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Table S1: Comparison table between literature approaches for the synthesis of                

phenanthrone derivatives and this strategy 

Reaction and reference Remarks 

Previous Approaches:  

 
                   
                           Z. Chen, B. Tang & Co-workers, Org. Lett. 2022, 24, 2087–2092 

R2, R3 = alkyl or 
cycloalkyl 
-Cu-salts needed 
along with the metal 
catalyst & 
-Reaction proceeds 
at higher 
temperature  

 
 

C. -H. Cheng & Co-workers, J. Am. Chem. Soc. 2010, 132, 8569–8571 

R = Me, cycloalkyl 
 
It requires metal 
catalyst along with 
the oxidant at higher 
temperatures. 

 
 
 

J. -Q. You & Co-workers, J. Am. Chem. Soc., 2008, 130, 17676–17677 

 
R = Me 
 
Metal catalyst along 
with the oxidant in 
Oxygen atmosphere 
is obligatory, also 
higher temperatures 
and long-time span 
for the reaction to 
proceed. 

 
 
 

Y. -Y. Yeung & Co-workers, ACS Catal. 2017, 7, 4435–4440 

 
R = Me,Aryl, 
Naphthyl 
 
Substituted 9-
fluorenones are 
needed to prepare 
the starting 
materials 

 
 

Z. Bin, J. You & Co-workers, Chem. Sci., 2023, 14, 5125-5131 
 
 
 

 
R2, R3= Me, Aryl and 
cyclo alkyl 
 
Oxidant, metal 
catalyst as well as 
additives are needed  
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P. Li &Co-workers,Asian J. Org. Chem., 2022, 11, e202200269 

 

 
Langlois’ reagent in 

presence of 

molecular oxygen 

(O2) in air is 

essential 

 
                               P. Li &Co-workers, Org. Biomol. Chem., 2023,21, 4018-4021 

R= alkyl, aryl 
 
Microwave 
accelerated 
transformation at 
higher temperature 

THIS WORK:  

 

 

-Oxidant at 80 oC  

-Photocatalyst at 

Room temperature  

Unprecedented  
Thiofunctionalized 
phenanthrones  
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2. Structures of starting materials 1 and 2 

 All the Starting materials (1a, 1c, 1d, 1g, 1j,1u,1v)
8(a,b),17

 were prepared based on literature 

reports, and the spectral data was compared. 
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- Visual representation of the reaction set-up: 

 

Figure S1: Blue LED reactor with magnetic stirring plate 

3. Control experiments: 

 A. Radical trapping reaction with 2,2,6,6-tetramethylpiperidin-1-yl)oxidanyl (TEMPO): 

Biaryl enone (0.3 mmol), 4-nitro benzenesulfonyl chloride (0.6 mmol), Ru(bpy)3Cl2 (5 mol %), 

Na2CO3 (0.3 mmol), 2,2,6,6-tetramethylpiperidin-1-yl) oxidanyl (TEMPO) (0.6 mmol) were 

taken in a reaction vial and solvent anhydrous CH3CN was added. The reaction mixture was 

stirred under blue LED at room temperature and the progress of the reaction was monitored 

by TLC and found that the reaction inhibited. 

B. Radical trapping reaction with 1,1-Diphenyl ethylene: 

Biaryl enone (0.3 mmol), 4-nitro benzenesulfonyl chloride (0.6 mmol), Ru(bpy)3Cl2 (5 mol %), 

Na2CO3 (0.3 mmol), 1,1-Diphenyl ethylene (0.6 mmol) were taken in a reaction vial and 

solvent anhydrous CH3CN was added. The reaction mixture was stirred under blue LED at 



S6 
 

room temperature and the progress of the reaction was monitored by TLC was found to be 

inhibited. 

 

 

4. X-ray Crystallography: 

X-ray data for the compounds KB11 and KB328 were collected at room temperature on a Bruker D8 

QUEST instrument with an IμS Mo microsource (λ = 0.7107 A) and a PHOTON-III detector. The raw 

data frames were reduced and corrected for absorption effects using the Bruker Apex 3 software suite 

programs [1]. The structure was solved using intrinsic phasing method [2] and further refined with the 

SHELXL [2] program and expanded using Fourier techniques. Anisotropic displacement parameters 

were included for all non-hydrogen atoms. The atoms C24A/C25A/C26A/O4A and C3B/N1B/C24B/ 

C25B/C26B of KB11 were disordered over two positions and their site occupation factors were 

refined into 0.724(5)/0.276(5) and 0.538(6)/0.462(6), respectively. All C bound H atoms were 

positioned geometrically and treated as riding on their parent C atoms [C-H = 0.93-0.97 Å, and 

Uiso(H) = 1.5Ueq(C) for methyl H or 1.2Ueq(C) for other H atoms]. 

