Visible Light-Induced Radical Cascade Acylmethylation/Cyclization

of 2-(Allyloxy)arylaldehydes with a-Bromo ketones: Access to Cyclic

1,5-Diketones Containing Chroman-4-one Skeletons

Xiao-Hong Huang^a, Feng-Lin Liu^a, Ting-Feng Fu^a, Xiao Hu^a, Ya-Yu Wang^a, Bo Liu^a, Ming-Yu Teng^a, and Guo-Li Huang^{a,*}

^a School of Chemistry and Chemical Engineering, Yunnan Normal University, Kunming 650050, China

Table of Contents

1.	Experimental section	S2
2.	Preparation starting materials	S 3
3.	General procedure and spectral data of products	S3-S11
4.	Evidence for a radical pathway	S11-S14
5.	Follow-up chemistry	S14-S15
6.	Copies of ¹ H NMR and ¹³ C NMR spectra (3aa-3ap , 3ba-3na , 3qa	S16-S52
	3ra and 7-9)	
7.	References	S52

1. Experimental section

All chemicals were purchased from the Wencai New Material Technology and Merck in high purityand were used directly without any purification.Solvents were freshly distilled prior to use. All reactions were carried out under air atmosphere unless noted. ¹H NMR and ¹³C NMR spectra were recorded with a Bruker Avance III 500 MHz spectrometer in CDCl₃ solution. Highresolution mass (HRMS) spectra were measured with a VG Auto Spec-3000 spectrometer. Melting points (mp) were determined with a digital electrothermal apparatus without further correction. TLC analyses were performed on commercial glass plates bearing a 0.25mm layer of Merck silica gel 60 F254. Silica gel (200-300 mesh) was used for column chromatography.

2. Preparation of starting materials

2-allyloxyarylaldehyde derivatives were prepared according to the reported methods^[1]

To a 50 mL round-bottomed flask with a stir bar was added 2-hydroxyarylaldehyde (5 mmol), DMF (15 mL), then was added potassium carbonate (5.5 mmol), followed by the dropwise addition of allyl bromide (5.5 mmol). The reaction mixture was then stirred for 12 h at room temperature, poured into brine and extracted with EtOAc. The combined extracts were dried over Mg₂SO4, filtered, and evaporated. The residue was purified by column chromatography (petroleum ether/EtOAc) to afford the desired 2-(allyloxy)arylaldehydes.

3. General procedure and spectral data of products

A flame-dried Schlenk-tube equipped with a magnetic stir bar was charged with **1** (1.0 equiv., 0.2 mmol), **2a** (1.5 equiv., 0.3 mmol), 4CzIPN (0.05 equiv., 0.01 mmol), TIPA (2.0 equiv., 0.4 mmol) and 2.0 mL DMSO/H₂O (v/v=5:1). The reaction mixture was then stirred under the irradiation with

9W blue LEDs for 12 h under Ar atmosphere. Upon completion, quench the reaction with saturated NaCl (10 mL), and the mixture was extracted with dichloromethane (3×15 mL). The combined organic layer was washed three times with H₂O (3×10 mL), dried over anhydrous MgSO₄, and concentrated in vacuo. The crude product was purified by SiO₂ column chromatography to afford the desired products.

3-(3-(4-methoxyphenyl)-3-oxopropyl)chroman-4-one (3aa)^[2]

Yellow liquid, yield: 78% (48 mg). ¹H NMR (500 MHz, CDCl₃) δ 7.96 (d, *J* = 8.9 Hz, 2H), 7.88 (dd, *J* = 7.9, 1.7 Hz, 1H), 7.45 (t, *J* = 8.5 Hz, 1H), 7.01 (t, *J* = 8.0 Hz, 1H), 6.94 (dd, *J* = 14.1, 8.9 Hz, 3H), 4.57 (dd, *J* = 11.4, 4.5 Hz, 1H), 4.32 (dd, *J* = 11.4, 8.9 Hz, 1H), 3.86 (s, 3H), 3.15 (t, *J* = 8.6 Hz, 2H),

2.83-2.77 (m, 1H), 2.23-2.16 (m, 1H), 2.05-1.98 (m, 1H). ¹³C NMR (126 MHz, CDCl₃) δ 198.0, 194.7, 163.7, 161.6, 136.0, 130.5, 130.0, 127.5, 121.5, 120.7, 117.9, 113.9, 71.1, 55.6, 45.3, 35.7, 21.5.

3-(3-(4-methoxyphenyl)-3-oxopropyl)-8-methylchroman-4-one (3ab)

Yellow liquid, yield: 63% (41 mg). ¹H NMR (500 MHz, CDCl₃) δ 7.95 (d, J = 8.7 Hz, 2H), 7.73 (d, J = 7.8 Hz, 1H), 7.31 (d, J = 7.1 Hz, 1H), 6.91 (dd, J = 14.5, 8.1 Hz, 3H), 4.59 (dd, J = 11.4, 4.4 Hz, 1H), 4.33 (dd, J = 11.3, 9.0 Hz, 1H), 3.86 (s, 3H), 3.14 (t, J = 7.1 Hz, 2H), 2.79-2.74 (m, 1H), 2.22 (s,

3H), 2.20-2.17 (m, 1H), 2.04-1.98 (m, 1H). ¹³C NMR (126 MHz, CDCl₃) δ 198.1, 195.0, 163.7, 159.9, 136.8, 130.5, 130.0, 127.1, 125.0, 120.9, 120.3, 113.9, 71.0, 55.6, 45.1, 35.7, 21.6, 15.6. HRMS (ESI) [M+H]⁺ Calcd For C₂₀H₂₁O₄: 325.1434, Found: 325.1440.

3-(3-(4-methoxyphenyl)-3-oxopropyl)-6-methylchroman-4-one (3ac)

Yellow liquid, yield: 66% (43 mg). ¹H NMR (500 MHz, CDCl₃) δ 7.95 (d, *J* = 8.8 Hz, 2H), 7.66 (d, *J* = 1.5 Hz, 1H), 7.27 (d, *J* = 2.2 Hz, 1H), 6.92 (d, *J* = 8.8 Hz, 2H), 6.85 (d, *J* = 8.4 Hz, 1H), 4.52 (dd, *J* = 11.4, 4.4 Hz, 1H), 4.28 (dd, *J* = 11.3, 8.8 Hz, 1H), 3.85 (s, 3H), 3.18-3.09

(m, 2H), 2.78-2.73 (m, 1H), 2.29 (s, 3H), 2.21-2.14 (m, 1H), 2.03-1.97 (m, 1H). 13 C NMR (126 MHz, CDCl₃) δ 198.0, 194.9, 163.6, 159.6, 137.0, 130.9, 130.4, 130.0, 127.0, 120.2, 117.6, 113.8, 71.1, 55.5, 45.3, 35.7, 21.6, 20.5. HRMS (ESI) [M+H]⁺ Calcd For C₂₀H₂₁O₄: 325.1434, Found: 325.1438.

