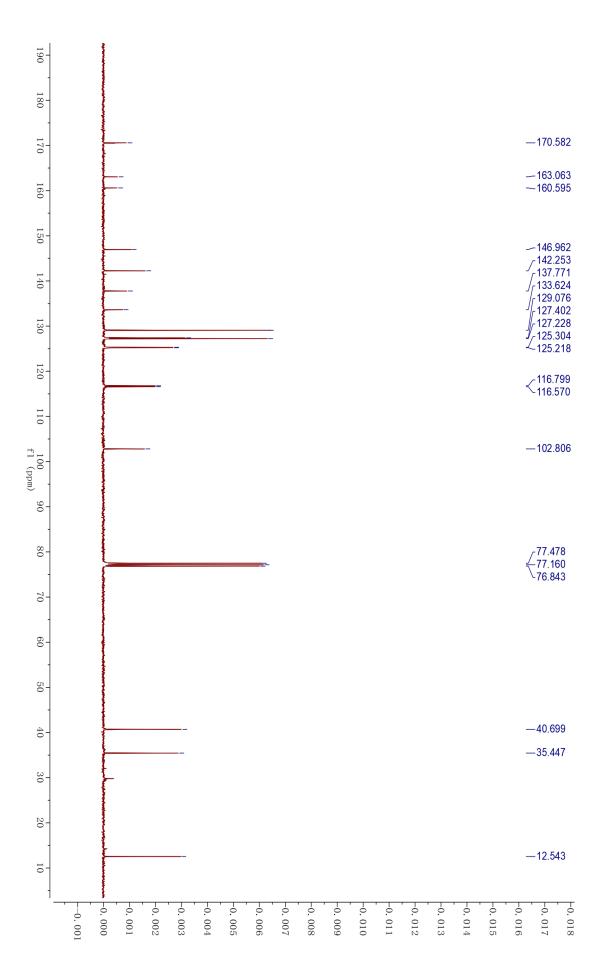


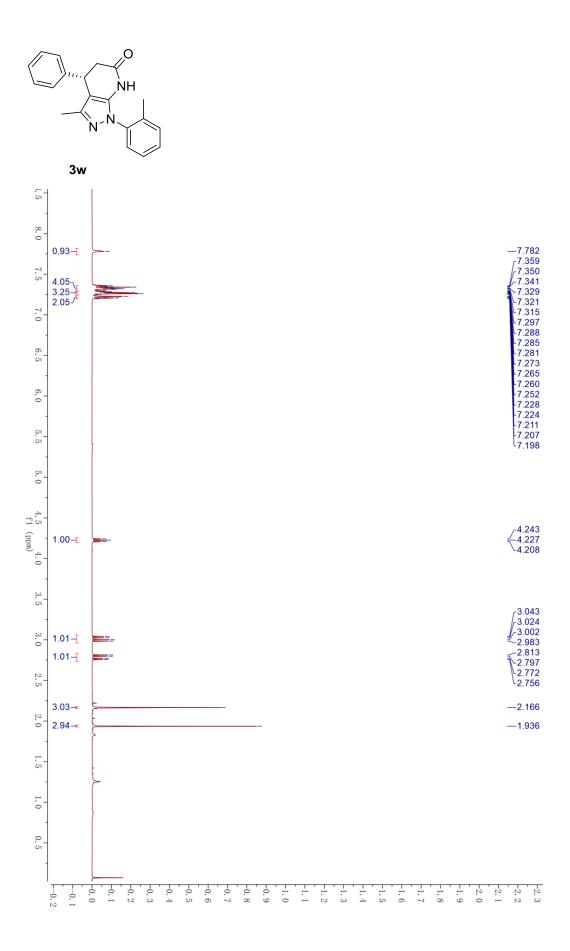


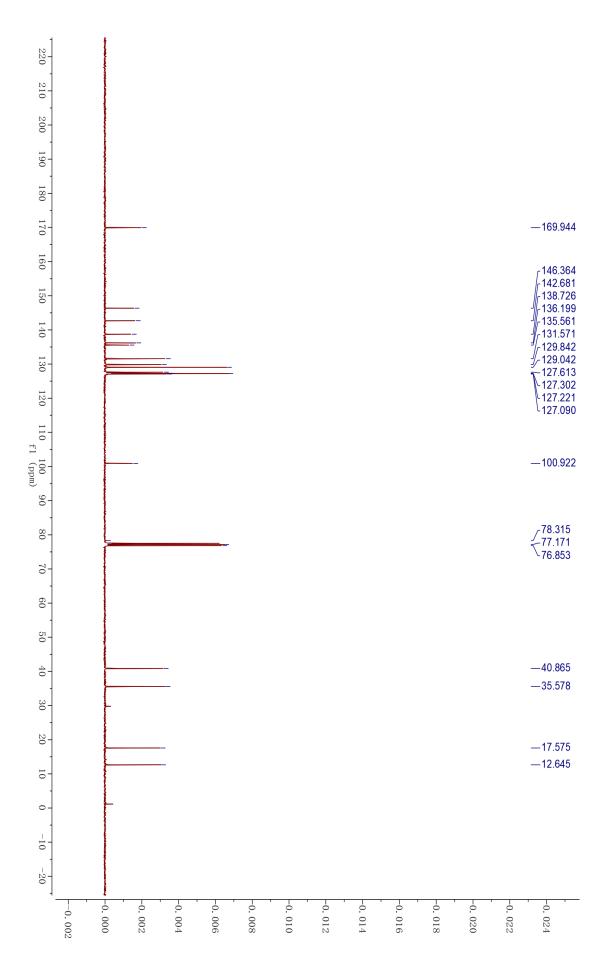


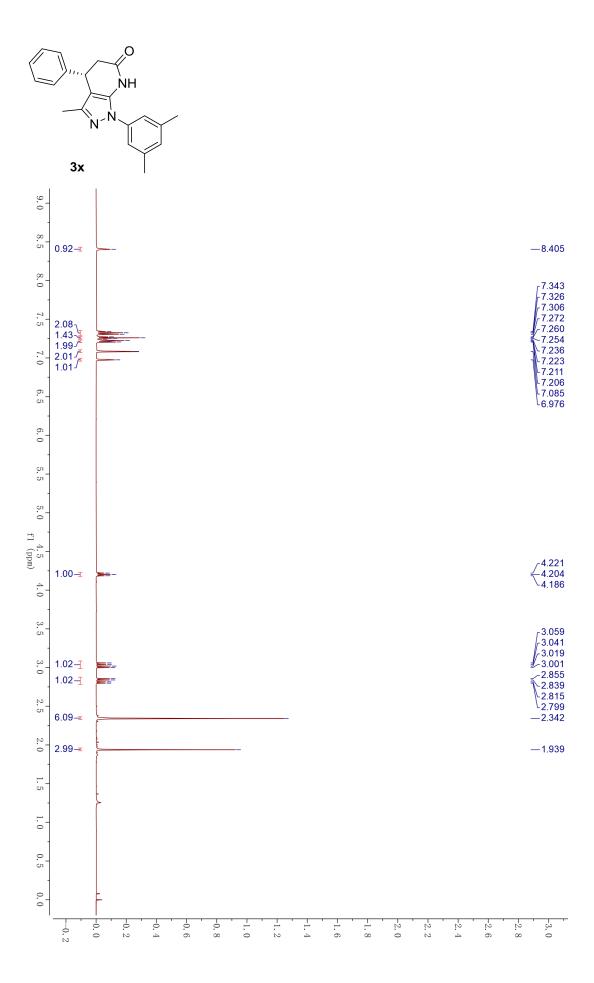


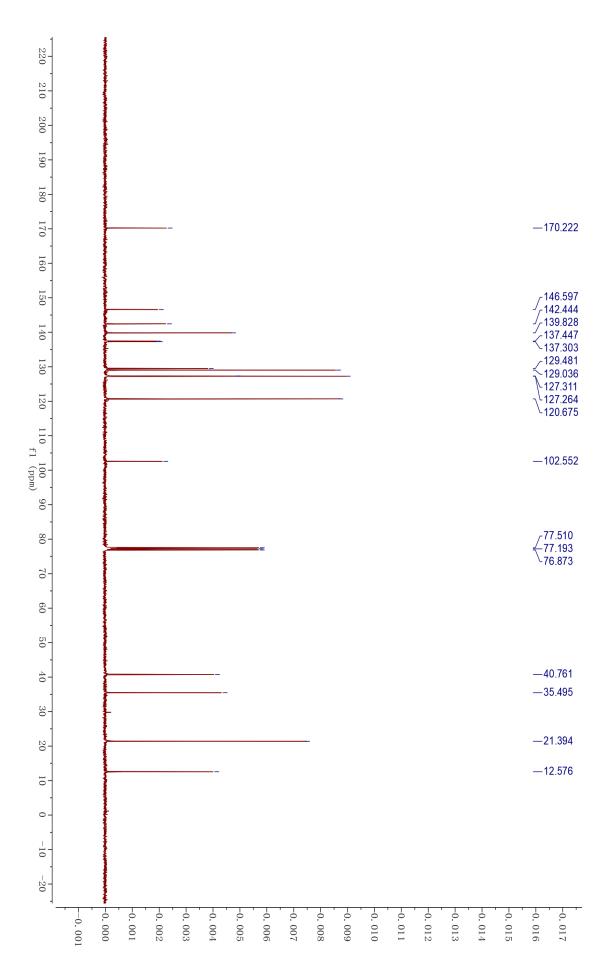


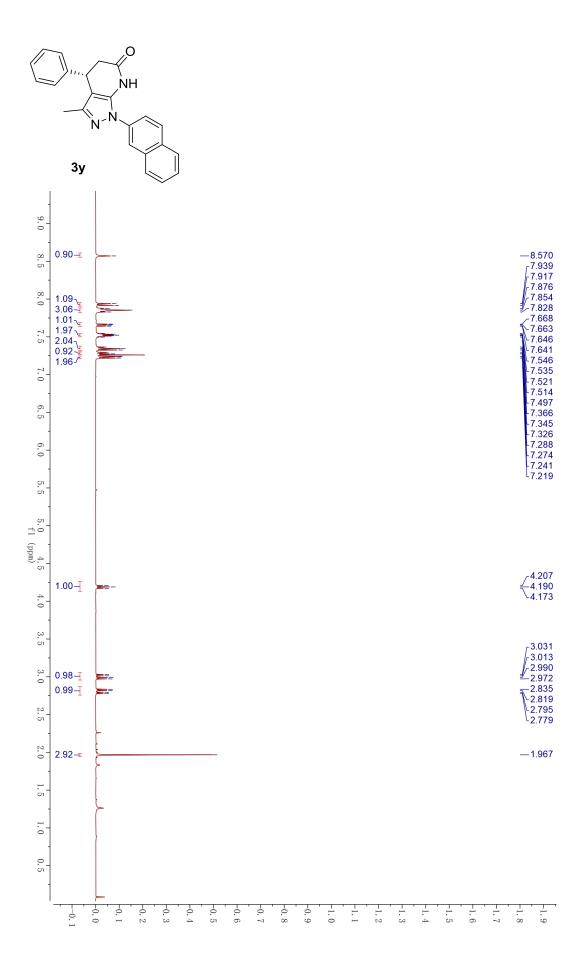


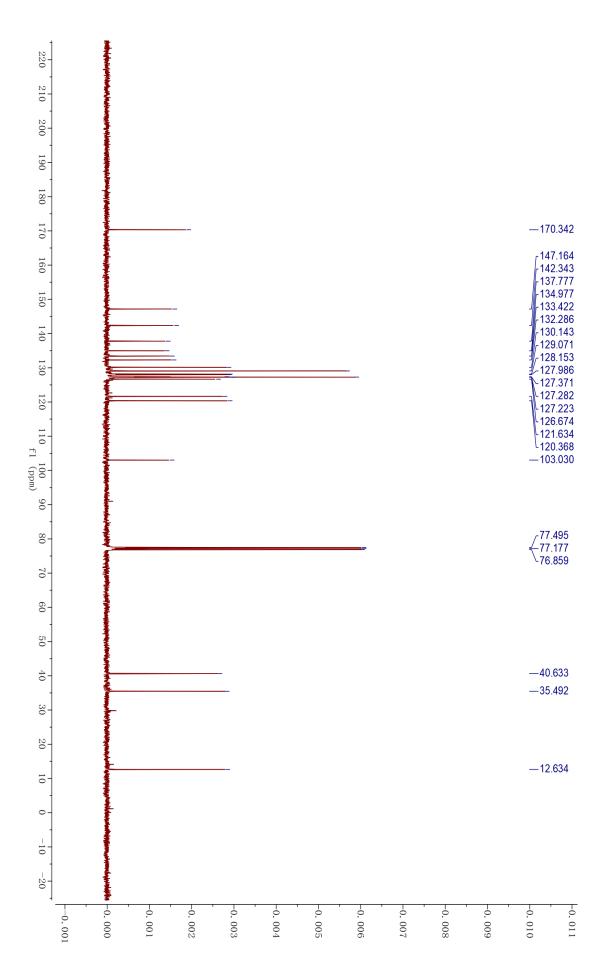


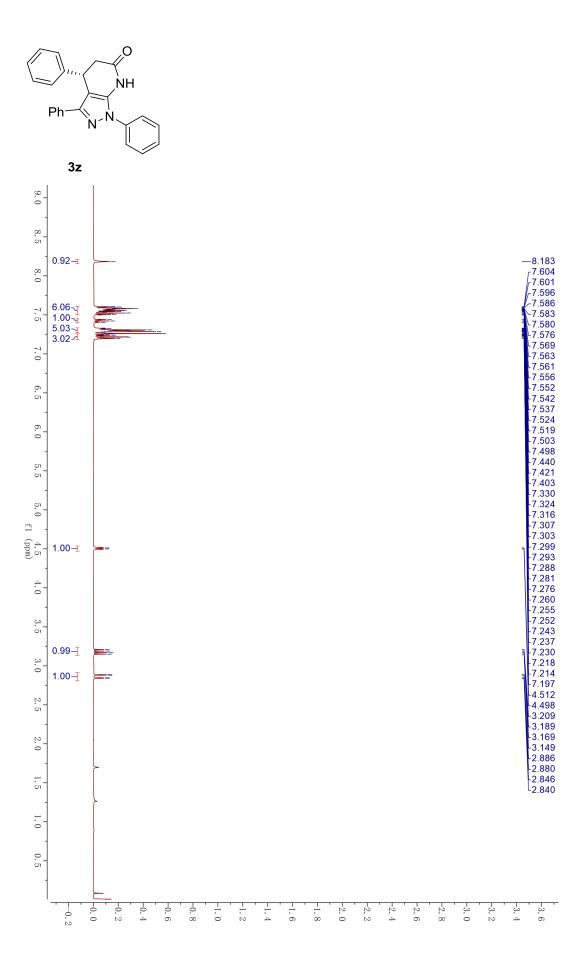