A. Crystal structure determination of 3c: 

Crystal Data for C26H25NO5S (M =463.53 g/mol): triclinic, space group P-1 (no. 2), a = 

9.7342(7) Å, b = 12.3271(9) Å, c = 21.0097(15) Å, α = 98.273(2)°, β = 95.450(2)°, γ = 

104.946(2)°, V = 2387.3(3) Å
3
, Z = 4, T = 294.15 K, μ(MoKα) = 0.172 mm

-1
, Dcalc = 

1.290 g/cm
3
, 43584 reflections measured (3.956° ≤ 2Θ ≤ 52.784°), 9745 unique (Rint = 

0.0672, Rsigma = 0.0703) which were used in all calculations. The final R1 was 0.0641 (I > 

2σ(I)) and wR2 was 0.1715 (all data). CCDC 2278957 deposition numbers contains the 

supplementary crystallographic data for this paper which can be obtained free of charge at 

https://www.ccdc.cam.ac.uk/structures/. 

https://www.ccdc.cam.ac.uk/structures/
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Figure S2: ORTEP diagram of compound 3c with the atom-numbering. Displacement ellipsoids are drawn at 

the 30% probability level and H atoms are shown as small spheres of arbitrary radius. Only molecule A was 

shown for a better view.  The minor disordered atom components were omitted for clarity 

B. Crystal structure determination of 9: 

Crystal Data for C23H20O2S (M =360.480 g/mol): monoclinic, space group P21/c (no. 

14), a = 14.441(4) Å, b = 4.9171(15) Å, c = 25.385(7) Å, β = 103.485(9)°, V = 

1752.9(9) Å
3
, Z = 4, T = 294.15 K, μ(Mo Kα) = 0.199 mm

-1
, Dcalc = 1.366 g/cm

3
, 18591 

reflections measured (4.88° ≤ 2Θ ≤ 52.48°), 3520 unique (Rint = 0.1265, Rsigma = 0.1348) 

which were used in all calculations. The final R1 was 0.0774 (I>2(I)) and wR2 was 0.2415 

(all data).  CCDC 2278958 deposition numbers contains the supplementary crystallographic 

data for this paper which can be obtained free of charge at 

https://www.ccdc.cam.ac.uk/structures/. 

  

Figure S3: ORTEP diagram of compound 9 with the atom-numbering. Displacement ellipsoids are drawn at the 

30% probability level and H atoms are shown as small spheres of arbitrary radius.  

https://www.ccdc.cam.ac.uk/structures/
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5. Electrochemical studies: 

Cyclic voltammetry experiments of 1d and 2a were carried out on a PC-controlled CH 

instruments model CHI 620C electrochemical analyser in acetonitrile at a scan rate of 200 

mV/s using 0.1 mM concentration of tetrabutylammonium hexafluorophosphate (NBu4PF6) 

as supporting electrolyte. The working electrode is glassy carbon, saturated calomel electrode 

(SCE) is reference electrode, and platinum wire is auxiliary electrode. Then, the spectro 

electrochemistry of both the substrates was measured using this cyclic voltammetric 

technique and evaluated the maximum oxidation and reduction potentials of the individual 

substrates. Substrate 1d shows oxidation potentials at 1.82 V, 1.57 V and reduction potentials 

at −1.46 V, −1.21 V. whereas 2a shows the oxidation potential at 1.01 V, 1.79 V and 

reduction potentials at −1.21 V, −1.09 V. 
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Fig. S4: (a) Cyclic voltammogram of 1d recorded using tetrabutylammonium hexafluorophosphate (NBu4PF6) 

as supporting electrolyte. (b) Cyclic voltammogram of 1d and 2a in CH3CN recorded using 

tetrabutylammonium hexafluorophosphate (NBu4PF6) as supporting electrolyte. 

6. Stern-Volmer Quenching Experiment: 

All spectroscopic measurements were carried out in TECAN Infinite M200 PRO 

spectrophotometer. The excitation of Ru(bpy)3Cl2 catalyst at 455 nm and emission was 

recorded from 500 nm to 750 nm. The substrate 4-nitrobenzene sulfonyl chloride (2a) was 

serially diluted (200 mM- 1.5625 mM) in degassed acetonitrile. The photocatalyst 

concentration at 10 mM in degassed acetonitrile was incubated with serially diluted 4-

nitrobenzene sulfonyl chloride and the corresponding fluorescence was recorded. The 

experiments were performed in replicates. The Stern Volmer graph was plotted in Graph Pad 

Prism 8.0.2 software by using values at the emission maxima of 620 nm. Stern Volmer 

constant (KSV) was calculated to be 3.18 x 10
-2

 M
-1

.  
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Fig. S5: (a) Fluorescence spectrum showing quenching of [Ru(bpy)
3
]

2+ 

(Ex = 455 nm, Em = 620 nm) with 

increasing concentrations of 4-nitrobenzenesulfonyl chloride (0- 200 mM); (b) Corresponding Stern–Volmer 

plot. 
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