6-methoxy-3-(3-(4-methoxyphenyl)-3-oxopropyl)chroman-4-one (3ad)

Yellow solid, yield: 68% (46 mg), Mp: 71-73 °C. ¹H NMR (500 MHz,CDCl₃) δ 7.94 (d, J = 8.3 Hz, 2H), 7.80 (d, J = 9.6 Hz, 1H), 6.91 (d, J = 8.9 Hz, 2H), 6.56 (dd, J = 8.8, 3.3 Hz, 1H), 6.38 (d, J = 2.3 Hz, 1H), 4.53 (dd, J = 11.3, 4.4 Hz, 1H), 4.29 (dd, J = 11.0, 8.9 Hz,

1H), 3.79 (t, *J* = 36.0 Hz, 6H), 3.15-3.11 (m, 2H), 2.74-2.68 (m, 1H), 2.20-2.12 (m, 1H), 2.02-1.97 (m, 1H). ¹³C NMR (126 MHz, CDCl₃) δ 198.1, 193.3, 166.0, 163.6, 130.4, 130.0, 129.1, 114.5, 113.8, 110.1,

100.7, 71.4, 55.7, 55.6, 44.9, 35.8, 21.7, 5.3. HRMS (ESI) $[M+H]^+$ Calcd For $C_{20}H_{21}O_4$: 325.1434, Found: 325.1441.

6-methoxy-3-(3-(4-methoxyphenyl)-3-oxopropyl)chroman-4-one (3ae)

Yellow solid, yield: 68% (46 mg), Mp: 82-84 °C. ¹H NMR (500 MHz, CDCl₃) δ 7.95 (d, J = 8.9 Hz, 2H), 7.30 (d, J = 3.2 Hz, 1H), 7.07 (dd, J = 9.0, 3.2 Hz, 1H), 6.90 (dd, J = 18.3, 8.9 Hz, 3H), 4.51 (dd, J = 11.4, 4.4

Hz, 1H), 4.27 (dd, J = 11.4, 8.8 Hz, 1H), 3.85 (s, 3H), 3.78 (s, 3H), 3.17-3.09 (m, 2H), 2.79-2.73 (m, 1H), 2.22-2.15 (m, 1H), 2.04-1.97 (m, 1H). ¹³C NMR (126 MHz, CDCl₃) δ 198.0, 194.7, 163.7, 156.3, 154.2, 130.4, 130.0, 125.2, 120.4, 119.1, 113.9, 107.8, 71.2, 55.9, 55.6, 45.2, 35.7, 21.6. HRMS (ESI) [M+H]⁺ Calcd For C₂₀H₂₁O₅: 341.1384, Found: 341.1388.

8-ethoxy-3-(3-(4-methoxyphenyl)-3-oxopropyl)chroman-4-one (3af)

Yellow solid, yield: 63% (44 mg), Mp: 109-111 °C. ¹H NMR (500 MHz, CDCl₃) δ 7.94 (d, *J* = 8.7 Hz, 2H), 7.46 (d, *J* = 8.0 Hz, 1H), 7.03 (d, *J* = 7.9 Hz, 1H), 6.93-6.90 (m, 3H), 4.64 (dd, *J* = 11.4, 4.4 Hz, 1H), 4.40 (dd, *J* = 11.3, 8.9 Hz, 1H), 4.09 (q, *J* = 7.0 Hz, 2H), 3.85 (s, 3H), 3.13 (t, *J* = 7.2 Hz, 2H), 2.81-

2.76 (m, 1H), 2.23-2.15 (m, 1H), 2.05-1.98 (m, 1H), 1.47 (t, J = 7.0 Hz, 3H). ¹³C NMR (126 MHz, CDCl₃) δ 197.9, 194.6, 163.6, 151.8, 148.2, 130.4, 130.0, 121.3, 120.9, 118.5, 118.1, 113.8, 71.5, 64.9, 55.6, 45.1, 35.6, 21.5, 14.8. HRMS (ESI) [M+H]⁺ Calcd For C₂₁H₂₃O₅: 355.1540, Found: 355.1545.

6-(tert-butyl)-3-(3-(4-methoxyphenyl)-3-oxopropyl)chroman-4-one (3ag)

Yellow liquid, yield: 75% (55 mg). ¹H NMR (500 MHz, CDCl₃) δ 7.96 (d, *J* = 8.8 Hz, 2H), 7.88 (d, *J* = 2.5 Hz, 1H), 7.52 (dd, *J* = 8.7, 2.5 Hz, 1H), 6.91 (dd, *J* = 12.9, 8.8 Hz, 3H), 4.53 (dd, *J* = 11.4, 4.4 Hz, 1H), 4.29 (dd, *J*

= 11.3, 8.8 Hz, 1H), 3.86 (s, 3H), 3.18-3.10 (m, 2H), 2.80-2.74 (m, 1H), 2.22-2.15 (m, 1H), 2.05-1.98 (m, 1H), 1.30 (s, 9H). 13 C NMR (126 MHz, CDCl₃) δ 198.1, 195.0, 163.7, 159.6, 144.4, 133.7, 130.5, 130.0, 123.3, 119.9, 117.5, 113.9, 71.1, 55.6, 45.4, 35.7, 34.4, 31.4, 21.7. HRMS (ESI) [M+H]⁺ Calcd For C₂₃H₂₇O₄: 367.1904, Found: 367.1908.

6,8-di-tert-butyl-3-(3-(4-methoxyphenyl)-3-oxopropyl)chroman-4-one (3ah)

Yellow solid, yield: 64% (43 mg), Mp: 110-112 °C. ¹H NMR (500 MHz, CDCl₃) δ 7.97 (d, J = 8.9 Hz, 2H), 7.80 (d, J = 2.5 Hz, 1H), 7.53 (d, J = 2.5 Hz, 1H), 6.93 (d, J =8.9 Hz, 2H), 4.57 (dd, J = 11.3, 4.5 Hz, 1H), 4.31 (dd, J == 11.3, 8.9 Hz, 1H), 3.87 (s, 3H), 3.21-3.14 (m, 2H),

2.80-2.75 (m, 1H), 2.22-2.15 (m, 1H), 2.08-2.01 (m, 1H), 1.39 (s, 9H), 1.31 (s, 9H). 13 C NMR (126 MHz, CDCl₃) δ 198.3, 195.6, 163.7, 158.8, 143.4, 138.4, 130.7, 130.5, 131.1, 121.4, 120.7, 113.9, 70.6, 55.6, 45.2, 35.8, 35.2, 34.6, 31.5, 29.8, 21.7. HRMS (ESI) [M+H]⁺ Calcd For C₂₇H₃₅O₄: 423.2530, Found: 423.2537.