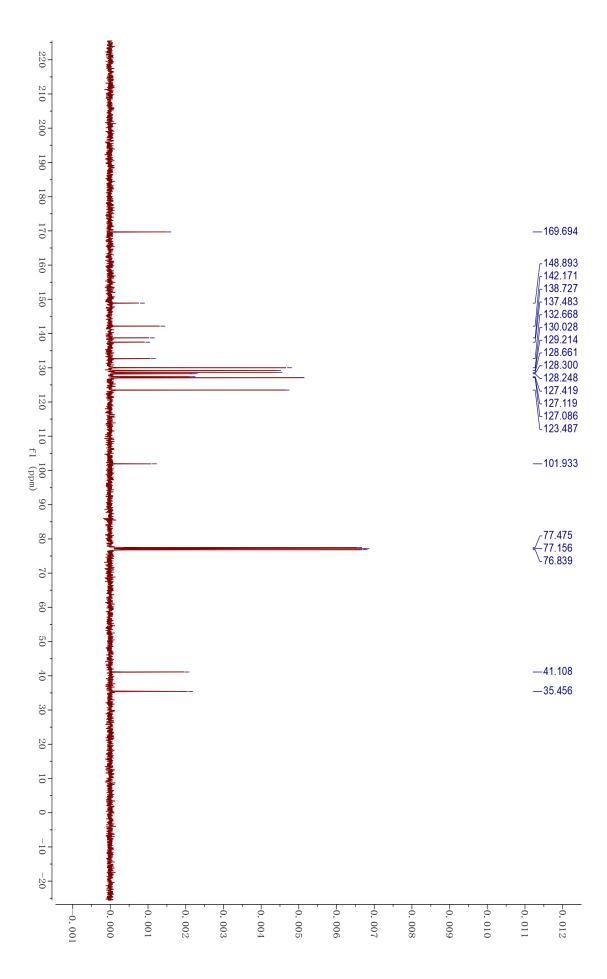


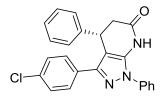


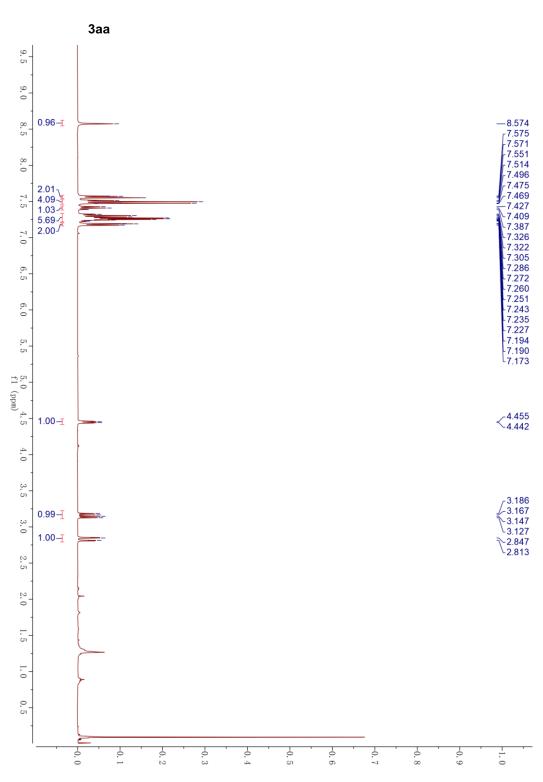


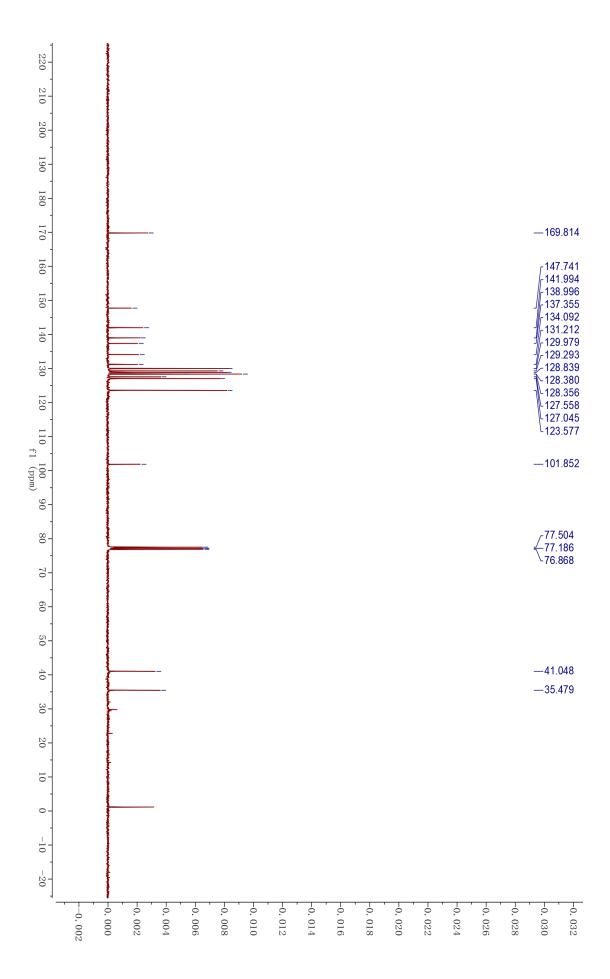


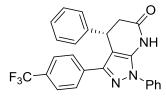


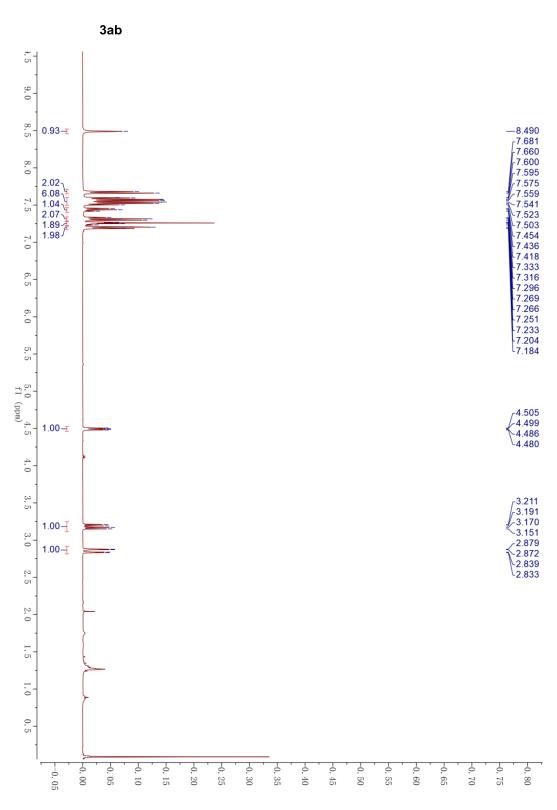


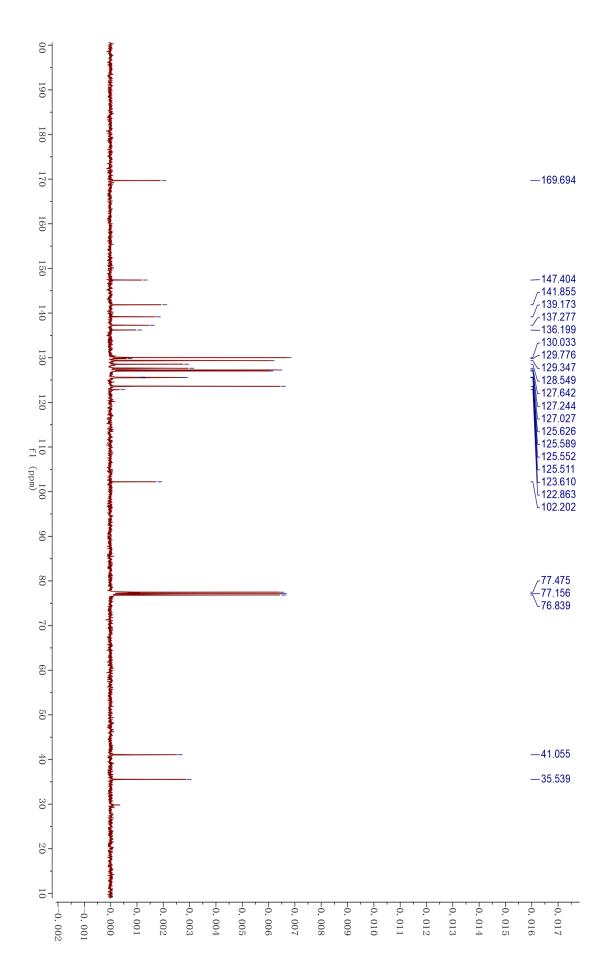


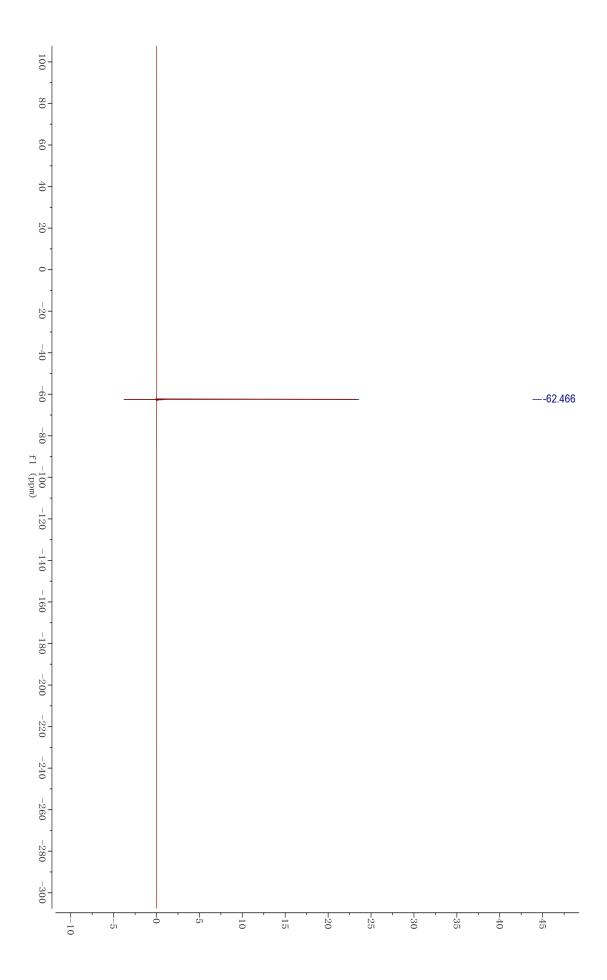


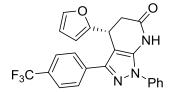


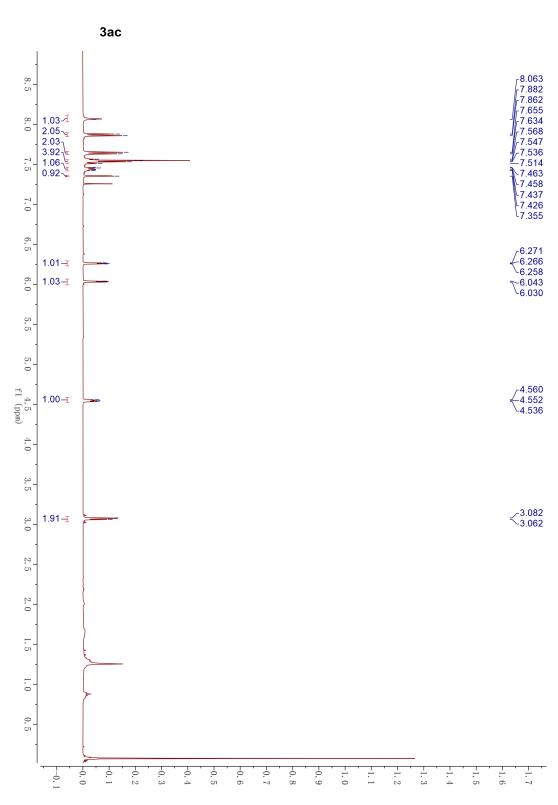


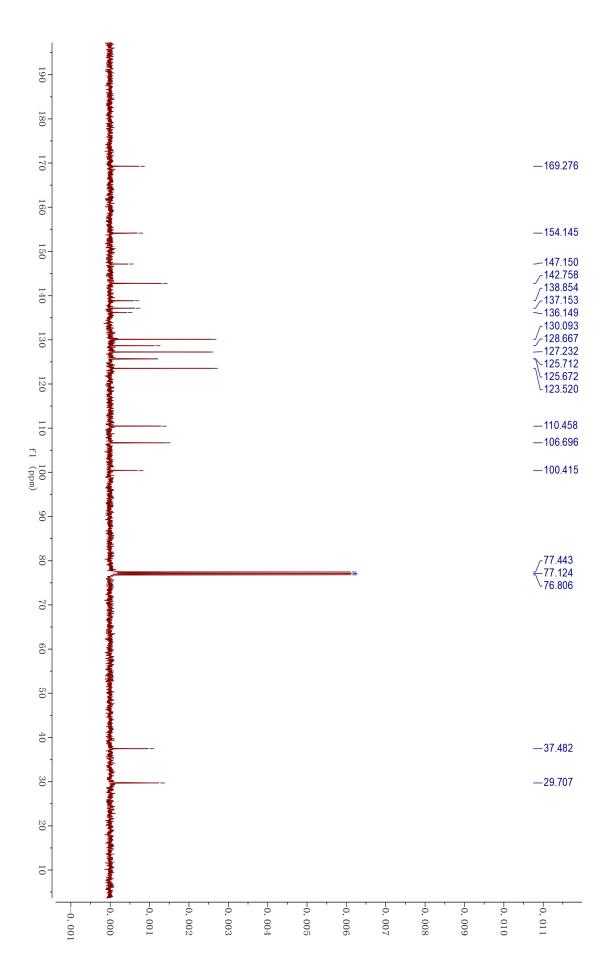


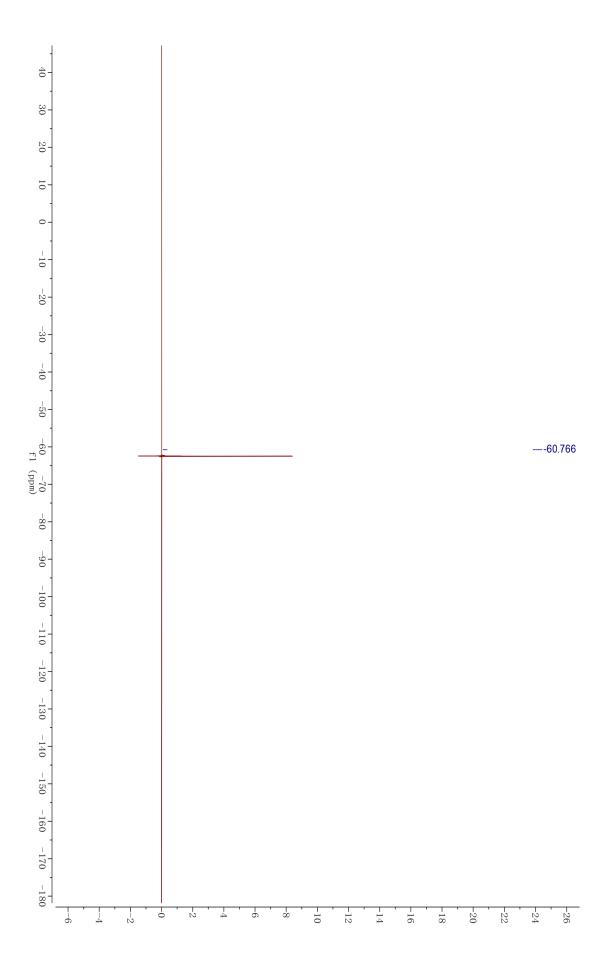


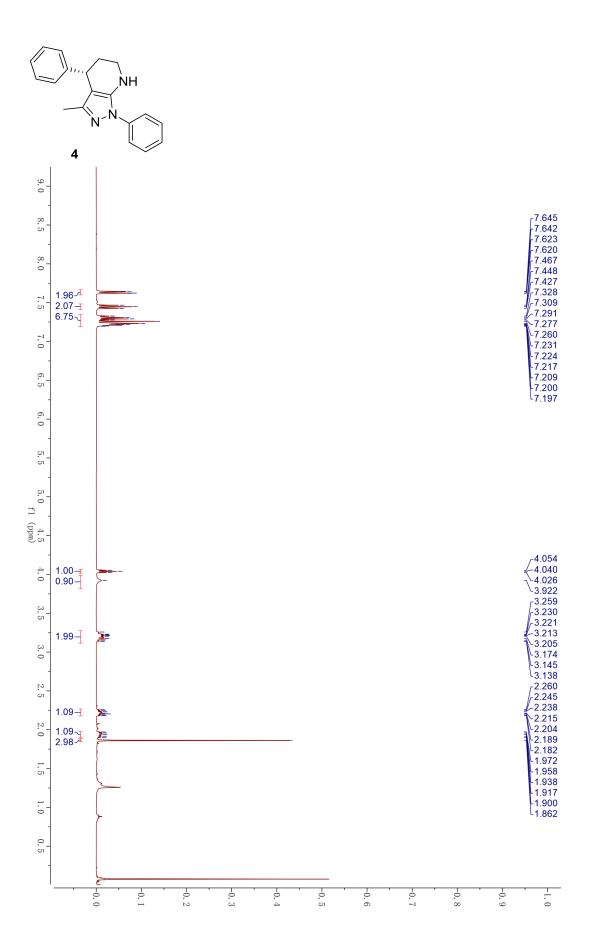


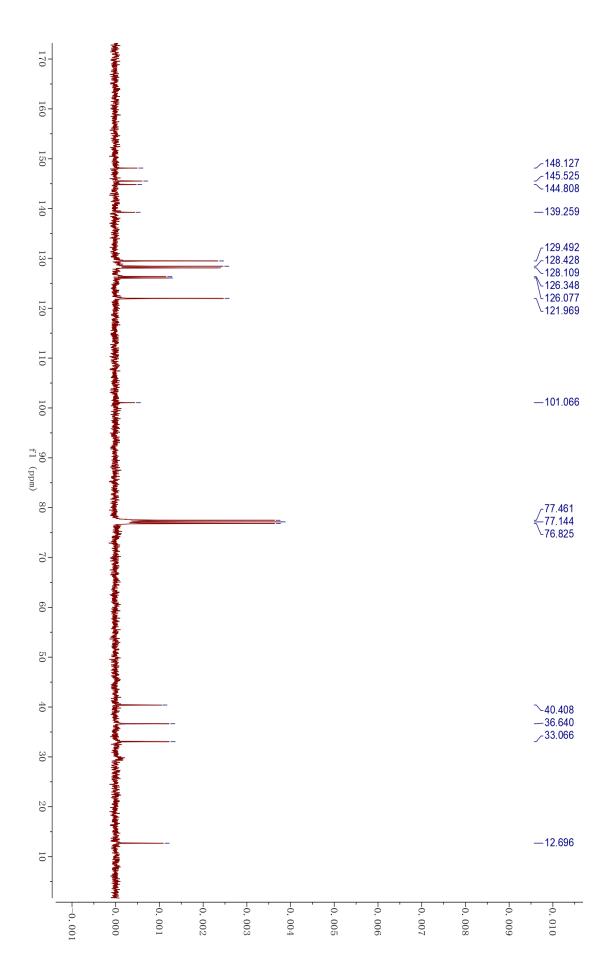


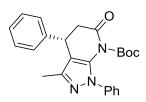


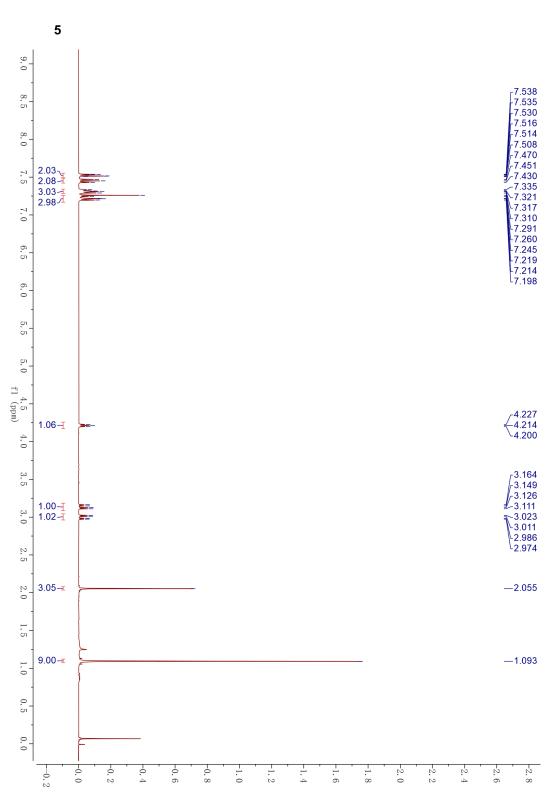