2-(3-(4-methoxyphenyl)-3-oxopropyl)-2,3-dihydro-1*H*-benzo[*f*]chromen-1-one (3ai)

Yellow solid, yield: 43% (31 mg), Mp: 94-95 °C. ¹H NMR (500 MHz, CDCl₃) δ 9.46 (d, J = 8.7 Hz, 1H), 7.96 (d, J = 8.9 Hz, 2H), 7.90 (d, J = 9.0 Hz, 1H), 7.74 (d, J = 8.0 Hz, 1H), 7.62 (t, J = 7.8 Hz, 1H), 7.42 (t, J = 7.5 Hz, 1H), 7.08 (d, J = 9.0 Hz, 1H), 6.92 (d, J = 8.8 Hz, 2H), 4.66 (dd, J =

11.3, 4.5 Hz, 1H), 4.43 (dd, J = 11.3, 8.5 Hz, 1H), 3.86 (s, 3H), 3.21-3.13 (m, 2H), 2.88-2.83 (m, 1H), 2.29-2.22 (m, 1H), 2.10-2.04 (m, 1H). ¹³C NMR (126 MHz, CDCl₃) δ 198.1, 195.9, 163.7, 163.5, 137.4, 131.9, 130.5, 130.1, 129.7, 129.4, 128.6, 125.9, 124. 9, 118.8, 113.9, 112.0, 71.1, 55.6, 46.0, 35.9, 22.1. HRMS (ESI) [M+H]⁺ Calcd For C₂₃H₂₁O₄: 361.1434, Found: 361.1440.

8-fluoro-3-(3-(4-methoxyphenyl)-3-oxopropyl)chroman-4-one (3aj)

Yellow solid, yield: 61% (40 mg), Mp: 108-110 °C. ¹H NMR (500 MHz, CDCl₃) δ 7.94 (d, J = 8.9 Hz, 2H), 7.65 (d, J = 9.1 Hz, 1H), 7.28-7.24 (m, 1H), 6.96-6.91 (m, 3H), 4.66 (dd, J = 11.5, 4.5 Hz, 1H), 4.40 (dd, J = 11.4, 9.0 Hz, 1H), 3.86 (s, 3H), 3.18-3.09 (m, 2H), 2.88-2.82 (m, 1H), 2.24-2.17 (m, 1H),

2.05-1.98 (m, 1H). ¹³C NMR (126 MHz, CDCl₃) δ 197.8, 193.6 (d, J_{CF} = 3.0 Hz), 163.7, 152.7, 150.7, 150.0 (d, J_{CF} = 11.6 Hz), 130.4 (d, J_{CF} = 60.2 Hz), 122.7, 122.5 (d, J_{CF} = 3.9 Hz), 121.8, (d, J_{CF} = 17.6 Hz), 120.8 (d, J_{CF} = 6.4 Hz), 113.9, 71.8, 55.6, 45.3, 35.5, 21.4. ¹⁹F NMR (471 MHz, CDCl₃) δ = -135.5. HRMS (ESI) [M+H]⁺ Calcd For C₁₉H₁₈FO₄: 329.1184, Found: 329.1189.

6-fluoro-3-(3-(4-methoxyphenyl)-3-oxopropyl)chroman-4-one (3ak)

Yellow solid, yield: 62% (40 mg), Mp: 94-96 °C. ¹H NMR (500 MHz, CDCl₃) δ 7.95 (d, J = 8.9 Hz, 2H), 7.52 (dd, J = 8.3, 3.2 Hz, 1H), 7.20-7.16 (m, 1H), 6.95-6.92 (m, 3H), 4.55 (dd, J = 11.5, 4.5 Hz, 1H), 4.30 (dd, J = 11.5, 9.0 Hz,

1H), 3.86 (s, 3H), 3.19-3.08 (m, 2H), 2.82-2.76 (m, 1H), 2.22-2.15 (m, 1H), 2.04-1.97 (m, 1H). ¹³C NMR (126 MHz, CDCl₃) δ 197.9, 193.7 (d, J_{CF} = 1.5 Hz), 163.7, 158.4, 157.9 (d, J_{CF} = 1.5 Hz), 156.4, 130.5, 130.0, 123.6 (d, J_{CF} = 24.6 Hz), 121.1 (d, J_{CF} = 6.3 Hz), 119.5 (d, J_{CF} = 7.3 Hz), 113.9, 112.4(d, J_{CF} = 23.3 Hz), 71.3, 55.6, 35.6, 21.4. ¹⁹F NMR (471 MHz, CDCl₃) δ = -121.5. HRMS (ESI) [M+H]⁺ Calcd For C₁₉H₁₈FO₄: 329.1184, Found: 329.1191.

8-bromo-3-(3-(4-methoxyphenyl)-3-oxopropyl)chroman-4-one (3al)

Yellow solid, yield: 62% (55 mg), Mp: 82-84 °C. ¹H NMR (500 MHz,CDCl₃) δ 7.94 (d, J = 8.9 Hz, 2H), 7.83 (dd, J = 7.8, 1.6 Hz, 1H), 7.70 (dd, J = 7.7, 1.6 Hz, 1H), 6.93-6.88 (m, 3H), 4.68 (dd, J = 11.5, 4.6 Hz, 1H), 4.41 (dd, J = 11.5, 9.2 Hz, 1H), 3.85 (s, 3H), 3.15-3.12 (m, 2H), 2.86-2.81 (m, 1H), 2.24-2.16

(m, 1H), 2.04-1.97 (m, 1H). ¹³C NMR (126 MHz, CDCl₃) δ 197.7, 193.7, 163.7, 157.9, 139.2, 130.4, 129.9, 126.8, 122.2, 121.9, 113.9, 111.5, 71.6, 55.6, 44.8, 35.5, 21.2. HRMS (ESI) [M+H]⁺ Calcd For C₁₉H₁₈BrO₄: 389.0383, Found: 389.03839.

6-bromo-3-(3-(4-methoxyphenyl)-3-oxopropyl)chroman-4-one (3am)

Yellow solid, yield: 49% (38 mg), Mp: 86-88 °C. ¹H NMR (500 MHz, CDCl₃) δ 7.98 (d, J = 2.4 Hz, 1H), 7.94 (d, J = 8.7 Hz, 2H), 7.53 (dd, J = 8.8, 2.3 Hz, 1H), 6.93 (d, J = 8.7 Hz, 2H), 6.86 (d, J = 8.8 Hz, 1H), 4.57 (dd, J

= 11.5, 4.5 Hz, 1H), 4.31 (dd, J = 11.4, 9.0 Hz, 1H), 3.86 (s, 3H), 3.19-3.08 (m, 2H), 2.82-2.77 (m, 1H), 2.21-2.14 (m, 1H), 2.04-1.97 (m, 1H). ¹³C NMR (126 MHz, CDCl₃) δ 197.8, 193.4, 163.7, 160.5, 138.6, 130.5, 129.9, 129.94, 121.90, 120.0, 114.2, 113.9, 71.2, 55.7, 45.0, 35.5, 21.4. HRMS (ESI) [M+H]⁺ Calcd For C₁₉H₁₈BrO₄: 389.0383, Found: 389.0387.