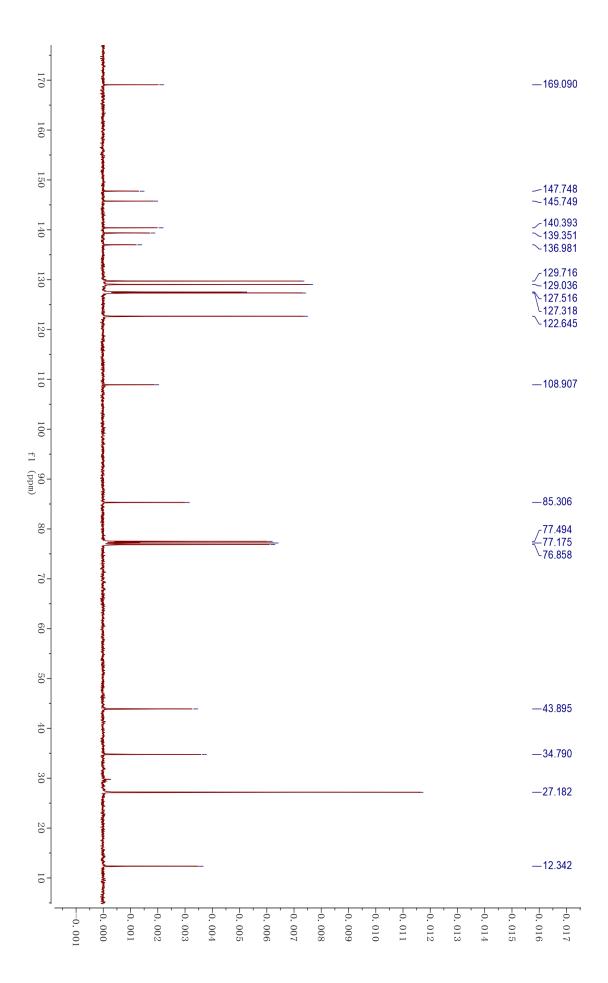


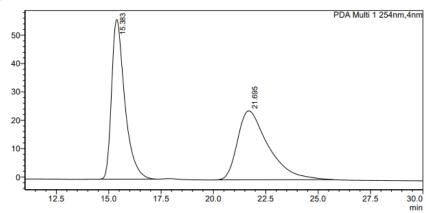




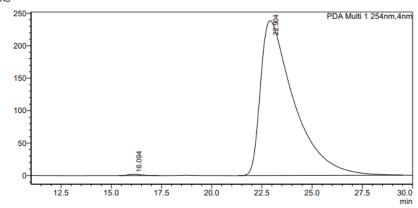








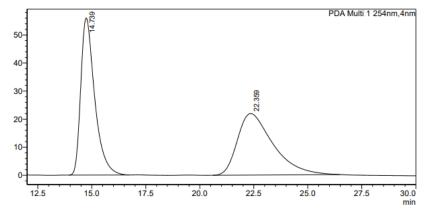
3a


<Chromatogram>

<Peak Table>

PDA C	h1 254nm			
Peak#	Ret. Time	Area	Area%	Height
1	15.383	2471915	49.783	56299
2	21.695	2493509	50.217	24324
Total		4965425	100.000	80623

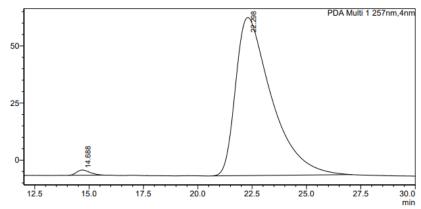
<Chromatogram>



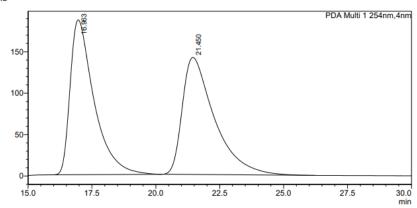
PDA C	h1 254nm			
Peak#	Ret. Time	Area	Area%	Height
1	16.094	94471	0.340	1981
2	22.904	27688174	99.660	238405
Total		27782645	100.000	240386

3b

<Chromatogram>

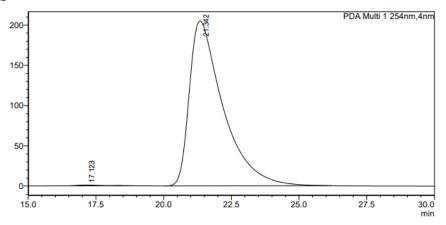

mAU

<Peak Table>


PDA C	h1 254nm			
Peak#	Ret. Time	Area	Area%	Height
1	14.739	2514109	49.982	55977
2	22.359	2515952	50.018	21914
Total		5030061	100.000	77891

<Chromatogram>

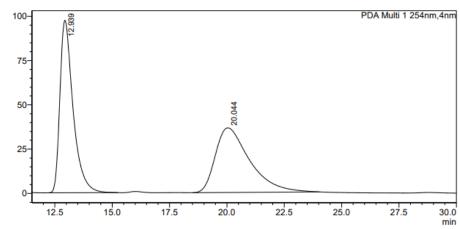
	h1 257nm			
Peak#	Ret. Time	Area	Area%	Height
1	14.688	96848	1.204	2280
2	22.298	7947392	98.796	69199
Total		8044240	100.000	71479


3с

<Peak Table> PDA Ch1 254nm

	n i 254nm			
Peak#	Ret. Time	Area%	Area	Height
1	16.963	49.489	12146340	186873
2	21.450	50.511	12397413	141304
Total		100.000	24543753	328177

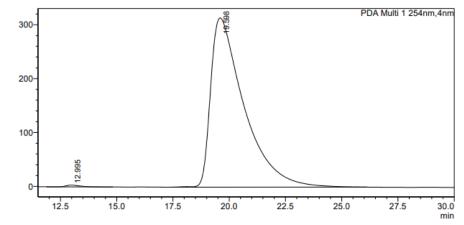
<Chromatogram>



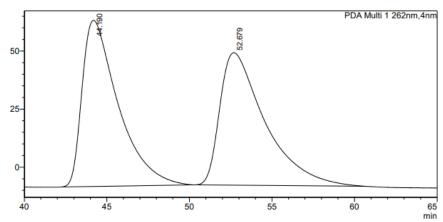
<Peak Table> PDA Ch1 254nm

Peak#	Ret. Time	Area	Area%	Height
1	17.123	75932	0.426	1020
2	21.342	17729493	99.574	204849
Total		17805425	100.000	205869

3d


<Chromatogram>

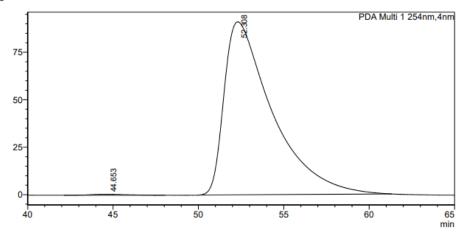
<Peak Table>


PDA C	h1 254nm			
Peak#	Ret. Time	Area	Area%	Height
1	12.939	3882343	50.502	97327
2	20.044	3805200	49.498	36528
Total		7687543	100.000	133855

<Chromatogram>

PDA C				
Peak#	Ret. Time	Area	Area%	Height
1	12.995	137234	0.422	3258
2	19.598	32408145	99.578	314129
Total		32545379	100.000	317387

mAU


<Peak Table>

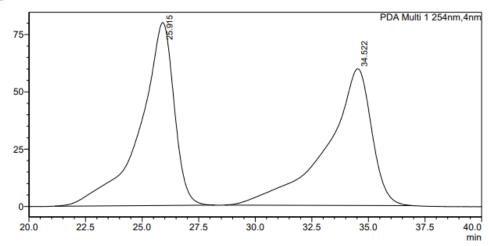
PDA Ch1 262nm

	111 20211111				
Peak#	Ret. Time	Area	Area%	Height	
1	44.190	10883016	50.104	71574	
2	52.679	10837623	49.896	56997	
Total		21720638	100.000	128571	

<Chromatogram>

mAU

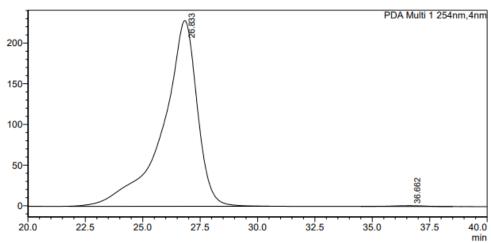
<Peak Table>


 PDA Ch1 254nm

 Peak# Ret. Time
 Area
 Area%
 Height

 1
 44.653
 66577
 0.371
 476

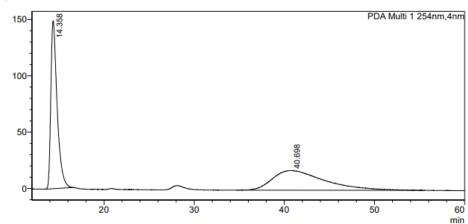
 2
 52.308
 17885868
 99.629
 91132


 Total
 17952445
 100.000
 91608

<Peak Table>

PDA C	h1 254nm			
Peak#	Ret. Time	Area	Area%	Height
1	25.915	8403156	50.276	79829
2	34.522	8310953	49.724	59661
Total		16714109	100.000	139490

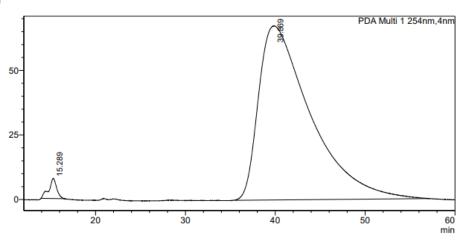
<Chromatogram>

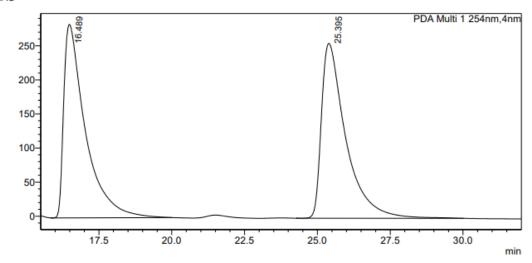

<Peak Table>

	\sim	111 20411111			
Pε	ak#	Ret. Time	Area	Area%	Height
	1	26.833	23945406	99.609	228249
	2	36.662	94048	0.391	991
	Total		24039454	100.000	229240

3g

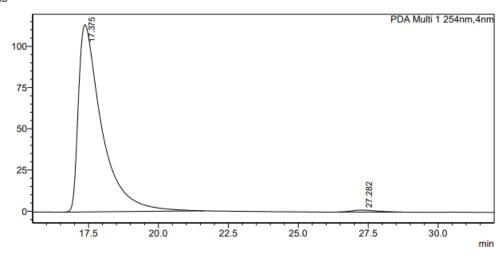
<Chromatogram>


mAU


<Peak Table>

PDA C	h1 254nm			
Peak#	Ret. Time	Area	Area%	Height
1	14.358	7248622	50.777	148941
2	40.698	7026713	49.223	17481
Total		14275335	100.000	166422

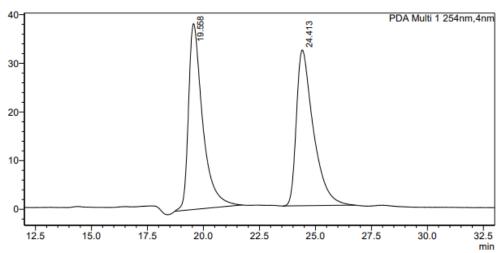
<Chromatogram>


PDA C	h1 254nm			
Peak#	Ret. Time	Area	Area%	Height
1	15.289	475230	1.721	7767
2	39.869	27145282	98.279	67381
Total		27620511	100.000	75148

<Peak Table>

Peak#	Ret. Time	Area	Area%	Height
1	16.489	14625466	49.507	283737
2	25.395	14916850	50.493	256435
Total		29542316	100.000	540172

mAU



<Peak Table>

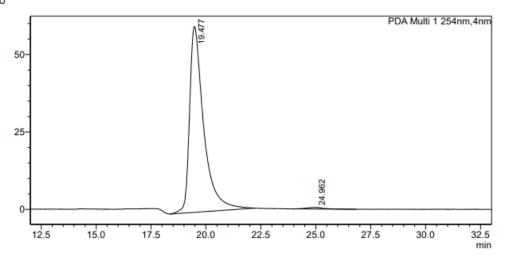
PDA C	h1 254nm			
Peak#	Ret. Time	Area	Area%	Height
1	17.375	6589700	98.915	113478
2	27.282	72268	1.085	1165
Total		6661968	100.000	114643

<Chromatogram>

mAU

<Peak Table>

 PDA Ch1 254nm

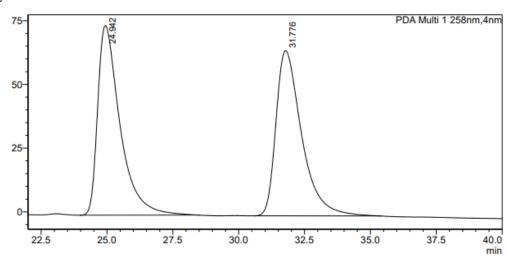

 Peak# Ret. Time
 Area
 Area%
 Height

 1
 19.558
 1680318
 49.927
 38168

 2
 24.413
 1685223
 50.073
 31994

 Total
 3365541
 100.000
 70161

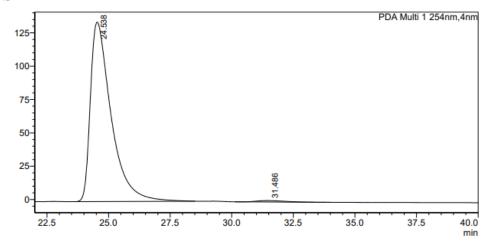
mAU


<Peak Table>

PDA Ch1 254nm

	111 20 111111			
Peak#	Ret. Time	Area	Area%	Height
1	19.477	2691159	98.923	59938
2	24.962	29312	1.077	504
Total		2720470	100.000	60442