6,8-dichloro-3-(3-(4-methoxyphenyl)-3-oxopropyl)chroman-4-one (3an)

Yellow solid, yield: 42% (32 mg), Mp: 111-113 °C. ¹H NMR (500 MHz, CDCl₃) δ 7.93 (d, *J* = 8.7 Hz, 2H), 7.75 (d, *J* = 2.4 Hz, 1H), 7.52 (d, *J* = 2.4 Hz, 1H), 6.92 (d, *J* = 8.7 Hz, 2H), 4.68 (dd, *J* = 11.6, 4.5 Hz, 1H), 4.41 (dd, *J* = 11.3, 9.4 Hz, 1H), 3.86 (s, 3H), 3.17-3.09 (m, 2H),

2.87-2.82 (m, 1H), 2.23-2.15 (m, 1H), 2.04-1.97 (m, 1H). ¹³C NMR (126 MHz, CDCl₃) δ 197.6, 192.6, 163.8, 155.8, 135.5, 130.4, 129.9, 126.7, 125.5, 123.8, 122.2, 113.9, 71.8, 55.6, 44.8, 35.4, 21.2. HRMS (ESI) [M+H]⁺ Calcd For C₁₉H₁₇Cl₂O₄: 379.0498, Found: 379.0506.

6,8-dibromo-3-(3-(4-methoxyphenyl)-3-oxopropyl)chroman-4-one (3ao)

Yellow solid, yield: 37% (35 mg), Mp: 113-115 °C. ¹H NMR (500 MHz, CDCl₃) δ 7.95-7.92 (m, 3H), 7.82 (d, *J* = 2.4 Hz, 1H), 6.93 (d, *J* = 8.9 Hz, 2H), 4.68 (dd, *J* = 11.6, 4.6 Hz, 1H), 4.42-4.38 (m, 1H), 3.86 (s, 3H), 3.17-3.09 (m, 2H), 2.87-2.81 (m, 1H), 2.22-2.15 (m, 1H), 2.04-1.97

(m, 1H). ¹³C NMR (126 MHz, CDCl₃) δ 197.5, 192.4, 163.6, 156.9, 140.9, 130.3, 129.7, 129.2, 122.4, 113.9, 113.8, 112.6, 71.6, 55.5, 44.5, 35.2, 21.0. HRMS (ESI) [M+H]⁺ Calcd For C₁₉H₁₇Br₂O₄: 466.9488, Found: 466.9493.

8-bromo-6-chloro-3-(3-(4-methoxyphenyl)-3-oxopropyl)chroman-4-one (3ap)

Yellow solid, yield: 51% (43 mg), Mp: 99-101 °C. ¹H NMR (500 MHz, CDCl₃) δ 7.93 (d, J = 8.9 Hz, 2H), 7.79 (d, J = 2.6 Hz, 1H), 7.69 (d, J = 2.6 Hz, 1H), 6.92 (d, J =8.9 Hz, 2H), 4.68 (dd, J = 11.6, 4.6 Hz, 1H), 4.40 (dd, J == 11.6, 9.2 Hz, 1H), 3.86 (s, 3H), 3.15-3.11 (m, 2H),

2.87-2.81 (m, 1H), 2.23-2.15 (m, 1H), 2.04-1.97 (m, 1H). ¹³C NMR (126 MHz, CDCl₃) δ 197.6, 192.6, 163.8, 156.7, 138.7, 130.4, 129.9, 127.2, 126.3, 122.1, 113.9, 112.4, 71.8, 55.6, 44.7, 35.4, 21.1. HRMS (ESI) [M+H]⁺ Calcd For C₁₉H₁₇BrClO₄: 422.9993, Found: 422.9998.

3-(3-oxo-3-phenylpropyl)chroman-4-one (3ba)^[2]

Yellow liquid, yield: 80% (45 mg). ¹H NMR (500 MHz, CDCl₃) δ 7.97 (dd, J = 8.3, 1.1 Hz, 2H), 7.88 (dd, J = 7.9, 1.7 Hz, 1H), 7.55 (t, J = 7.4 Hz, 1H), 7.48-7.44 (m, 3H), 7.01 (t, J = 8.0 Hz, 1H), 6.96 (d, J = 8.4 Hz, 1H), 4.57 (dd, J = 11.4, 4.5 Hz, 1H), 4.32 (dd, J = 11.4, 8.9 Hz, 1H), 3.21 (t, J = 7.6 Hz, 2H), 2.83-2.78 (m, 1H), 2.25-2.17 (m,

1H), 2.06-1.99 (m, 1H). ¹³C NMR (126 MHz, CDCl₃) δ 199.4, 194.6, 161.6, 136.9, 136.0, 133.3, 128.7, 128.2, 127.4, 121.5, 120.6, 117.9, 71.1, 45.2, 36.1, 21.3.

3-(3-oxo-3-(p-tolyl)propyl)chroman-4-one (3ca)^[2]

Yellow solid, yield: 77% (46 mg), Mp: 84-86 °C. ¹H NMR (500 MHz, CDCl₃) δ 7.87 (dd, J = 8.0, 1.0 Hz, 3H), 7.45 (t, J = 8.5 Hz, 1H), 7.24 (d, J = 8.0 Hz, 2H), 7.00 (t, J = 7.5 Hz, 1H), 6.95 (d, J = 8.4 Hz, 1H), 4.56 (dd, J = 11.4, 4.5 Hz, 1H), 4.31 (dd, J = 11.4, 9.0 Hz, 1H), 3.17 (t, J = 7.4 Hz, 2H), 2.82-2.77 (m, 1H),

2.39 (s, 3H), 2.23-2.16 (m, 1H) , 2.04-1.97 (m, 1H). ¹³C NMR (126 MHz, CDCl₃) δ 199.0, 194.5, 161.6, 144.0, 135.9, 134.5, 129.4, 128.3, 127.4, 121.5, 120.7, 117.9, 71.1, 45.3, 35.9, 21.7, 21.4.

3-(3-(2-methoxyphenyl)-3-oxopropyl)chroman-4-one (3da)

Yellow liquid, yield: 60% (37 mg). ¹H NMR (500 MHz, CDCl₃) δ 7.88 (dd, J = 7.9, 1.7 Hz, 1H), 7.68 (dd, J = 7.7, 1.8 Hz, 1H), 7.47-7.42 (m, 2H), 7.00-6.97 (m, 2H), 6.94 (dd, J = 8.3, 3.0 Hz, 2H), 4.56 (dd, J = 11.4, 4.5 Hz, 1H), 4.30 (dd, J = 11.4, 8.7 Hz, 1H), 3.86 (s, 3H), 3.17 (t, J = 7.3 Hz, 2H), 2.80-2.74 (m, 1H), 2.26-2.19 (m, 1H),

1.99-1.91 (m, 1H). ¹³C NMR (126 MHz, CDCl₃) δ 201.6, 194.5, 161.6, 158.7, 135.8, 133.6, 130.4, 128.2, 127.4, 121.4, 120.8, 120.7, 117.8, 111.7, 71.0, 55.6, 45.4, 41.2, 21.4. HRMS (ESI) [M+H]⁺ Calcd For C₁₉H₁₉O₄: 311.1278, Found: 311.1282.