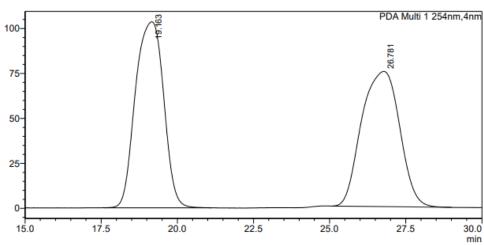
<Chromatogram>


mAU

<Peak Table>

FDA CITI ZOOIIIII					
	Peak#	Ret. Time	Area	Area%	Height
	1	24.942	4395929	49.932	74365
	2	31.776	4407868	50.068	64790
	Total		8803797	100.000	139155

mAU



<Peak Table>

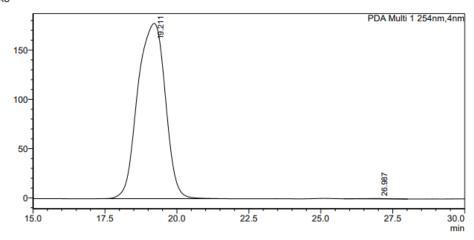
PDA C				
Peak#	Ret. Time	Area	Area%	Height
1	24.538	7893799	98.953	134576
2	31.486	83484	1.047	1062
Total		7977283	100.000	135638

<Chromatogram>

mAU

<Peak Table>

 PDA Ch1 254nm

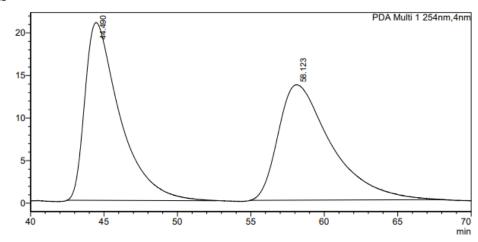

 Peak# Ret. Time
 Area
 Area%
 Height

 1
 19.163
 6685476
 50.533
 103400

 2
 26.781
 6544525
 49.467
 75170

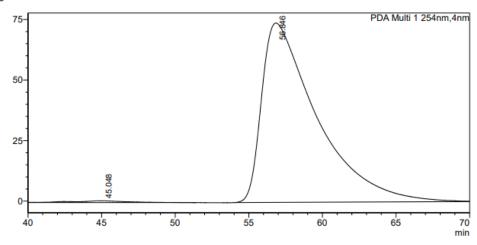

 Total
 13230001
 100.000
 178570

mAII

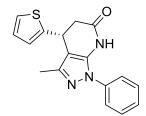

<Peak Table>

PDA C	h1 254nm			
Peak#	Ret. Time	Area	Area%	Height
1	19.211	11848568	99.831	177785
2	26.987	20116	0.169	331
Total		11868684	100.000	178116

<Chromatogram>

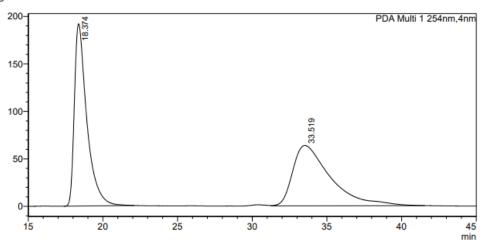

mAU

<Peak Table>

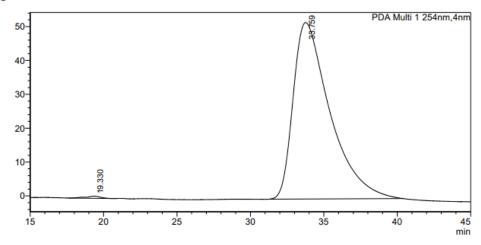

FUAC	111 23411111			
Peak#	Ret. Time	Area	Area%	Height
1	44.490	3460612	50.346	20882
2	58.123	3413061	49.654	13567
Total		6873674	100.000	34449

mAU

<Peak Table>


	h1 254nm			
Peak#	Ret. Time	Area	Area%	Height
1	45.048	201696	1.034	750
2	56.846	19304300	98.966	74045
Total		19505996	100.000	74796

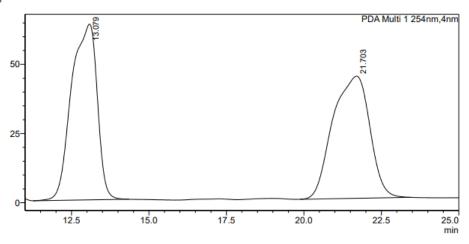
3m


<Chromatogram>

mAU

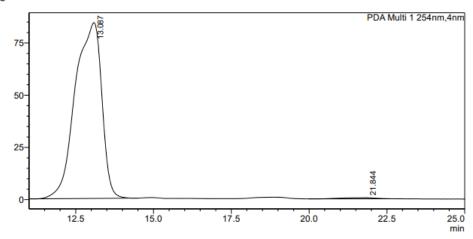
<Peak Table>

FDA CITI 204IIIII					
	Peak#	Ret. Time	Area	Area%	Height
	1	18.374	11137937	49.901	191963
	2	33.519	11182185	50.099	63653
	Total		22320122	100.000	255616



<Peak Table>

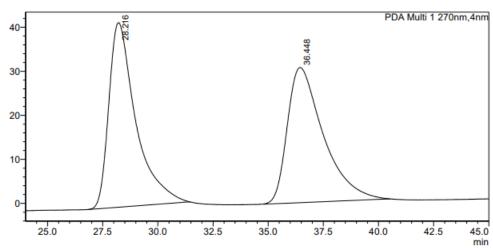
PDA Ch 1 254nm					
	Peak#	Ret. Time	Area	Area%	Height
	1	19.330	45994	0.504	666
	2	33.759	9077089	99.496	52107
	Total		9123083	100.000	52772


3n

<Chromatogram>

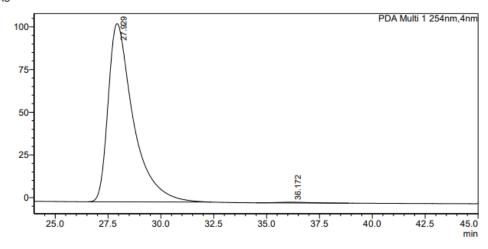
PDA Ch1 254nm					
	Peak#	Ret. Time	Area	Area%	Height
	1	13.079	3668116	50.005	63530
	2	21.703	3667389	49.995	44155
	Total		7335505	100.000	107685

mAU



<Peak Table>

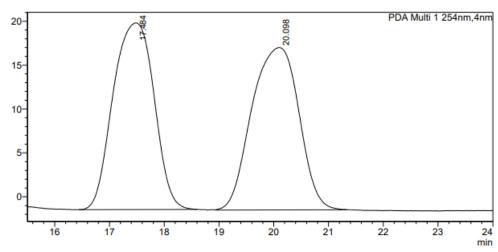
PDA C	PDA Ch1 254nm			
Peak#	Ret. Time	Area	Area%	Height
1	13.087	4992892	99.117	84204
2	21.844	44481	0.883	539
Total		5037373	100.000	84743


<Chromatogram>

mAU

PDA Ch1 270nm					
Peak#	Ret. Time	Area	Area%	Height	
1	28.216	3557125	50.490	41927	
2	36.448	3488036	49.510	30709	
Total		7045161	100.000	72636	

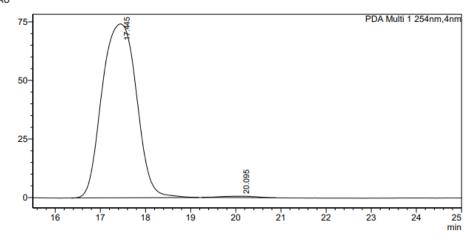
mAU


<Peak Table>

PDA Ch1 254nm				
Peak#	Ret. Time	Area	Area%	Height
1	27.929	8611178	99.474	104344
2	36.172	45541	0.526	446
Total		8656719	100.000	104790

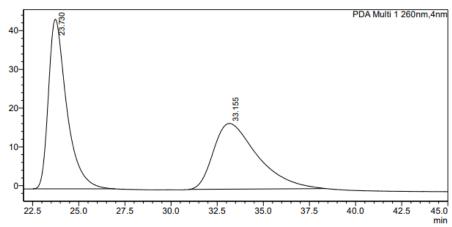
3р

<Chromatogram>


mAU

<Peak Table>

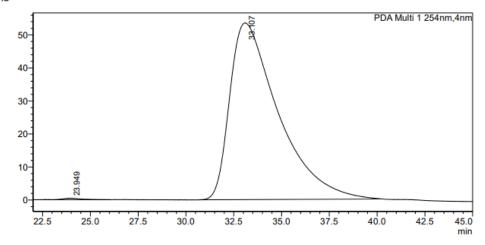
FDA CITT 254IIIII					
	Peak#	Ret. Time	Area	Area%	Height
	1	17.484	1108603	49.950	21268
	2	20.098	1110828	50.050	18512
	Total		2219430	100.000	39780


<Chromatogram> mAU

<Peak Table>

PDA C	h1 254nm			
Peak#	Ret. Time	Area	Area%	Height
1	17.445	3944562	99.159	74159
2	20.095	33461	0.841	631
Total		3978024	100.000	74790

<Chromatogram>

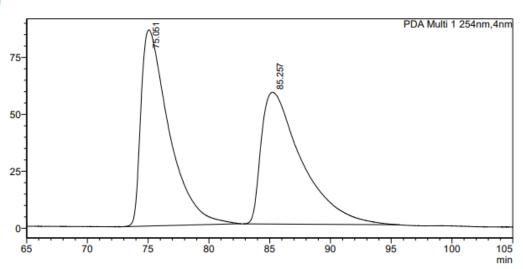


<Peak Table>

PDA Ch1 260nm

	111 20011111			
Peak#	Ret. Time	Area	Area%	Height
1	23.730	3020014	51.718	43749
2	33.155	2819360	48.282	16965
Total		5839375	100.000	60714

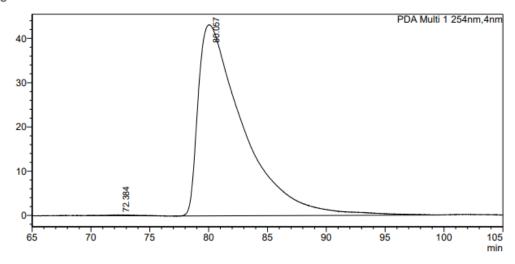
mAU


<Peak Table>

PDA Ch1 254nm

	111 20411111			
Peak#	Ret. Time	Area	Area%	Height
1	23.949	29528	0.311	432
2	33.107	9455836	99.689	53514
Total		9485364	100.000	53946

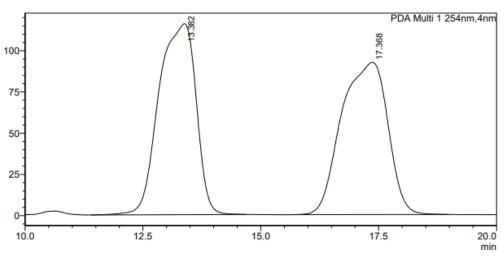
<Chromatogram>


mAU

<Peak Table>

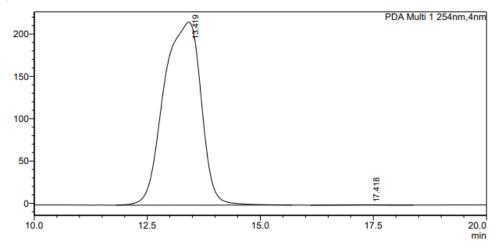
Peak#	Ret. Time	Area	Area%	Height
1	75.051	13844279	50.679	86099
2	85.257	13473499	49.321	57850
Total	·	27317778	100.000	143949

mAU


<Peak Table>

PDA Ch1 254nm

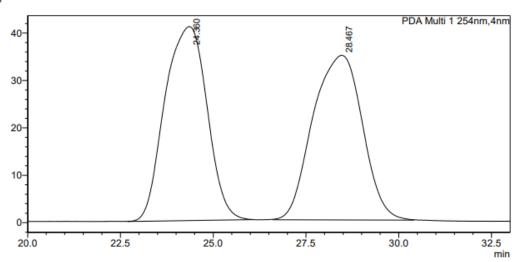
Peak#	Ret. Time	Area	Area%	Height
1	72.384	31333	0.272	180
2	80.057	11496837	99.728	43160
Total		11528170	100.000	43340


<Chromatogram>

mAU

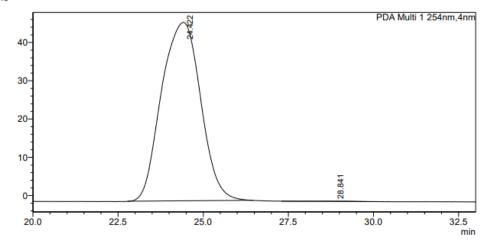
<Peak Table>

	111 20411111				
Peak#	Ret. Time	Area	Area%	Height	
1	13.382	6357659	50.202	115690	
2	17.368	6306450	49.798	92309	
Total		12664109	100.000	207999	



<Peak Table>

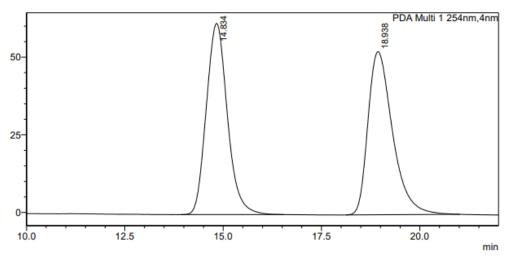
PDA Ch 1 254nm					
	Peak#	Ret. Time	Area	Area%	Height
	1	13.419	12367851	99.817	216289
	2	17.418	22701	0.183	376
	Total		12390552	100.000	216665


<Chromatogram>

mAU

	h1 254nm			
Peak#	Ret. Time	Area	Area%	Height
1	24.360	3242928	50.107	40902
2	28.467	3229109	49.893	34701
Total		6472037	100.000	75603

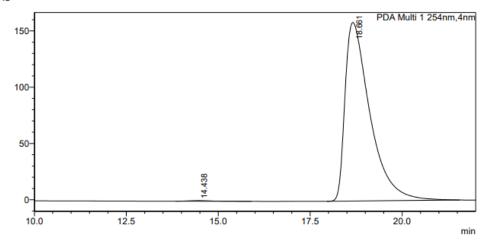
mAU



<Peak Table>

PDA C	h1 254nm			
Peak#	Ret. Time	Area	Area%	Height
1	24.422	3736950	99.853	46633
2	28.841	5484	0.147	92
Total		3742435	100.000	46725

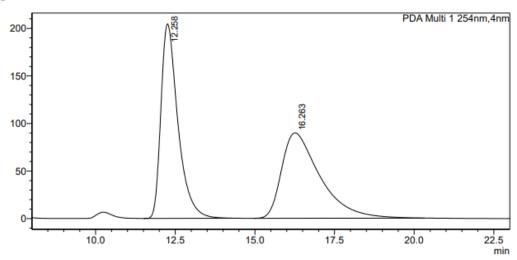
<Chromatogram>


mAU

<Peak Table>

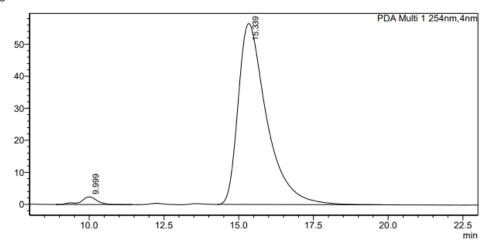
I DA OITI 204IIII					
	Peak#	Ret. Time	Area	Area%	Height
	1	14.834	2296713	50.134	61524
	2	18.938	2284434	49.866	52453
	Total		4581147	100.000	113977

mAU



<Peak Table>

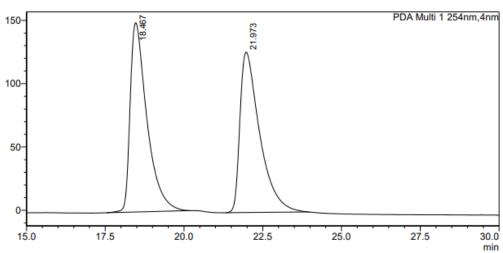
PDA C	h1 254nm			
Peak#	Ret. Time	Area	Area%	Height
1	14.438	25589	0.341	574
2	18.661	7486209	99.659	158602
Total		7511798	100.000	159175


<Chromatogram>

mAU

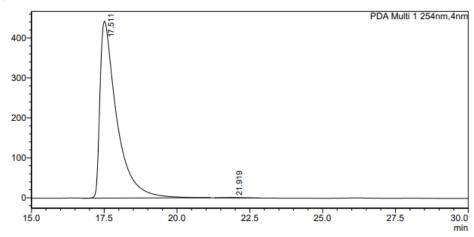
PDA Ch1 254nm					
	Peak#	Ret. Time	Area	Area%	Height
	1	12.258	7598966	50.239	204463
	2	16.263	7526595	49.761	89669
	Total		15125561	100.000	294133

<Chromatogram> mAU


<Peak Table> PDA Ch1 254nm

PDA C	n i 254nm			
Peak#	Ret. Time	Area	Area%	Height
1	9.999	92720	2.413	2404
2	15.339	3749413	97.587	56530
Total		3842134	100.000	58934

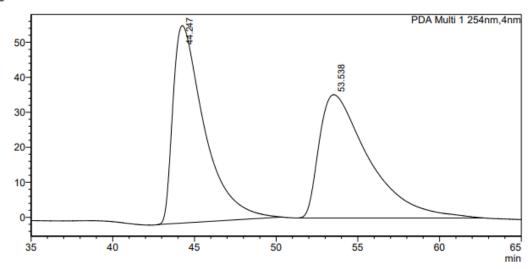
<Chromatogram>


3w

mAU

PDA C	h1 254nm			
Peak#	Ret. Time	Area	Area%	Height
1	18.467	5551204	50.087	149571
2	21.973	5531862	49.913	126732
Total		11083065	100.000	276303

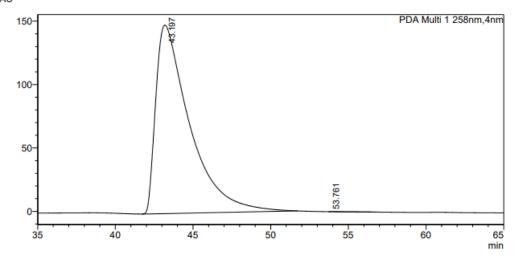
mAL



<Peak Table>

PDA	١C	h1 254nm			
Pea	k#	Ret. Time	Area	Area%	Height
	1	17.511	17708337	99.773	442506
	2	21.919	40221	0.227	847
To	tal		17748558	100.000	443354

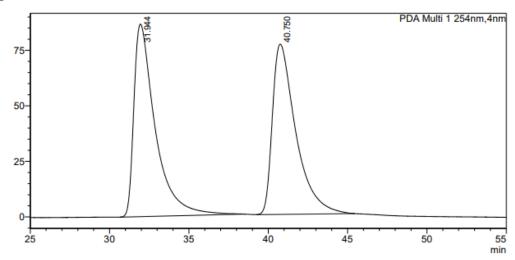
<Chromatogram>


mAU

<Peak Table>

Peak#	Ret. Time	Area	Area%	Height
1	44.247	7553116	50.373	56420
2	53.538	7441339	49.627	35224
Total		14994455	100.000	91644