3-(3-(3-methoxyphenyl)-3-oxopropyl)chroman-4-one (3ea)

Yellow solid, yield: 64% (40 mg), Mp: 65-67 °C. ¹H NMR (500 MHz, CDCl₃) δ 7.88 (dd, *J* = 7.9, 1.7 Hz, 1H), 7.55 (d, *J* = 7.7 Hz, 1H), 7.49-7.44 (m, 2H), 7.35 (t, *J* = 7.9 Hz, 1H), 7.10 (dd, *J* = 8.2, 3.4 Hz, 1H), 7.00 (t, *J* = 8.0 Hz, 1H), 6.95 (d, *J* =

8.4 Hz, 1H), 4.56 (dd, J = 11.4, 4.5 Hz, 1H), 4.31 (dd, J = 11.4, 9.0 Hz, 1H), 3.84 (s, 3H), 3.19 (t, J = 7.2 Hz, 2H), 2.82-2.80 (m, 1H), 2.21-2.17 (m, 1H), 2.04-2.01 (m, 1H). ¹³C NMR (126 MHz, CDCl₃) δ 199.2, 194.5, 161.6, 160.0, 138.2, 136.0, 129.7, 127.4, 121.5, 120.8, 120.6, 119.8, 117.9, 112.4, 71.1, 55.6, 45.2, 36.2, 21.4. HRMS (ESI) [M+H]⁺ Calcd For C₁₉H₁₉O₄: 311.1278, Found: 311.1285.

3-(3-(3,4-dimethoxyphenyl)-3-oxopropyl)chroman-4-one (3fa)

Yellow solid, yield: 75% (51 mg), Mp: 111-113 °C. ¹H NMR (500 MHz, CDCl₃) δ 7.86 (dd, J = 7.9, 1.7 Hz, 1H), 7.60 (dd, J = 8.4, 1.9 Hz, 1H), 7.51 (d, J = 1.9 Hz, 1H), 7.44 (t, J = 8.6 Hz, 1H), 6.98 (t, J = 7.5 Hz, 1H), 6.93 (d, J = 8.4 Hz, 1H), 6.86 (d, J = 8.4 Hz, 1H), 4.55 (dd, J = 11.4, 4.6 Hz, 1H), 4.29 (dd,

J = 11.4, 9.1 Hz, 1H), 3.91 (d, J = 3.9 Hz, 6H), 3.15-3.12 (m, 2H), 2.81-2.78 (m, 1H), 2.28-2.14 (m, 1H),

 $\begin{aligned} & 2.03-2.00 \ (m, 1H).\,^{13}C \ NMR \ (126 \ MHz, CDCl_3) \ \delta \ 198.0, \ 194.5, \ 161.6, \ 153.4, \ 149.1, \ 135.9, \ 130.1, \ 127.4, \\ & 122.8, \ 121.4, \ 120.6, \ 117.8, \ 110.3, \ 110.2, \ 71.0, \ 56.12, \ 55.06, \ 45.2, \ 35.6, \ 21.6. \ HRMS \ (ESI) \ [M+H]^+ \ Calcd \\ & For \ C_{20}H_{21}O_5: \ 341.1384, \ Found: \ 341.1388. \end{aligned}$

3-(3-([1,1'-biphenyl]-4-yl)-3-oxopropyl)chroman-4-one (3ga)

Yellow solid, yield: 68% (49 mg), Mp: 116-118 °C. ¹H NMR (500 MHz, CDCl₃) δ 8.05 (d, *J* = 8.4 Hz, 2H), 7.90 (dd, *J* = 7.9, 1.7 Hz, 1H), 7.68 (d, *J* = 8.4 Hz, 2H), 7.62 (d, *J* = 7.7 Hz, 2H), 7.47 (t, *J* = 7.5 Hz, 3H), 7.40 (t, *J* = 7.3 Hz, 1H), 7.03 (t, *J* = 15.0 Hz, 1H), 6.97 (d, *J* = 8.4 Hz, 1H), 4.59 (dd, *J* = 11.4, 4.5 Hz, 1H),

4.34 (dd, J = 11.4, 8.9 Hz, 1H), 3.24 (t, J = 7.0 Hz, 2H), 2.85-2.80 (m, 1H), 2.28-2.20 (m, 1H), 2.09-2.06 (m, 1H). ¹³C NMR (126 MHz, CDCl₃) δ 199.0, 194.6, 161.6, 145.9, 140.0, 136.0, 135.6, 129.1, 128.8, 128.3, 127.5, 127.4, 121.5, 120.7, 117.9, 71.1, 45.2, 36.1, 21.4. HRMS (ESI) [M+H]⁺ Calcd For C₂₄H₂₁O₃: 357.1485, Found: 357.1491.

3-(3-(4-fluorophenyl)-3-oxopropyl)chroman-4-one (3ha)^[2]

Yellow liquid, yield: 70% (42 mg). ¹H NMR (500 MHz, CDCl₃) δ 7.99 (dd, J = 8.8, 5.4 Hz, 2H), 7.87 (d, J = 7.9 Hz, 1H), 7.46 (t, J = 8.6 Hz, 1H), 7.12 (t, J = 8.6 Hz, 2H), 7.02-6.94 (m, 2H), 4.56 (dd, J = 11.4, 4.5 Hz, 1H), 4.31 (dd, J = 11.4, 8.9 Hz, 1H), 3.18 (t, J = 7.3 Hz, 2H), 2.83 – 2.74 (m, 1H), 2.22-2.15 (m, 1H), 2.05-1.98

(m, 1H). ¹³C NMR (126 MHz, CDCl₃) δ 197.8, 194.6, 165.9 (d, J_{CF} = 254.5 Hz), 161.6, 136.1, 133.3 (d, J_{CF} = 3.0 Hz), 130.9 (d, J_{CF} = 9.5 Hz), 127.4, 121.6, 120.6, 117.9, 115.9 (d, J_{CF} = 21.8 Hz), 71.1, 45.2, 36.0, 21.4. ¹⁹F NMR (471 MHz, CDCl₃) δ = -105.1.

3-(3-(4-chlorophenyl)-3-oxopropyl)chroman-4-one (3ia)

Yellow liquid, yield: 52% (33 mg). ¹H NMR (500 MHz, CDCl₃) δ 7.89 (dd, J = 16.5, 8.2 Hz, 3H), 7.44 (dd, J = 16.3, 8.8 Hz, 3H), 7.03-6.95 (m, 2H), 4.56 (dd, J = 11.4, 4.5 Hz, 1H), 4.31 (dd, J = 11.4, 9.0 Hz, 1H), 3.17 (t, J = 7.2 Hz, 2H), 2.82-2.76 (m, 1H),

2.22-2.15 (m, 1H), 2.05-1.98 (m, 1H). ¹³C NMR (126 MHz, CDCl₃) δ 198.2, 194.6, 161.6, 139.7, 136.1, 135.2, 129.6, 129.1, 127.5, 121.6, 120.6, 117.9, 71.1, 45.1, 36.1, 21.4. HRMS (ESI) [M+H]⁺ Calcd For C₁₈H₁₆ClO₃: 315.0782, Found: 315.0786.