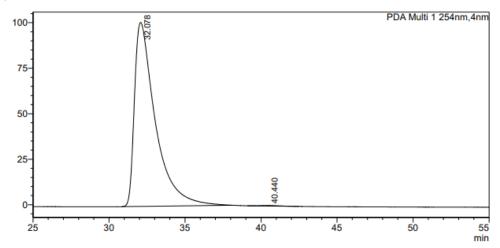
mAU


<Peak Table>

PDA Ch1 258nm

Peak#	Ret. Time	Area	Area%	Heiaht
1	43.197	22560969	99.975	148601
2	53.761	5737	0.025	3
Total		22566705	100.000	148604

<Chromatogram>

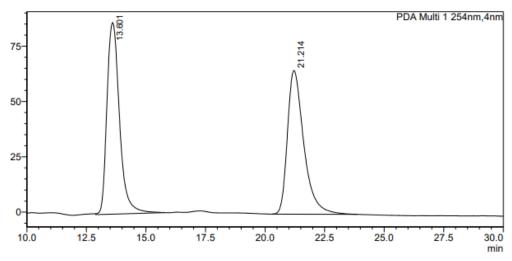

mAU

<Peak Table>

PDAC	n1 254nm			
Peak#	Ret. Time	Area	Area%	Height
1	31.944	8118664	50.837	86618
2	40.750	7851321	49.163	76621
Total		15969985	100.000	163240

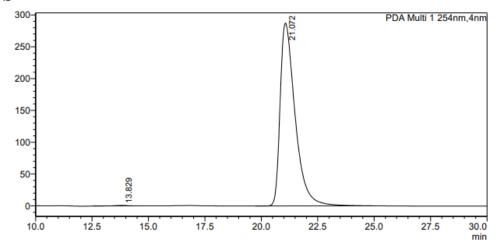
mAU

<Peak Table>


PDA Ch1 254nm

Peak#	Ret. Time	Area	Area%	Height
1	32.078	9648587	99.730	101092
2	40.440	26115	0.270	325
Total		9674703	100.000	101417

<Chromatogram>

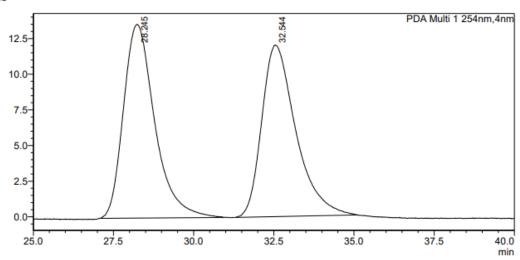

3z

mAU

PDA C	h1 254nm			
Peak#	Ret. Time	Area	Area%	Height
1	13.601	3174362	50.510	86631
2	21.214	3110238	49.490	64921
Total		6284600	100.000	151552

mAU

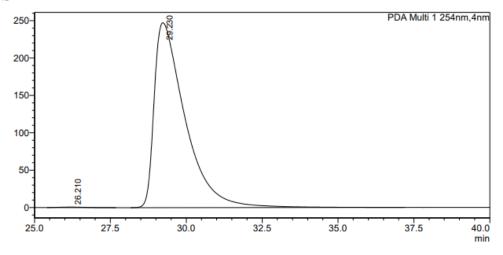
<Peak Table>


PDA Ch1 254nm

PDAG	HT 204HIII				
Peak#	Ret. Time	Area	Area%	Height	
1	13.829	35639	0.268	829	
2	21.072	13276800	99.732	287278	
Total		13312440	100.000	288107	

3aa

<Chromatogram>

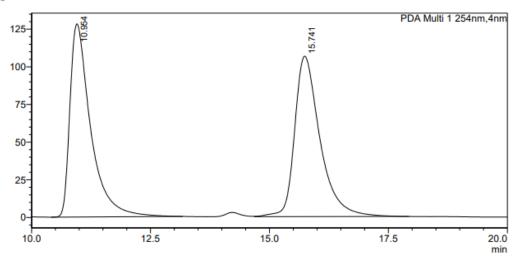

mAU

<Peak Table>

Peak#	Ret. Time	Area	Area%	Height
1	28.245	921229	50.857	13579
2	32.544	890190	49.143	12030
Total		1811418	100.000	25609

mAU

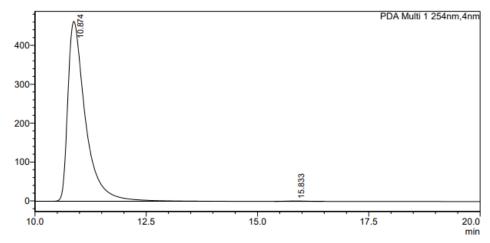
<Peak Table>


PDA Ch1 254nm

	111 23411111				
Peak#	Ret. Time	Area	Area%	Height	
1	26.210	37497	0.214	660	
2	29.230	17524854	99.786	247341	
Total		17562351	100.000	248001	

3ab

<Chromatogram>

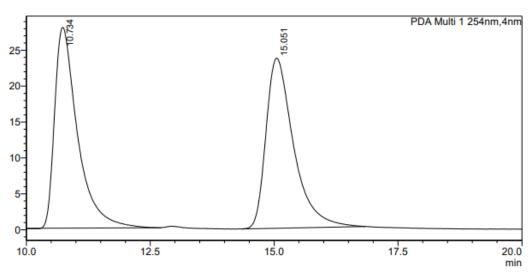

mAU

<Peak Table>

PDA CHT 254HM					
	Peak#	Ret. Time	Area	Area%	Height
	1	10.954	3885168	49.554	128222
	2	15.741	3955114	50.446	106498
	Total		7840282	100.000	234720

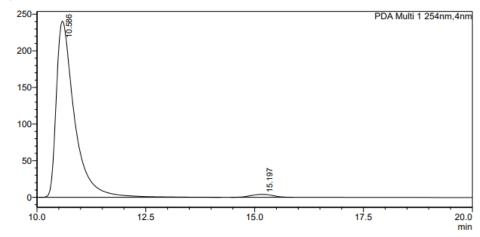
mAU

<Peak Table>


PDA Ch1 254nm

Peak#	Ret. Time	Area	Area%	Height		
1	10.874	12704409	99.754	462468		
2	15.833	31332	0.246	1002		
Total		12735741	100.000	463470		

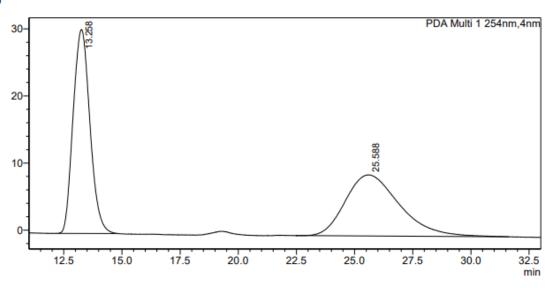
Зас


<Chromatogram>

mAU

<Peak Table>

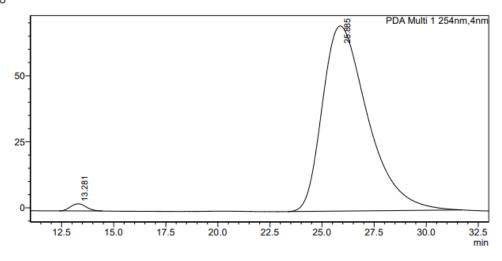
FUAG	111 23411111				
Peak#	Ret. Time	Area	Area%	Height	
1	10.734	900652	49.479	27962	
2	15.051	919611	50.521	23692	
Total	·	1820262	100.000	51655	


<Peak Table>

PDA Ch1 254nm

	111 20411111			
Peak#	Ret. Time	Area	Area%	Height
1	10.586	6982109	98.051	240462
2	15.197	138805	1.949	3925
Total		7120914	100.000	244386

<Chromatogram>

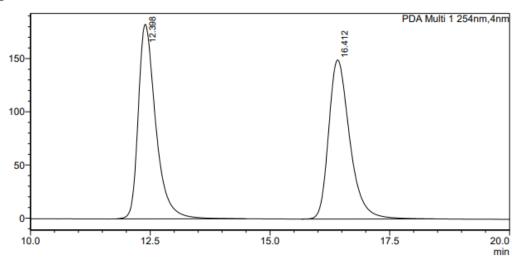

mAU

<Peak Table>

Peak#	Ret. Time	Area	Area%	Height
1	13.258	1526313	50.907	30399
2	25.588	1471900	49.093	9108
Total		2998213	100.000	39507

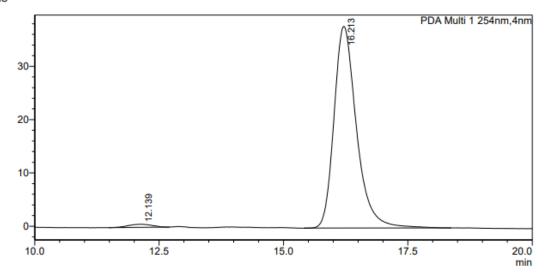
mAU

<Peak Table>


PDA Ch1 254nm

	7111 ZUTIIII			
Peak#	Ret. Time	Area	Area%	Height
1	13.281	140287	1.305	2708
2	25.885	10609471	98.695	70079
Tota	I	10749758	100.000	72787

5


<Chromatogram>

mAU

FUAG	111 20411111			
Peak#	Ret. Time	Area	Area%	Height
1	12.398	4652174	50.321	182915
2	16.412	4592839	49.679	149562
Total		9245014	100.000	332477

mAU

P	D	Α	CI	h1	254	lnm

PDA CITT 254HIII					
	Peak#	Ret. Time	Area	Area%	Height
	1	12.139	19513	1.611	603
	2	16.213	1191912	98.389	37840
	Total		1211425	100.000	38443