4-(3-(4-bromophenyl)-3-oxopropyl)chroman-4-one (3ja)

Yellow solid, yield: 42% (30 mg), Mp: 58-59 °C. ¹H NMR (500 MHz, CDCl₃) δ 7.87 (dd, J = 7.9, 1.7 Hz, 1H), 7.83 (d, J = 8.6 Hz, 2H), 7.59 (d, J = 8.6 Hz, 2H), 7.48-7.45 (m, 1H), 7.01 (t, J = 7.9 Hz, 1H), 6.95 (d, J = 8.3 Hz, 1H), 4.56 (dd, J = 11.4, 4.5 Hz, 1H), 4.31 (dd, J = 11.4, 8.9 Hz, 1H), 3.17 (t, J = 7.2 Hz, 2H),

2.85-2.74 (m, 1H), 2.22-2.15 (m, 1H), 2.05-1.98 (m, 1H). 13 C NMR (126 MHz, CDCl₃) δ 198.4, 194.6, 161.6, 136.1, 135.6, 132.1, 129.7, 128.5, 127.4, 121.8, 120.6, 117.9, 71.1, 45.1, 36.1, 21.3. HRMS (ESI) [M+H]⁺ Calcd For C₁₈H₁₆BrO₃: 359.0277, Found: 359.0283.

3-(3-(4-iodophenyl)-3-oxopropyl)chroman-4-one (3ka)

Yellow liquid, yield: 38% (31 mg), ¹H NMR (500 MHz, CDCl₃) δ 7.87 (dd, *J* = 7.9, 1.7 Hz, 1H), 7.82 (d, *J* = 8.5 Hz, 2H), 7.67 (d, *J* = 8.5 Hz, 2H), 7.46 (t, *J* = 17.0 Hz, 1H), 7.01 (t, *J* = 7.5 Hz, 1H), 6.95 (d, *J* = 8.2 Hz, 1H), 4.56 (dd, *J* = 11.4, 4.5 Hz, 1H), 4.31 (dd,

J = 11.4, 8.9 Hz, 1H), 3.16 (t, J = 7.2 Hz, 2H), 2.81-2.79 (m, 1H), 2.22-2.14 (m, 1H), 2.04-1.97 (m, 1H). ¹³C NMR (126 MHz, CDCl₃) δ 198.7, 194.6, 161.6, 138.1, 136.1, 129.6, 128.7, 128.2, 127.5, 121.6, 120.6, 117.9, 71.1, 45.1, 36.0, 21.3. HRMS (ESI) [M+H]⁺ Calcd For C₁₈H₁₆IO₃: 407.0139, Found: 407.0145.

3-(3-oxo-3-(4-(trifluoromethyl)phenyl)propyl)chroman-4-one (3la)^[2]

Yellow solid, yield: 40% (28 mg), Mp: 127-129 °C. ¹H NMR (500 MHz, CDCl₃) δ 8.07 (d, *J* = 8.1 Hz, 2H), 7.88 (dd, *J* = 7.9, 1.7 Hz, 1H), 7.72 (d, *J* = 8.2 Hz, 2H), 7.47 (t, *J* = 8.6 Hz, 1H), 7.02 (t, *J* = 7.5 Hz, 1H), 6.96 (d, *J* = 8.4 Hz, 1H), 4.57 (dd, *J* =

11.4, 4.5 Hz, 1H), 4.33 (dd, J = 11.4, 8.9 Hz, 1H), 3.24 (t, J = 7.2 Hz, 2H), 2.81-2.78 (m, 1H), 2.25-2.17 (m, 1H), 2.08-2.01 (m, 1H). ¹³C NMR (126 MHz, CDCl₃) δ 198.5, 194.6, 161.6, 139.1, 136.1, 128.6 (d, $J_{CF} = 8.3$ Hz), 127.5, 125.9 (dq, $J_{CF} = 11.2$ Hz), 121.6, 120.6, 117.9, 71.1, 45.1, 36.4, 32.9, 21.3. ¹⁹F NMR (471 MHz, CDCl₃) δ = -63.1.

3-(3-(2,4-difluorophenyl)-3-oxopropyl)chroman-4-one (3ma)

Yellow liquid, yield: 43% (28 mg), ¹H NMR (500 MHz, CDCl₃) δ 7.93 – 7.90 (m, 1H), 7.87 (dd, *J* = 7.9, 1.6 Hz, 1H), 7.46 (t, *J* = 8.6 Hz, 1H), 7.00 (t, *J* = 8.0 Hz, 1H), 6.97-6.93 (m, 2H), 6.88-6.86 (m, 1H), 4.56 (dd, *J* = 11.4, 4.5 Hz, 1H), 4.31 (dd, *J* = 11.4, 8.8 Hz, 1H), 3.18-3.15 (m, 2H), 2.81-2.76 (m, 1H), 2.26-2.19 (m, 1H),

2.01-1.94 (m, 1H). ¹³C NMR (126 MHz, CDCl₃) δ =196.0 (d, J_{CF} = 4.7 Hz), 194.4, 167.0 (d, J_{CF} = 12.3 Hz), 165.0 (d, J_{CF} = 12.3 Hz), 164.0 (d, J_{CF} = 12.6 Hz), 161.9 (d, J_{CF} = 12.6 Hz), 161.6, 136.0, 132.8 (dd, J_{CF} = 14.9 Hz), 127.5, 122.2 (dd, J_{CF} = 16.8 Hz), 121.5, 120.7, 117.8, 112.4 (dd, J_{CF} = 24.9 Hz), 105.1 (dd, J_{CF} = 53.3 Hz), 71.0, 45.1, 40.8 (d, J_{CF} = 7.6 Hz), 21.0 (d, J_{CF} = 2.5 Hz). ¹⁹F NMR (471 MHz, CDCl₃) δ = -101.7, -104.1. HRMS (ESI) [M+H]⁺ Calcd For C₁₈H₁₅F₂O₃: 317.0984, Found: 317.0989.

4-(3-(4-oxochroman-3-yl)propanoyl)benzonitrile (3na)

Yellow solid, yield: 33% (20 mg), Mp: 104-106°C. ¹H NMR (500 MHz, CDCl₃) δ 8.06 (d, J = 8.3 Hz, 2H), 7.88 (dd, J = 7.9, 1.6 Hz, 1H), 7.77 (d, J = 8.3 Hz, 2H), 7.48 (t, J = 8.5 Hz, 1H), 7.03 (t, J = 7.5 Hz, 1H), 6.97 (d, J = 8.4 Hz, 1H), 4.57 (dd, J = 11.4, 4.5 Hz, 1H), 4.33 (dd, J = 11.4, 8.8 Hz, 1H), 3.23 (t, J =

7.1 Hz, 2H), 2.80-2.78 (m, 1H), 2.24-2.16 (m, 1H), 2.08-2.01 (m, 1H). 13 C NMR (126 MHz, CDCl₃) δ 198.1, 194.6, 161.6, 139.8, 136.2, 132.7, 128.6, 127.5, 121.7, 120.6, 118.0, 117.9, 116.6, 71.1, 45.0, 36.5, 21.3. HRMS (ESI) [M+H]⁺ Calcd For C₁₉H₁₆NO₃: 306.1125, Found: 306.1129.

ethyl 3-(4-oxochroman-3-yl)propanoate (3pa)

Yellow liquid, yield: 74% (37 mg). ¹H NMR (500 MHz, CDCl₃) δ 7.87 (dd, J = 7.9, 1.7 Hz, 1H), 7.47-7.44 (m, 1H), 7.00 (t, J = 7.5 Hz, 1H), 6.94 (d, J = 8.3 Hz, 1H), 4.52 (dd, J = 11.5, 4.5 Hz, 1H), 4.26 (dd, J = 11.4, 8.9 Hz, 1H), 4.13 (q, J = 7.1 Hz, 2H), 2.76-2.71 (m, 1H),

2.49 (t, *J* = 7.5 Hz, 2H), 2.20-2.13 (m, 1H), 1.86-1.79 (m, 1H), 1.24 (t, *J* = 7.1 Hz, 3H). ¹³C NMR (126 MHz, CDCl₃) δ 194.0, 173.0, 161.5, 136.0, 127.5, 121.6, 120.6, 117.8, 70.7, 60.7, 45.2, 31.8, 22.1, 14.3.

ethyl 2-methyl-3-(4-oxochroman-3-yl)propanoate (3qa)

Yellow liquid, yield: 62% (32 mg). ¹H NMR (500 MHz, CDCl₃) δ 7.88 (dd, J = 7.9, 1.7 Hz, 1H), 7.48-7.44 (m, 1H), 7.01 (t, J = 8.0 Hz, 1H), 6.95 (d, J = 8.8 Hz, 1H), 4.49 (dd, J = 11.4, 4.6 Hz, 1H), 4.23 (dd, J = 11.4, 9.4 Hz, 1H), 4.18-4.12 (m, 2H), 2.77-2.66 (m, 2H), 1.98-1.93 (m, 1H), 1.79-1.73 (m, 1H), 1.25 (t, J = 14.2 Hz, 3H), 1.21 (d, J

= 7.1 Hz, 3H). ¹³C NMR (126 MHz, CDCl₃) δ 194.3, 176.3, 161.6, 136.0, 127.6, 121.5, 120.7, 117.8, 71.0, 60.7, 44.3, 38.0, 30.3, 18.1, 14.4.

4. Evidence for a radical pathway Catalytic reaction interfered with a radical quencher:

An 25 mL oven-dried Schlenk tube was equipped with a stirring bar, 2-(allyloxy)benzaldehyde **1a** (0.2 mmol, 1.0 equiv.), α -bromo ketone **2a** (0.3 mmol, 1.5 equiv.), 4CzIPN (0.01 mmol, 5 mol%), TIPA (0.4 mmol, 2.0 equiv.) and 2,2,6,6-tetramethyl-1-piperidinyloxy (TEMPO, 5.0 equiv.). The mixture was degassed by using standard Schlenk techniques with an oil pump and DMSO/H₂O (v:v = 5:1, 2 mL) were injected into the reaction tube. The solution was placed in a distance of 3 cm from 9 W blue LEDs at room temperature for 12 h under argon atmosphere. The solution was used directly for HRMS analysis.

定性化合物报告

数据文件	5178717-2. d Sample	样品名称	5178717-2 P1-C4
仪器名称	Instrument 1	田戸名称	11.04
采集方法	POS-1MIN-350-550. m	采集时间	2023-05-23 18:55:02
IRM 校正状态	成功	数据方法	ZNZ-2022. m
注释			
设备类型	QuadrupoleTimeOfFlight	Sample Group	
Info.		Stream Name	LC 1
Acquisition SW Version	6200 series TOF/6500 series Q-TOF B.08.00 (B8058.0)		

化合物列表

化合物标签	RT	质量数	丰度	分子式	目标质量	误差(ppm)
Cpd 1: C18 H27 N 03	0.075	305.199	244962	C18 H27 N 03	305. 1991	-0.15
Cpd 2: C28 H37 N 05	0.086	467.2669	2804	C28 H37 N 05	467.2672	-0.65
Cpd 3: C28 H37 N 04	0.532	451.2693	172	C28 H37 N 04	451.2723	-6.65
AND A REAL PROPERTY AND AND				-		

MS 缩放的质谱图

MS 质谱图峰列表

m/z	Z	丰度	分子式	离子
305.1904	1	179.2	C18H27N03	M+
306.2064	1	244961.66	C18H27N03	(M+H) +
307.2095	1	48945.75	C18H27N03	(M+H) +
308.2118	1	5769.73	C18H27N03	(M+H) +

定性化合物报告

5. Follow-up chemistry

(a) 2-(4-methoxyphenyl)-5*H*-chromeno[4,3-*b*]pyridine (7)

According to the procedure reported by C. $Che^{[3]}$ et al. To a solution of compound **3aa** (62 mg, 0.20 mmol) in AcOH (1.0 ml), followed by NH₄OAc (124 mg, 8.0 mmol). The mixture was stirred at 120 °C and refluxed for 3 h. The reaction was quenched with saturated Na₂CO₃ solution. The mixture was extracted three times with EtOAc. The combined organic phases were dried over MgSO₄, concentrated in vacuo and the residue was purified by silica gel flash chromatography (PE/EA = 4:1) to give product **7**.

Compound (7): Yellow oil, yield: 64% (37 mg). ¹H NMR (500 MHz, CDCl3) δ 8.41 (dd, *J* = 7.7, 1.7 Hz, 1H), 8.09 (d, *J* = 8.9 Hz, 2H), 7.56 (t, *J* = 7.9 Hz, 1H), 7.43 (d, *J* = 8.0 Hz, 1H), 7.34-7.31 (m, 1H), 7.14-7.11 (m, 1H), 7.02 (d, *J* = 8.9 Hz, 2H), 6.98 (d, *J* = 8.1 Hz, 1H), 5.24 (s, 2H), 3.88 (s, 3H). ¹³C NMR (126 MHz, CDCl₃) δ 160.7, 156.63, 156.57, 148.2, 132.9, 132.0, 131.3, 128.3, 125.0, 123.8, 123.6, 122.4, 118.3, 117.0, 114.2, 68.0, 55.5. HRMS (ESI) [M+H]⁺ Calcd For C₁₉H₁₆NO₂: 290.1176, Found: 290.1184.

(b) 1-(4-methoxyphenyl)-2,3,3a,4-tetrahydrocyclopenta[c]chromene-1,9b(1H)-diol (8)

According to the procedure reported by R. $Guo^{[4]}$ et al. Rigorously deoxygenated THF (4.0 mL) was added to a mixture of compound **3aa** (62 mg, 0.20 mmol) and Zn dust (36 mg, 0.6 mmol) under Ar atmosphere at 0 °C. A solution of TiCl₄ (57 mg, 0.3 mmol) in THF (2 mL) was then added. The mixture was stirred for 1 h at 0 °C and then allowed to stand 12 h at room temperature. The reaction was quenched with saturated NaHCO₃ solution and extracted three times with EtOAc. The combined organic phases were dried over MgSO₄, concentrated in vacuo and the residue was purified by silica gel flash chromatography (PE/EA = 20:1) to give product **8**.

Compound (8): Colorless oil, yield: 79% (49 mg). ¹H NMR (500 MHz, CDCl3) δ 7.35 (d, J = 8.6 Hz, 2H), 7.30 (d, J = 7.9 Hz, 1H), 7.07 (t, J = 8.3 Hz, 1H), 6.90 (d, J = 8.6 Hz, 2H), 6.86 (d, J = 8.0 Hz, 1H), 6.64 (t, J = 7.8 Hz, 1H), 4.55 (dd, J = 10.1, 5.0 Hz, 1H), 3.85 (s, 3H), 3.82 (s, 1H), 3.23 – 3.17 (m, 1H), 3.08 – 3.01 (m, 1H), 2.55 (dd, J = 15.8, 9.4 Hz, 1H), 2.23 – 2.18 (m, 1H), 1.52 – 1.44 (m, 1H). ¹³C NMR (126 MHz, CDCl₃) δ 158.9, 154.6, 135.4, 131.5, 131.2, 129.2, 128.8, 126.7, 120.1, 119.9, 117.1, 114.1, 72.7, 55.4, 43.6, 38.9, 25.8. HRMS (ESI) [M+H]⁺ Calcd For C₁₉H₂₁O₄: 313.1434, Found: 313.1441.

3-(3-(4-methoxyphenyl)propyl)chromane (9)

According to the procedure reported by R. $Guo^{[4]}$ et al. To a solution of compound **3aa** (62 mg, 0.20 mmol) in CH₂Cl₂ (0.8 ml) was added Et₃SiH (116 mg, 1.0 mmol), followed by TMSOTf (0.9 mg, 0.004 mmol) at 0 °C. The mixture was stirred at 0 °C for 4 h and then allowed to stand 12 h at room temperature. The reaction was quenched with saturated NaHCO₃ solution. The mixture was extracted three times with CH₂Cl₂. The combined organic phases were dried over MgSO₄, concentrated in vacuo and the residue was purified by silica gel flash chromatography (PE/EA = 20:1) to give product **9**.

Compound (9): Colorless oil, yield: 92% (52 mg). ¹H NMR (500 MHz, CDCl3) δ 7.13-7.08 (m, 3H), 7.04 (d, J = 7.4 Hz, 1H), 6.85 (t, J = 15.1 Hz, 3H), 6.81 (d, J = 8.2 Hz, 1H), 4.22 (d, J = 15.6 Hz, 1H), 3.81 (s, 3H), 3.74 (t, J = 19.9 Hz, 1H), 2.87 (dd, J = 16.1, 4.4 Hz, 1H), 2.61 (t, J = 8.9 Hz, 2H), 2.47 (dd, J = 16.1, 9.7 Hz, 1H), 2.07-2.02 (m, 1H), 1.77-1.69 (m, 2H), 1.47-1.40 (m, 1H), 1.38-1.32 (m, 1H). ¹³C NMR (126 MHz, CDCl₃) δ 157.9, 154.8, 134.4, 130.0, 129.4, 127.3, 121.9, 120.3, 116.5, 113.9, 70.7, 55.4, 35.2, 32.2, 31.7, 31.5, 29.0. HRMS (ESI) [M+H]⁺ Calcd For C₁₉H₂₃O₂: 283.1693, Found: 283.1699.

6. Copies of ¹H NMR and ¹³C NMR spectra

¹H NMR of **3aa** in CDCl₃

S

S

S

¹⁹F NMR of **3aj** in CDCl₃

¹³C NMR of **3ak** in CDCl₃

0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 fl (ppm)

S

¹H NMR of **3ba** in CDCl₃ $\begin{array}{c} 7.98\\ -1.96\\ -1.96\\ -1.92\\ -1.$ 3ba 1.08 1.00 3.09 7 1.08 7 1.02 .084 054 05⊣ 02 03 0 5.0 4.5 fl (ppm) 0.0 9.5 9.0 8.5 8.0 7.5 7.0 6.5 6.0 5.5 4.0 3.5 3.0 2.5 2.0 1.5 1.0 0.5 0.0 -0. ¹³C NMR of **3ba** in CDCl₃ -199.4 -194.6 -161.6 136.9 136.0 133.3 128.7 128.7 128.2 128.2 128.2 127.4 121.5 120.6 117.9 -21.3 -71.1 -45.2 -36.1

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 fl (ppm) ¹H NMR of **3ca** in CDCl₃

S

¹⁹F NMR of **3ha** in CDCl₃

0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 fl (ppm)

¹³C NMR of **3ma** in CDCl₃

110 100 fl (ppm)

¹⁹F NMR of **3ma** in CDCl₃

¹³C NMR of 7 in CDCl₃

¹³C NMR of 8 in CDCl₃

5.5 5.0 4.5 f1 (ppm) 4.0 2.5 10.0 9.5 9.0 8.5 8.0 7.5 7.0 6.5 6.0 3.5 3.0 2.0 1.5 1.0 0.5 0.0

7. References

- [1] (a) X.-K. He, B.-G. Cai, Q.-Q. Yang, L. Wang, J. Xuan, *Chem. Asian J.* 2019, *14*, 3269. (b) Y.-C. Liu, P. Chen, X.-J. Li, B.-Q. Xiong, Y. Liu, K.-W. Tang, P.-F. Huang, *J. Org. Chem.* 2022, 87, 4263. (c) H. Hu, X. Chen, K. Sun, J. Wang, Y. Liu, H. Liu, L. Fan, B. Yu, Y. Sun, L. Qu, Y. Zhao, *Org. Lett.* 2018, *20*, 6157.
- [2] H.-L. Huang, J.-Y. Du, Q.-L. Li, F. Gao, C.-L. Ma, J. Org. Chem. 2020, 85, 3963.
- [3] C. Che, Z. Qian, M. Wu, Y. Zhao, G. Zhu, J. Org. Chem. 2018, 83, 5665.
- [4] R. Guo, G. Zhang, J. Am. Chem. Soc. 2017, 139, 12891.